
UNIVERSITY OF ECONOMICS, PRAGUE

Compound XML documents
validation

Diploma thesis

Petr Nálevka

Supervisor: Ing. Jiří Kosek

April 2007

About this document
This document has been generated with RenderX XEP.					Visit http://www.renderx.com/ to learn more about					RenderX family of software solutions for digital					typography.

Annotation
This thesis investigates different aspects of compound XML documents and shows the
potential benefits of using such documents in today's Web environment. The major
concern is dedicated to issues related to compound document validation. Possible ap-
proaches to address those issues are examined. One of the validation methods called
NVDL (Namespace-based Validation Dispatching Language) is discussed in detail.
This thesis describes the main principles of NVDL, analyses the advantages and disad-
vantages over other similar concepts and introduces JNVDL. JNVDL is a complete
Java-based implementation of the NVDL specification developed as part of this thesis.
The implementation is described from low-level technical perspective as well as from
user-level perspective. As a proof of the concept, JNVDL has been integrated into an
existing Web documents validation project called Relaxed to make straightforward
compound document validation available to Web content authors.

The first chapter of this thesis explains what are compound documents and why
should they be used. This chapter shows examples and technical background of com-
pound documents. Special attention is paid to compound document validation issues.
Different approaches are compared and their advantages and disadvantages are
highlighted.

The whole second chapter is dedicated to the NVDL specification. NVDL is a
standardized approach for compound document validation. This chapter contains de-
tailed description of NVDL language semantics and the NVDL validation dispatching
process and it can serve as an tutorial for those who would like to learn the language.

The third chapter describes JNVDL; an NVDL specification implementation written
in Java programming language. This chapter shows the implementation details as well
as the usage of JNVDL. It is a long way for a technology to get from a specification
stage to real world applications. The third chapter describes, how did JNVDL coped
with different issues not addressed in the specification.

JNVDL in use is presented in the last chapter. This chapter shows integration of
JNVDL into an existing Web documents validation project called Relaxed.

Anotace
Tato práce se zabývá různými charakteristikami komponovaných dokumentů a ukazuje
potencionální výhody využití takových dokumentů v prostředí dnešního Webu. Hlavní
pozornost je soustředěna na problémy spojené s validací komponovaných dokumentů.
Práce zkoumá různé přístupy k řešení těchto problémů. Validační metoda NVDL
(Namespace-based Validation Dispatching Language) je popsána detailně. Tato práce
popisuje hlavní principy NVDL, zkoumá výhody a nevýhody oproti jiným přístupům
a představuje JNVDL. JNVDL je kompletní implementace specifikace NVDL, která
byla napsána v jazyce Java jako součást této práce. Popsány jsou nejen technické prvky
implementace, ale JNVDL je představeno i z uživatelské perspektivy. Pro ověření vy-
užitelnosti bylo JNVDL integrováno do existujícího projektu pro validaci webových
dokumentů s názvem Relaxed, aby jednoduše zpřístupnilo validaci komponovaných
dokumentů autorům webového obsahu.

První kapitola této práce se zabývá komponovanými dokumenty a důvody pro
jejich použití. Tato kapitola ukazuje, jak jsou komponované dokumenty řešeny techno-
logicky a také příklady takových dokumentů. Zvláštní pozornost je věnována problem-
atice validace komponovaných dokumentů. Různé přístupy jsou porovnávány s
důrazem na jejich výhody a nevýhody.

Celá druhá kapitola je věnována specifikaci NVDL. NVDL je standardní přístup
pro validaci komponovaných dokumentů. Tato kapitola obsahuje detailní popis sé-
mantiky jazyka NVDL a validačního procesu, který popisuje. Druhá kapitola může
být také užitečná pro ty, kteří se chtějí naučit používat tento jazyk.

Třetí kapitola popisuje JNVDL, což je implementace specifikace NVDL napsaná v
jazyce Java. Tato kapitola popisuje nejen implementační detaily, ale i užití JNVDL. Od
specifikace k zavedení technologie do praxe vede dlouhá cesta. Třetí kapitola se proto
zmiňuje o tom, jak si JNVDL poradilo s různými problémy, které specifikace explicitně
neřeší.

Praktické nasazení JNVDL je demonstrováno v poslední kapitole. Tato kapitola
ukazuje integraci JNVDL do existujícího projektu pro validaci webových dokumentů,
který se jmenuje Relaxed.

Declaration
This thesis was elaborated individually by myself with the application of literature
mentioned in the attached list of references. I have no objections to lend the thesis with
the agreement of the faculty department or to publish the thesis or a part of it.

28th of April 2007, Prague

Petr Nálevka

Table of Contents
1. Preface ... 7
1. Compound documents ... 9

1.1. Namespaces in XML .. 10
1.2. Compound document applications ... 12

1.2.1. Templating languages ... 12
1.2.2. XML protocols .. 12
1.2.3. Office documents ... 12
1.2.4. The Web .. 13

1.3. Compound document validation ... 13
1.3.1. Current schema languages ... 14
1.3.2. Different approach .. 18
1.3.3. Evolution of the alternative .. 19

2. NVDL .. 21
2.1. Semantics in example ... 23

2.1.1. Adjusting validation ... 24
2.1.2. Rules .. 26
2.1.3. Modes .. 27
2.1.4. Attaching sections with attach ... 30
2.1.5. Unwrapping element sections ... 31
2.1.6. The attachPlaceholder action .. 33
2.1.7. Canceling nested actions .. 34
2.1.8. Context dependent processing .. 35
2.1.9. Working with attributes ... 36
2.1.10. When lacking namespaces ... 39
2.1.11. Annotating NVDL ... 39

2.2. Specification .. 40
2.2.1. Data model ... 41
2.2.2. Syntax .. 42
2.2.3. Decomposing instances into sections ... 45
2.2.4. Constructing interpretations .. 47
2.2.5. Combining section and validation .. 47

3. JNVDL ... 49
3.1. Project and architecture ... 49

3.1.1. Domain model ... 50
3.1.2. The validation dispatching process .. 51

3.2. Java validation API ... 53
3.3. Specification weaknesses ... 54

3.3.1. Round tripping .. 54
3.3.2. Problems with context .. 57

3.4. Distribution and testing ... 58
3.5. Using JNVDL .. 59

4. JNVDL integration into Relaxed ... 62
4.1. The Relaxed project .. 62
4.2. Compound documents and Relaxed ... 63

5

4.3. Further Relaxed extensions ... 65
4.4. Schematron validation ... 68
4.5. New user interface ... 70

5. Conclusion .. 74
References ... 76
Definitions .. 78
A. NVDL validation dispatching process .. 85
B. Interpretations for a non-deterministic NVDL Schema .. 88
C. NVDL schema as a compound document .. 91
D. Validation using triggers ... 93

6

Table of Contents

Preface

Over the last years XML become very popular. It features a simple format which is
easily processed by machines and human readable at the same time. There are many
techniques which help developers to work with XML. XML documents can be seamlessly
transformed using transformation languages, presented using styling and templating
languages and their grammar may be described and validated using schema languages.
Most programming environments on various platforms have some XML API allowing
developers to manipulate XML documents. That's the reason why today, XML is widely
adopted in many areas, on the Web as well as in the enterprise. XML is used as an
universal data exchange and storage format especially useful in heterogeneous envir-
onments. It is also frequently used as a format for complex configuration. Today there
are many different XML languages designed to solve different problems.

At first, those languages has been used separately, but as XML matures, it is more
and more obvious that some problems may be solved smarter using a combination of
more different single-purposes languages rather than using one complex versatile
language. If there already exists a well adopted and understood language which solves
part of a problem, it makes a good sense to reuse it rather than introducing something
new.

The designers of XML obviously considered such concerns as they introduced XML
Namespaces; a flexible way to combine different mark-up vocabularies1 in a single
XML document. The mechanism of XML Namespaces addresses the problem of collision
and recognition of elements and attributes from different vocabularies.

With XML Namespaces, it is technically no issue to create compound XML docu-
ments, but an important issue considered in this thesis is validation of such documents.
Validation is an essential part of every XML manipulation process. There are basically
two levels of document instance correctness. First, the document instance is well-formed
if it adheres to the general XML syntax. Only well-formed documents may be processed
using XML parsers. Second, the document instance is valid, if and only if it is well-
formed and if it satisfies its language schema2 definition in every aspect.

A validation process basically matches given document instance with its schema.
The reason why validation is so important is apparently interoperability. Where well-
formness ensures the document can be even parsed, validity ensures the document

1The term vocabulary, or mark-up vocabulary represents a set of elements and attributes based in the same
namespace.
2Schema is a description of the structure or rules an XML document must satisfy. It includes the formal de-
claration of elements and attributes that make up a language.

7

can be fully “understood” by a different information system or application. Validity
violation often causes interoperability problems. To ensure correct processing of XML
documents, it is essential to first check their validity.

When using a single-vocabulary document, validation is a straightforward task.
The whole document is validated against one schema. The situation gets more complic-
ated for compound documents as it is necessary to validate different language fragments
against different schemas and those are often defined using different schema languages.

Another issue stems from the fact there are many different possibilities to combine
two XML vocabularies, but not all of them are desirable. Sometimes it makes sense to
allow foreign grammar just in an eligible context and forbid it elsewhere.

This thesis shows how to overcome those difficulties using different aproaches to
compound document validation. One of the approaches which is discussed in great
detail is NVDL (Namespace-based validation and dispatching language) which is a
brand new international standard for compound document validation. A Java-based
implementation of NVDL specification called JNVDL was developed within the scope
of this thesis. This implementation is further closely described together with the general
principles of NVDL. This thesis also demonstrates a real application of JNVDL, which
was integrated into an existing Web document validation system to extend its compound
document validation capabilities.

8

Chapter 1

Compound documents

It is almost eight years ago when W3C introduced the Namespaces in XML recommend-
ation, which made it technically feasible to combine different XML vocabularies in one
document1. For some people, namespaces where a hostile element polluting XML with
additional complexity without any reasonable need for it. Despite initial problems,
advantages of namespaces become more and more obvious and today they are used
in many different applications.

Web and its history is a good example to demonstrate, why combining vocabularies
is the right approach to solve some sort of language extension problems. At first, HTML
was a simple format for publishing mostly scientific articles and for linking them to-
gether. But soon, Web became incredibly popular and its wide and fast adoption aston-
ished everybody. It became not just a standard for publishing electronic documents in
general, but it also become a standard way to create distributed user interfaces to make
all sort of information systems accessible.

The tendency to use or misuse HTML to solve all sorts of distinct problems slowly
polluted the language with various indiscreet proprietary extensions. For example
presentational aspects have been mixed up with semantical aspects. The situation got
even worse as there was almost no standardization. Browser and other software vendors
were promptly introducing new user-oriented features to gain competitive advantage
without having a long term vision of the language development in mind. All those issues
slowly caused the Web was loosing one of its main advantage; cross-platform interop-
erability. HTML simply become a big monolithic language intended to solve all sort
of problems, but not solving any of them in a satisfactory manner.

The situation has improved when the language became standardized under W3C
and the main vendors agreed on the standards to some extend. Today, the language
is slowly improving and evolving. A big issue slowing things down is of course back-
ward compatibility, but over the last years, the language has been purified from most
of the presentational aspects2. Moreover, HTML has been made fully XML based
(XHTML) and it has been modularized. Modularization allows to use exclusively those
features which are really needed for a particular application. Related aspects of the

1Today, such documents are called compound documents.
2Presentation of HTML documents shall be expressed through stylesheet languages.

9

language are decomposed into various modules; e. g. a structure module with the main
HTML structure, a table module for expressing tabular data, text module for organizing
text into headings and paragraphs, forms module to build form related interaction
with users, meta-information module to attach meta-data to documents, image module
for images, link module to hyperlink documents.

A different set of XHTML modules can be used for addressing different problems.
For example, it doesn't make sense to use the forms module in case of publishing a
simple electronic document using XHTML. Moreover, modules can be understood as
simple default vocabulary fragments with limited functionality. They can be left out
completely, if there is no need for them, or they can also be replaced by a whole different
specialized and feature-rich language. This can be clearly spotted as the current trend
in Web standards. Instead of the forms module, XForms can be used, RDF can replace
the meta-information module, link module can be overridden by XLink, instead of
images, SVG vector graphics can be directly embedded etc...

Such approach makes HTML and Web much more flexible and powerful. It makes
it also more suitable for all sort of completely different applications. Specific problems
can be addressed through a special combination of languages. Moreover, highly spe-
cialized single-purpose vocabularies can be reused even outside the Web environment
for all sort of different tasks. This kind of thinking inevitably leads to the point, where
no generic-purpose language as HTML is needed anymore. The only thing needed is
a parent language to embed all the desirable vocabularies. The XHTML structure
module is a good candidate, but a completely different language can serve this purpose
as well. For example, full-featured Web applications can be created using SVG with
embedded XForms. Where SVG serves as the parent language and it covers presentation,
XForms are used to collect user data.

Of course there are many unresolved issues related to compound documents and
some of them can be addressed technologically; e. g. validation problems which are
discussed in this text. But despite those issues, compound documents bring significant
advantages and a new level of flexibility, not just to the Web environment, but to many
different areas.

1.1. Namespaces in XML
The “Namespaces in XML” recommendation [NS] addresses problems of recognition
and collision of different vocabulary elements and attributes within one XML document.
The idea behind XML namespaces is very simple and straightforward. Without
namespaces, it would be necessary to assure none of the vocabularies used within one
document has clashing names of elements and attributes. If they do, applications cannot
“understand” those elements and attributes correctly as it is not obvious which
vocabulary they do belong to.

Namespaces solved this issue by assigning extended names to elements and attrib-
utes. An extended name is a pair of a namespace name and a local name (local names

10

1.1. Namespaces in XML

are defined in [XML], namespace names are represented by an URI which is specified
in [RFC3986]). As URIs may contain characters not allowed in names and they also
tend to be quite long, elements and attributes are rather bound to namespaces using
qualified names. A qualified name can be prefixed or not. A prefix is nothing more
than just a placeholder for the namespace. A prefix is mapped to a namespace using
an xmlns:prefix attribute.

Example 1.1. Namespace declaration and prefixes

The http://example.org/bibliography namespace is declared at the book element.
The namespace is represented by the bib prefix. All qualified names in the example
are prefixed and they do belong to the http://example.org/bibliography namespace.

<bib:book xmlns:bib="http://example.org/bibliography">
<bib:title>Effective XML</bib:title>
<bib:subtitle>50 Specific Ways to Improve Your XML</bib:subtitle>

...
</bib:book>

Elements with unprefixed qualified names belong into the default namespace which
is declared using the xmlns attribute. Unprefixed attributes are assigned to an empty
namespace and their interpretation depends on the element where they occur. The
default namespace construct allows to minimize the use of prefixes within documents
making them shorter and more readable.

Example 1.2. Default namespace

The http://example.org/bibliographynamespace is declared as the default namespace.
Where the unprefixed elements book and title belong to the default namespace, the
include element belongs to http://www.w3.org/2001/XInclude.

<book xmlns="http://example.org/bibliography" ►
xmlns:xi="http://www.w3.org/2001/XInclude">
<title>Effective XML</title>
<xi:include href="introduction.xml"/>

</book>

The scope of a namespace declaration begins at the start tag where the declaration
appears and ends at the corresponding end tag excluding any inner declaration scopes
for the same namespace. For example, when declared at the root element of the docu-
ment, the prefix's scope is the whole document, unless there is another namespace de-
claration for the same namespace at one of its descendants. The namespace declaration
applies to every element and attribute with the matching prefix within the scope.
Multiple prefixes may be declared at each element.

11

1.1. Namespaces in XML

1.2. Compound document applications
Compound documents already have many different applications in many different
areas. This section mentions some of the typical use-cases.

1.2.1. Templating languages

One of the first applications of compound documents were templating languages. The
W3C XSL Transformations recommendation [XSLT] has been published just few months
after Namespaces in XML. XSLT is a popular templating language. It can express rules
for transforming a source XML tree into a result tree. The transformation is done by
associating patterns with templates. Where patterns match parts of the source tree,
templates create the corresponding result. XSLT is powerful enough to completely
change the structure of the source tree in the result.

The particular rules are expressed using the XSLT language, which is an XML
vocabulary assigned into the XSLT namespace. In case the result is again an XML
document, fragments of the result tree need to be placed within the appropriate tem-
plates. As those fragments may belong to an arbitrary namespace, such XSLT stylesheet
is in fact a compound document.

Another widely used templating language which features an XML notation is JSP
(Java Server Pages). JSP is used as a standard scripting language for developing Web
pages in Java. In JSPs, custom mark-up assigned to different namespaces is bound to
Java code which is than executed during render time of the pages. Fragments of the
resulting page (usually HTML fragments) can be embedded within such custom mark-
up. To conclude, such JSP script is again a compound document.

1.2.2. XML protocols

XML is widely used as a data exchange format. In non-trivial cases, a protocol is needed
to exchange structured XML messages. SOAP (Simple Object Access Protocol) can be
mentioned as an example of such a protocol. In SOAP, XML queries are sent to retrieve
XML responses. In general, those are called SOAP messages, which are basically XML
data wrapped up in a SOAP envelope. The envelope, which consists of a header and
a body, carries also message related meta-data such as processing information.

No doubt, SOAP messages are again compound documents as they consist of an
envelope (SOAP vocabulary) which encapsulates the actual message payload (arbitrary
vocabulary).

1.2.3. Office documents

Office documents are exactly the right example for a compound document application.
It is actually the environment, where the phrase “compound documents” originated.

12

1.2. Compound document applications

Office documents need to solve exactly the kind of problem which is addressed through
namespaces in XML. There are various differently structured data (e. g. text, tables,
graphs, diagrams or spreadsheets) and those need to be incorporated into one document.

XML is undoubtedly the right format to serialize office documents. The reason is,
there are many specialized mature XML vocabularies ready to be reused as a format
for describing different type o data traditionally used within office documents and
XML features a good mechanism (namespaces) to combine those vocabularies together.
Open Document Format (ODF) can be mentioned as an example of XML being success-
fully used in various office bundles as the native document format. ODF is again a
compound document format.

1.2.4. The Web

As mentioned previously, there is a big opportunity for compound documents in the
Web environment. There are many different standard languages which can significantly
enhance the Web user experience and make Web documents more flexible and tailored
to specific applications.

A nice example of a compound document concept designed for use in the Web en-
vironment is the xH language presented for example at the WWW2006 conference. It
is basically a synthesis of XHTML and several other well-know standard XML lan-
guages; mainly XForms, SVG and MathML. Interaction of the different language blocks
is achieved through JavaScript.

All the languages recommended to be used within xH are widely used and well
known. But the value added and the major intention of xH is to encourage people to
use those languages in combination to build a new generation of flexible Web applica-
tions with enhanced user experience.

1.3. Compound document validation
XML namespaces did technically allow presence of multiple vocabularies inside one
XML document, but this was just the beginning. There are many other issues which
need to be addressed before adopting a compound document solution.

Standalone XML languages usually have their semantics described verbally in the
language specification. Such specification explains the meanings of different elements
and attributes and defines the way they should be interpreted by different applications.
The language syntax is usually formally defined in a schema. A well-designed schema
reflects the semantics, as it allows to construct just meaningful structures with unam-
biguous interpretations.

When using compound documents, a completely new level of complexity emerges.
In this case, different language fragments are combined within one XML document
instance. Such fragments can be combined in many different ways and even the isolated

13

1.2.4. The Web

fragments are meaningful (in respect to their language semantics) and they are syn-
tactically correct, the combination of such fragments can be difficult to interpret or it
may be even semantically empty.

An XHTML document which consists of a head section and a body section can serve
as an example. In contrast to the head section, which is used to place various meta-data
related to the document, the body section is intended to be rendered. In case, it is desir-
able to attach some RDF meta-data to the document, placing such fragment into the
body section would cause interpretation difficulties as meta-data are not intended to
be rendered. The correct place to put RDF fragments is of course the head section.

This implies, there are two major issues concerning compound documents. First,
semantics needs to be created for different compound languages3, to make them cor-
rectly interpretable by different applications. Second, the way different languages are
combined together has to be constrained to allow just the meaningful combinations
(compound language syntax). This requires some kind of a “meta-schema” language
to express such constraints.

Today, for standalone XML languages, automated validation is absolutely essential
to ensure their interoperability. This is even more important for compound documents,
as they tent to be more difficult to interpret. To make compound documents applicable
in a heterogeneous environment (as the Web environment for example), it is absolutely
necessary to provide powerful validation tools and techniques. This requires schema
languages able to cope with multiple namespaces and validation engines able to check
document instances against such schemas. Two distinct approaches to compound
document validation are discuss in the following sections.

1.3.1. Current schema languages

One approach to face the compound document validation problem is to extend current
schema languages to support multiple namespaces. Some schema languages even don't
allow namespace prefixes in instances at all. For example the widely used DTD. Such
languages cannot be directly used for compound document validation, but modern
mainstream schema languages usually have namespace support included. XML Schema
or Relax NG are cases in the point.

1.3.1.1. Relax NG

This section closely examines namespace capabilities of Relax NG; a popular full-fea-
tured nicely designed schema language (for more information see [RNG] or [HTML-
VAL]). Relax NG is namespace aware which means elements and attributes are defined
using their qualified names. The following example illustrates a straightforward way
to define RDF inside the XHTML head section.

3Compound language is a term used within this text to describe a language composed of two and more
different XML vocabularies. Such composition is considered to be a language itself, as it has its own syntax
and semantics in addition to the syntax and semantics of the particular vocabularies.

14

1.3.1. Current schema languages

Example 1.3. Allowing RDF inside the XHTML head

<define name="head.pattern">
<element name="title" ns="http://www.w3.org/1999/xhtml"><text/></element>
<interleave>
... more XHTML head definitions ...
<element name="RDF" ns="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

... more RDF definitions ...
</element>

<interleave/>
</define>

The previous example is quite straightforward, but it is not really flexible indeed.
To make it more flexible the schema needs to be modularized. Defining modules for
each vocabulary allows to create schemas for various different compound languages
on the fly simply by including the appropriate modules. Reusing the previous definition
for a different combination of vocabularies would be very painful.

Modularizing the schema is no issue for Relax NG as it features a very nice modu-
larity support. In Relax NG, “named patterns” are used for grouping definition frag-
ments using the define element and assigning names to them. Two definition fragments
with the same name are automatically combined. There are two strategies to combine
definitions in Relax NG: interleave and choice. With interleave, the defined patterns
can both occur in any order. Choice requires just one of the patterns to occur at a time.
This mechanism allows to make parts of the definition more restrictive by including
the right modules. Named patterns can also be made less restrictive by overriding them
when included. The following example shows how to make the previous schema
modular.

Example 1.4. Making the schema modular

Three abstract named patterns need to be defined first. One for all HTML block elements,
second for all inline elements and third for the HTML head content. Each of those pat-
terns represents a suitable context for placing different foreign vocabularies. Interleave
combining method is specified for head.pattern as the head section is expected to have
foreign elements in any order along with other HTML fragments. For inline.pattern
and for block.pattern the choice method is used, thus the inline and block elements
may contain either a foreign fragment or the eligible HTML elements.

...
<define name="head.pattern" combine="interleave">
<zeroOrMore><ref name="head.foreign"/></zeroOrMore>

</define>
<define name="block.pattern" combine="choice">
<ref name="block.foreign"/>

</define>

15

1.3.1. Current schema languages

<define name="inline.pattern" combine="choice">
<ref name="inline.foreign"/>

</define>
...

Further, each of the three patterns reference an additional named pattern which
could be called a foreign pattern. Foreign patterns may be defined differently in different
modules. The following module allows validation of HTML + RDF documents, where
RDF may only occur in the context of the HTML head element. RDF is not only allowed
there, it is also validated against the Relax NG schema for RDF (rdfxml.rng).

xhtml+rdf.rng
...
<define name="head.foreign" combine="interleave">
<externalRef href="../foreign/rdf/rdfxml.rng" ►

ns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
</define>
...

Different compound languages can be easily defined just by introducing a new
module which adds some externalRef for the new language schema to the appropriate
foreign patterns. For example the following foreign pattern definition allows SVG in
any HTML block or inline element.

xhtml+svg.rng
...
<define name="block.foreign" combine="choice">
<externalRef href="../foreign/svg/svg.rng" ►

ns="http://www.w3.org/2000/svg"/ >
</define>
<define name="inline.foreign" combine="choice">
<externalRef href="../foreign/svg/svg.rng" ►

ns="http://www.w3.org/2000/svg"/ >
</define>
...

The next module allows MathML in any block or inline element.

xhtml+mathml.rng
...
<define name="block.foreign" combine="choice">
<externalRef href="../foreign/mathml/mathml.rng" ►

ns="http://www.w3.org/1998/Math/MathML"/ >
</define>
<define name="inline.foreign" combine="choice">

16

1.3.1. Current schema languages

<externalRef href="../foreign/mathml/mathml.rng" ►
ns="http://www.w3.org/1998/Math/MathML"/ >
</define>
...

When including all of the three introduced modules into the modular schema, the
result is a compound language schema based on XHTML which allows RDF meta-data
in the header and SVG or MathML fragments in the document's body. For any new
combination of languages, just a simple Relax NG schema with all the appropriate in-
cludes needs to be created. Below is an example of such schema for the XHTML + RDF
+ SVG + MathML compound language.

xhtml+rdf+svg+mathml.rng
...
<include href="../foreign/xhtml+rdf.rng"/>
<include href="../foreign/xhtml+svg.rng"/>
<include href="../foreign/xhtml+mathml.rng"/>
...

There is another Relax NG feature especially useful for compound documents.
Name classes allow to use wild-cards for element and attribute qualified names. This
means, vocabularies are validated laxly. The anyName wild-card matches any qualified
name and the nsNamewild-card matches qualified names within the specified namespace.
In the next example, arbitrary foreign vocabularies are allowed in the context of the
HTML head element.

Example 1.5. Arbitrary vocabularies

The following pattern allows to combine XHTML elements in the head context with
arbitrary vocabularies. All elements and attributes are matched, except those assigned
into the HTML namespace, because they should not be validated laxly. The foreign.head
pattern is referenced recursively to allow an arbitrary structure of foreign elements.

...
<define name="head.foreign" combine="interleave">
<element>
<anyName> <!-- any element is allowed expect HTML elements -->
<except>
<nsName ns="http://www.w3.org/1999/xhtml"/>

</except>
</anyName>
<zeroOrMore>
<choice>
<attribute>
<anyName>

17

1.3.1. Current schema languages

<!-- any attribute is allowed expect HTML attributes -->
<except>
<nsName ns="http://www.w3.org/1999/xhtml"/>

</except>
</anyName>

</attribute>
<text/>
<!-- recursive reference zero or more any element children -->
<ref name="head.foreign"/>

</choice>
</zeroOrMore>

</element>
</define>

Similar features for defining compound languages demonstrated previously using
Relax NG can also be found in the widely used and supported XML Schema.

1.3.2. Different approach

The previous section has shown compound document schemas created using namespace
support in Relax NG. This approach is straightforward and convenient, especially for
people who are already familiar with this popular schema language. But there are
several disadvantages.

To allow a foreign vocabulary in some contexts of XHTML (as demonstrated in
example Example 1.4, “Making the schema modular”) is a simple task for someone
who is familiar with the implementation details of the XHTML schema (knowing the
structure of the schema's definition patterns and modules), but it is less straightforward
for someone who doesn't have the right insight.

Moreover, using the approach shown in Section 1.3.1, “Current schema languages”
doesn't allow to reuse existing schemas for languages to be combined. Standalone
language schemas aren't often prepared to be combined with other schemas4. In addi-
tion, they are frequently written in different schema languages or even in languages
which aren't namespace-aware at all, thus they may not be combined without conver-
sion5. All those factors cause reusing of such schemas to be very inconvenient and time-
consuming in some cases. It may require redesigning parts of the schemas and convert-
ing all schemas to one common schema language which features namespace support.

Such approach would not only require deep knowledge of the particular schemas
and a long implementation time, but it also leads to maintenance issues. As different

4Standalone language schemas don't usually have the right level of modularity and abstraction which is
needed for seamless integration which other schemas.
5When combining schemas using a namespace-aware language, all external referenced schemas must be
written in the same schema language.

18

1.3.2. Different approach

languages evolve over time, constant updating of the redesigned or converted schemas
is required. This issue is especially pressing for complex compound languages.

To conclude, reusability of existing schemas is an important requirement which is
not satisfied within today's namespace-aware schema languages (e. g. Relax NG or
XML Schema). To allow schema reusability, a completely different approach to com-
pound document validation is needed; an approach which is completely independent
on the schema languages used to define the particular vocabularies and on their schema
implementation. Those objectives can not be simply met without a special single-purpose
“meta-schema” language intended to express eligible ways to combine different
vocabularies in one document.

Such language would bring significant benefits over the single namespace-aware
language approach. It allows people designing XML vocabularies to fully focus on the
schema, without even thinking about how can their vocabulary possibly be combined
with a different one. They don't need to design any additional modules or definitions
and they may select a schema language which best suits their needs. It doesn't even
need to be a mainstream language, nor a namespace-aware language.

People designing compound languages would benefit from such approach as well.
They may fully focus on declaring the particular rules for combining different vocabu-
laries without having any additional knowledge about their schema implementation
details. They don't even need to understand the different schema languages at all.

Separating vocabulary constraints from compound language constraints also sim-
plifies schema maintenance. Changes in any particular vocabulary schema doesn't
imply any changes in the compound language definition. Introducing a new schema
for an arbitrary compound language doesn't require any adjustments in the vocabulary
schemas. Basically all schemas used to describe a particular compound language and
its vocabularies are completely independent which allows them to be reused as they
are.

1.3.3. Evolution of the alternative

The alternative concept of compound document validation described in the previous
section originated in 2001 when Murato Makoto introduced the Relax Namespace (see
[RNS]). The purpose was to bring namespace support to the Relax schema language
(a predecessor of Relax NG). The Relax Namespace idea is based on the “divide and
validate” concept. Compound documents are first decomposed into “islands”, where
each “island” is a single-namespace well-formed XML fragment. Such fragments may
be further validated against the appropriate single-namespace schemas.

Over the following years, other well-known XML experts, mainly James Clark and
also Rick Jelliffe, enhanced the original concept. As a result the Modular Namespaces
[MNS], Namespace Switchboard [NSSB] and Namespace Routing Language [NRL]
have been introduced. Modular Namespaces brought more control over the “divide
and validate” process using a simple language. In the simplest form, such language

19

1.3.3. Evolution of the alternative

maps namespace URIs to schema URIs to express what schema shall be used to validate
different vocabularies. This mapping is not fixed, it may differ in different contexts
within the validated document. Modular Namespaces also introduced the concept of
schema language transparence. The importance of such concept for schema reusability
has been discussed in the previous section.

The concept did further evolve with Namespace Switchboard which made the
language simpler and clearer by moving the expressive power from the low-level val-
idation details more to the user perspective. Namespace Switchboard as well as Mod-
ular Namespaces both served as a base for the Namespace Routing Language (NRL).
NRL is a mature feature-rich language. It takes advantages from both it's predecessors.
Simplicity is mostly inherited from Namespace Switchboard and features from Modular
Namespaces.

Recently, the NRL concept has been further slightly fine-tuned by dropping some
features and introducing new ones. The result has been internationally standardized
as a compound document validation approach which is called the Namespace-based
Validation Dispatching Language (NVDL). The following chapter explains the NVDL
specification in detail.

20

1.3.3. Evolution of the alternative

Chapter 2

NVDL

NVDL, which means Namespace-based Validation Dispatching Language, is “Part 4
of ISO/IEC 19757 DSDL” (Document Schema Definition Languages) international
standard. NVDL is a simple “meta-schema” language which allows to control processing
and validation of compound documents. Figure 2.1, “NVDL validation process at a
glance” demonstrates a particular validation dispatching process decomposed into
several phases.

The essence of NVDL is dividing XML compound document instances1 into sections2

each of which contains elements or attributes from a single namespace. A section tree
is first constructed for every instance. Sections are further combined or manipulated
in various ways to create so called validation candidates.

Manipulation of sections is achieved through rules and their corresponding actions
defined in an NVDL script. Actions are executed on a particular section whenever it
matches a certain rule; usually in case the sections namespace matches the rule's
namespace wildcard.

There are several actions defined in NVDL; e. g. attach for attaching sections back
to their parent, unwrap to handle wrapped sections and validate to send a particular
validation fragment to a particular validator.

After executing actions, validation candidates are created (those are usually single
namespace fragments) and they are further filtered for redundancy into validation
fragments. Such fragments are finally independently send for validation against different
subschemas3. The NVDL validation process is examined in detail in Section 2.2, “Spe-
cification”, but a complete specification is contained within [NVDL].

Figure 2.1, “NVDL validation process at a glance” shows a compound document
with two vocabularies. In the first phase, the document is decomposed into sections
depending on the namespace of the different fragments. According to the NVDL script,

1The term instance is used for the input document of the validation process
2In NVDL, there are element sections and attribute sections. An element section is defined as an element
such that a single namespace applies to itself and to all its descendant elements. An attribute section is basically
a non-empty set of attributes having the same namespace.
3Subschema is defined in the NVDL specification as a schema referenced by the NVDL script.

21

different actions (validate, unwrap and attach) are executed on the particular sections.
This leads to construction of validation candidates. Finally, for every validate action
a non-redundant candidate is send for validation. Appendix A, NVDL validation dis-
patching process shows a corresponding XML instance and NVDL schema example.

Figure 2.1. NVDL validation process at a glance

When compared to other approaches, NVDL offers many advantages. It features a
standardized and easy to understand language to define compound document validation
dispatching processes. With NVDL, different vocabularies may be easily allowed,
banned or send for further validation depending on the particular context where they
occur within the validated instance. NVDL language semantics is described in Sec-
tion 2.1, “Semantics in example”.

The ability to create single namespace fragments allows not to care about namespaces
in the subschemas at all. Single namespace schemas are easier to write and what is
important also easy to reuse for various different compound languages. Moreover,
NVDL is not bound to a specific schema language, different schema languages can be
used in combination during a single validation process. Subschemas may be written
in any preferable schema language e. g. Relax NG, XML Schema, Schematron or DTD.
This is again important in terms of reusability, because in the real world, XML vocab-
ularies are usually described using different schema languages. NVDL allows to reuse
those schemas as they are. There is no need for converting or modifying them.

22

When having a set of subschemas for different vocabularies, using NVDL, it is
straightforward to create various NVDL definitions for all different combinations of
such vocabularies without the need to introduce any changes to the particular subs-
chemas at all.

Using entirely Relax NG or XML Schema for compound document validation leads
to uniformity as it forces users to convert schemas for different vocabularies to the
same language. NVDL, on the other hand, means variety, as it allows to choose the
schema language with best suits the particular vocabulary needs. There is absolutely
no need to choose a mainstream language.

2.1. Semantics in example
This section describes the semantics of NVDL. Different elements and attributes and
their meanings are explained with the help of example NVDL schemas. Simple scenarios
are used first and gradually more difficult and specific ones are introduced. A similar
concept is used in [NRL] which served as a base for this section. The first example is
probably the simples NVDL schema imaginable.

Example 2.1. The “Hello World!” NVDL schema

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">
<namespace ns="http://hello-world">
<validate schema="hello-world.dtd"/>

</namespace>
</rules>

The root element in any NVDL schema is called rules. It contains all the rules that
determine the validation process execution. In Example 2.1, “The “Hello World!” NVDL
schema”, there is just one rule. Whenever one of the validated XML instance sections
matches the namespace http://hello-world, the whole section is send for validation
against the hello-world.dtd subschema. Elements from different namespaces are re-
jected, which is the default behavior.

This example is basically equivalent to classical single-namespace validation. The
validation process is the same, as if validating the instance directly against the hello-
world.dtd schema using a DTD validator. Let's move to a more realistic example ex-
pecting more namespaces in a single instance; basically doing a simple compound
document validation.

Example 2.2. Compound document schema with multiple namespace rules

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng"/>

23

2.1. Semantics in example

</namespace>
<namespace ns="http://www.w3.org/2000/svg"/">
<validate schema="svg.sch"/>

</namespace>
</rules>

In Example 2.2, “Compound document schema with multiple namespace rules”,
there are two different namespace rules each of which contains a validate action. This
example shows a basic mapping between a namespace URI (specified by the ns attribute)
and a schema URI (specified by the schema attribute).

The meaning of the NVDL script is very simple. Each section which belongs to the
XHTML namespace is validated against the xhtml.rngRelax NG schema and each SVG
section against the Schematron rules defined in svg.sch.

2.1.1. Adjusting validation

Validation of sections against subschemas can be adjusted using several attributes or
children of the validate element. Not only the schema attribute can be used to specify
subschemas. In some cases, it is useful to use the schema element instead, to embed a
subschema directly into the NVDL script. The schema element may contain either text,
in case the subschema is not XML-based4 or a foreign XML fragment. When embedding
subschemas directly into NVDL, such NVDL schema becomes effectively a compound
document. This implies, an NVDL schema for NVDL can be defined as demonstrated
in Appendix C, NVDL schema as a compound document.

One of the problems an NVDL dispatcher5 has to solve is, what validator to invoke
for each subschema. In most cases subschemas are defined in the XML format, thus
the schema language can be easily recognized from the subschema's parent element
namespace. But in some cases, the subschema is in a different format and the NVDL
dispatcher has to determine the schema language from the MIME type. In case the
MIME type in not available, the schema language should be manually specified in the
NVDL script using the schemaType attribute.

A typical example of a non-XML schema language format is DTD. In this case, the
value of the schemaType attribute is application/xml-dtd. For Relax NG in the compact
syntax the value is application/x-rnc.

Some validators use specific options to adjust the validation process. Such options
can be specified directly in an NVDL script. The NVDL dispatcher takes care of passing
those into the appropriate validator. Options are expressed using option elements inside
the validate action. Their name and value pairs are set using the name and arg attributes.
If the validation process requires the validator to support a particular option, the

4This applies e. g. to DTD or Relax NG in the compact syntax.
5An NVDL dispatcher is an application doing validation dispatching in compliance with the NVDL specific-
ation.

24

2.1.1. Adjusting validation

mustSupport attribute should be set to true. An error is returned, if the validator doesn't
support it.

Frequently, it is needed to allow or reject some sections in a particular context
without validating them. It doesn't make much sense to express such behavior using
some specific schema language. For this purpose NVDL offers predefined schemas.
Instead of the validate action, allow or reject can be used directly. In example Ex-
ample 2.3, “Predefined schemas”, XHTML sections are validated using the xhtml.rng
schema, but all SVG sections are allowed without even attempting to validate them.
All other element sections are rejected using the anyNamespace rule in combination with
reject. Such definition is in fact redundant, as it is NVDL's default behavior to reject
any section which doesn't match any of the defined rules.

Example 2.3. Predefined schemas

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng"/>

</namespace>
<namespace ns="http://www.w3.org/2000/svg">
<allow/>

</namespace>
<anyNamespace>
<reject/>

</anyNamespace>
</rules>

There is another interesting NVDL feature related to validation; for one namespace,
several validate actions can be defined. This tells the NVDL dispatcher to invoke
several validators for every matching section. As different schema languages are more
or less suitable to express some kind of constraints, this is a reasonable use-case.
Sometimes better validation results are achievable through a combination of two or
more schema languages6.

One of the promising schema language combinations is for example Relax NG and
Schematron. Where Relax NG is suitable to define the elementary grammar of a
vocabulary (mostly parent-child relations), Schematron is especially useful to express
complex validation rules across the XML instance tree.

In some cases it makes a good sense to ensure not only validity of HTML documents
but also accessibility, which can be defined as compliance with the Web Content Ac-

6Not every schema language combination is automatically useful. Some languages are more suitable to be
combined than others. In general, there are two major categories of schema languages: grammar-oriented
and rule-based. Usually it makes more sense to combine languages from different categories. More inform-
ation on this topic are available in [HTML-VAL].

25

2.1.1. Adjusting validation

cessibility Guidelines7 (WCAG). Where Relax NG is the right solution to express XHTML
grammar, Schematron is the preferable language for expressing the various complex
accessibility rules. As shown in the next example, multiple validate elements cause
XHTML sections to be validated against both schemas.

Example 2.4. Multiple validate elements for a single namespace

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng"/>
<validate schema="wcag.sch"/>

</namespace>
</rules>

2.1.2. Rules

Rules are represented either by the namespace or anyNamespace element and they consist
of a condition and a list of actions. The rule is triggered whenever an element or attribute
section matches the given condition. In this case, each action in the list is executed.
There are several different types of actions in NVDL. One of them is for example the
validate action which was mentioned earlier.

Rule conditions are defined using a namespace URI. The namespace rule is applicable
to any section whose namespace matches the value of the rule's ns attribute. The any-
Namespace rule works differently. As it matches every section which doesn't have any
applicable namespace rule defined, it basically specifies default behavior for vocabularies
which are not explicitly listed. Example 2.3, “Predefined schemas” illustrated the use
of anyNamespace rule in conjunction with reject. When allow is used instead, the default
strict validation behavior is overridden and NVDL validates laxly. This means, any
section in an arbitrary namespace with no matching rule is automatically allowed
without being validated.

Sometimes, it is desirable to match several namespaces whose URI matches a special
pattern. For that reason, NVDL introduces wild-cards. The wildCard attribute at
namespace rules sets a special symbol (one character) that stands for one or more un-
specified characters in the namespace URI. If wildCard is not present, the default wild-
card symbol is a star *. Wild-cards are useful for example in cases, when the same
schema (or behavior) applies to several versions or mutations of a vocabulary and their
namespace URI slightly differs.

Rules can match elements, attributes or both. Implicitly they match elements. This
means, rules apply by default to element sections only. But this can be altered using

7Web Content Accessibility Guidelines is a set of recommendations aimed to make Web content accessible
to people with all sorts of disabilities. For more information refer to [WCAG].

26

2.1.2. Rules

the match attribute at both, namespace or anyNamespace rules. The match attribute accepts
"element", "attribute" or "element attribute" values.

2.1.3. Modes

In the previous examples, just simple global rules applicable for all element and attribute
sections in the entire document were considered. Modes bring much more flexibility
and a fine-grained control over the validation process. Different rules can be grouped
within modes and such groups are applicable in different context of the document.

The previous examples, where namespace and anyNamespace elements were contained
directly within the root rules element, may be understood as NVDL scripts with just
one global mode applicable in any context. When using multiple modes, the root element
doesn't contain different rules directly. Instead, it contains several mode children which
than contain the actual rules. In this scenario a startMode attribute has to be present at
the rules element to specify the initial mode.

Every time an action is executed on a particular section, the NVDL dispatcher
transits from one mode to another. There are basically two possibilities for specifying
transitions between modes. Every action (e. g. the validate action) can have a useMode
attribute, which references a different mode using its unique name8. Another approach
is nesting modes directly into actions. There is one important difference between those
two approaches. Where named modes can be referenced by multiple actions, transition
to a nested mode is only possible by executing its parent action. If no useMode or any
nested mode is defined for an action, the action transits by default back to the same
mode.

Example 2.5, “Using modes” examines a simple NVDL script which ensures, in-
stances have SVG sections nested into XHTML, not the other way around. Only XHTML
namespace sections are allowed in the initial mode. For any nested section, the validation
process transits to the nested mode which allows only the SVG namespace. In fact,
SVG fragments are prevented from containing any further foreign namespace fragments.

Example 2.5. Using modes

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="init">
<mode name="init">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng" useMode="nested"/>

</namespace>
</mode>
<mode name="nested">

8Names are assigned to modes using their name attribute. Named modes are always children of the rules
element.

27

2.1.3. Modes

<namespace ns="http://www.w3.org/2000/svg"/">
<validate schema="svg.sch"/>

</namespace>
</mode>

</rules>

Readability of this example can be enhanced using nested modes. Nesting modes
does not change the meaning of the script, it is just a different way to describe the same
behavior.

Example 2.6. Using nested modes

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="init">
<mode name="init">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng">
<mode>
<namespace ns="http://www.w3.org/2000/svg"/">
<validate schema="svg.sch"/>

</namespace>
</mode>

</validate>
</namespace>

</mode>
</rules>

As shown in Example 2.6, “Using nested modes”, the mode element can appear as
a child of the rules element or it can be nested inside actions.

In addition, there is one more place where modes can appear; included inside other
modes. In such case, the NVDL dispatcher takes care of merging those modes together
into a single mode. Conflicts are resolved. Every child mode rule which defines the
same condition as one of the parent mode rules is overridden.

Example 2.7. Mode inclusion

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="init">
<mode name="init">
<mode>
<anyNamespace>
<allow/>

</anyNamespace>
</mode>

28

2.1.3. Modes

<anyNamespace>
<reject/>

</anynamespace>
</mode>

</rules>

The previous NVDL script is equivalent to the following one. Both scripts simply
reject every instance.

Example 2.8. Merged mode

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="init">
<mode name="init">
<anyNamespace>
<reject/>

</anynamespace>
</mode>

</rules>

Mode inclusion is especially useful when including external modes using XInclude.
With XInclude, only well-formed XML fragments can be included. This means, different
rules cannot be included directly, but instead they need to have a root element. It is
straightforward to encapsulated rules intended for inclusion into a parent mode element.

Mode inclusion is a nice way to achieve mode inheritance9. The Example 2.6, “Using
nested modes” can be further extended to allow both XHTML as well as SVG fragments
to have nested RDF meta data sections. The next example shows the solution.

Example 2.9. Mode inheritance

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
xmlns:xi="http://www.w3.org/2001/XInclude" startMode="init">
<mode name="init">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng">
<mode>
<xi:include href="rdfmode.xml"/>
<namespace ns="http://www.w3.org/2000/svg"/">
<validate schema="svg.sch">
<mode>
<xi:include href="rdfmode.xml"/>

</mode>

9In NRL, mode inheritance is directly supported as part of the language. The extends attribute is used to
reference parent modes. For more information refer to [NRL]

29

2.1.3. Modes

</validate>
</namespace>

</mode>
</validate>

</namespace>
</mode>

</rules>

rdfmode.xml
<mode>
<namespace ns="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<validate schema="rdf.rng"/>

</namespace>
</mode>

2.1.4. Attaching sections with attach

The previous text mentioned actions in general, but only the validate action was intro-
duced and explained in detail. Several other different actions and their meanings are
explained in the following text. One of them is the attach action which allows re-at-
taching child sections10 back to their parent to make them possibly validated together
as one fragment.

When attaching sections, XML fragments with multiple namespaces are created.
This may at first look like going against the principal of NVDL, as NVDL is all about
separating different namespace fragments. But as already discussed, it is not just NVDL
which can handle compound document validation. Modern validation languages, such
as Relax NG or XML Schema, can cope very well with compound documents. In case
there is already a nicely designed compound document schema, it does make a good
sense to use it.

In case there is a well designed schema for XHTML in Relax NG, which defines
abstract classes for inline and block elements as seen in Example 1.4, “Making the
schema modular”, it is easy to allow nested SVG fragments to occur just in the context
of an inline or block element, without the need of listing all such elements explicitly.
This would be necessary in case pure NVDL is used to describe the context in which
SVG can occur. In this case, it makes sense to use the Relax NG compound document
schema and use the attach action inside the SVG namespace rule as shown in Ex-
ample 2.10, “Attaching SVG sections back to XHTML”.

10In this text, a child element section for section s is understood as every element section which is referenced
by section s in the decomposed section tree.

30

2.1.4. Attaching sections with attach

Example 2.10. Attaching SVG sections back to XHTML

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="xhtml">
<mode name="xhtml">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml+svg.rng"

useMode="svg"/>
</namespace>

</mode>
<mode name="svg">
<namespace ns="http://www.w3.org/2000/svg">
<attach/>

</namespace>
</mode>
</rules>

2.1.5. Unwrapping element sections

When combining different XML vocabularies, foreign elements or attributes are usually
embedded as children into different contexts of the parent language. A more difficult
scenario occurs in case elements of one language are wrapped around fragments of
the language to be validated. Such problem occurs for example in case when using
XML-based scripting or templating languages. For example XHTML fragments in an
XSLT stylesheet are wrapped by the XSLT vocabulary.

This is exactly the right situation for the NVDL unwrap action. With unwrap, the
current section is left out completely from a potential validation candidate. This is in
particular useful in combination with attach. Invoking unwrap on the current section
and attach on one of its child sections means, the child section is attached directly to
the parent of the current section. This approach allows templating language sections
to be filtered out completely leaving just the wrapped content for validation. Templating
languages are often used for XHTML-based styling of domain specific XML languages
using XSTL stylesheets. This is also the case in Example 2.11, “Validating XHTML
wrapped by XSLT”.

Example 2.11. Validating XHTML wrapped by XSLT

This NVDL schema simply filters every occurrence of XSLT out. The pure XHTML is
than send for validation against the xhtml.rng schema.

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="root">
<mode name="root">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng"

31

2.1.5. Unwrapping element sections

useMode="xslt"/>
</namespace>
<namespace ns="http://www.w3.org/1999/XSL/Transform">
<allow/>

</namespace>
</mode>
<mode name="xslt">
<namespace ns="http://www.w3.org/1999/XSL/Transform">
<unwrap/>

</namespace>
<namespace ns="http://www.w3.org/1999/xhtml">
<attach/>

</namespace>
</mode>

</rules>

The unwrap concept works nicely in simple situations, but in complex scenarios
difficulties are likely to emerge. With templating languages it is hard to predict the
execution flow. Problems can arise even in case of a simple if-else condition which is
a must-have feature of any templating language. When if-else mark-up is unwrapped,
both normally disjoint conditional clauses are attached into the validated fragment.
This can cause problems when using schema languages to control element's number
of occurrence; especially when just one occurrence is allowed.

Example 2.12. XHTML wrapped by XSLT

The following XSLT stylesheet produces XHTML documents with either the "Book"
title, the "Magazine" title or simply an "Item" title, depending on the root element of
the input document. Just one condition is met at a time, thus the resulting XHTML
document always has just one title element. A different situation occurs when un-
wrapping the condition mark-up as shown in the following example.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" ►
xmlns="http://www.w3.org/1999/xhtml" version="1.0">
<xsl:template match="/">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<xsl:choose>
<xsl:when test="book">
<title>Book</title>

</xsl:when>
<xsl:when test="magazine">
<title>Magazine</title>

</xsl:when>
<xsl:otherwise>
<title>Item</title>

32

2.1.5. Unwrapping element sections

</xsl:otherwise>
</xsl:choose>
</head>
<body>

<p>
..

</p>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

Here is the resulting XHTML fragment after unwrapping XSLT.

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Book</title>
<title>Magazine</title>
<title>Item</title>

</head>
<body>

<p>
..

</p>
</body>

</html>

Even the XSLT stylesheet always produces a valid XHTML, after unwrap is used,
an invalid validation fragment is produced. According to the XHTML specification,
just one title element is allowed inside head.

As a workaround, a modified version of the XHTML schema which allows any
number of elements in any context could be used. In simple scenarios, unwrapping
can be also fine-tuned using the NVDL context element which is discussed later.

When validating wrapped content, several other issues not mentioned in this section
can occur. Unwrap may not be powerful enough to solve all such issues and in most
cases it may be simply preferable to validate the wrapped content simply after being
processed by the templating engine. Still there can be other reasonable use-cases for
unwrap in the real world.

2.1.6. The attachPlaceholder action

Where the attach action attaches the whole section to its parent, attachPlaceholder
attaches just a special placeholder element. The placeholder element is assigned to

33

2.1.6. The attachPlaceholder action

the http://purl.oclc.org/dsdl/nvdl/ns/instance/1.0 namespace and it has two at-
tributes. The ns attribute specifies the section's namespace URI and the localName at-
tribute contains the local name of the section's root element.

The placeholder element can than be defined in the subschema to check the context
of different foreign fragments without actually validating them within this particular
subschema.

The three recently discussed actions: attach, unwrap and attachPlaceholder are so
called “no result actions” as they don't directly result in validation of anything. For
obvious reasons, those actions are mutually exclusive and thus just one of them can be
present in the same rule.

2.1.7. Canceling nested actions

The cancelNestedAction element may occur inside rules on the same place where
usually actions occur, but it is not an action itself. It basically prevents any action to be
executed. When cancelNestedAction is present, neither other cancelNestedAction
element, nor any actions may occur in that particular rule.

cancelNestedAction is in particular useful when having a general rule in place, but
an exception for some namespace needs to be defined. The following example illustrates
this situation. Any namespace is attached to the parent section, but the SVG sections
are not, because they shall not be validate with the same subschema.

Example 2.13. Do not attach SVG fragments to XHTML

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="root">
<mode name="root">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng"

useMode="attach"/>
</namespace>

</mode>
<mode name="attach">
<namespace ns="http://www.w3.org/2000/svg">
<cancelNestedAction/>

</namespace>
<anyNamespace>
<attach/>

</namespace>
</mode>
</rules>

34

2.1.7. Canceling nested actions

There is one more note to make about cancelNestedAction. If mode inclusion is
used, cancelNestedAction rules are left out from any included child modes.

2.1.8. Context dependent processing

Modes offer a mechanism to change the NVDL dispatcher behavior during the validation
process depending on the context of the currently processed section. In previous ex-
amples, the initial mode for child sections was always determined using the action's
default transition defined by useMode. This is also an example of context specific pro-
cessing, where the context is specified as the namespace of the parent section. When
looking back at Example 2.10, “Attaching SVG sections back to XHTML”, this NVDL
schema may be interpreted as follows: Do attach SVG sections back to their parent
whenever they are in the context of an XHTML section and reject every SVG sections
in any other context.

Expressing current section's context as the parent section namespace is likely to be
sufficient in most cases, but sometimes it may be convenient to specify context more
precisely, for example as an element path within the parent section.

In NVDL, any action can have several context child elements with a path attribute
and a mode transition. The transition is defined analogically to default transitions at
actions. An useMode attribute or a nested mode element can be used.

The path attribute defines the context path within an element section11. The syntax
is inspired by XPath, but it is much simpler. As context is specified within one single-
namespace element section, there is no need to use any namespace prefixes. Moreover,
there are no axis, functions and other advanced XPath constructs. The path attribute
value is basically a list of one or more choices separated by the "|" delimiter. Each
choice is than a list of local element names splitted with a path separator "/". If preceded
by a path separator the choice is considered to be an absolute path (a path from the
root element of the parent section) otherwise the path is relative.

Every time an action is executed for an element section, the NVDL dispatcher first
goes through the list of its context children. If any of the path expressions matches the
current section's context path, the transition at this particular context is invoked.
Otherwise the action's default transition is used. Section's context path consists of all
element local names in the branch which begins at the parent section root element and
ends at the former parent element of the section.

With context, vocabularies can be handled differently when embedded in different
places (nodes) within the parent vocabulary section. Precise context handling is con-
venient for example when validating XHTML documents with embedded RDF. As
meta-data are not intended to be rendered, they shall not occur in the document's body.

11A path for element section s is constructed as a sequence of element local names. Such sequence begins
with the s's parent element section's root element and it ends with the local name of the former (before de-
composition) parent element of the section s.

35

2.1.8. Context dependent processing

The right place to put meta-data is apparently in the head section. The following example
shows such constraints expressed using NVDL.

Example 2.14. Allow RDF in the head context only

RDF fragments are allowed just inside the head element. In this case, RDF is allowed
inside any head element across the document. This is sufficient, as occurrence of head
in a wrong place would not pass validation against the xhtml.rng schema. A similar
result can be achieved using absolute path /html/head to define the context. In this
situation RDF fragments can just occur in that particular head node.

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="root">
<mode name="root">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng">
<context path="head"

useMode="rdf"/>
</validate>

</namespace>
</mode>
<mode name="rdf">
<namespace ns="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<validate schema="rdf.rng" useMode="attach"/>

</namespace>
</mode>
<mode name="attach">
<anyNamespace>
<attach/>

</anyNamespace>
</mode>

</rules>

2.1.9. Working with attributes

In the previous text, no difference was made between attribute and element sections.
By default, NVDL attaches attribute sections back to their element sections, but using
match attribute at rules, attribute sections may be handled specifically. Each attribute
section consists of attributes belonging to the same namespace and having the same
parent element. When using match="attribute", validate action may be invoked dir-
ectly on an detached attribute section. This basically means, a standalone attribute set
is send to be validated against the specified subschema.

A standalone set of attributes is not considered to be a well-formed XML. That's
the reason why NVDL creates a meaningless element which is called the virtualElement
based in the http://purl.oclc.org/dsdl/nvdl/ns/instance/1.0namespace. Validated

36

2.1.9. Working with attributes

attributes from the attribute section are than attached to the virtualElement before
being sent for validation.

Modern validation languages e. g. Relax NG or XML Schema have a very expressive
constructs to constraint attribute values using data types. Specific handling of attribute
sections allows to define such constrains in a separated subschema. A nice example
are attributes from the XML default namespace http://www.w3.org/XML/1998/namespace
(described in [NS]). It is undoubtedly convenient to have a specific subschema for those
attributes, as they are expected to occur in most compound languages. With NVDL,
such subschema can simply be reused every time those attribute values are required
to be validated. There is no need to have them defined again and again in every specific
subschema.

NVDL expects attribute-only subschemas to have no supplemental elements defined.
To make validation using such subschema possible, NVDL first performs a schema
language specific transformation which allows attributes to be attached to the vir-
tualElement. NVDL specification contains as an example the Relax NG specific trans-
formation. The schema is wrapped by <element><anyName/>...content of the ori-
ginal schema...</element>. Using anyName allows any element to contain the defined
attributes. For different schema languages, NVDL implementations should introduce
different transformation rules.

Example 2.15. Validation of default XML attributes

The NVDL schema in this example validates the values of the default XML attributes.
The attributes aren't attached back to their elements, thus they don't need to be defined
in the some-language-schema.rng schema.

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">
<namespace ns="... some language namespace ...">
<validate schema="some-language-schema.rng"/>

</namespace>
<namespace ns="http://www.w3.org/XML/1998/namespace" match="attributes">

<validate schema="xmlattr.rng"/>
</namespace>

</rules>

Below is a fragment of the xmlattr.rng subschema. For example the xml:space at-
tribute value is constrained to contain either preserve or default, the xml:lang attribute
shall contain only valid language codes and the xml:base attribute a valid URI.

<group datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
xmlns="http://relaxng.org/ns/structure/1.0">

<optional>
...
<attribute name="xml:space">

37

2.1.9. Working with attributes

<choice>
<value>preserve</value>
<value>default</value>

</choice>
</attribute>
<optional>
<attribute name="xml:lang">
<choice>
<data type="language"/>
<value/>

</choice>
</attribute>

</optional>
<optional>
<attribute name="xml:base">
<data type="anyURI"/>

</attribute>
</optional>
...

</optional>
</group>

Before validation, the NVDL dispatcher transforms xmlattr.rng subschema into
the following form.

<element datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
xmlns="http://relaxng.org/ns/structure/1.0">

<anyName/>
<group>
<optional>
...
<attribute name="xml:space">
<choice>
<value>preserve</value>
<value>default</value>

</choice>
</attribute>

<optional>
<attribute name="xml:lang">
<choice>
<data type="language"/>
<value/>

</choice>
</attribute>

</optional>
<optional>

38

2.1.9. Working with attributes

<attribute name="xml:base">
<data type="anyURI"/>

</attribute>
</optional>
...

</optional>
</group>

</element>

2.1.10. When lacking namespaces

In some cases, it is not possible to rely solely on namespaces to decompose documents
into sections. Some languages don't use namespaces at all (for example DocBook 4.2).
In this case, some other mechanism to extract sections is needed. NVDL offers the
trigger construct to achieve that.

Trigger elements can occur as children of the rules element. There are two obligat-
ory attributes on trigger. The ns attribute specifies the namespace and the nameList
attribute is a space separated list of element local names. A trigger is fired for any ele-
ment whose namespace exactly matches the one specified and whose local name is
contained in the nameList. Also the element shall not be a root of the current element
section and its parent shall not be located by the same trigger. An example validation
dispatching processes using triggers is shown in Appendix D, Validation using triggers.

2.1.11. Annotating NVDL

There are several different possibilities to annotate an NVDL schema. For example,
every action (attach, attachPlaceholder, unwrap, allow, reject or validate) can have
a message element or attribute associated with it. Comments and hints related to the
particular action may be placed here, but it is important to keep in mind such messages
may be displayed by the NVDL dispatcher during the validation dispatching process
whenever a particular action gets executed.

Further, any annotation language in a different namespace than the NVDL
namespace can be used to put additional annotations within nearly any context of the
NVDL script. For example the annotation language based in http://relaxng.org
/ns/compatibility/annotations/1.0designed to be used in Relax NG can make NVDL
schemas easily understandable and more human-readable. Beside annotations, NVDL
scripts may also be commented using traditional XML comments.

Example 2.16. An annotated and commented NVDL script

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0" ►
startMode="root">

39

2.1.10. When lacking namespaces

<!-- NVDL schema for XHTML with embedded RDF meta-data allowed within ►
the XHTML header -->
<mode name="root">
<namespace ns="http://www.w3.org/1999/xhtml">
<a:documentation>XHTML is the parent language, no other language ►

is allowed in this context.</a:documentation>
<validate schema="xhtml.rng" message="Sending an XHTML fragment for ►

validation.">
<context path="head" useMode="rdf">
<a:documentation>RDF may occur only in the head ►

context.</a:documentation>
</context>

</validate>
</namespace>

</mode>
<mode name="rdf">
<namespace ns="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<a:documentation>Only RDF is allowed within XHTML.</a:documentation>
<validate schema="rdf.rng" useMode="attach" message="Sending an RDF ►

fragment for validation."/>
</namespace>

</mode>
<mode name="attach">
<anyNamespace>
<a:documentation>Any foreign vocabulary is allowed within ►

RDF.</a:documentation>
<attach message="Attaching foreign vocabularies within RDF back to ►

validate them together."/>
</anyNamespace>

</mode>
</rules>

2.2. Specification
This section is basically an introduction to the NVDL specification in a nutshell. Detailed
information are contained within [NVDL]. The NVDL specification does not describe
the language semantics directly, it is rather a formal description of the NVDL validation
and dispatching process and the NVDL language syntax. The specification is very low-
level, it defines a formal framework of the process to ensure consistent behavior of
different NVDL implementations. It does not mention any NVDL use-cases nor its
high-level features.

The validation dispatching process is divided into several tasks. First, a data model
representation is built from XML infosets for the NVDL schema and the validated in-
stance. The schema is then transformed into simple syntax for easier processing. In the
next phase, the instance is decomposed into element and attribute sections. The NVDL

40

2.2. Specification

process can be defined nondeterministically, thus all deterministic execution
paths—called interpretations—are constructed. Different interpretations are executed
to obtain a set of validation candidates. Finally redundant candidates are filtered and
the remaining validation fragments are send to the appropriate validators. Individual
phases of the validation dispatching process are further examined in the following text.

Figure 2.2, “NVDL validation process” depicts an example validation dispatching
process. A compound document with three vocabularies is used as input. In the first
phase, the document is decomposed into sections depending on the namespace of the
different fragments. According to the NVDL script, different actions (validate and
attach) are executed on the particular sections. This leads to construction of validation
candidates. Finally, for every validate action a non-redundant candidate is send for
validation.

Figure 2.2. NVDL validation process

2.2.1. Data model

The first section of the specification introduces the NVDL data model. It is basically
an extension of the Relax NG data model described in DSDL specification Part 2 [RNG]
which defines elements and attributes as an abstract representation of the XML elements
and attributes. NVDL extends elements to have element slot nodes and attribute slot
nodes. Those are basically slots for decomposed element and attribute sections at their

41

2.2.1. Data model

former parent. Element section is in fact an element belonging to the same namespace
as all his descendants. An attribute section is defined as a non-empty set of attributes
belonging to the same namespace.

2.2.2. Syntax

There are two different NVDL syntaxes; the full syntax and the simple syntax. Both of
them are formally described in the specification using Relax NG schemas. Where the
full syntax is designed for maximum user experience and human readability, simple
syntax is an completely internal format and should never be used by end users. The
syntax is not called simple, because it is simple to understand for users. Its purpose is
to simplify processing for the NVDL dispatcher.

The specification formally defines a process called simplification which transforms
an NVDL schema in full syntax into simple syntax. The process is described in detail
by fourteen transformation rules. The rules are ordered, but they can be executed in
any order which would guarantee the same result.

Simple syntax is basically a subset of the full syntax. Here is a list of some of the
most important transformation rules. For an exhaustive enumeration refer to [NVDL].

• Rules which are children of the rules element are wrapped into a mode. This mode
is made the initial mode using the startMode attribute.

• Modes nested within actions are transformed to be direct children of the rules
element and referenced using the useMode attribute.

• If not already present, default values are explicitly attached to rules. By default,
rules match elements and the default wild-card value is "*". Any rule matching both
elements and attributes is splitted into two different rules, each of which match just
elements or just attributes.

• Included modes are merged with their parents. Every rule with the same condition
as one of the rules within the parent is overridden by the parent rule. This is applied
repeatedly until there are no included modes.

• If not already present, a default anyNamespace rule is added into every mode. As
default, elements are rejected and attributes are attached.

• Every occurrence of the allow and reject elements is replaced by a schema element
containing allow and reject elements in the http://purl.oclc.org/dsdl/nvdl
/ns/predefinedSchema/1.0 namespace. Those two elements form a simple schema
language used internally by NVDL. Validation again such schemas leads just to
two different results. The instance is a priori allowed, if the allow element is present,
or rejected otherwise.

42

2.2.2. Syntax

• For every action missing an useMode attribute, a useMode referencing the current
mode is added.

The simplification process is not limited just to transformation, it also defines some
constrains which shall be satisfied by a correct schema and their validation procedure.
During simplification, rule collisions within modes are detected. The aim is to ensure
just one rule is triggered by an namespace name, thus at most one unwrap, attach or
attachPlaceholder action is invoked for the same section.

Example 2.17. Simplification (RDF in XHTML)

The following example shows a schema in full syntax which is used for validation of
XHTML documents with embedded RDF meta-data. The same schema could have
been applied in the NVDL process demonstrated in Figure 2.2, “NVDL validation
process”, where namespace1 corresponds to XHTML, namespace2 to RDF and the
third namespace is any arbitrary foreign namespace different from namespace1 and
namespace2. RDF has to be placed in the head context of the document. As RDF may
contain fragments from arbitrary namespaces, such fragments are attached back to the
RDF section.

<rules
xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng" message="Validate against XHTML ►

subschema.">
<context path="/html/head" message="Allow RDF just in the context ►

of the head element.">
<mode>
<namespace ns="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<validate schema="rdf.rng" message="Validate against RDF ►

subschema.">
<mode>
<anyNamespace>
<attach message="Attach foreign elements."/>

</anyNamespace>
</mode>

</validate>
</namespace>

</mode>
</context>

</validate>
</namespace>

</rules>

The previous schema in full syntax is transformed by the NVDL dispatcher during
the simplification process into the following schema in simple syntax. The schemas are

43

2.2.2. Syntax

semantically equivalent12. The simplified form appears to be much longer and less
readable. One of the reasons is, it contains additional default anyNamespace rules for
every mode.

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="root">
<mode name="root">
<namespace wildCard="*" match="elements" ►

ns="http://www.w3.org/1999/xhtml">
<validate useMode="root" schema="xhtml.rng">
<message>Validate against XHTML subschema.</message>
<context useMode="head-context" path="/html/head">
<message>Allow RDF just in the context of the head ►

element.</message>
</context>

</validate>
</namespace>
<anyNamespace match="elements">
<validate useMode="root">
<schema>
<predef:reject ►

xmlns:predef="http://purl.oclc.org/dsdl/nvdl/ns/predefinedSchema/1.0" />
</schema>

</validate>
</anyNamespace>
<anyNamespace match="attributes">
<attach useMode="root" />

</anyNamespace>
</mode>
<mode name="head-context">
<namespace wildCard="*" match="elements" ►

ns="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<validate useMode="foreign" schema="rdf.rng">
<message>Validate against RDF subschema.</message>

</validate>
</namespace>
<anyNamespace match="elements">
<validate useMode="head-context">
<schema>
<predef:reject ►

xmlns:predef="http://purl.oclc.org/dsdl/nvdl/ns/predefinedSchema/1.0" />
</schema>

</validate>

12The useMode attribute values would normally be generated automatically, thus the values would contain
some sort of an auto-incremental sequence.

44

2.2.2. Syntax

</anyNamespace>
<anyNamespace match="attributes">
<attach useMode="head-context" />

</anyNamespace>
</mode>
<mode name="foreign">
<anyNamespace match="elements">
<attach useMode="foreign">
<message>Attach foreign elements.</message>

</attach>
</anyNamespace>
<anyNamespace match="attributes">
<attach useMode="foreign" />

</anyNamespace>
</mode>

</rules>

2.2.3. Decomposing instances into sections

In the next phase, the specification describes the process of decomposing XML instances
into attribute and element sections. For every element, attributes within the same
namespace are removed and grouped into the same attribute section. For every attribute
section an attribute slot node is created and attached to the parent element.

Element sections are created from elements whose parent is in a different namespace.
Such element is than detached and an element slot node is create for the new section
at the former parent.

Example 2.18. Decomposing XML instance into sections (RDF in XHTML)

The following example shows an HTML document with embedded RDF and Dublin
Code semantics. This document has the same structure as the instance shown in Fig-
ure 2.2, “NVDL validation process”.

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Some Page</title>
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" ►

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description dc:title="1984 Nineteen Eighty-Four">
<dc:creator>George Orwell</dc:creator>
<dc:identifier>ISBN 014118776X</dc:identifier>

</rdf:Description>
</rdf:RDF>

</head>
<body>

45

2.2.3. Decomposing instances into sections

<p>It was a bright cold day in April, and the clocks were striking ►
thirteen...</p>
</body>
</html>

The following sections are created during section decomposition. A similar result
can be observed in Figure 2.2, “NVDL validation process”.

Element section 1
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Some Page</title>
(Element slot node for element section 2)

</head>
<body>
<p>It was a bright cold day in April, and the clocks were striking ►

thirteen...</p>
</body>

</html>

Element section 2
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description (attribute slot node for attribute section 1)>
(Element slot node for element section 3)
(Element slot node for element section 4)

</rdf:Description>
</rdf:RDF>

Element section 3
<dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">George ►
Orwell</dc:creator>

Element section 4
<dc:identifier xmlns:dc="http://purl.org/dc/elements/1.1/">ISBN ►
014118776X</dc:identifier>

Attribute section 1
dc:title="1984 Nineteen Eighty-Four"

Section decomposition doesn't need to be cause just by namespaces. With triggers
a section is created for any matching element local name defined. More information
about triggers can be found in Section 2.1.10, “When lacking namespaces”.

The specification also describes other manipulations with sections; e. g. re-attaching
sections back to their former parent. This basically means the element slot node for the

46

2.2.3. Decomposing instances into sections

section is replaced by its root element. Attribute sections can be reattached back to their
elements in a similar way.

2.2.4. Constructing interpretations

An interpretation binds each section to exactly one action. Such action is retrieved from
the sections matching rule in the current mode. Sections current mode is actually the
mode there the parent element section's13 action transits. For root element section, the
current mode is the initial mode of the NVDL script. An interpretation is basically an
execution plan, which tells the NVDL dispatcher what actions shall be later executed
on the particular element sections.

For an deterministic NVDL schema, there is just one interpretation. But rules can
have several actions, each of which can transit to different modes. Such NVDL script
is nondeterministic, thus there are more different interpretations which have to be
constructed. Interpretation construction for a non-deterministic NVDL schema is illus-
trated in Appendix B, Interpretations for a non-deterministic NVDL Schema.

Example 2.19. Interpretation construction (RDF in XHTML)

This example uses the instance shown in Example 2.18, “Decomposing XML instance
into sections (RDF in XHTML)” and applies the NVDL script shown in Example 2.17,
“Simplification (RDF in XHTML)” on it. There is just one interpretation shown in the
table below. This interpretation is also depicted graphically in the Figure 2.2, “NVDL
validation process” diagram.

Table 2.1. Interpretation

ActionModeNamespaceSection
VALIDATE (xhtml.rng)rootXHTMLElement section 1
VALIDATE (rdf.rng)head-contextRDFElement section 2
ATTACHforeignDCElement section 3
ATTACHforeignDCElement section 4
ATTACHhead-contextDCAttribute section 1

2.2.5. Combining section and validation

For every interpretation, the NVDL dispatcher executes all the actions assigned to dif-
ferent sections. Actions as attach or unwrap combine different sections into larger
fragments. Those fragments are called validation candidates. The world candidate is
used because they are filtered before an validate action sends them to the appropriate
validator.

13Parent section for section s is a section which contains an element slot node for s.

47

2.2.4. Constructing interpretations

Some of the validation candidates are subsets of other candidates, thus they should
be filtered out. It doesn't make sense to send both such fragments for validation. Every
error in the subset is apparently also detected by validating the larger fragment.
Sending both fragments for validation would lead to unnecessary performance overhead
and duplicate error results.

A validator is finally invoked for each remaining fragment. The appropriate valid-
ator for each schema language is determined by subschema root element namespace
or from its MIME type. It can also be specified using the schemaType attribute.

Example 2.20. Validation candidates (RDF in XHTML)

Executing all actions in Example 2.19, “Interpretation construction (RDF in XHTML)”
creates the following validation candidates. None of those candidates is filtered out,
thus all candidates are send for validation. A graphical representation of the following
validation fragments is shown in Figure 2.2, “NVDL validation process”.

The first candidate is send for validation against the xhtml.rng subschema.

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Some Page</title>

</head>
<body>
<p>It was a bright cold day in April, and the clocks were striking ►

thirteen...</p>
</body>

</html>

The second candidate is send for validation against the rdf.rng subschema.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" ►
xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description dc:title="1984 Nineteen Eighty-Four">
<dc:creator>George Orwell</dc:creator>
<dc:format>Book</dc:format>
<dc:identifier>ISBN 014118776X</dc:identifier>

</rdf:Description>
</rdf:RDF>

48

2.2.5. Combining section and validation

Chapter 3

JNVDL

JNVDL is an implementation of the NVDL specification (described in Chapter 2,NVDL)
which was developed from scratch as part of this thesis. JNVDL is implemented using
pure Java and it relies only on one external dependency; the JDOM library—a popular
library for mapping XML instances into Java objects. Those objects can than be manip-
ulated easily and finally outputted back into XML.

Beside JDOM, JNVDL uses just default Java 5 or later APIs and libraries. For example
XML processing is done through the standard Java API JAXP 1.3. It enables applications
to parse and transform XML documents independent of a particular XML processing
implementation.

Part of JAXP 1.3 (newly added in Java version 5) is an integrated validation API.
The API makes validation transparent to different validator implementations and it
allows to invoke validators for different schema languages easily, just by specifying
the language name or namespace URI. As discussed later, JNVDL makes a great use
of this API and its principles.

3.1. Project and architecture
The JNVDL project consists of the core NVDL dispatcher and two other optional librar-
ies. The NVDL dispatcher core library uses the new validation API for dispatching
validation requests to different validators. One of the optional libraries is an updated
version of the Kosuke's JARV to JAXP adapter1.

JARV is an old validation API used in Java before the new JAXP API has been in-
troduced. The adapter allows the NVDL core library to dispatch validation request to
the JARV compliant Sun Multi-schema Validator (MSV), even it doesn't implement the
new API. Using the adapter, it is easy to enable JNVDL to validate subschemas suppor-
ted by MSV; subschemas written in several widely used schema languages e. g. Relax
NG or XML Schema. The only think needed is to place the adapter's jar library and
MSV library into the classpath.

1 http://www.kohsuke.org/jarv/tiger

49

http://www.kohsuke.org/jarv/tiger

The second optional library is used for backward compatibility reasons. When
present, NVDL validation requests can be invoked using the old JARV API.

3.1.1. Domain model

The JNVDL core NVDL dispatcher consists of four main packages: dispatching, domain,
process and service.

Figure 3.1. JNVDL main package structure

In the domain package, there are classes which represent the NVDL data model; e.
g. ElementSection, AttributeSection, ElementSlotNode and other domain model im-
plementations. There are several other subpackages in the domain package. In the
function subpackage, there are implementations of different NVDL matching functions
e. g. for matching path expressions with element section context paths or to match
namespace URIs against the namespace wild-cards.

Figure 3.2. The domain package

50

3.1.1. Domain model

Further, there is an instance subpackage which contains implementations of special
NVDL instance elements e. g. the placeHolder or the virtualElement. In the interpret-
ation subpackage, there is everything which is needed to build and access all interpret-
ations for a particular NVDL schema and document instance pair. Classes from the
schema subpackage are responsible for building an object representation of a particular
NVDL schema. Every NVDL language element has its implementation in this package.

Finally, the validationpackage is used to embrace functionality related to validation
candidates and their filtering.

3.1.2. The validation dispatching process

An important package is the process package, which is basically the implementation
of the NVDL validation dispatching process. It involves construction and manipulation
of NVDL domain model classes according to the specification.

There are two important classes in the root of the package. One of them is the
RulesCompiler which takes the NVDL schema in XML as input and provides an Rules
object as an entry point to the object representation of the NVDL script. Before the
script is processed, it is first transformed into the simple syntax. The Simplifier class
does this job using a transformer chain. Such chain allows to pass an input XML docu-
ment along an arbitrary number of XSLT transformations, where the output of one
transformation acts as an input for the next transformation in the chain.

The whole simplification process is implemented in five XSLT stylesheets which
shall be applied in correct order to guarantee a correct result. Having the simplification
process declared in XSLT makes the implementation better understandable to a larger
group of people. XSLT also makes the implementation platform independent, as the
same stylesheets may be used in other NVDL implementations independent of the
platform or programming language it is based on.

Figure 3.3. The process package

51

3.1.2. The validation dispatching process

Another important class in the processpackage is the InstanceProcessor responsible
for processing instances according to the NVDL schema. InstanceProcessor contains
a chain of Builders. A Builder basically takes the result of the previous Builder in the
chain, applies some manipulations to it and finally it passes the result to the next
Builder. There are several Builders implemented in JNVDL and each of them corres-
ponds to a different phase of the NVDL validation dispatching process.

Under the builder subpackage there is a DocumentBuilder which turns an XML
instance into an JDOM object representation, SectionDecomposerwhich creates element
and attribute sections and binds them together using element and attribute slot nodes,
InterpretationBuilder constructs all possible interpretations and finally the Valida-
tionTaskBuilder combines different sections for every interpretation by executing the
appropriate actions. A set of validation candidates is produced and redundant candid-
ates are filtered out.

Figure 3.4. The NVDL process Builder chain

The complete chain takes an XML instance as input and after applying all different
Builders, the chain returns a collection of ValidationTask objects. Those are basically
XML fragments which shall be validated against the same schema. This collection is
finally used by an NVDLValidator class which dispatches such fragments to the right
validators using the available validation API.

NVDL validation can be directly invoked through the NVDLValidator class, which
is based in the dispatching package. It contains implementations of the JAXP validation
API related classes as discussed in the next section.

Additional information about the JNVDL project architecture, package structure
and implementation are available in the JNVDL source code provided as part of this
thesis or accessible through the project Web pages at SourceForge http://sourceforge.net/
jnvdl2.

2 http://sourceforge.net/jnvdl

52

3.1.2. The validation dispatching process

http://sourceforge.net/jnvdl
http://sourceforge.net/jnvdl

3.2. Java validation API
The Java validation API has been introduced in Java 5 as part of the JAXP interface.
The validation API allows to invoke validation tasks independently of the underlying
validator implementation. Switching to a different validator implementation is just
matter of configuration. For example, when at some point Relax NG validation using
MSV is preferred to validation using Jing, not a single line of code needs to be changed
to do the transition. The only thing needed is to replace Jing in the classpath with a the
MSV library.

In the validation API, there are tree main classes which serve as an entry point to
invoke validation tasks. Those are the SchemaFactory, Schema and Validator classes.
SchemaFactory is constructed for a specified schema language name, which is usually
the namespace of the language. The factory is basically a schema compiler. It takes a
particular schema definition as input to construct a Schema instance. A Schema instance
is used to retrieve Validator instances. Where Schema is reused for all validation tasks
against the same schema, the Validator instance is used for a particular validation task
only.

Example 3.1. Using the Java validation API

Schema schema =
SchemaFactory.newInstance(schemaLanguageName)
.newSchema(new File(schemaFile));
schema.newValidator().validate(instance);

The question here is, how does the validation API knows, which validator imple-
mentation to invoke for a particular schema? The API uses a simple mapping between
schema language names and validator implementations. When newInstace method is
invoked at SchemaFactory, the validation API tries to find the appropriate validator
for the specified schema language name.

To find the right SchemaFactory implementation for a given schema language, the
following tasks are performed in order:

1. JAXP first looks into system properties to find a property of the name javax.xml.
validation.SchemaFactory:schemaLanguage. If there is such property, its value is
used as the full name of the validator class, which is than instantiated using Java
reflection.

2. If there is nothing in the system properties, the next place where to look is the
$java.home/lib/jaxp.properties file.

3. If the property is in neither of those places, the last change is to find a service
provider configuration file called javax.xml.validation.SchemaFactory in the

53

3.2. Java validation API

resource directory (META-INF/services) and to look for the following mapping:
'schema language name' = 'validator class'.

4. Finally, if no entry is found, the API throws an exception saying that no validator
implementation was found for that particular schema language.

Such hierarchical approach for specifying mappings may be useful in some scenarios.
For instance, if there is MSV registered in META-INF/services to validate Relax NG
schemas, but Jing should be used instead for a particular validation. A simple solution
is to specify a system property pointing to the Jing validator class. As system properties
are looked up first, the MSV entry is simply overridden.

There are two implementations of the Java validation API in JNVDL. The first one
is intended to process NVDL schemas. It consists of the NVDLValidator, which is re-
gistered to handle the NVDL schema namespace http://purl.oclc.org/dsdl/nvdl/
ns/structure/1.0, the NVDLSchema (a Java validation API Schema implementation) uses
the RulesCompiler to provide an object representation of NVDL script and the
NVDLValidator uses the InstanceProcessor to create validation fragments.

Resulting fragments are finally dispatched to the appropriate validators again using
the Java validation API. The schema language name is extracted from the schema
definition or from the schemaType attribute, if specified in the NVDL script. Thanks to
the validation API, it is easy to incorporate a new schema language into the validation
dispatching process. No special changes to JNVDL are required. The only think needed
is to provide an implementation of a validator for that language and put the right library
on the classpath.

The second implementation is the PredefinedSchemaValidator which has a very
simple functionality. It validates schemas in the http://purl.oclc.org/dsdl/nvdl/ns/
predefinedSchema/1.0 namespace. The language has just two elements: reject and
allow. Every time a fragment is validated against a schema which contains the reject
element, the fragment is considered to be invalid. In case of allow, the fragment is
valid.

3.3. Specification weaknesses
A specification as a theoretical concept does not always solve all the issues which arise
when using some technology in reality. To overcome those issues, implementations
may provide some proprietary functionality which goes beyond the specification
without colliding with it. This is also the case for JNVDL as discussed further.

3.3.1. Round tripping

XML round tripping is a controversial issue. When parsing an XML document, in most
cases, the parser is used to report just significant information; e. g. elements, attributes
or processing instructions. On the other hand, there are many other information which

54

3.3. Specification weaknesses

are semantically insignificant, but they can have a special meaning for the XML docu-
ment author.

Round tripping is a big issue for XML editor developers. From the semantic point
of view, an XML document with additional whitespaces inside tags is fully equivalent
to the same document which doesn't have any. But from the document author perspect-
ive, those documents are not equivalent at all, because formatting documents with
whitespaces may improve readability. For example breaking a long line of attributes
into several lines using line breaks and tabs reduces horizontal scrolling when reading
the document.

As parsers usually don't provide information about some whitespaces (e. g.
whitespaces between attributes), there is no easy way to keep an XML document un-
changed after being parsed and outputted back again. For example the order of attrib-
utes at an element doesn't semantically matter, but can matter for the author, an empty
element can by expressed equivalently using just one tag or using a start and end tag
sequence, duplicate namespace prefix declarations can be optimized etc...

XML editors have to cope with round tripping in some way. Otherwise the users
would experience strange behavior as their document formatting can change every
time they do save their work.

Why are actually parsers lacking round tripping support? The answer is probably
performance. As round tripping would significantly slow down the parsing speed and
there is just a small community of developers which really need such feature, it was
apparently not the highest priority to allow round tripping even as an optional feature.

Round tripping is not just a problem for XML editors, it is also a big issue for any
NVDL implementation. Validators usually tend to report error location using line and
column numbers, but when parsing the instance and turning it into validation fragments,
original line and column number information is inevitably lost. This makes NVDL very
hard to use in the real world. It is confusing for the users to get error line numbers
which aren't related to the original document line numbers at all. To interpret the in-
formation correctly, users would need to know which validation fragments were created
by JNVDL and how do they look like.

This is the reason why JNVDL provides two proprietary extensions to NVDL. The
first one simply preserves line numbers for elements. This feature can be turned on by
setting the validator feature http://jnvdl.sf.net/jnvdl/keep-line-numbers to true.
In this case, JNVDL remembers the original line number for every element and valida-
tion fragments are constructed in a way to keep elements on their original line position.
For example, if some of the element sections gets unwrapped, the section won't be
present in the validation fragment, but its attached child element section is going to be
positioned correctly only when providing an appropriate number of empty lines pre-
viously occupied by the parent section.

55

3.3.1. Round tripping

Although preserving line numbers doesn't have a significant impact on performance,
it is not an exhaustive solution to the problem. One of the issues is, the column numbers
correctness is not guaranteed at all. In some situations even the line number information
may be wrong. This can happen in case there are line breaks between individual attrib-
utes. As whitespace inside tags is semantically insignificant, parsers do not inform
about it, thus the whole tag is finally outputted on one line. In case one of the attributes
is invalid, the error is always reported on the line where the tag starts and not where
the attribute occurs in the original document.

To solve some of the mentioned issues, JNVDL provides another proprietary exten-
sion which can be turned on by setting the validator feature http://jnvdl.sf.net
/jnvdl/round-trip to true. This feature is experimental and doesn't provide an exhaust-
ive round tripping yet. When turned on, not just line numbers of particular elements
are recorded, but also whitespaces between attributes are remembered. This approach
guarantees the line number information correctness. The column number information
is expected to be correct in most cases.

As there is no direct support for retrieving whitespace information inside tags in
the JAXP API, enabling the JNVDL round tripping feature can significantly decrease
parsing performance.

The problem of irrelevance of some whitespaces within XML documents makes the
use of line numbers to locate elements and attributes problematic or even error-prone.
Validation API designers should consider using a different mechanism to locate errors.
For example XPath is a good candidate as it is whitespace independent and precise.

Example 3.2. The round tripping issue

1 <root
2 attr1="foo"
3 attr2="bar">
4
5 <body></body>
6 </root>

The XML fragment above is semantically equivalent to the one below, but the line and
column numbers for particular elements and attributes are different.

1 <root attr2="bar" attr1="foo">
2
3 <body/>
4 </root>

56

3.3.1. Round tripping

3.3.2. Problems with context

In the early versions of the NVDL specification, contexthandling was specified wrongly.
Details are available in NVDL technical corrigenda3 for page 20, clause 8.4. This problem
was spotted thanks to the JNVDL project during the implementation phase. Later it
has been corrected in collaboration with the NVDL specification authors. Context may
override the action's default transition to point to a different mode depending on the
child section's path within the parent. Detailed description of context semantics is
described in Section 2.1.8, “Context dependent processing”.

In terms of context, the NVDL specification was inconsistent with the provided
test cases as well as with the context behavior described in the NRL tutorial, see [NRL].
Implementing an NVDL dispatcher precisely according to such specification would
make it hard or even impossible to make any use of the context element at all.

The problem was caused by the way how the specification handled action transitions.
An interpretation is constructed for every action in a rule triggered by some element
section. If there are no context children, the next mode is determined using the action's
default transition. Otherwise the section's context path within its parent section is used
to determine the context to be triggered.

Before correcting the specification, current element section's4 context path was used
to determine the transition to the next mode. To handle context consistently with the
test cases, the initial mode should be determined for each child section using the child
section context path. Otherwise the context element can hardly be useful at all.

The problem can be easily demonstrated for a root element section. As the path of
a root element section is an empty string, just a context with an empty path expression
can be triggered for such section. Moreover, such context is triggered every time a rule
matches a root section.

There is a simple solution to the context problem proposed by the author of this
thesis. Initial modes for element sections should be determined when constructing an
interpretation for their parent section. For every action and every child element section
the action's transition shall be determined using the context path of the child section
(instead of the parent context path as defined previously in NVDL).

Example 3.3. Interpretation construction with wrong context handling

In Example 2.19, “Interpretation construction (RDF in XHTML)”, an interpretation is
constructed for an instance with RDF vocabulary contained within XHTML and an
NVDL schema which allows RDF just in context of the XHTML head element. The fol-

3 http://www.jtc1sc34.org/repository/0816.htm
4Current element section is meant to be the section which matched the current action's rule in the current
mode.

57

3.3.2. Problems with context

http://www.jtc1sc34.org/repository/0816.htm

lowing interpretation is constructed for the same instance and schema, but handling
context as specified in NVDL before patching the context problem.

RDF is rejected in any case, even when present directly inside the head element.
The behavior significantly differs from the semantics of the NVDL schema.

Table 3.1. Interpretation

ActionModeNamespaceSection
VALIDATE(xhtml.rng)rootHTMLElement Section 1
REJECTrootRDFElement Section 2
REJECTrootDCElement Section 3
REJECTrootDCElement Section 4
REJECTrootDCElement Section 5
ATTACHrootDCAttribute Section 1

3.4. Distribution and testing
Distribution related tasks in JNVDL are handled by Ant5 which is a standard crossplat-
form build tool for Java projects. The Ant script, which is part of JNVDL, contains tasks
for cleaning, compiling, building JAR libraries, running tests and creating test reports.
Some of the tasks available are listed below.

Main JNVDL Ant tasks

clean
Cleans the whole JNVDL project.

compile.nvdl
Compiles the NVDL core classes to the build directory.

compile.jarv
Compiles classes related to the JNVDL backward compatibility with the JARV
validation API.

compile.bridge
Compiles the Java validation API adapter for MSV classes.

compile.tests
Compiles JNVDL tests.

compile
Compiles the whole JNVDL project.

5 http://ant.apache.org

58

3.4. Distribution and testing

http://ant.apache.org

dist.nvdl
Creates the core JNVDL jnvdl.jar library.

dist.bridge
Creates the jarv-jaxp-bridge.jar library to allow MSV to be accessible through
the new Java validation API.

dist.jarv
Creates the jnvdl-jarv.jar library to allow backward compatibility with the JARV
validation API.

dist
Creates all JNVDL JAR libraries as well as the execution environment for running
NVDL validation.

test
Runs all JNVDL functional and unit tests and generates test reports in HTML format.

Part of the JNVDL project is an extensive test suit which allows automated testing
of all important JNVDL features and functionality pieces from the unit level to the
functional level perspective. In the test suit, there are over sixty different tests imple-
mented using the popular JUnit framework.

An automated test suit helps to keep the code consistent during development. Every
time the code is touched, it is easy to proof all features are still functional just by execut-
ing the whole test suit again. When some changes cause some features to malfunction,
with current test coverage, there is a good chance to detect such problem on the unit
or functional level.

3.5. Using JNVDL
As JNVDL implements the Java validation API (and also JARV API), it can be easily
used programmatically from within any Java application by invoking the API using
the NVDL namespace as the schema language name parameter.

Example 3.4. Using JNVDL programmatically

Schema schema = ►
SchemaFactory.newInstance("http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0").newSchema(new ►
File("schema-file.nvdl"));
schema.newValidator().validate("instance-file.xml");

An alternative approach to start an NVDL validation is to use the executable scripts
bundled with the JNVDL distribution. In the root of the binary JNVDL distribution,
there is a jnvdl.bat script intended to be used in Windows NT environment and a
jnvdl.sh for Unix systems.

59

3.5. Using JNVDL

Running those scripts without any parameter causes a help screen with usage in-
formation and options to be displayed. The scripts can be executed with different op-
tions. The option for specifying the NVDL schema is required, others are optional. The
last parameter is the path to the validated instance. An exhaustive list of all different
options follows.

JNVDL execution script options

-s
Path to the NVDL schema. This option is required.

-rr
LSResourceRsolver class to be used for resolving resources withing the instance.

-eh
ErrorHandler class. The default is just outputting validation errors into the standard
output. For more sophisticated behavior, a custom error handler may be used.

-er
EntityResoler class to be used for resolving entities within the instance.

-d
Enables the debug mode. In this case JNVDL outputs detailed information about
the current validation dispatching process.

-D
Means the same as the -d option, but it also enables JAXP debugging messages.
This is in particular useful when debugging why JAXP cannot find a validator im-
plementation for a particular schema language.

-f
Specifies a validator feature to be used. The value has a name=true/false format.
This option may be specified more than once.

-p
Specifies a validator property to be used. The value has a name=value format. This
option may be specified more than once.

-n
By default, the script uses the JNVDL validator, but as it invokes the Java validation
API, it can be easily used to validate against an arbitrary schema language. This
parameter can change the default NVDL schema language name to a different one.
For example, if http://relaxng.org/ns/structure/1.0 is used as the parameter
value, a Relax NG validator is invoked for validation.

-xi
Toggle XInclude support in the parser. By default XInclude is turned off.

60

3.5. Using JNVDL

Example 3.5. JNVDL usage examples

The simplest usage.
jvdl.sh -s html-rdf.nvdl instance.html

Enable round-tripping.
jvdl.sh -f http://jnvdl.sf.net/jnvdl/round-trip=true -s html-rdf.nvdl ►
instance.html

Validating against an Relax NG schema.
jvdl.sh -n http://relaxng.org/ns/structure/1.0 -s html-rdf.rng ►
instance.html

61

3.5. Using JNVDL

Chapter 4

JNVDL integration into Relaxed

4.1. The Relaxed project
Relaxed is a Web document validation project. In the beginning, the aim of the project
was to create a validation service which would overcome some of the limitations of
the widely used W3C validator. The W3C validation service relies solely on DTDs to
define various constraints. Such approach is lacking expressive power and namespace
support. On the contrary, Relaxed uses modern expressive validation languages for
describing maximum constrains to deliver comprehensive validation results to Web
document authors in order to help them keep their documents as standard compliant
as possible.

Part of the Relaxed project is a HTML 4.0 / XHTML 1.0 schema written from scratch
using Relax NG with embedded Schematron rules. Many additional and even complic-
ated restrictions have been expressed thanks to the powerful combination of those two
languages. [HTML-VAL] contains a detailed expressivity overview of different schema
languages. HTML 4.0 and XHTML 1.0 are the today's most widespread standards, but
in addition, Relaxed is able to validate some of the WAI's WCAG 1.0 restrictions and
there is also a basic support for validation of compound documents based on the
namespace support in Relax NG. There are predefined schemas for validation of XHTML
1.0 + SVG 1.1, XHTML 1.0 + MathML 2.0 and XHTML 1.0 + MathML 2.0 + SVG 1.1
documents ready to be used.

In addition to the schemas, the Relaxed project consists also of an extensible valid-
ation engine written in Java. This validation engine allows several validator implement-
ations to be applied to the same document, thus enabling validation against Relax NG
schemas and Schematron rules at the same time. Moreover, the engine has support for
doctype specific document handling, which is in particular useful to validate strict,
transitional or frameset HTML documents against different schemas. Further it allows
to apply specific filters to documents before validation. A filter is used to convert SGML-
based HTML 4.01 documents into XML to make them validable by XML-aimed schema
languages.

62

Relaxed validation capabilities are accessible for Web document authors through
a Web-based interface (1). Authors may specify input documents using an URL or up-
load them directly to the Relaxed server. The validation process can be adjusted using
several user options. For example the standard to be validated or the type of a compound
document can be specified, doctype can be auto-detected or forced, error output can
be brief or verbose and different error messages may be linked to the original document's
source code.

An exhaustive description of all Relaxed features, project architecture and usage,
schemas involved and their expressive power can be found in [RLXD] and [HTML-
VAL].

4.2. Compound documents and Relaxed
Compound document support in Relaxed was based completely on the namespace
support in Relax NG. This approach suffers several drawbacks as explained in Sec-
tion 1.3.1, “Current schema languages”. The modularity of the Relaxed HTML schema
makes it quite convenient to create new compound schemas, but still it requires some
effort when introducing a new vocabulary into the compound schema definitions. First
of all, such vocabulary schema needs to be converted to Relax NG and consequently
slightly modified to reflect the parent language schema structure.

To enhance Relaxed compound document validation features, as part of this thesis,
the core Relaxed validation engine has been entirely replaced by JNVDL. Such step
significantly speeds up the process of defining new compound schemas and it simplifies
maintenance of the schemas present in the Relaxed schema repository.

Using JNVDL even allows Web document authors to use Relaxed to define their
own simple ad-hoc NVDL scripts and use them for validation of their own custom
compound documents. With NVDL, it is extremely easy to define a compound document
validation process on the fly.

For example a user likes to validate XHTML with embedded SVG, MathML and
RDF. In this case, there is no need to download the particular schemas, covert them to
Relax NG and modify them to make them work together. The user can create such
NVDL script in a matter of minutes as demonstrated in Example 4.1, “NVDL schema
for XHTML+SVG+MathML+RDF”. The reason is, existing schemas can be fully reused
without making any changes to them.

Example 4.1. NVDL schema for XHTML+SVG+MathML+RDF

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="root">

<mode name="root">

1 http://relaxed.vse.cz

63

4.2. Compound documents and Relaxed

http://relaxed.vse.cz

<namespace ns="http://www.w3.org/1999/xhtml">
<validate ►

schema="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<context path="head" useMode="head"/>
<context path="div|li|p...all block level elements" ►

useMode="block_inline"/>
<context path="a|em|span|...all inline elements" ►

useMode="block_inline"/>
</validate>

</namespace>
</mode>
<mode name="block_inline">
<namespace ns="http://www.w3.org/2000/svg">
<validate ►

schema="http://www.w3.org/TR/2002/WD-SVG11-20020108/SVG.xsd" ►
useMode="attach"/>

</namespace>
<namespace ns="http://www.w3.org/1998/Math/MathML">
<validate ►

schema="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd" ►
useMode="attach"/>

</namespace>
</mode>
<mode namne="head">
<namespace ns="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<validate schema="http://www.w3.org/2000/07/rdf.xsd" ►

useMode="attach"/>
</namespace>

</mode>
<mode name="attach">
<anyNamespace><attach/></anyNamespace>

</mode>
</rules>

Example 4.1, “NVDL schema for XHTML+SVG+MathML+RDF” shows an NVDL
script, which is referencing subschemas directly at their original locations using URLs.
The script tells the NVDL engine that the only acceptable parent language is XHTML
and other vocabularies are forbidden in that context. Plain XHTML is extracted from
the validated document and send for validation against the official DTDs. RDF sections
may only occur in the context of the head element. SVG and MathML fragments are
allowed only in block and inline elements. Any foreign vocabulary contained within
RDF, SVG or MathML fragments is attached to it before being send for validation. Any
other vocabulary in any other context of the document is rejected.

This simple example demonstrates the power of NVDL. Modifying the NVDL script
to allow any other vocabulary in some context is a simple and straightforward task. In

64

4.2. Compound documents and Relaxed

addition, the script contains only the required information about the compound lan-
guage. Anything related to the grammar of the particular vocabularies is encapsulated
in the subschemas where it really belongs. This makes NVDL schemas not only easy
to design, but also easy to read and understand.

Instead of the official DTD-based schema used in the example, users may use the
enhanced schema which is part of the Relaxed project. In this case they need to specify
the URL to this schema using http://<relaxed-server>/schema/web/xhtml-10-
strict.rng as the schema attribute value.

4.3. Further Relaxed extensions
Using JNVDL inside Relaxed was the major enhancement produced as part of this
thesis, but there are several other smaller improvements as well. To begin with, Relaxed
in no more bound just to HTML and to Web document validation only. When config-
uring Relaxed, different user-accessible pre-defined schemas may be grouped into
categories. In addition to the Web document category, there is for example a DocBook
category defined, featuring several DocBook related compound schemas.

Example 4.2. Schema resource configuration in Relaxed

This example shows how grouping of schema resources is done in the new version of
the Relaxed project. Two groups with several schema resources are defined: the Web
group and the DocBook group.

<resources>
<group id="Web" name="Web Documents">
<schema id="standalone-html" name="HTML 4.01 / XHTML 1.0 - no foreign ►

vocabularies" url="http://relaxed.vse.cz/schema/web/xhtml-10.nvdl" ►
schemaType="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

Standalone HTML 4.01 / XHTML 1.0 documents with no foreign ►
vocabularies allowed in any context.

</schema>
<schema id="html+svg" name="HTML 4.01 / XHTML 1.0 + SVG 1.0" ►

url="http://relaxed.vse.cz/schema/web/xhtml-10+svg.nvdl" ►
schemaType="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

HTML 4.01 / XHTML 1.0 documents with embedded SVG which is allowed ►
in any inline or block level element.

</schema>
...
more schemas
....

</group>

<group id="DocBook" name="DocBook Documents">
<schema id="sigle-namespace-docbook" name="Docbook V5" ►

65

4.3. Further Relaxed extensions

url="http://relaxed.vse.cz/schema/docbook/docbook.nvdl" ►
schemaType="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

Standalone DocBook 5 documents with no foreign vocabularies allowed ►
in any context.

</schema>
<schema id="docbook-xforms" name="Docbook V5 + XForms" ►

url="http://relaxed.vse.cz/schema/docbook/docbook+xforms.nvdl" ►
schemaType="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

DocBook 5 documents with embedded XFroms.
</schema>
...
more schemas
....

</group>
...
more groups
...

</resources>

The previous version of Relaxed used a fixed filter chain to be applied to any input
document. In the current version, filtering is done through specific parsers. They may
be configured for different schema groups differently. For example the Web group
uses a SGML to XML parser (based on TagSoup) to allow backward compatibility with
the SGML based HTML 4.01 legacy documents, but other strictly XML-based groups
do not need this kind of pre-processing.

In addition, groups can have specific options which may influence the validation
process in specific ways. For example, the Web group uses a special option to attach
forced doctype informations to documents. Doctype is used to determine HTML doc-
ument's vocabulary mutation (strict / transitional / frameset) and thus it is important
for the appropriate schema determination. In the new version, when validating a dif-
ferent group of documents and thus using a different parser, users can specify different
validation properties to adjust the parsers bahaviour in a specific way. For example,
in case of the Web group, conversion of legacy documents to XHTML can be switched
on or off and an arbitrary doctype can be forced for a document instance.

Example 4.3. Specifying a different parser for the Web group

Here is an example configuration of a specific parser for a the Web group. If the
parserFactory element is not present, DefaultParserFactory is used to provide JAXP
default parser implementation. This example configures a different parser for the Web
group. The WebParserFactory provides a TagSoup parser for handling legacy SGML-
based HTML documents. Legacy documents are detected using doctype and MIME
information.

66

4.3. Further Relaxed extensions

<group id="Web" name="Web Documents">
►

<parserFactory>edu.petrnalevka.relaxed.parser.WebParserFactory</parserFactory> ►

<schema id="standalone-html" name="HTML 4.01 / XHTML 1.0 - no foreign ►
vocabularies" url="http://relaxed.vse.cz/schema/web/xhtml-10.nvdl" ►
schemaType="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

Standalone HTML 4.01 / XHTML 1.0 documents with no foreign ►
vocabularies allowed in any context.

</schema>
...
more schemas
....

</group>

In addition to predefined schema groups, Relaxed has been enhanced to support
validation against user defined schemas. NVDL is an simple and easy to understand
language for defining compound document validation and that's why it makes sense
to enable users to define their own ad-hoc schemas to have full control over the valid-
ation dispatching process and to validate their own custom compound documents.
Users may reference external subschemas or use subschemas which are part of the
Relaxed schema repository available at http://<relaxed-server>/schema/*.

To give NVDL tenderfoots a quick start, Relaxed offers the “namespace restaurant”
feature. In the namespace restaurant, users may choose vocabularies which are present
in their custom compound documents from the vocabulary menu. Finally Relaxed
generates a simple NVDL schema which allows and validates all the selected vocabu-
laries in any context of the validated instance and rejects any other vocabularies. Such
schema may be further edited and modified by the user before finally being used in
the validation process.

Further enhancements has been made to the HTML document validation flow.
Legacy document detection has been improved to use also MIME type beside doctype
information. Moreover, additional parameters are passed to the XML parser to adjust
processing of entities and enabling XInclude.

67

4.3. Further Relaxed extensions

Figure 4.1. Enhanced HTML validation flow

4.4. Schematron validation
The pre-JNVDL Relaxed validation engine is able to use multiple validator implement-
ations applied to a single instance. Error results from all validators are aggregated into
a single output. Two validator implementations are used in Relaxed: a JARV validator
which uses MSV to validate against Relax NG schemas and a Schematron validator
able to extract Schematron rules embedded into Relax NG and perform checks against
them in a separate validation process.

After replacing the old validation engine with JNVDL the above described feature
has not been lost. On the contrary, NVDL also supports invocation of several validators
on a single validation fragment. Such behavior is achieved using multiple validate
actions within one rule.

68

4.4. Schematron validation

Example 4.4. Multiple validate elements within the same rule. The validation
fragment is send for validation against both, xhtml.rng as well as wcag.sch.

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng"/>
<validate schema="wcag.sch"/>

</namespace>
</rules>

Also the functionality of the Relaxed Schematron validator has not been lost in the
new version. The validator's code has been reused and the validator now implements
the Java 5 JAXP validation API and is distributed as part of the JNVDL bundle. This
provides JNVDL with an out-of-the-box Schematron support.

Moreover, the validator has been enhanced to automatically detect whether the
provided Schema is plain Schematron or a Relax NG schema with embedded
Schematron rules. In the second case, the validator performs automatic extraction of
the rules. The pre-JNVDL Relaxed version is able to validate instances against a Relax
NG schema and against Schematron rules within the same schema at the same time.
A similar behavior is achievable using the NVDL script in Example 4.5, “Using Relax
NG Schematron extraction with NVDL”.

Example 4.5. Using Relax NG Schematron extraction with NVDL

The xhtml.rng in this example is a Relax NG schema with embedded Schematron rules.
An XHTML validation fragment is first send for validation through JAXP to a registered
Relax NG validator. The second validate element uses the same schema for validation,
but the schemaType attribute value forces JNVDL to use a Schematron validator instead.
The validator implementation first detects from the namespace of the root element that
the schema is written in Relax NG. After that, it applies a special transformation to it
which extracts Schematron rules form within the schema. Those rules are finally used
for validation.

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.rng"/>
<validate schemaType="http://purl.oclc.org/dsdl/schematron" ►

schema="xhtml.rng"/>
</namespace>

</rules>

69

4.4. Schematron validation

Figure 4.2. Schematron validation in JNVDL

Relaxed Schematron validator supports both, the older Schematron 1.5 which is
based in the http://www.ascc.net/xml/schematron namespace, but also the new ISO
Schematron (an international standard) with the http://purl.oclc.org/dsdl/
schematron namespace.

4.5. New user interface
This sections provides a short introduction into the enhanced user interface of the next
generation Relaxed validation service. Screenshots from the running prototype deploy-
ment are used to demonstrate different features.

Figure 4.3, “Web group” shows content of the Web tab which corresponds to the
Web group defined within Relaxed schema resource configuration. There are other
tabs available for accessing other configured groups; the SemanticWeb, XSLT or Docbook
group.

In Figure 4.3, “Web group”, a test document at http://nalevka.com/test.html is
being validated against a plain HTML 4.01 / XHTML 1.0 schema selected in the Schema
select box. This control contains also other schemas available in the Web group.

At the bottom of the screen there are validation results. The output informs the user
about what doctype has been automatically resolved for his document. One error has
been detected in the validated instance, thus the document is considered to be invalid.
The error message shows line and column number to locate the error in the document's
source and the related source code snippet.

70

4.5. New user interface

Figure 4.3. Web group

Newly, Relaxed users are not limited to the predefined schemas in the repository.
They may also validate instances using their own custom schemas. Figure 4.4, “Using
custom schemas” reveals the user interface for such tasks.

The schema source code is editable in the text-area. By default, schema type is set
to the NVDL namespace, but users may use any other schema language supported by
Relaxed. Currently there is support for DTD, Relax NG, Relax Core, Relax Namespace,
XML Schema, Trex, Schematron 1.5, ISO Schematron and Schematron embedded in
Relax NG.

71

4.5. New user interface

Figure 4.4. Using custom schemas

Finally, Figure 4.5, “Relaxed namespace restaurant” demonstrates the Namespace
restaurant feature. Namespace restaurant user interface is very similar to the custom
schema interface, but in addition it has a Namespace menu and the Order button. Also
it doesn't allow to choose an arbitrary schema language, but the schema is always
considered to be NVDL.

Namespace restaurant helps users to generate custom NVDL schemas. Choosing
pre-configured namespaces from the Namespace menu and clicking Order results in a
flat NVDL schema being generated into the schema source text-area. In Figure 4.5,
“Relaxed namespace restaurant”, XHTML and XForms namespace has been selected
from the menu, thus the generated NVDL schema allows XHTML and XFroms in any
context of the validated documents and it validates them against the appropriate
schemas in the Relaxed schema repository.

Generated schemas are very simple and it is expected they give users just a quick
start. Users may edit the generated source code and enhance the schema in any way
they like. For example in the XHTML + XForms case, users may want to allow only
XHTML as the parent language.

72

4.5. New user interface

Figure 4.5. Relaxed namespace restaurant

The next generation Relaxed validation service prototype is accessible for public
use and testing on the Web2.

2 http://relaxed.vse.cz/nextgeneration

73

4.5. New user interface

http://relaxed.vse.cz/nextgeneration

Chapter 5

Conclusion

This thesis demonstrated that compound document validation using the traditional
approach—namespace support in widely used schema languages—suffers several
significant drawbacks. Creating and maintaining such compound schemas is time
consuming, error-prone and requires additional knowledge. A solution to those prob-
lems proposed in this text is NVDL; an international standard for compound document
validation. The NVDL concept is based on the idea of separation compound documents
into single namespace fragments which are later independently send for validation
against different schemas. Such approach allows to fully reuse existing single namespace
schemas and it separates compound language grammar definition from the grammar
definition of the individual vocabularies. Moreover, a mix of different schema languages
may be used withing one validation process.

Another aim of this thesis is to illustrate how are compound documents becoming
increasingly important not only in the Web environment, but also in other areas of in-
formation technologies. Ever growing significance of compound documents requires
reliable and convenient validation techniques. Validation is absolutely essential to ensure
interoperability of different systems which use compound documents for data exchange.
That's the reason why a full-featured compound document validation environment
(Relaxed) has been developed and made accessible to the wide public as part of this
thesis.

This environment is based on JNVDL; the first Java implementation of the NVDL
specification created from scratch by the author of this text. JNVDL validation features
are made accessible through a Web based graphical user interface to compound docu-
ment authors as part of the Relaxed project. Authors may freely check their compound
documents and thus make them more standard-compliant and interoperable. Relaxed
and JNVDL are both open source projects and their implementation is a significant
contribution of this thesis.

This thesis also contributed to the NVDL international standard. During the imple-
mentation of JNVDL an error regarding context handling has been detected in the
NVDL specification. Further details are available in NVDL technical corrigenda1; page
20, clause 8.4.

1 http://www.jtc1sc34.org/repository/0816.htm

74

http://www.jtc1sc34.org/repository/0816.htm

Moreover, this text may server as an NVDL specification reference and tutorial and
it may give a quick start to anyone interested in using NVDL. All aspects of the valid-
ation dispatching process are briefly described and the NVDL language is examined
in detail using illustrative examples. In addition, this thesis may serve as a high level
description of the JNVDL implementation and together with other texts e. g. [RLXD]
and [HTML-VAL] also for the Relaxed project. As such, it may help to get new people
involved in further development and maintenance of those projects.

This thesis leaves a wide area open for further extensions and enhancements of
both projects; JNVDL and Relaxed. There is a huge number of different compound
languages which could be formalized in NVDL and made part of the Relaxed predefined
schema repository to enable their out-of-the-box validation. Relaxed schema repository
could be extended to contain additional schema groups to cover other areas of com-
pound document usage e. g. SOAP, JSPs. Relaxed GUI could be enhanced for better
user experience; making it easy to use and providing additional features as e. g. valid-
ation of several linked Web documents in one process or graphical interface for easier
NVDL editing. A searchable user-maintained schema repository could be added to the
Relaxed interface as well; allowing the Relaxed community to maintain and share their
own compound document schemas. Relaxed validation error output could be made
more verbose and explanatory by implementing annotation support into the validators
used and by annotating schemas in the repository.

Further, JNVDL could be enhanced to bring a complete solution to line number
location issues in error messages. Either by implementing full round-tripping support,
or by enhancing subschema validators used within JNVDL to use XPath as the preferred
error location mechanism. Additional extensions could be made to JNVDL and the
NVDL specification to provide fine-grained rule's condition triggering or to enable the
use of XPath to define sections' context. For that purpose an extension API could be
made available within JNVDL to allow straightforward third-party plug-in development.
JNVDL could be made more memory efficient by enabling it to operate in streaming
mode, thus allowing it to process huge input documents.

75

References

[XML] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006. Available at: ht-
tp://www.w3.org/TR/2006/REC-xml-20060816

[NS] Bray, T., Hollander, D., Layman, A., Tobin, R.: Namespaces in XML 1.0 (Second
Edition). W3C, 2006. Available at: http://www.w3.org/TR/REC-xml-names

[NVDL] Murata, M.: Document Schema Definition Languages (DSDL) — Part 4:
Namespace-based Validation Dispatching Language (NVDL). ISO/IEC FDIS
19757-4, 2005. Available at: http://www.jtc1sc34.org/repository/0694.pdf

[NRL] Clark, J.: Namespace Routing Language (NRL). Thai Open Source Software
Center Ltd, 2003. Available at: http://www.thaiopensource.com/relaxng/nrl.html

[RLXD] Kosek, J., Nálevka, P.: Relaxed — on the Way Towards True Validation of
Compound Documents. WWW2006, Edinburg, 2006. Available at: ht-
tp://www2006.org/programme/files/pdf/4508.pdf

[HTML-VAL] Nálevka, P.: Doplňková validate HTML a XHTML dokumentů. University
of Economics, Prague, 2003. Available at: http://nalevka.com/resources/thesis.pdf

[MNS] Clark, J.: Modular Namespaces (MNS). Thai Open Source Software Center Ltd,
2003. Available at: http://www.thaiopensource.com/relaxng/mns.html

[NSSB] Jelliffe, R.: Namespace Switchboard. Topologi pty. Ltd, 2003. Available at: ht-
tp://www.topologi.com/resources/NamespaceSwitchboard.html

[RNS] Murata, M.: Regular Language Description for XML (RELAX) — Part 2: RELAX
Namespace. ISO/IEC, 2001. Available at: http://www.y-adagio.com/public/stand-
ards/iso_tr_relax_ns/dtr_22250-2.doc

[RFC3986] Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers
(URI): Generic Syntax. Network Working Group, 1998. Available at: ht-
tp://www.ietf.org/rfc/rfc3986.txt

[RNG] Clark, J., Murata, M.: RELAX NG Specification. OASIS Committee Specification,
2001. Available at: http://www.relaxng.org/spec-20011203.html

[SCH] Jelliffe, R.: The Schematron Assertion Language 1.5. Academia Sinica Computing
Centre, 2002. Available at: http://xml.ascc.net/resource/schematron/Schemat-
ron2000.html

76

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/REC-xml-names
http://www.jtc1sc34.org/repository/0694.pdf
http://www.thaiopensource.com/relaxng/nrl.html
http://www2006.org/programme/files/pdf/4508.pdf
http://www2006.org/programme/files/pdf/4508.pdf
http://nalevka.com/resources/thesis.pdf
http://www.thaiopensource.com/relaxng/mns.html
http://www.topologi.com/resources/NamespaceSwitchboard.html
http://www.topologi.com/resources/NamespaceSwitchboard.html
http://www.y-adagio.com/public/standards/iso_tr_relax_ns/dtr_22250-2.doc
http://www.y-adagio.com/public/standards/iso_tr_relax_ns/dtr_22250-2.doc
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.relaxng.org/spec-20011203.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html

[XMLSCH-ST] Thompson, H., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema
Part 1: Structures Second Edition. W3C, 2004. Available at: ht-
tp://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

[XMLSCH-DT] Biron, P., Malhotra, A.: XML Schema Part 2: Datatypes Second Edition.
W3C, 2004. Available at: http://www.w3.org/TR/2004/REC-xmlschema-2-
20041028/

[XML-DTD] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0 (Third Edition). W3C, 2004. Available at: ht-
tp://www.w3.org/TR/2004/REC-xml-20040204/

[XSLT] Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C, 1999. Available at:
http://www.w3.org/TR/xslt

[HTML4] Ragget, D., Le Hors, A., Jacobs, I.: HTML 4.01 Specification. W3C, 1999.
Available at: http://www.w3.org/TR/1999/REC-html401-19991224/

[XHTML1] XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition).
W3C, 2002. Available at: http://www.w3.org/TR/2002/REC-xhtml1-20020801/

[XHTML-MOD] Altheim, M., McCarron, S., Boumphrey, F., Dooley, S., Schnitzen-
baumer, S., Wugofski, T.: Modularization of XHTML™. W3C, 2001. Available
at: http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/

[XHTML11] Altheim, M., McCarron, S.: XHTML™ 1.1 – Module-based XHTML. W3C,
2001. Available at: http://www.w3.org/TR/2001/REC-xhtml11-20010531/

[WCAG] Chisholm, W., Vanderheiden, G., Jacobs, I.: Web Content Accessibility
Guidelines 1.0. W3C WAI, 1999. Available at: http://www.w3.org/TR/1999/WAI-
WEBCONTENT-19990505/

[XINCLD] Marsh, J., Orchard, D.: XML Inclusions (XInclude) Version 1.0. W3C, 2004.
Available at: http://www.w3.org/TR/xinclude

[RDF] Beckett, D.: RDF/XML Syntax Specification (Revised). W3C, 2004. Available at:
http://www.w3.org/TR/rdf-syntax-grammar

[SVG] Ferraiolo, J., Fujisawa, S., Jackson, J.: Scalable Vector Graphics (SVG) 1.1 Specific-
ation. W3C, 2003. Available at: http://www.w3.org/TR/SVG11

[MTHML] Carlisle, D., Ion, P., Miner, R., Poppelier, N.: Mathematical Markup Language
(MathML) Version 2.0 (Second Edition). W3C, 2003. Available at: ht-
tp://www.w3.org/TR/MathML2

[XLNK] DeRose, S., Maler, E., Orchard, D.: XML Linking Language (XLink) Version
1.0. W3C, 2001. Available at: http://www.w3.org/TR/xlink

77

Literatura

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/2002/REC-xhtml1-20020801/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://�www.w3.org�/TR/1999/WAI-WEBCONTENT-19990505/
http://�www.w3.org�/TR/1999/WAI-WEBCONTENT-19990505/
http://www.w3.org/TR/xinclude
http://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/TR/SVG11
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/xlink

Definitions

A
Ant Ant is a platform independent build tool written in Java.

Today Ant is basically a standard approach to Java project
maintenance.

Attribute In this text, the word attribute refers to an XML attribute.
Attributes describe additional information about an XML
element. The syntax is attributeName="value". Several at-
tributes can be present at one element, but their names has
to be unique.
See Also Element, Tag, XML.

Attribute Section Part of the NVDL data model. An attribute section is a non-
empty set of attributes having the same namespace name.
See Also Attribute, Element Section, NVDL.

Attribute Slot Node Part of the NVDL data model. An attribute slot node is a
slot for an attribute section at an element.
See Also Element, Attribute Section, Element Slot Node,
NVDL.

B
Browser Software program used to view and interact with various

types of resources available on the Web.
See Also HTML.

C
CSS Cascading Style Sheets – a styling language which allows

controlling appearance (fonts, colors, margins, layout...) of
structured documents (for example XML documents).
See Also XML.

78

D
DTD Document Type Definition – a simple schema language with

a limited expressive power. Used to describe structure of
SGML as well as XML documents. DTD doesn't feature
namespace support and it doesn't have a XML-based syntax.
See Also XML, SGML.

E
Element In this text, the word element refers to an XML element,

which is the essential building block of any XML document.
An element may contain textual information of other child
elements. The content of an element is marked by the ele-
ment's start and end tag.
See Also Attribute, Tag, XML.

Element Section Part of the NVDL data model. An element section is basic-
ally an element such that a single namespace name applies
to itself and all descendant elements.
See Also Element, Attribute Section, NVDL.

Element Slot Node Part of the NVDL data model. An element slot node is a
slot for an element section at an element.
See Also Element, Element Section, Attribute Slot Node,
NVDL.

H
HTML Hyper Text Markup Language – a mark-up language for

creating documents or distributed applications on the Web.
It is a SGML of XML application. In case of XML it's usually
referenced to as XHTML.
See Also XML, SGML.

J
JARV Java Application Programming Interface for RELAX Verifi-

ers – a validation API used in Java 4 and earlier. The inter-
face allows to invoke validation processes independently
on the validator implementation and the schema language
used.
See Also Schema language, JAXP Validation API.

79

JAXP Java API for XML Processing ⊣ one of the Java XML pro-
gramming APIs. It provides the capability of validating,
transforming and parsing XML documents independently
on the underlaying validator, parser and transformer imple-
mentations.
See Also JAXP Validation API, XML.

JAXP Validation API A replacement for the JARV Validation API. It is implicitly
bundled with Java 5 and later. The interface allows to invoke
validation processes independently on the validator imple-
mentation and the schema language used.
See Also JAXP, JARV, Schema language.

JDOM Java Document Object Model – parses, manipulates, and
outputs XML using standard Java constructs. The API is
similar to DOM, but easier to use.

Jing Jing is a Relax NG validator written in Java with experiment-
al support for other schema languages e. g. Schematron,
NRL and XML Schema.
See Also Relax NG, Schema language, XML Schema, XML,
XML Schema.

JNVDL Java Namespace-based Validation Dispatching Language
Implementation – Java-based implementation of the NVDL
specification, created as part of this thesis.
See Also NVDL.

JSP Java Server Pages – a scripting language intended for devel-
oping dynamic Web pages in Java. JSPs may be expressed
using XML.
See Also XML.

JUnit A popular unit test framework for the Java programming
language.

M
MathML Mathematical Markup Language – an XML-based language

used for displaying mathematical notation and content.
See Also XML.

MSV Sun Multi-Schema XML Validator – a Java validation tool
intended to validate XML documents against several kinds
of XML schema languages. It supports RELAX NG, RELAX
Namespace, RELAX Core, TREX, XML DTDs, and a subset
of XML Schema Part 1.

80

See Also XML, Relax NG, XML Schema, Schema language.

N
Namespace A namespace is where a set of names reside. Since they are

all in the same set, their names have to be unique. In XML
namespaces provide a method for qualifying element and
attribute names by associating them with namespaces
identified by an URI. Namespaces effectively allow the use
of multiple vocabularies in one XML document.
See Also URI, XML.

NVDL Namespace-based Validation Dispatching Language –a
compound document validation approach and a “meta-
schema” language at the same time. NVDL is based on the
idea of separating compound documents into sections ac-
cording to their namespaces, building larger fragments
from that sections according to the NVDL schema definition
and finally validate those fragments separately against
different schemas (which can be written in different schema
languages), using different validators.
See Also Attribute Section, Attribute Section, Element Sec-
tion, Element Slot Node.

P
Parser In this text, the word parser refers to an XML parser. An

XML parser is a processor that reads an XML document
and determines its structure and data.
See Also XML, Element, Attribute.

R
RDF Resource Description Framework – a standard framework

for describing and interchanging metadata. The simple
format of resources, properties, and statements allows RDF
to describe robust meta-data, such as ontological structures.
RDF has an XML syntax.
See Also XML.

Relax NG Relax NG is a simple yet elegant schema language for XML,
based on Murata Makoto's RELAX and James Clark's TREX.
A RELAX NG schema specifies a pattern for the structure
and content of an XML document. A RELAX NG schema
uses an XML syntax or a non-XML compact syntax.

81

See Also XML, Schema language.

Relaxed Relaxed is a project for advanced validation of Web docu-
ments. It uses modern validation approaches to maximize
validation results and it features compound document
validation support.

Round-tripping Round-tripping is conversion of a document from one
format to another and than back again. Such process may
cause information loss and the resulting document may not
be absolutely the same after such back and forth conversion.
This problem occurs when processing XML. As parsers
don't provide some semantically insignificant information
(e. g. some whitespace information), when outputting an
XML document back to file, this kind information may be
lost.
See Also XML, Parser.

S
Schema language A language for defining elements, structure and rules an

XML document must satisfy to be valid. There are two dif-
ferent kinds of schema languages: grammar-based, which
are elegant to specify a complete grammar of a language
as it is very easy to express parent-child relationships, and
rule based, which are most powerful in combination with
grammar-based languages to express additional complex
structural rules.
See Also DTD.

Schematron A rule-based XML Schema language, developed by Rick
Jelliffe, originally using XPath expressions to describe val-
idation rules. Although the language is very simple, it's
able to express very complex structural constrains, which
are hardly expressible using grammar-based schema lan-
guages.
See Also XML, XPath, Schema language.

SGML Standard Generalized Markup Language – a standard for
creating markup languages. It provides a complex set of
rules for defining document structures. XML is a subset of
SGML.
See Also HTML, XML.

SOAP Simple Object Access Protocol – a XML-based protocol for
exchanging structured XML messages. In SOAP,XML
queries are sent to retrieve XML responses. In general, those

82

are called SOAP messages, which are basically XML data
wrapped up in a SOAP envelope.
See Also XML.

SVG Scalable Vector Graphics – a powerful language for describing
two-dimensional vector graphics in XML.
See Also XML.

T
Tag a tag is a marker embedded in a document. Each element

has a beginning tag and an end tag.
See Also Element.

U
URI Uniform Resource Identifier – a formatted string that serves

as an identifier for a resource.

W
WCAG Web Content Accessibility Guidelines – a set of recommend-

ations aimed to make Web content accessible to people with
all sorts of disabilities.
See Also HTML.

Web Short for World Wide Web – one of the Internet services.
Web resources (Web pages) are identified using URIs and
served by Web server using the HTTP protocol. Clients can
display Web pages using a Web browser.
See Also Browser.

Well-formed An XML document is considered to be well-formed if it
meets the conditions defined in the XML specification. Only
a well-formed document can be processed with a XML
parser without errors.
See Also XML, Parser.

X
XML eXtensible Markup Language – a simple and flexible text

format derived from SGML. XML was designed for electron-
ic publishing, but it also plays an important role as an uni-
versal data exchange format in various areas.
See Also Attribute, Element, Parser, SGML.

83

XML Schema A grammar-based complex an heavy-weight standard
schema language. The specification consists of two parts,
one about defining structure relationships and the other
about data types for constraining element and attribute
values.
See Also XML, Schema language.

XPath XML Path Language – a query language used to identify a
set of nodes within an XML document. It also provides basic
facilities for manipulation of the nodes and their data.
See Also XML, XSLT.

XSLT eXtensible Stylesheet Language Transformations – a templating
language, which can express rules for transforming a source
XML tree into a result tree. The transformation is done by
associating patterns with templates. Where patterns match
parts of the source tree (using XPath), templates create the
corresponding result. With XSLT structure of the source
tree can be completely changed in the result.
See Also XML, XPath.

Z
Tag In this text, the word tag refers to an markup tag. A tag is

basically a marker which defines content of an element.
Elements have a beginning tag and an end tag.
See Also Element, XML, SGML.

84

Appendix A

NVDL validation dispatching process

In the beginning of Chapter 2, NVDL, individual phases of the NVDL validation dis-
patching process where demonstrated using the Figure 2.1, “NVDL validation process
at a glance” diagram. This section provides an instance and a schema example which
could be used during this particular validation process. The instance is further decom-
posed into sections and finally combined into validation fragments intended to be send
for validation.

Example A.1. An instance and a schema

The following example shows an NVDL schema and a compound document instance
which relates to Figure 2.1, “NVDL validation process at a glance”. In this case, NS1
represents the XHTML namespace and NS2 stands for the XForms namespace.

<html xmlns="http://www.w3.org/1999/xhtml" ►
xmlns:xf="http://www.w3.org/2002/xforms">
<head>
<xf:model>
<xf:instance>...</xf:instance>
<xf:submission id="form" method="post" action="getStockQuote.do"/>

</xf:model>
</head>

<body>
<xf:group ref="stockquote">
<xf:input ref="symbol"><xf:label>Symbol</xf:label></xf:input>

<xf:submit submission="form"><xf:label>Get Quote</xf:label></xf:submit>
</xf:group>
</body></html>

To achieve behavior consistent with Figure 2.1, “NVDL validation process at a
glance”, the following schema is applied to the previous compound document instance.
Using such schema, the NVDL dispatcher first sends the root XHTML fragment for
validation after filtering any descendant XForms fragments and attaching any descend-

85

ant XHTML fragments. XForms sections are handled in a similar way by filtering any
descendant XHTML. For any XHTML document instance with embedded XForms, the
following NVDL schema causes one pure XHTML fragment to be send for validation
against xhtml.xsd and one or more pure XForms fragments to be validated using
xforms.rng.

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.xsd">
<mode>
<namespace ns="http://www.w3.org/2002/xforms">
<validate schema="xforms.rng">
<mode>
<namespace ►

ns="http://www.w3.org/2002/xforms"><attach/></namespace>
<namespace ►

ns="http://www.w3.org/1999/xhtml"><unwrap/></namespace>
</mode>

</validate>
<unwrap>
<mode>
<namespace ►

ns="http://www.w3.org/2002/xforms"><unwrap/></namespace>
<namespace ►

ns="http://www.w3.org/1999/xhtml"><attach/></namespace>
</mode>

</unwrap>
</namespace>

</mode>
</validate>

</namespace>
</rules>

Example A.2. Decomposing sections

The instance shown in Example A.1, “An instance and a schema” is decomposed into
the following section tree.

Element Section 1
<html>
<head>
(Element slot node for element section 2)

</head>
<body>
(Element slot node for element section 4)

</body>

86

</html>

Element Section 2
<xf:model>
<xf:instance>...</xf:instance>
<xf:submission id="form" method="post" action="getStockQuote.do"/>

</xf:model>

Element Section 3

Element Section 4
<xf:group ref="stockquote">
<xf:input ref="symbol"><xf:label>Symbol</xf:label></xf:input>
(Element slot node for element section 3)

<xf:submit submission="form"><xf:label>Get Quote</xf:label></xf:submit>
</xf:group>

Example A.3. Dispatching validation fragments to validators

After executing attach and unwrap actions on the section tree shown in Example A.2,
“Decomposing sections”, the following fragments are filtered out of validation candid-
ates and send independently for validation.

<html>
<head></head>
<body>

</body>
</html> -> xhtml.xsd

<xf:model>
<xf:instance><stockquote><symbol/></stockquote></xf:instance>
<xf:submission id="form" method="post" action="getStockQuote.do"/>

</xf:model> -> xforms.rng

<xf:group ref="stockquote">
<xf:input ref="symbol"><xf:label>Symbol</xf:label></xf:input>
<xf:submit submission="form"><xf:label>Get Quote</xf:label></xf:submit>

</xf:group> -> xforms.rng

87

Appendix B

Interpretations for a non-deterministic
NVDL Schema

Appendix A, NVDL validation dispatching process shows an example of a simple non-
deterministic NVDL validation dispatching process. Multiple interpretations has to be
constructed within such process. In this scenario non-determinism is cause by two
different actions being executed on the same section, where both of them transit to a
different mode. The following example shows all constructed interpretations. The
NVDL schema in Example A.1, “An instance and a schema” has been modified to use
named modes to allow referencing modes from within the interpretation table. The
modified schema is in Example B.1, “NVDL schema (XFroms in XHTML) with named
modes”.

Example B.1. NVDL schema (XFroms in XHTML) with named modes

<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0" ►
startMode="html">
<mode name="html">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="xhtml.xsd" useMode="xforms"/>

</namespace>
</mode>
<mode name="xforms">
<namespace ns="http://www.w3.org/2002/xforms">
<validate schema="xforms.rng" useMode="unwrap-html"/>
<unwrap useMode="unwrap-xforms"/>

</namespace>
</mode>
<mode name="unwrap-html">
<namespace ns="http://www.w3.org/2002/xforms"><attach/></namespace>
<namespace ns="http://www.w3.org/1999/xhtml"><unwrap/></namespace>

</mode>
<mode name="unwrap-xforms">
<namespace ns="http://www.w3.org/2002/xforms"><unwrap/></namespace>
<namespace ns="http://www.w3.org/1999/xhtml"><attach/></namespace>

88

</mode>
</rules>

Example B.2. Interpretation construction (XFroms in XHTML)

Table B.1. Interpretation 1

ActionModeNamespaceSection
VALIDATE (xhtml.xsd)htmlXHTMLElement section 1
VALIDATE (xfroms.rng)xformsXFormsElement section 2
UNWRAPunwrap-htmlXHTMLElement section 3
VALIDATE (xfroms.rng)xformsXFromsElement section 4

Table B.2. Interpretation 2

ActionModeNamespaceSection
VALIDATE (xhtml.xsd)htmlXHTMLElement section 1
UNWRAPxformsXFormsElement section 2
ATTACHattach-htmlXHTMLElement section 3
UNWRAPxformsXFromsElement section 4

Table B.3. Interpretation 3

ActionModeNamespaceSection
VALIDATE (xhtml.xsd)htmlXHTMLElement section 1
VALIDATE (xfroms.rng)xformsXFormsElement section 2
ATTACHattach-htmlXHTMLElement section 3
UNWRAPxformsXFromsElement section 4

Table B.4. Interpretation 4

ActionModeNamespaceSection
VALIDATE (xhtml.xsd)htmlXHTMLElement section 1
UNWRAPxformsXFormsElement section 2
UNWRAPunwrap-htmlXHTMLElement section 3
VALIDATE (xfroms.rng)xformsXFromsElement section 4

All four previously demonstrated interpretations are executed on the section tree.
This results in creation of eight validation candidates which are further filtered for re-
dundancy. Finally just three remaining fragments are send for validation; one XHTML
fragment and two XForms fragments.

Interpretation 1
<html> (redundant, filtered out)
<head></head>

89

<body></body>
</html>

<xf:model>
<xf:instance>...</xf:instance>
<xf:submission id="form" method="post" action="getStockQuote.do"/>

</xf:model> -> xforms.rng

<xf:group ref="stockquote">
<xf:input ref="symbol"><xf:label>Symbol</xf:label></xf:input>
<xf:submit submission="form"><xf:label>Get Quote</xf:label></xf:submit>

</xf:group> -> xforms.rng

Interpretation 2
<html> (Overriddes fragment in Interpretation 1)
<head></head>
<body>

</body>
</html> -> xhtml.xsd

Interpretation 3
<html> (redundant, filtered out)
<head></head>
<body>

</body>
</html>

<xf:model> (redundant, filtered out)
<xf:instance>...</xf:instance>
<xf:submission id="form" method="post" action="getStockQuote.do"/>

</xf:model>

Interpretation 4
<html> (redundant, filtered out)
<head></head>
<body>

</body>
</html>

<xf:group ref="stockquote"> (redundant, filtered out)
<xf:input ref="symbol"><xf:label>Symbol</xf:label></xf:input>
<xf:submit submission="form"><xf:label>Get Quote</xf:label></xf:submit>

</xf:group>

90

Appendix C

NVDL schema as a compound document

An NVDL schema is also a compound document as it may contain embedded subschema
vocabularies inside schema elements or for example xml:lang attribute in messages.
Moreover, an NVDL schema may be annotated using annotation languages. This implies,
it makes sense to formalize such rules and create an NVDL script for NVDL. This section
contains an example of such schema1.

Example C.1. NVDL schema for NVDL

This NVDL schema allows any foreign vocabularies within any context. Only the
context of the schema and message elements is handled differently. Known schema
languages within schema element are send for validation and any unknown languages
are simply allowed. Foreign vocabularies are rejected within message, but attributes
from the XML's default namespace are sent for validation.

<rules startMode="root" ►
xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

<mode name="root">
<namespace ns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

<validate schema="nvdl.rng">
<mode>

<anyNamespace>
<!-- allows any foreign elements and attributes ►

within NVDL schemas -->
<allow useMode="attach"/>

</anyNamespace>
</mode>
<context path="schema">

<mode>
<!-- validate embedded Relax NG -->

<namespace ns="http://relaxng.org/ns/structure/1.0">
<validate ►

1Another NVDL script for NVDL is also part of the [NVDL] specification.

91

schema="http://www.oasis-open.org/committees/relax-ng/relaxng.rng" ►
useMode="attach"/>

</namespace>
<!-- validate embedded Schematron -->

<namespace ns="http://purl.oclc.org/dsdl/schematron">
<validate ►

schema="http://www.schematron.com/iso-schematron.sch" useMode="attach"/>
</namespace>
<!-- put other known schema languages here for ►

validation -->
<anyNamespace>
<allow useMode="attach"><!-- allows any unknown ►

foreign schema languages without validation -->
</allow>

</anyNamespace>
</mode>

</context>
<context path="message">

<mode>
<namespace ►

ns="http://www.w3.org/XML/1998/namespace" match="attributes">
<!-- default XML attributes are validated e. ►

g. the xml:lang attribute -->
<validate schema="xmlattr.rng" ►

useMode="attach"/>
</namespace>
<anyNamespace>

<reject/>
</anyNamespace>

</mode>
</context>

</validate>
</namespace>

</mode>
<mode name="attach">
<anyNamespace><attach/></anyNamespace>

</mode>
</rules>

92

Appendix D

Validation using triggers

Normally in NVDL, element sections are created based on their namespaces. Triggers
allow to create element sections also based on the element's local name. The reason
here is to allow NVDL-based validation of legacy SGML compound documents where
different vocabularies were combined without the use of namespaces. The following
diagram shows an example validation process. Even the input instance is a single-
namespace document, using trigger it is decomposed into two sections which finally
results into invoking two independent validation processes.

Figure D.1. Validation dispatching using triggers

93

	Compound XML documents validation
	Table of Contents
	Preface
	Chapter 1. Compound documents
	1.1. Namespaces in XML
	1.2. Compound document applications
	1.2.1. Templating languages
	1.2.2. XML protocols
	1.2.3. Office documents
	1.2.4. The Web

	1.3. Compound document validation
	1.3.1. Current schema languages
	1.3.1.1. Relax NG

	1.3.2. Different approach
	1.3.3. Evolution of the alternative

	Chapter 2. NVDL
	2.1. Semantics in example
	2.1.1. Adjusting validation
	2.1.2. Rules
	2.1.3. Modes
	2.1.4. Attaching sections with attach
	2.1.5. Unwrapping element sections
	2.1.6. The attachPlaceholder action
	2.1.7. Canceling nested actions
	2.1.8. Context dependent processing
	2.1.9. Working with attributes
	2.1.10. When lacking namespaces
	2.1.11. Annotating NVDL

	2.2. Specification
	2.2.1. Data model
	2.2.2. Syntax
	2.2.3. Decomposing instances into sections
	2.2.4. Constructing interpretations
	2.2.5. Combining section and validation

	Chapter 3. JNVDL
	3.1. Project and architecture
	3.1.1. Domain model
	3.1.2. The validation dispatching process

	3.2. Java validation API
	3.3. Specification weaknesses
	3.3.1. Round tripping
	3.3.2. Problems with context

	3.4. Distribution and testing
	3.5. Using JNVDL

	Chapter 4. JNVDL integration into Relaxed
	4.1. The Relaxed project
	4.2. Compound documents and Relaxed
	4.3. Further Relaxed extensions
	4.4. Schematron validation
	4.5. New user interface

	Chapter 5. Conclusion
	References
	Definitions
	Appendix A. NVDL validation dispatching process
	Appendix B. Interpretations for a non-deterministic NVDL Schema
	Appendix C. NVDL schema as a compound document
	Appendix D. Validation using triggers

