VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA MEZINÁRODNÍCH VZTAHŮ

DIPLOMOVÁ PRÁCE

2007

Peter Jurečka

UNIVERSITY OF ECONOMICS IN PRAGUE Faculty of International Relations Main Specialization: Commercial Law

The Impact of Exchange Rate Volatility on Czech Real Export: Theory and Empirical Investigation Extended for Bilateral Trade Flows with Euro Zone Countries

Diploma Thesis

Author: Bc. Peter Jurečka, M.A. Supervisor: Prof. Ing. Antonín Brůžek, DrSc. VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Fakulta mezinárodních vztahů Hlavní specializace: Komerční právo

Vliv volatility směnného kurzu na reální export České republiky: teorie a empirická studie rozšířena o obchod se zeměmi eurozóny

Diplomová práce Vypracoval: Bc. Peter Jurečka, M.A. Vedoucí diplomové práce: Prof. Ing. Antonín Brůžek, DrSc.

Prohlášení

Prohlašuji, že jsem diplomovou práci na téma "Vliv volatility směnného kurzu na reální export České republiky: teorie a empirická studie rozšířena o obchod se zeměmi eurozóny " vypracoval samostatně. Veškerou použitou literaturu a podkladové materiály uvádím v přiloženém seznamu literatury.

V Praze dne

Podpis

Acknowledgment:

I would like to express my gratitude to my supervisor, Prof. Ing. Antonín Brůžek, DrSc. whose valuable comments helped me during the time of wring this thesis.

Abstract

This diploma thesis deals with the impact of real exchange rate volatility on real export of the Czech Republic. In the first part, theoretical aspects of this relationship are examined, explaining both - positive and negative – effects on bilateral and aggregate trade flows, as there is still no clear-cut conclusion about this impact. Furthermore, the issues of measuring exchange rate variability are discussed and the overview of different empirical results is provided as well. Further on, empirical data and econometric tools are employed to capture the relationship between real export and its main determinants for the case of Czech Republic in the past decade. After the brief theoretical introduction to time series econometrics, the particular export demand model is proposed and various cointegration techniques are explained and applied to examine the long-run equilibrium but also short-run dynamics. Some adjustments of the standard export demand model are made to capture specific conditions of the transforming economy of Czech Republic, such as monetary crisis in late nineties or change of exchange rate regime. In the last part of the work, estimation of the parameters of bilateral real export demand model for the case of Czech main trading partners from Euro zone such as Germany, France, Italy, Spain and Netherlands is provided to explain the differences using effective exchange rate comparing to bilateral exchange rates.

Content

Abstract1
Content2
Introduction4
1. Theoretical Part
1.2. Theoretical Aspects of the Relationship between Exchange Rate Volatility and Trade.5
1.2.1. Types of Exchange Rate Variability5
1.2.2. Impact of Exchange Rate Variability on Trade
1.3. Empirical Results on the Relationship between Exchange Rate Volatility and Trade .10
1.4. Measuring Exchange Rate Volatility13
1.4.1. Effective exchange rate volatility
1.4.2. Nominal vs. Real Exchange Rate Volatility14
2. Empirical Part
2.1. Introduction
2.2. Time Series Econometrics
2.3. The Export Demand Model
2.4. Cointegration
2.4.1. Engle-Granger Test
2.4.2. Autoregression Distributed Lags (ARDL) Method
2.5. Effect of exchange rate volatility on bilateral trade flows
3. Empirical Results
3.1. Tests of stationarity
3.2. Capturing the effects of monetary crisis in Czech Republic
3.3. Stock adjustment model
3.4. Long-run equilibrium
3.5. Short-run dynamics
3.6. ARDL method
3.7. Bilateral trade flows – Case of Germany, France, Italy, Spain and Netherlands
3.9. Bilateral trade flows – Case of Slovakia
4. Summary and Conclusions
References
Appendix

Appendix I: Computation of the Trade Weighted Foreign GDP	53
Appendix II: Outputs from the analysis of stationarity using DF and ADF tests	54
Appendix III: Comparison of Individual Export Demand Models	61
Appendix IV: Stock Adjustment Mechanism	66
Appendix V: Engle – Granger Cointegration Test	68
Appendix VI: Error Correction Model (Engle – Granger)	70
Appendix VII: ARDL method	73
Appendix VIII: Regressions – billateral trade flows	77

Introduction

Since the collapse of Bretton-Woods system in 1973, the effects of exchange rate volatility on exports have been examined in a great deal of literature. The extent to which this volatility affects the volume of trade is an empirical question and there is no clear-cut conclusion on its impact. In this thesis, the attention will be focused on theoretical explanations of both - positive and negative - effects of real exchange rate variability on bilateral and aggregate trade flows. The issues of measuring this variability are discussed and the overview of different empirical results is provided as well.

Further on, empirical data and econometric tools are employed to capture the relationship between real export and its main determinants for the case of Czech Republic in the past decade. After the brief theoretical introduction to time series econometrics, the particular aggregate export demand model is proposed and various cointegration techniques are explained and applied to examine the long-run equilibrium but also short-run dynamics. In the initial part, the aggregate model capturing overall export volumes that works with effective exchange rate will be used. The following part deals with the estimation of the parameters of the adjusted bilateral export demand model for the trade flows from Czech republic to its main trading partners, which are using Euro as their national currency. Finally, model using effective exchange rate will be compared with models using bilateral exchange rate to capture the effects of exchange rate volatility on aggregate and partial level.

1. Theoretical Part

1.2. Theoretical Aspects of the Relationship between Exchange Rate Volatility¹ and Trade

1.2.1. Types of Exchange Rate Variability

Substantial increase of the degree of variability of exchange rate movements since the beginning of the generalized floating in 1973 have led policymakers and economists to investigate the nature and extend of the impacts of such movements on the volumes of trade. Theoretical analysis suggests that uncertainty generated by greater exchange rate variability may induce risk averse agents to reduce trade volumes or increase trade prices². Two types of exchange rate variability can be distinguished: volatility and misalignment.

Volatility refers rather to short-term (day-to-day or month-to-month) fluctuations of nominal or real exchange rates³. Since the collapse of Bretton-Woods system, volatility has increased substantially.

Many economists have attempted to analyze whether the increase of exchange rate volatility in post Bretton-Woods era has led to a decline in the growth of trade but no clear evidence of a significant adverse effect of volatility on trade has emerged from empirical analysis and studies dealing with exchange rate volatility yielded mixed results. Two main reasons may contribute to explanation of the failure to establish a significant link: measurement problems and the development of hedging instruments.

Even the studies that detect a significant link show that sensitivity of trade to volatility is relatively low. On the other hand, despite this low sensitivity, the impact might be large due to the high magnitude of volatility which was the case after the collapse of Bretton Woods system. Various studies estimated the direct impact of this break-down to be the reduction of world trade by roughly 3%. By contrast, as the exchange rate volatility within EMS was already very low, its approximate doubling that occurred in 1992 could have only decreased

¹ In this study, the terms exchange rate volatility and exchange rate variability are used as synonyms.

 $^{^{2}}$ This is the case if the risk is borne by exporters. If the risk is borne by importers, increased risk caused by higher variability of exchange rates, depress import demand and causes market prices to fall.

³ Real exchange rate is nominal exchange rate corrected for inflation.

intra-EU trade by less than 1% according to some authors⁴. However, the conclusion that international trade flows are only marginally affected by a rise in exchange rate volatility does not imply that such rise has no harmful effects. Among others, it might contribute to a decline in consumer and business confidence and bring about a slowdown of economic growth.

Another type of exchange rate variability mentioned above is so called misalignment. Contrary to volatility which is a short-term phenomena, misalignment refers to persistent departures (under- or overvaluation) of real exchange rates from their equilibrium values, i.e. values consistent with their macroeconomic fundamentals. By contrast to the link between volatility and trade, here is a consensus in the empirical literature on the negative impact of misalignment on trade. Persistent misalignments may have several adverse effects. They may distort trade and thus indirectly lead to increase of protectionist measures. They may also negatively affect investment and lead to a worldwide misallocation of resources, which retards growth. At world level, it is regarded that misalignment effects contributed significantly to the decline on volumes of trade after 1973 although this effect was lower than the trade policy and income effects.

1.2.2. Impact of Exchange Rate Variability on Trade

Basically, there are two underlying theories explaining opposite effects, that bilateral exchange rate volatility, nominal or real, might have on trade. On the one hand, there are studies supporting the hypothesis that exchange rate volatility hampers trade. It might seem self evident, that for risk averse market participants, exchange risk is implicitly a cost, or is avoidable at an explicit cost, and that this risk in a given transaction is proportional to the prospective variability of the bilateral exchange rate applicable for that transaction. Market participants will thus by growing exchange rate volatility favor domestic to foreign trade at the margin. The argument thus views trading parties as facing undiversified exchange risk; if hedging is impossible or costly, traders are risk-averse and risk-adjusted expected profits from trade will fall when exchange risk increases. Akhtar and Hilton (1984), Cushman (1983), Kenen and Rodrik (1986), Koray and Lastrapes (1989), Thursby and Thursby (1987) provide evidence to support this view.

⁴ European Commission, Directorate-General for Economic and Financial Affairs: "The Impact of Exchange Rate Movements on Trade within the Single Market", Reports and Studies, No. 4, 1995

The usual analysis goes as follows. We assume two countries, A and B, where a firm located in country A selling its entire product in country B produces only one commodity, has no market power and does not import any intermediate goods. The firm is paid in foreign currency and converts the proceeds of its exports at the current exchange rate, which varies in an unpredictable fashion because there are by assumption no hedging possibilities as future contracts for fixed exchange rates. In addition, because of costs involved in adjusting the scale of production, the firm must make timely decisions in advance of any subsequent exchange rate movements. It therefore cannot alter its output in response to favorable or unfavorable shifts in the profitability of its exports arising from these movements. In such situation, change of profitability of the firm is solely dependent on the exchange rate. Assuming managers of our firm to be risk averse, greater volatility in the exchange rate will lead to an output and thus also export reductions in order to reduce the exposure to risk. Explaining it in another way, if the firm is risk averse, it would be willing to incur additional costs to avoid risk, so than the risk if not hedged is an implicit cost. This cost increase will ceteris paribus lead to an increase of the supply price for each quantity of export. The overall decline of output might therefore be strongly dependent on the price elasticity of imports in country B⁵.

Another reason explaining why trade may be adversely affected by exchange rate volatility stems from the assumption that the firm cannot alter factor inputs in order to adjust optimally to movements in exchange rates. However, when this assumption is relaxed and firms can adjust one or more factors of production in response to movements in exchange rates, increased variability can in fact create profit opportunities. The effect of such volatility depends on the interaction of two forces at work. Firstly, if the firm can adjust inputs to both high and low prices, its expected or average profits will be larger with greater exchange rate variability because it will sell more when price is high and vice versa. Secondly, considering the risk aversion, the higher variance of profits has an adverse effect on the firm and constitutes a disincentive to produce and to export. If risk aversion is relatively low, the positive effect of greater price variability on expected profits outweighs the negative impacts of the higher variability of profits, and the firm will raise the average capital stock and the level of output and exports.

There is one more aspect of the relationship between trade and exchange rate volatility which is worth to mention and it is the role of "sunk costs". Much of the international trade

⁵ We further suppose for simplicity, that our firm sells in a forward market in country B so it knows exactly the future price of its product at the time it incurs its cost of production.

consists of differentiated manufactured goods that typically require significant investment by firms to adapt their products to foreign markets, to set up marketing and distribution networks and to set up production facilities specially designed for export markets. This sunk costs will than make firm less responsive to short-run movements in the exchange rate because they will tend to adopt wait-and-see approach, i.e. to stay in the export markets as long as they are able to cover their variable costs and wait for the turnaround in the exchange rate movements to recoup their sunk costs.

In the finance literature on real options, several authors like McDonald and Siegel (1986), Krugman (1989), Dixit (1989) explored the implications of sunk costs in the context of an "options" approach that has been further applied by Franke (1991) and Sercu and Vanhulle (1992). The key idea is that the exporting firm can be regarded as owing an option to leave the export market, and a firm not currently exporting can be viewed as owing an option to enter the market in the future. Exporting is an option which is exercised if profitable. The decision to enter or exit the export market involves considering explicit fixed and variable costs as well as the costs of exercising the option to enter or leave the market summarily named as transaction costs. If the firm starts exporting, it incurs the costs of entering the foreign market. A firm which stops exporting incurs exit costs.

Similar to the value of stock option, the value of this export strategy depends on exchange rate volatility. The greater the volatility, the greater the value of keeping the option, hence the larger the range of exchange rates within which the firm delays action by staying in the export markets or staying out if it has not yet entered. This suggests that increased exchange rate volatility would increase the inertia in entry and exit decisions.

So far I have mentioned only the situations, when the only variable changes with the change of the volatility of the exchange rate, i.e. the partial equilibrium. All other developments that might have possible effects on the level of trade remained unchanged. However, the factors which are generating the exchange rate movements are very likely to have an impact also on the other aspects of the economic environment which will in turn have an effect on trade flows. Therefore, in general equilibrium framework it is important to take into account of the interaction of all major macroeconomic variables to get a more complete picture of the relationship between exchange rate variability and trade.

Analysis of that kind has been provided by Bacchetta and Van Wincoop (2000) where they developed a simple, two country general equilibrium model. Uncertainty in such model arises primarily from monetary, fiscal and technology shocks and they compared the level of trade and welfare for fixed and floating exchange rate arrangements. Two main conclusions were reached. Firstly, there is ambiguous relationship between level of trade and the type of exchange rate arrangement. Trade can be higher or lower under either exchange rate arrangement depending on preferences of consumers regarding the tradeoff between consumption and leisure. A monetary expansion in a country would depreciate its exchange rate causing it to reduce its imports. On the other hand increased demand resulting from monetary expansion could partly or fully offset the exchange rate effect. The second conclusion is that the level of trade does not necessarily have to serve as a good index of welfare in a country and therefore there is not clear cut relationship between levels of trade and welfare in comparing exchange rate systems. The welfare of the country is determined by the volatility of consumption and leisure.

Koren and Szeidl (2003) developed a model that brings out clearly the interactions among the most important macroeconomic variables. They showed, that what matters is not the unconditional variability of the exchange rate as a proxy for risk, as used in most of empirical works in literature, but rather that the exchange rate uncertainty could influence trade levels and prices through covariances of the exchange rate with the other key variables in the model. In their general equilibrium context, they pointed out that it is not uncertainty in the exchange rate per se that matters, but rather whether risk uncertainty multiplies or reduces firm's other risk on the supply and demand side and ultimately whether it exacerbates the risk faced by consumers.

Another analysis of the impact of exchange rate volatility on the welfare costs was provided by Obsfeld and Rogoff (1998) where they extended the "new open-economy macroeconomic model" to an explicitly stochastic environment. The risk has an impact on the price-setting decisions of firms and hence on output and international trade flows. Providing an illustrative example they came up to the result that the reduction of the variance of exchange rate to zero by pegging the exchange rate could result in a welfare gain of up to one percent of GDP.

Finally, Bergin and Tchakarov (2003) provided an extension of the above mentioned model by applying it to more realistic conditions including incomplete asset market and investment by firms. They calculated that the welfare costs of exchange rate uncertainty are generally quite small, on the order of one tenth of the percent of consumption, thus significantly lower than those of Obsfeld and Rogoff (1998).

1.3. Empirical Results on the Relationship between Exchange Rate Volatility and Trade

The early empirical works on the effect of exchange rate volatility on the volumes of trade provided by IMF study in 1984 did not yield consistent results, with much of the work showing little or no support for negative effect. One of he first works by Hooper and Kohlhagen (1978) used the model of Ethier (1973) for traded goods and derived equations for export prices and quantities in terms of the costs of production, reflecting both imported and domestic inputs, other domestic prices, domestic income and capacity utilization. Nominal exchange rate risk was measured by the average absolute difference between the current period spot exchange rate and past forward exchange rate. The authors examined the effects of exchange rate volatility on aggregate an bilateral trade flows and export prices in 1965-75 and their regression analysis covered the bilateral trade of Germany and United States with other industrialized countries (G-7 except Italy). They could not find any significant evidence of impact on the volumes of trade, although import and export prices appeared to be affected. This findings has been widely cited and was not challenged until recently.

Cushman (1983) followed the methodology adopted by Hooper and Kohlhagen (1978) extended the sample size and studied the effects of volatility in real exchange rates. He measured volatility by standard deviations of quarterly changes in real rates. Of 14 sets of bilateral trade flows in 1965-1977, he found that volatility had significant negative effects on six flows (U.S. exports to Canada, France and Japan and U.S. imports from Canada and Japan and German exports to UK).

Finally IMF (1984) used a simplified version of Cushman's model to estimate bilateral exports between the G-7 countries from the first quarter of 1969 to the end of 1982, with real GNP, the real bilateral exchange rate, relative capacity utilization, and the variability measured as the standard deviation of the percentage changes in the exchange rate over the preceding five quarters. The variability had a significantly negative coefficient in only two cases, while positive coefficients were significant in several cases. There are several factors that might explain the lack of robustness in this early work. Firstly, as mentioned above, theoretical considerations do not provide clear support for the conventional assumption that the exchange rate volatility has a negative impact on the volume of trade. Secondly, the sample period was relatively short and finally the specification of estimating equations was

typically rather crude, consisting of a few macro variables from standard trade equations used at that time.

Akhtar and Hilton (1983) estimated volume and price equations for German and U.S. multilateral trade in the floating period. The exchange rate risk was represented by measures of nominal and real exchange rate variability (the standard deviations of daily effective exchange rates within each quarter). They found that nominal exchange rate variability had statistically significant effects on both countries' manufactured exports and on German manufactured imports. Their results for real variability were mixed but broadly consistent with those for nominal variability.

McKenzie (1999) stressed the point that at theoretical level, models leading to both positive and negative effects of variability on trade have been constructed, and a priory there is no clear case that one model should be regarded superior to another one. However, he finds that the most recent contributions to the literature have been more successful in obtaining a statistically significant relationship between volatility and trade, which he attributes more careful attention to the specification of estimation technique and the measure of volatility used. There also might be a threat of the "publishing bias" where publishers prefer papers providing significant results, no matter whether there is positive or negative correlation.

Recent work on this topic employing the gravity model has found some significant evidence of a negative relationship between exchange rate variability and trade⁶. The gravity model in its basic form shows bilateral trade flows between countries as depending positively on the product of their GDPs and negatively on the geographical distance from each other.⁷ Countries with larger economies tend to trade more in absolute terms while distance can be viewed as a proxy for transportation costs which acts as an impediment to trade. In addition, population is often included as an explanatory variable as an additional measure of country size. In many applications, several dummy variables are added to control for shared characteristics that would increase the likelihood of trade between countries, such as common borders, common language or membership in a free trade association. To these equations, measures of exchange rate variability are added to see if this proxy for exchange rate risk has a separate, identifiable effect on trade flows after all other major factors have been taken into account.

⁶ See Frankel and Wei (1993), Wei (1999), Dell' Ariccia (1999), Rose (2000) and Tenreyro (2003)
⁷ See McCallum (1995), Coe at al. (2002) or Deardorff (1998)

Dell' Ariccia (1990) provides a systematic analysis of exchange rate volatility on the bilateral trade of the EU 15 plus Switzerland over the 20-year period from 1975-1994 using four different measures of exchange rate uncertainty: the standard deviation of the first difference of the logarithm of the monthly bilateral nominal exchange rate, that of real exchange rate, the sum of squares of forward errors and the percentage difference between the maximum and minimum of the nominal spot rate. In his basic regressions, exchange rate volatility has a small but significantly negative impact on trade: eliminating volatility to zero in 1994 would have increased trade by amount ranging from 10-13 percent, depending on the particular measure of volatility. The results for both nominal and real variability are very close, which is not surprising given that in the sample the two exchange rate measures are highly correlated.⁸

One of the most thorough surveys was made by Rose (2000) where he employed the gravity approach to examined a set of 186 countries for 5 years (1970, 1975,...1990). His main aim was to measure the impact of currency unions on members' trade, but he also uses his model to test for the effects of exchange rate volatility on trade. The measure of volatility he primarily used is the standard deviation of the first difference of the monthly logarithm of the bilateral nominal exchange rate, which was computed over five years preceding the year of estimation. In his benchmark results using the pooled data, he found a small but statistically significant negative effect: the reduction of volatility by one standard deviation (7 percent) around the mean (5 percent) would increase bilateral trade by about 13 percent, which is similar to the conclusion of Dell' Arricia mentioned above. However, when random effects are incorporated into the estimation, the magnitude of the effect of volatility on trade is reduced to about third of the benchmark estimate, or approximately 4 percent.

Finally, a recent paper by Tenreyo (2003) casts some doubts on the robustness of Rose's results. She used similar gravity equation as Rose did, broad sample of countries and annual data set from 1970-97 but slightly different measure of volatility⁹. Tenreyo found that the effect of reduction of volatility from its sample mean of about 5 percent to zero results in an increase of trade of only 2 percent which just highlighted the problems of estimation that will be more thoroughly described in following chapter.

⁸ Dell' Arricia goes further on and takes into account of the simultaneity bias that can result from central banks; attempt to stabilize their exchange rates with their main trading partner. If they were successful, there would be a negative association between exchange rate variability and the level of trade, but it would not reflect causation from the former to the latter.

⁹ The standard deviation of the log change in monthly exchange rates is measured only over the current year.

1.4. Measuring Exchange Rate Volatility

A great deal of literature has been dedicated to our issue so far and there is still no consensus on the appropriate method for measuring the exchange rate volatility. The lack of agreements is the result of the number of factors. As mentioned in previous chapters, there is no generally accepted model of firm behavior that is subject to risk arising from fluctuations in exchange rates and other variables. As a result, theory cannot provide definitive guidance as to which measure is more proper. Furthermore, the scope of the analysis will dictate to some extend the type of measure used. If advanced countries are being surveyed, we should take into account the effect of forward markets for the assessment of exchange rate volatility on trade, whereas this would not be possible if we extend our analysis also to larger number of developing countries. Another feature of exchange rate volatility that needs to be taken into account is the time horizon, over which the variability is measured as well as whether it is unconditional volatility or rather the unexpected movement in the exchange rate relative to its predicted value that is the relevant measure. Finally, the level of aggregation of trade flows being concerned will also play role in determining the most suitable measure of the exchange rate to be used.

Methodologically, the basic building block in the analysis is the volatility in the exchange rate between the currencies of each pair of countries in the sample because it allows for the best control for a variety of factors other than volatility that could affect the trade. As a result, the change of detecting an impact of the exchange rate volatility on trade improves.

1.4.1. Effective exchange rate volatility

For the descriptive part of my study, which looks at the exchange rate volatility facing Czech Republic as a whole, it is necessary to aggregate the bilateral volatilities using trade shares as weighted to obtain what is referred to as the "effective volatility" of country's exchange rates. This ensures that the measures of volatility in the descriptive and econometric parts of the study are fully consistent.

Such a measure of effective volatility presupposes that the exchange rate uncertainty facing an individual firm is the average of the variability of individual bilateral exchange rates (Lanyi and Suss, 1982). However, if a trading firm engages in international transactions with

a wide range of countries, any tendency for exchange rates to move in opposite directions would offset the overall exposure of the firm to exchange rate risk. This would argue for using the volatility of a country's effective exchange rate as the measure of exchange rate uncertainty facing the country. This method seems particularly suitable for developed economies, where much trade is undertaken by multinational corporations.

It is also important to realize, that the degree of exchange rate variability to which a country is exposed is not necessarily closely related to the type of exchange rate regime it has adopted. A country may peg its currency to an anchor currency but will float against the other currencies if the anchor does as well. Therefore, as with effective exchange rates, the effective volatility is a multidimensional concept (Polak, 1988). Pegging can reduce nominal exchange rate volatility vis-à-vis one trading partner, but it can by no means eliminate overall exchange rate variability.

1.4.2. Nominal vs. Real Exchange Rate Volatility

The choice between nominal and real exchange rates depends in part on the time dimension that is relevant for the economic decision being taken. In the short-run, where costs of production are known and import and export price have already been set, the exchange rate exposure of a firm is a function of the nominal exchange rate. However, the decision to engage in international transactions stretches over a longer time period, during which import and export prices in foreign currency as well as costs of production will vary. From this point of view, exchange rates measured in real terms are more appropriate. Nevertheless, as real and nominal exchange rates tends to move closely together, given the stickiness of domestic prices, the choice of which one to use is theoretically not likely to affect significantly the econometric results.

There has been conflicting argument as to whether exchange rate uncertainty is better measured by nominal or real exchange rate volatility. Studies by Hooper and Kohlgarten (1978), Akhtar and Hilton (1984), among others, have found significant trade flows effects of nominal exchange rate volatility, while Cushman (1983), Kenen and Rodrik (1986) and Thursby and Thursby (1985) have found significant trade flows effects of real exchange rate volatility. Consequently, the models have been constructed using the nominal and real exchange rate volatility but the results were quantitatively similar¹⁰. Anyway, real rates are considered preferable to nominal ones on theoretical grounds and will be used as a benchmark in the empirical part later. Consumer prices are used to construct the real rates because they are the most widely available measures of domestic prices 11 .

While exchange rates are often highly volatile, the extent to which they are a source of uncertainty and risk depends on the degree to which exchange rate movements are foreseen. When hedging instruments are available, the predicted part of exchange rate volatility can be hedged away and hence may not have much effect on trade. This suggests that the appropriate measure of risk should be related do deviations between actual and predicted exchange rates. One of the possibilities along these lines would be to use the forward rate as the prediction of the future spot rate and to use the difference between the current and previous period forward rate as an indicator of exchange rate risk. The major problem of this approach is that the forward rate is not always a good predictor of future exchange rates. In addition, the quotations are available only for the main currencies.

More generally, there is a wide range of methods - ranging from structural models to time series equations using autoregressive conditional heteroscedasticity (ARCH)/ generalized ARCH (GARCH) approaches¹², for example – that could be used to generate predicted values of exchange rates (McKenzie, 1999)¹³. However as pointed out by Meese and Rogoff (1983), there are inherent difficulties in prediction of exchange rates. Therefore my study adopts the approach followed in much of the work on the topic and uses a measure of the observed volatility of exchange rates as the benchmark. A time varying measure of exchange rate volatility is included in my model in order to account for the periods of high and low exchange rate uncertainty¹⁴. The variable is constructed by the moving sample standard deviation of the first difference of logarithms of the exchange rates. This measure is

¹⁰ Chowdhury, A.R.: "Does the Exchange Rate Volatility Depress Trade Flows? Evidence from Error-

Correction Models"; The Review of Economics and Statistics, vol. 75, No. 4 (Nov. 1993), 700 - 706

Results from regressions using nominal exchange rates could be obtained from author upon request.

¹² ARCH and GARCH models are especially useful in analyzing financial time series such as stock prices, inflation rates and exchange rates. A distinguishing feature of these models is that the error variance may be correlated over time because of the phenomenon of volatility clustering.

¹³ For more information of ARCH/ GARCH models see: R.Engle, "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation", *Econometrica*, vol. 50. no. 1, 1982, pp. 987-1007 or also A. Bera and M. Higgins, "ARCH models: Properties, Estimation and Testing", Journal of Economic Surveys, vol. 7, 1993, pp. 305-366.

Since there is no unique way to measure the exchange rate uncertainty, empirical research on its effects has generally used some measure of exchange rate variability as a proxy for uncertainty. See Akhtar and Hilton (1984) for a discussion on this issue.

similar to those used in much of the literature (for example, Kenen and Rodrik (1986), Koray and Lastrapes (1989), Lastrapes and Koray (1990), Chowdhury (1993)). This measure has the property of being equal to zero if the exchange rate follows a constant trend, which presumably could be anticipated and therefore would not be a source of uncertainty. Moreover, Koray and Lastrapes (1989) have shown, that this measure captures the temporal variation in the absolute magnitude of changes in real exchange rates, and therefore exchange risk over time.

Finally, it is also useful to mention the role of the currency invoicing. Very often, trade between a pair of countries, especially between two developing countries, is not invoiced in the currency of either country. Instead, a major currency – especially the U.S. dollar – is often used as an invoicing currency. It might appear that the volatility of exchange rate between the currencies of the two trading partners is not relevant to consider at all. For example if Chinese exports to India are invoiced in U.S. dollars, it might seem that the Chinese exporters would care only about the fluctuations between U.S. dollar and the Chinese Yuan, but not between the Indian rupee and the Chinese Yuan. However, this view is not correct. Any fluctuations between the Chinese Yuan and the Indian rupee, holding constant the Chinese Yuan/U.S.Dollar rate, must reflect fluctuations in the Indian rupee/U.S. dollar rate. As the latter could have an impact on the Indian demand for Chinese exports to India even if the trade is invoiced in U.S. dollars. In general, the choice of invoicing currency does not alter the effect of exchange rate volatility on trade.

2. Empirical Part

2.1. Introduction

As mentioned in theoretical part above, the impact of exchange rate volatility on trade and export itself has been reported in a great deal of literature but no clear-cut results have been achieved so far. Many previously examined export demand models were often very restrictive, forcing the effects of the regressors to be felt fully contemporaneously, or, as in the case of, for example, stock adjustment models, they implicitly force the coefficient of regressors to have the same lag pattern. One way or another, the regressions are very likely to be misspecified and the resulting parameter estimates therefore biased. This problem is obvious especially in the case of exchange rate variability and relative price estimates, because the effects of these variables are believed to be built slowly and trade flows with statistically significant lags¹⁵. Forcing these effects to be felt instantly, or with the same velocity as changes in activity may have contributed to the mixed or statistically insignificant estimates that have been obtained¹⁶.

As a benchmark for the investigation of the impact of exchange rate volatility on Czech exports, the export demand model proposed by Arize (1995) was chosen.

There are at least three aspects that distinguish his analysis from most previous studies. First, his dynamic modeling of export demand does not follow the restrictive simple stock adjustment mechanism that has been commonly used in several studies. Instead of that, less binding process based on modified error-correction model is used¹⁷. Second, the level of specification used in previous studies has not recognized that real exports and some of its proposed determinants such as world real income are, a priory, potentially non stationary integrated variables. Previously mentioned mixed results of the impacts of exchange rate variability on trade could be partly explained by neglecting the consideration of nonstationarity¹⁸. That is why the properties of individual time-series in this study are

¹⁵ Arize, G.: "The Effects of Exchange-rate Volatility on U.S. Exports: An Empirical Investigation", Southern Economic Journal 62, 34-43, 1995

¹⁶ These mixed results have been discussed in detail in Pozo (1992) or Bailey, Tavlas and Ulan (1986)

¹⁷ For more information see: Johansen, S.: "Statistical Analysis of Cointegrating Vectors"; *Journal of Economic Dynamics and Control*, June-September 1988, 708-712 and Engle, R., and Granger, C.W.J.: "Cointegration and Error Correction: Representation, Estimation and Testing"; *Econometrica* 55, 1987, 251-276

¹⁸ My results shown below suggest that exchange rate volatility is nonstationary as well.

established prior to testing for cointegration. Series that are integrated of different order cannot be cointegrated¹⁹.

Further on, the OLS²⁰ framework is applied to estimate cointegrating vectors among the integrated time series. In the final step, the estimated error-correction term is incorporated into the error-correction model. Last but not least distinguishing feature of Arize's model concerns the measurement of the exchange rate volatility. In this section, two similar versions of exchange rate volatility were chosen as a proxy for exchange rate uncertainty. The effect of exchange rate volatility on Czech export is estimated using a five- and eight-quarter moving average of the variance of the first difference of exchange rate²¹.

The rest of this empirical part is organized as follows. Section 2 includes the brief introduction to the theory of time series econometrics and basic issues of stationarity and possible problems emanating from non-stationarity of time series are discussed as well. Furthermore the process of transformation of non-stationary time series including cointegration and error correction mechanism is explained. Section 3 specifies the particular aggregate export demand model²². Possible adjustments of Arize's model emanating mainly from different conditions of Czech economy comparing to U.S. are outlined here as well. The following section describes two cointegration techniques used. Next section of this Part is dedicated to the examination of bilateral trade flows from Czech Republic to main trading partners using Euro as national currency involving Germany, France, Italy, Spain and Netherlands. Part 3 summarizes the results from particular regressions and the main conclusions are revised in Part 4. Quarterly data used in this study were published by International Monetary Fund²³ and cover observations from 1995:1 to 2005:1. Quarterly data generating "EURO" time series for bilateral trade models are from the same source and cover period from 1999:4 to 2006:4.

¹⁹ I will briefly explain the theory of cointegration in separate chapter.

²⁰ Ordinary Least Squares

 $^{^{21}}$ The use of this unconditional measure was criticized by Jansen (1989) on the grounds that it lacks a parametric model for the time varying variance of exchange rate. Therefore employing another model as a proxy for exchange rate uncertainty proposed by Engle (1983), which is now well known as ARCH – autoregressive conditional heteroscedasticity model might be appropriate but it is out of scope of this study. It specifies the variance of a variable as a function of the expected squares of the lagged value of the error term from an auxiliary regression determining the mean of the variable of interest.

²² Proposed in Arize (1995)

²³ International Financial Statistics (CD-ROM), International Monetary Fund, May 2005

2.2. Time Series Econometrics²⁴

The main aim of this chapter is to provide the reader with the basic theoretical concepts of forecasting in time series, to outline possible problems and explain suggested solutions.

The first issue to deal with is the problem of non-stationarity, as the work based on time series data assumes that the underlying time series are stationary. So what exactly do we mean under the term stationary stochastic process²⁵? Broadly speaking, we consider the stochastic process to be stationary²⁶ if its mean and variance are constant over time and the value of the covariance between the two time periods depends only on the distance or lag between the two time periods and not on the actual time at which the covariance is computed²⁷. The assumption of stationarity is important as it simplifies the statements of the large numbers and central limit theorem. In case of nonstationarity, each set of time series data will be for a particular episode and we cannot release generalized statements about the time series as a whole.

There are several tests that reveal non-stationarity in time series. The *graphical analysis*, the *Dickey-Fuller test* and *Augmented Dickey-Fuller test* of stationarity which has become widely popular over past several years are used in this study.

To avoid spurious regression²⁸ problem that might arise from regressing nonstationary time series on another or more nonstationary time series, we have to transform these nonstationary time-series to make them stationary. It is a priory expected that time series of all relevant variables in export demand model²⁹ are nonstationary, but individually integrated of order one³⁰. That means, they have stochastic trends but their linear combination could be integrated in order zero. In other words, it implies that the linear combination cancels out the

Cambridge, Massachusetts, U.S.A. and London, England, 2001 ²⁵ A strahest

²⁴ The theory summary is based mainly on Gujarati, D.N.: "Basic Econometrics"; *McGraw-Hill*, New York,

U.S.A, 2003 and Wooldridge, J.M.: "Econometric Analysis of Cross section and Panel Data"; The MIT Press,

²⁵ A stochastic or random process is a collection of random variables ordered in time.

²⁶ In time series literature, stationary stochastic process is also known as a weakly stationary, covariance stationary or second order stationary or wide sense, stochastic process.

²⁷ More formally: The stochastic process $\{x_i: t=1,2,...\}$ is *stationary* if for every collection of time indices $1 \le t_1 \le t_2 \le \ldots \le t_m$, the joint distribution of $(x_{t1}, x_{t2}, \ldots, x_{tm})$ is the same as the joint distribution of $(x_{t1+h}, x_{t2+h}, \ldots, x_{tm+h})$ for all integers $h \ge 1$.

²⁸ The phenomenon of spurious, or nonsense, regression describes the fact, that sometimes in regressing a time series variable on another, we might obtain very high R^2 even though there is no meaningful relationship between the two variables.

²⁹ Real Exports, Foreign GDP, Real Effective Exchange Rate, Measure of Exchange Rate Uncertainty

³⁰ I.e. the expected first difference of the time series over time should be zero.

stochastic trend in time series and the regression is meaningful, not spurious and the variables could be cointegrated. The condition that time series in cointegration analysis are both cointegrated³¹ in order one is necessary because their expected difference over time should be zero (the difference is stationary I(0)). This is because of their long-run relationship which prevents them from drifting apart. The *Engle-Granger unit root test* and *ARDL³² method* are used to test for cointegration. In case it is successfully proved that there is a long-term, or equilibrium, relationship between the variables, the *Error Correction Mechanism³³* will be proposed to survey the short-run dynamics of the model.

Another topic that is dealt with in the empirical part of the thesis is whether there is a structural change³⁴ in the relationship between the volume of real export and its explanatory variables. There is an a priory expectation that there might be a structural change in the model in the second half of the year 1997 or in the first half of 1998 resulting from the monetary crisis in Czech republic and changes of the exchange rate regimes that went hand in hand with it. Up to the 26th of May 1997, Czech currency operated within the regime of fixed exchange rates with allowed 5% upper and lower band. As a result of constant weakening of Czech Koruna in the second quarter of 1997 and of its fall under the critical 5% lower band below the central parity, the Czech National Bank had to intervene by rising lombard and REPO rate up to the unprecedented levels³⁵. On the 26th of May 1997, Czech Prime Minister Václav Klaus and Governor of Central Bank Josef Tošovský announced the change of exchange rate regime to managed floating. After relative stabilization of fall of the Czech Koruna, the Czech National Bank came to what we call Inflation targeting³⁶. *CUSUM* and *CUSUMSQ* tests³⁷ are employed to identify the potential structural break point. If suspected so, *Chow test* and its Dummy *Variable alternative* will be used to test for structural change in this time period.

³¹ Two variables are cointegrated if there is a long-term or equilibrium relationship between them.

³² AutoRegressive Distributed Lag

 $^{^{33}}$ The Granger representation theorem states, that if two variables are cointegrated, then there is the relationship between them that can be expressed as Error Correction Mechanism.

³⁴ By the term structural change we understand, that the values of the parameters of the model do not remain the same throughout the entire time period.

 $^{^{35}}$ Lombard rate was risen from 14,5 to 50% and REPO rate to 45% on the 19th of May 1997 and the inter-bank interest rates reached 500% on the 22nd of May 1997.

³⁶ Inflation targeting may be defined as a framework for policy decisions in which the Central Bank makes an explicit commitment to conduct policy to meet a publicly announced numerical inflation target within a particular period of time.

³⁷ Methods are similar to Chow test regarding every observation as the potential break point. CUSUMSQ test which revealed the breakpoints is supposed to be slightly more powerful than CUSUM test.

2.3. The Export Demand Model

In the model proposed by Arize (1995), the long-run equilibrium export demand function takes the customary form³⁸:

$$XR_{t}' = \lambda_{0} + \lambda_{1} * GDPN_{t} + \lambda_{2} * NEER_{t} + \lambda_{3} * VAR_{t} + e_{t}$$
(1)

Theory suggests, that as foreign income rises, the demand for domestic exports will rise and λ_1 is thus expected to be positive. On the other hand, the value of λ_2 is a priory assumed to be negative, as the rise in relative prices makes domestic goods relatively more expensive than foreign. However there are no clear-cut a priory expectations about the sign of λ_{3} , as theories mentioned in the first part of this study can explain both positive and negative impact of the increase of exchange rate uncertainty on trade. The exchange rate uncertainty is in most empirical works regarded as risk: Higher exchange rate uncertainty may thus induce risk averse traders to reduce trade volumes or increase trade prices. There are, however, counter-arguments pointed out by Bailey, Tavlas and Ulan (1987). Their basic assumption is that traders may anticipate future exchange rate movements better than average exchange market participant. Opportunities to profit on specialized trade knowledge of fundamentals affecting foreign exchange rates would than tend to offset the trade-volume effect of the costs of higher exchange rate volatility. Moreover, assuming that the volatility is due to fundamentals, any efforts of the authorities to reduce it by means of exchange controls or other restrictions on trade would be more harmful to trade and could reduce it even more. Hence the effect of exchange rate uncertainty on export is difficult to be determined ex ante. It is rather an empirical matter for each individual country.

Arize tested his model for U.S. where markets are considered to be more flexible than in Czech Republic. That means that Czech exporters are expected to respond relatively slower on rising demand originating from the growth of foreign GDP in comparison with their "western" counterparts. This argument was especially relevant in the transition period in

³⁸ XR_t' is desired real export of goods and services; GDPR_t is real world income represented by trade weighted real GNP of ten major U.S. trading partners; NEER_t is the nominal trade weighted average value of U.S. dollar against currencies of ten major industrial countries multiplied by U.S. GDP deflator deflated by the trade weighted foreign prices of ten major industrial countries; VAR_t is the measure of exchange rate uncertainty and e_t is the disturbance term

1990's due to lack of experience with foreign trade on developed markets. That means that rising demand for Czech goods resulting from growth of GDP might be possibly reflected in the increasing export with one or even longer period lag. I will try to find the answer to this question by comparing the econometric results from the model using also lagged variable of real foreign GDP:

$$XR_t' = \beta_0 + \beta_1 * \ln GDPR_t + \beta_2 * \ln GDPR_{t-1} + \beta_3 * \ln REER_t + \beta_4 * VAR_t + e_t$$
(2)

where XR_t ' denotes logarithm of desired real exports; $InGDPR_t$ is the logarithm of real foreign income of major trading partners of the Czech Republic³⁹ (see Appendix I); GDPR_{t-1} is the lagged value of GDPR_t; REER is the shortcut for Real Effective Exchange Rate and InREER_t denotes the logarithm of the exchange rate adjusted index of the price of Czech exports relative to trade-weighted foreign prices; VAR_t is the measure of the exchange rate variability and is constructed as the moving sample standard deviation of the growth rate of the real effective exchange rate:

$$VAR_{t} = \left[\left(1/m \right) \sum_{i=1}^{m} \left(\log EER_{t-i+1} + \log EER_{t-i} \right)^{2} \right]^{1/2}$$
(3)

where m = 5 is the order of moving average⁴⁰. This measure is similar to those used in much of the literature. Koray and Lastrapes (1989) have shown that it captures the temporal variation in the absolute magnitude of changes in real exchange rates, and therefore exchange risk over time.

Another rationale for incorporating one-period lagged variable to the model is that it usually takes some time from when the contract is signed to when the goods are exported. Therefore the rise of foreign income in one period might have significant effect on export in the following time period.

Further adjustment of the basic export demand model (1) to the conditions of Czech economy could be made to encompass different macroeconomic environment. U.S. economy

³⁹ I computed the weighted average of real GDP of 20 countries that have the biggest share on the exports of Czech Republic. Countries' weights were chosen according to the methodology of Czech National Bank by computing effective exchange rates. See Table in Appendix I. China was excluded from this list due to lack of data.

⁴⁰ I test the model for m = 5 and m=8.

was relatively stable comparing to turmoil in the Czech Republic that was a consequence of monetary crisis and change of exchange rate regimes in 1997/98 (described in Section 2.2.). Incorporating the dummy variable for this time period might be therefore useful. I will then also test the following model:

$$XR_{t} = \beta_{0} + \beta_{1} * \ln GDPR_{t} + \beta_{2} * \ln GDPR_{t-1} + \beta_{3} * \ln REER_{t} + \beta_{4} * VAR_{t} + \beta_{5} * DV + e_{t}$$
(4)

and discuss whether this hypothesis is correct. The exact quarter for which the dummy variable is specified is chosen on the basis of graphical analysis of plotted residuals from regression (2). The Czech national bank announced the change of exchange rate regime to inflation targeting in December 1997 and then by practicing too restrictive monetary policy artificially held REPO rate too high till summer 1998. Considering these facts but also the nature of the methodology of computation of the exchange rate variability⁴¹ and the delays in the reaction of exporters⁴², it is assumed that the possible outlier for which the dummy variable is computed is either 1st or 2nd quarter of the year 1998.

To make equation (2) estimable, we need to replace the desired export demand XR_t ' with actual (observable) levels (XR_t). There are several methods dealing with adjustments of export demand to changes in regressors. Some works have employed the simple stock adjustment mechanism, where the entire adjustment is represented by adding a lagged dependent variable as a regressor:

$$XR_{t} = \beta_{0} + \theta^{*}XR_{t-1} + \beta_{1}^{*}GDPR_{t} + \beta_{3}^{*}NEER_{t} + \beta_{4}^{*}VAR_{t} + e_{t}$$
(5)

However, several researchers have criticized this stock adjustment structure because of its restrictive assumptions⁴³. Moreover, such an equation (5) might subject to estimation problems due to correlation between the errors and lagged dependent variable (even when

⁴¹ Formula (3) works with EER data from preceding 5 - 8 time periods.

⁴² It is assumed that big export contracts are usually signed few weeks or months before the transaction itself will be realized and traders cannot simply change or cancel them instantly according to rapidly changing conditions on the domestic markets.

⁴³ Hendry and Ericsson (1991)

adjusted for serial correlation), and due to "spurious regression phenomenon"⁴⁴. I will use stock adjustment mechanism just for comparison of the results with cointegrating equations.

2.4. Cointegration

The concept of cointegration is associated with the long-run equilibrium relationship between two or more variables. The economic interpretation of cointegration is that if two or more variables are linked to form an equilibrium relationship spanning the long-run, even though the series themselves in the short-run may deviate from the equilibrium, they will move closer together in the long-run equilibrium⁴⁵. A non-stationary variable might have a long-run relationship with other non-stationary variables and this does not create a spurious regression if the deviation of this long-run relationship is stationary. It implies that these variables are cointegrated.

The following two non-graphical methods are employed to decide whether the time series in the proposed export demand model are cointegrated:

2.4.1. Engle-Granger Test

As mentioned above, to avoid producing a spurious regression resulting from regressing a nonstationary time series on another nonstationary time series, we need to check if all time series are individually integrated in order 1, i.e. if they are $I(1)^{46}$. If so, Engle-Granger test could be applied to see whether regressions (1) or (2) are meaningful and whether there is a long-run equilibrium relationship between the variables. According to this approach, in general, a dependent variable Y_t and exogenous variables $X_{i,t}$ form a long-term relationship (6) if all variables are integrated of the same order and the residuals e_t are stationary.

$$Y_{t} = \beta_{0} + \sum_{i=1}^{n} \beta_{i} X_{i,t} + e_{t}$$
(6)

⁴⁴ Inferences based on OLS parameter estimates in such regressions are invalid because of the usual t- and F-ratio test statistics do not converge to their limiting distribution as the sample size increases. Their use in that case generates spurious inferences if the levels of nonstationary variables included in equation (1) are cointegrated. (Engle and Granger, 1987)

⁴⁵ Harris and Sollis (2003), p.34

⁴⁶ It is one of the restrictive assumptions of using this test.

Stationarity of the regression residuals e_t is tested by applying the augmented Dickey-Fuller (ADF) unit root test⁴⁷:

$$\Delta \hat{e}_t = a_1 \hat{e}_{t-1} + \sum_{i=1}^n a_{i+1} \Delta \hat{e}_{t-i} + \varepsilon_t.$$
(7)

Of course, in the short-run there may be disequilibrium. Therefore we can treat error term:

$$e_{t} = XR_{t} - \beta_{0} - \beta_{1} * \ln GDPR_{t} - \beta_{2} * \ln GDPR_{t-1} - \beta_{3} * \ln REER_{t} - \beta_{4} * VAR_{t}$$
(8)

as the "equilibrium error" and we can use to tie the short-run behavior of real export to its long-run value.

Further on, the Error Correction Mechanism $(ECM)^{48}$ is used to correct for disequilibrium. The important "Granger representation theorem" states, that if two variables integrated of the same order are cointegrated, than the relationship between them can be expressed as ECM. I will consider the following ECM⁴⁹:

$$\Delta XR_{t} = \beta_{0} + \beta_{1} * \Delta \ln GDPR_{t} + [\beta_{2} * \Delta \ln GDPR_{t-1}] + \beta_{3} * \Delta \ln REER_{t} + \beta_{4} * \Delta VAR_{t} + \alpha * e_{t-1} + u_{t}$$
(9)

, where Δ denotes the first difference operator, u_t is the random error term and e_{t-1} , the error correction term, is one period lagged value from the cointegration regression (2), i.e.:

$$e_{t-1} = XR_{t-1} - \beta_0 - \beta_1 + \ln GDPR_{t-1} - [\beta_2 + \ln GDPR_{t-2}] - \beta_3 + \ln REER_{t-1} - \beta_4 + VAR_{t-1}$$
(10)

ECM equation (9) states that ΔXR_t depends also on the equilibrium error term. If it is nonzero, then the model is out of its equilibrium. Suppose all other regressors to be zero, just e_{t-1} be negative. This would mean that XR_{t-1} is too low to be in equilibrium that is it is below its equilibrium value. Since α is expected to be negative, the term $\alpha * e_{t-1}$ is positive and, therefore, ΔXR_t will be positive to restore the equilibrium. That is, if XR_t is below its

⁴⁷ Since the actual distribution of regression residuals \bar{e}_t is not known, special critical values of the ADF statistics should be used to assess stationarity. Critical values are obtained using the following formula: $C_k(p,T) = \beta_{\infty} + \beta_1 T^{-1} + \beta_2 T^{-2}$ where p and T are the significance level and the sample size respectively, and the betas are parameters of response surface estimates provided in MacKinnon(1991).

⁴⁸ ECM was first used by Sargan (1984) and later popularized by Engle and Granger.

⁴⁹ I will test both regressions (1) and (2) and discuss whether the inclusion of lagged foreign GDPR is reasonable in the long-run equilibrium model.

equilibrium value, it will start rising in the next period to correct the equilibrium error and vice versa. Thus, the absolute value of α decides how quickly the equilibrium is restored.

2.4.2. Autoregression Distributed Lags (ARDL) Method

There are several advantages favoring this approach. Firstly, it can be applied irrespective of whether the variables are I(0) or $I(1)^{50}$. This enables us to test the cointegration also for the regression (4) that includes dummy variable, which was impossible with Engle-Granger test⁵¹. Secondly, the model takes sufficient numbers of lags to capture the data generating process in a general-to-specific modeling framework⁵² and thirdly, the dynamic error correction model can be derived from ARDL through a simple linear transformation⁵³. The ECM integrates the short-run dynamics with the long-run equilibrium without losing long-run information. The error correction form of the ARDL model⁵⁴ is in general given by equation:

$$\Delta Y_{t} = \beta_{0} + \rho(Y_{t-1} + \beta_{1}X_{t-1}) + \sum_{j=1}^{l_{1}} \eta_{j}\Delta Y_{t-j} + \sum_{j=0}^{l_{2}} \gamma_{i,j}\Delta X_{i,t-j} + e_{t}$$
(11)

Here, the dependent variable in the first difference is regressed on the lagged values of the dependent and independent variables in levels and first differences.

There are also two other different approaches to measuring volatility in financial time series and to cointegration. The first one is so-called Autoregressive Conditional Heteroscedasticity (ARCH) model⁵⁵ originally developed by Engle and its main purpose is to

⁵⁰ Pesaran and Pesaran (1997)

⁵¹ Engle – Granger test assumes all cointegrating variables to be integrated of the same order. Dummy variable is not I(1).

⁵² Laurenceson and Chai (2003), p.28 ⁵³ Banerjee *et al.* (1993), p.51

⁵⁴ Pesaran *et al.* (2001) employ a bound testing approach. Using conventional F-tests, the null of $H_0: \rho = \beta_1 = ... = \beta_n = 0$ is tested against the alternative hypothesis of $H_1: \rho \neq 0, \beta_1 \neq 0, ..., \beta_n \neq 0$. They tabulated two sets of critical values, one for the case when all variables are I(1), i.e. the upper-bound critical values and another one when all variables are I(0), i.e. the lower-bound critical values. If the test statistic is higher than the upper bound critical value the null of no cointegration is rejected in favor of the presence of cointegration. On the other hand, an F-statistic lower than the lower bound critical value implies the absence of cointegration. In the event that the calculated F-statistic lies between the two critical values there is no clear indication of the absence or existence of a cointegrating relationship

⁵⁵ Or its General Autoregressive Conditional Heteroscedasticity (GARCH) alternative.

deal with phenomenon of volatility clustering⁵⁶. The second approach to cointegration uses Vector Autoregressive Model (VAR). The term autoregressive is due to appearance of lagged value of the dependent variable on the right-hand side and the term vector is due to the fact that we are dealing with a vector of two or more variables.

2.5. Effect of exchange rate volatility on bilateral trade flows

So far, effective exchange rate was used in the formula (3) to compute exchange rate volatility and regression (1), eventually its modifications (2) or (4) enabled us to model aggregate Czech real export demand function in time. In this part, the attention will be focused on individual countries and it will be examined, how volatility of bilateral exchange rates affects the volumes of real export. It could be assumed⁵⁷, that the significant part of foreign trade is exercised by firms oriented mostly on one specific country or a group of geographically and economically similar countries. For example, there could be manufacturers supplying with their goods just one big automotive company placed in neighborhood country. The study of bilateral export demand models and their comparison with aggregate models might be therefore interesting. Bilateral exchange rate volatilities and their impact on volumes of export of five major Czech foreign trade partners using Euro as their national currency are examined in this study. Additionally, Slovak republic is involved to the comparison as it might seem interesting to compare the results also with the representative of different kind of economy and the hypothesis based on these differences in relation to export demand and exchange rate volatility could be made. I a priory assume higher significance of the variable exchange rate volatility in the bilateral export demand model, as the volatility measured using effective exchange rate could hardly capture individual differences of each country. The empirical results are provided in the end of Chapter 3.

⁵⁶ Financial time series such as exchange rates, stock prices, inflation rates often exhibits the periods in which their prices show wide swings for an extended time period followed by the periods in which there is relative calm, i.e. volatility clustering.

⁵⁷ And this assumption seems to be especially valid in the earlier phases of economic transition of Czech Republic.

3. Empirical Results

3.1. Tests of stationarity

Statistical inference from time series is usually based on the assumption of stationarity. Therefore, prior to estimating equations defined in section 2.3., i.e. the aggregate export demand model, properties of the individual time series must be tested. Graphical analysis, Dickey-Fuller and Augmented Dickey-Fuller tests are employed to test for the presence of unit root.

Figure 1 exhibits clear upward trend for variables⁵⁸ foreign real GDP, real effective exchange rate and also real exports.

⁵⁸ For better illustration, GDP, REER and XR were plotted in their volume form. Their logarithmic transformations used in regressions would not change the results. Variables would still be trended.

Both measures of exchange rate variability does not seem to have equal variance over the whole time period and thus we can expect all variables to be non-stationary which was in accordance with our a priory expectations.

In Figure 2, the first differences of all five variables were plotted. Time series does not seem to be trended. However, there is a potential risk of non-equal variance over the entire time period for the measures of exchange rate variability.

Figure 2: Real Variables – differentiated once (index values, 2000 = 100)

Variablo	The Dickey-Fuller regressions include an intercept but not a trend				The Dickey-Fuller regressions include an intercept and a linear trend				Stationarity
valiable	Actual value			Critical	Actual value			Critical	Stationarity
	DF	ADF(1)	ADF(2)	value	DF	ADF(1)	ADF(2)	value	
InXR	-0.95	-0.52	-0.67	-2.94	-3.11	-2.04	-2.99	-3.54	Not Proved
InXRD	-9.40	-3.68	-4.21	-2.94	-9.23	-3.62	-4.13	-3.54	Proved
InGDPR	-0.92	-0.50	-0.34	-2.94	-4.16	-2.93	-2.70	-3.54	Not Proved
InGDPRD	-8.64	-6.04	-9.74	-2.94	-8.46	-5.87	-9.51	-3.54	Proved
InGDPR(-1)	-0.19	0.19	0.26	-2.95	-3.80	-2.61	-2.54	-3.54	Not Proved
InGDPR(-1)D	-8.69	-5.04	-7.12	-2.95	-8.60	-5.00	-7.05	-3.55	Proved
InREER	-0.70	-0.86	-0.79	-2.94	-2.37	-3.35	-3.42	-3.54	Not Proved
InREERD	-4.57	-3.99	-4.62	-2.94	-4.50	-3.94	-4.54	-3.54	Proved
VAR5	-1.80	-2.17	-2.7	-2.94	-2.05	-2.33	-2.78	-3.54	Not Proved
VAR5D	-4.91	-3.14	-2.96	-2.94	-4.97	-3.21	-3.05	-3.54	Proved
VAR8	-1.64	-1.93	-2.61	-2.94	-1.73	-1.84	-2.54	-3.54	Not Proved
VAR8D	-4.94	-2.58	-2.27	-2.94	-5.19	-2.75	-2.46	-3.54	Proved

Table 1: Dickey - Fuller and Augmented Dickey Fuller Tests

On the basis of results of Dickey–Fuller and Augmented Dickey–Fuller test summarized in Table 1 and Appendix II, we rejected non-stationarity⁵⁹ for the time series differentiated once, which was again in accordance with our priory expectations and plot analysis. Therefore, we consider time series of all variables used in the model to be I(1).

After performing the tests of stationarity, we can move onto the estimation of regression coefficients. However, before interpreting the coefficients themselves, it is necessary to check the diagnostic tests to see whether the assumptions of the classical linear regression model are fulfilled⁶⁰. Three models described in Section 2.3. were compared and the results are reported in Table 2 and Appendix III.

	Model								
		VAR5		VAR8					
lest	Arize	Arize + lagGDP	Arize + lagGDP + DV Arize		Arize + lagGDP	Arize + lagGDP + DV			
		p-value	S	p-values					
Serial Correlation	0.005	0.050	0.648	0.004	0.052	0.564			
Functional Form	0.115	0.221	0.236	0.069	0.132	0.134			
Normality	0.473	0.329	0.371	0.465	0.328	0.382			
Heteroscedasticity	0.895	0.772	0.838	0.959	0.738	0.892			

Table 2: Diagnostic Tests of Regressions of Proposed Export Demand Models ⁶¹

3.2. Capturing the effects of monetary crisis in Czech Republic

As can be clearly seen from the Table 2, the basic export demand model (1) suffers for serial correlation. One of the explanations might be so called "specification bias". The inclusion of omitted variable might remove the correlation pattern among the residuals. Incorporation of lagged foreign real GDP has the theoretical economic rationale and partially helped to eliminate problems with serial correlation. The plot of residuals, Figure 3(a) and

⁵⁹ If the test statistics exceeds the critical value, we reject the null hypothesis of the presence of a unit root on the 5% level of significance.

 $^{^{60}}$ Given the assumptions of the classical linear regression model, the least squares estimators, in the class of unbiased linear estimators, have minimum variance, that is, they are BLUE – Best Linear Unbiased Estimators. (Gauss-Markov Theorem)

⁶¹ The null hypotheses in these tests are as follows: Serial Correlation: there is no serial correlation; Functional Form: there is a linear relationship between the variables, Normality: residuals are normally distributed; Heteroscedasticity: there is no dependence between residuals and independent variables. We reject null hypothesis on the standard 5% confidence level if p-value is lower than 0,05. In case we cannot reject any of the null hypothesis, we can apply Gauss-Markov Theorem described above.

3(b), exposed, that another possible omitted variable might the dummy capturing the impact of the outlying observation connected with monetary crisis and changes of exchange rate regimes which were discussed in previous sections. After the inclusion of dummy variable for the second quarter of 1998⁶², serial correlation disappeared.

Figure 3(b) – Plot of residuals from regression model (1) using VAR8

Furthermore, the validity of incorporation of both additional variables to the model is supported by the high significance of individual t-tests. The coefficients of all variables are

⁶² Similar results in terms of values and significance of OLS coefficients and of impact on serial correlation were obtained after the inclusion of dummy variable for 1998:1 or both.

⁶³ VAR5/VAR8 means that five- or eight-quarter moving average of the variance of the first difference of exchange rate was used as a measure of exchange rate volatility.
reported in Table 3 and Appendix III. Table 4 and Appendix III provide the overview of the values and signs of coefficients of all three models. P-values are stated in brackets⁶⁴.

Coeff.	Variable	Expected sign	Actual sign	Value (VAR5)	p-value (VAR5)	Value (VAR8)	p-value (VAR8)	Note
β ₀	-	Not relevant	-	-11,65	0,000	-11,58	0,000	Highly significant
β ₁	InGDPR	+	+	2,70	0,000	2,67	0,000	Highly significant
β2	InGDPR(-1)	+	+	1,48	0,043	1,42	0,052	Significant
β ₃	InREER	-	-	-0,65	0,023	-0,58	0,035	Significant
β_4	VAR	?	-	0,00	0,352	0,00	0,575	Non-significant
β ₅	DV2Q98	+	+	0,16	0,024	0,16	0,024	Significant

Table 3: OLS estimations - Model with lagged foreign GDP and DV

As can be seen from Table 4, the values of basic three coefficients (β_1 , β_3 , β_4) and their significance do not change a lot after including another one or both additional variables. Further interesting result from this comparison is that the effect of foreign real GDP seems to divide between current and previous period after adding GDPR_{t-1} to the model. Moreover, the impact of the growth of foreign real GDP in current period is approximately twice as strong as in the previous period.

		Model										
Coeff.		VAR5		VAR8								
	Arize	Arize + lagGDP	Arize + lagGDP + DV	Arize	Arize + lagGDP	Arize + lagGDP + DV						
β ₀	-11.47 (.000)	-11.50 (.000)	-11.65 (.000)	-11.42 (.000)	-11.40 (.000)	-11.58 (.000)						
βı	3.89 (.000)	2.68 (.001)	2.70 (.000)	3.82 (.000)	2.67 (.001)	2.67 (.000)						
β2	-	1.41 (.067)	1.68 (.043)	-	1.34 (.080)	1.42 (.052)						
β ₃	-0.41 (.153)	-0.60 (.049)	-0.45 (.023)	-0.35 (.207)	-0.51 (.078)	0.58 (.035)						
β ₄	0.00 (.420)	0.00 (.285)	0.00 (.352)	0.00 (.616)	0.00 (.464)	0.00 (.575)						
β_5	-	-	0.16 (.024)	-	-	0.16 (.024)						

Table 4: OLS Estimators - Comparison of Models

Signs of all coefficients are in accordance with our ex ante expectations. The sign of the coefficient at the dummy variable is positive as the devaluation of the Czech Crown caused by monetary crisis has the positive effect on the volumes of real export. Further

⁶⁴ Overall F-tests are highly significant at all regressions. (see Appendixes)

attractive feature of this model⁶⁵ is that the slope coefficients measure the elasticity of real export with respect to the explanatory variables. That is, the percentage changes in the volume of export, for a given small percentage change in GDP, effective exchange rate, etc.

There is a strong, statistically significant dependence of real export on changes in foreign real GDP not only in current period, but also in the previous one. The same but with negative sign holds also for the changes in real effective exchange rate. It does not seem that the exchange rate variability would have any clear-cut effect on real exports. One of the explanations for this might be the impact of antagonistic effects of higher exchange rate risk mentioned in previous sections or simply the development of hedging instruments such as future contracts for fixed exchange rates.

⁶⁵ Log-log, double-log, log-linear or constant elasticity model.

As mentioned in Section 2.2., from theoretical point of view, there is a possibility of structural difference between the periods when the currency was pegged and when the managed floating was used.

However, the CUSUM and CUSUMSQ tests⁶⁶, Figure 3, did not reveal any structural break points in our export demand model (2)⁶⁷ and it is therefore assumed that the regression coefficients in the model are a good representation of the relationship between regressand and regressors over the entire sample period.

3.3. Stock adjustment model

As mentioned in section 2.3., there are several methods that deal with adjustments of export demand to changes in the regressors and one of them used in several studies is the simple stock adjustment mechanism where the entire adjustment is represented by adding a lagged dependent variable as a regressor. As this approach was criticized by several authors, I present the results from this model in Table 5 and Appendix IV just for comparison.

	Variable		Model							
Coeff.		VA	R5	VAR8						
		Value	p-value	Value	p-value					
β _o	-	-6.00	0.000	-5.91	0.000					
θ	XR(-1)	0.48	0.000	0.48	0.000					
β ₁	InGDPR	2.45	0.000	2.34	0.000					
β_3	InREER	-0.64	0.012	-0.55	0.022					
β_4	VAR	0.16	0.205	0.14	0.283					

Table 5: Stock Adjustment Model

The coefficients of basic variables do not change too much from those obtained using standard export demand models presented in Table 4 but their significance has improved. However, as already mentioned, this type of models using lagged value of regressand as

⁶⁶CUSUSM and CUSUMSQ tests presented were used for the model using VAR5. The similar results could be obtained also for the regression with VAR8.

⁶⁷ We cannot identify any structural break (for the period for which the DV was included) in the model with dummy variables. Since the CUSUM and CUSUMSQ tests provide Chow's first test for every possible observation, it is assumed that the model is the same throughout, which is not the case when dummy variables are implemented. We can apply the CUSUM and CUSUMSQ tests also on the regression (4) that includes dummy variables, but they will reveal only possible structural changes for the period starting with 1999:2 where we theoretically do not expect them.

regressor often have problems with serial correlation which was partly proved also in this case (see Appendix IV). As a results the usual OLS estimators, although linear, unbiased and normally distributed (in large samples) are no longer minimum variance among all linear unbiased estimators, i.e. they are not efficient relative to other linear and unbiased estimators which may consequently lead to invalidity of the usual t- and F-tests.

3.4. Long-run equilibrium

The long-run equilibrium relationship between export and its main determinants is examined in cointegration analysis. It is a priory assumed, that inclusion of dummy variables for outliers to the model is meaningful to capture short-to-medium run inequalities, but do not have much sense in investigation of long-run relations. I also try to find the answer to the question, whether the effects of lagged real foreign GDP are significant in the long-run. It might be the case that its significance in the model was mainly due to lower flexibility of the markets in the transition period. It is anticipated, that nowadays, Czech exporters are able to respond to the rise of foreign income faster than decade ago and thus the significance of this variable is expected to decline in the long-run perspective.

Engle-Granger Test

Methodology used in Gujarati (2003) was employed to test for stationarity of residuals from regressions (1) and (2). Due to restrictive requirements of this test on the same integration order of all variables, we cannot test the model (4) which includes dummy variable as this is not I(1).

The test works as follows: we perform unit root test on the residuals obtained from regressions (1) and (2) and compare obtained T-ratios with 1% critical τ value computed by Engle and Granger (1987). The results for particular models are presented in Table 6 and Appendix V. If t-ratios are higher than τ value⁶⁸, we conclude that residuals from regression are I(0), that is, they are stationary. Hence, (1) or (2) is a cointegrating regression and it is not spurious, even though individually all variables are nonstationary and we can consider slope coefficients as long-run, equilibrium, elasticities.

⁶⁸ In absolute value.

As seen from Table 6, there seems to be the equilibrium relationship among the variables.

		Мо	del		
	,	VAR5	VAR8		
	Arize	Arize + lagGDP	Arize	Arize + lagGDP	
T-ratio	3.09	2.44	3.11	2.53	
1% critical value	2.63	2.63	2.63	2.63	
5% critical value	1.95	1.95	1.95	1.95	

Table 6. - Engle-Granger Test

The significance of the model containing variable lagged foreign real GDP declines in the long-run which supports our hypothesis of growing responsiveness of Czech traders in time.

3.5. Short-run dynamics

Error Correction Mechanism described in section 2.4.1. for regressions (1) and (3) is specified in Table 7 and full results are provided in Appendix VI. Negative sign for the variable lagged real foreign income might be misleading, because one should bear in mind that now we regress first differences of particular variables, not their volume logarithmic values.

		Model								
Cooff	Variable	VA	AR5	VAR8						
oben.		Arize	Arize + lagGDP	Arize	Arize + lagGDP					
β _o	-	0.01 (.374)	0.03 (.031)	0.01 (.368)	0.03 (.032)					
β1	InGDPRD	2.44 (.002)	1.54 (.030)	2.44 (.002)	1.57 (.029)					
β2	InGDPR(-1)D	-	-1.39 (.047)	-	-1.39 (.048)					
β ₃	InREERD	-0.34 (.429)	-0.33 (.371)	-0.35 (.414)	-0.34 (.352)					
β ₄	VARD	0.00 (.625)	0.00 (.639)	0.00 (.686)	0.00 (.768)					
α	RES(-1)	-0.54 (.003)	-0.66 (.000)	-0.53 (.003)	-0.64 (.000)					

Table	7:	Error	Correction	Models

Numbers in the brackets represent the p-values of individual t-tests.

Coefficient α is of our main interest here and its interpretation is as follows: for example, in the model with lagged value of foreign GDP, the magnitude -0.66 suggests, that on average, 66% of the "variance from equilibrium" from previous period will be corrected in

current period. Remaining 34% is still to be corrected since the variables tend to their equilibrium state over time as they are cointegrated.

3.6. ARDL method

The advantages of this approach were discussed in section 2.4.2. Results from the estimation of long-run coefficients are presented in Table 8 and Appendix VII. The number of lags – four – was chosen according to Akaike Information Criteria. It is interesting to compare these outputs with those presented in Table 4. There are two important aspects to be mentioned. Firstly, in the long-run, the significance of incorporation of the variable lagged foreign GDP and dummy variable capturing the effect of monetary crisis noticeably diminishes. The possible reasons were discussed above. Dummy captured the short-run deviation from usual behavior with negligible effect in the long-run and inclusion of lagged value of foreign real GDP was important to describe slower responsiveness of Czech exporters to changes in foreign income in transition period. The importance of this variable declines in the long-run perspective as well.

Secondly, the change of the impact of particular variables is evident⁶⁹. Looking at the basic "Arize's" model, the effect of the changes of real foreign GDP on exports almost doubles and the impact of change of relative prices is approximately six times higher in the long-run leaving approximately the same levels of significance.

			Mod	el				
Coeff.		VAR5		VAR8				
	Arize	Arize + lagGDP	Arize + lagGDP + DV	Arize	Arize + lagGDP	Arize + lagGDP + DV		
β ₀	-12.45 (.000)	-12.09 (.000)	-12.13 (.000)	-11.73 (.000)	-11.74 (.000)	-11.86 (.000)		
β ₁	6.30 (.002)	2.10 (.285)	2.18 (.241)	5.64 (.001)	2.13 (.402)	2.25 (.338)		
β2	-	3.14 (.115)	2.99 (.112)	-	3.28 (.207)	3.08 (.193)		
β3	-2.64 (.126)	-1.66 (.103)	-0.45 (.094)	-2.11 (.132)	-1.88 (.207)	1.77 (.182)		
β4	0.07 (.236)	0.07 (.104)	0.06 (.466)	0.05 (.314)	0.06 (.255)	0.05 (.440)		
β ₅	-	-	0.09 (.127)	-	-	0.12 (.295)		

Table 8: Estimated Long-Run Coefficients using ARDL Approach

Numbers in the brackets represent the p-values of individual t-tests.

⁶⁹ Comparing the values of coefficients and the T-statistics.

Again, there is no clear evidence of the impact of growing volatility of effective exchange rate on real exports. The conclusion is, that the empirical results corresponds with the theory – the real export is much more price and foreign income elastic in long-run that in the short-run. It is much easier to change the behavior of the exporters as a response of changing economic conditions in the long-run, than in the short-run when the contracts have already been signed.

Finally, the error correction model is proposed. The values of the coefficients of the ECM are presented in Table 9 and Appendix VII.

		Model							
Coeff.	Variable	V	AR5	VAR8					
		Value	p-value	Value	p-value				
θ	XR(-1)	-0.30	0.069	-0.29	0.088				
β ₀	-	-3.81	0.026	-3.78	0.030				
β ₁	InGDPR	1.93	0.000	1.81	0.001				
β ₃	InREER	-0.81	0.003	-0.68	0.007				
β4	VAR	0.02	0.124	0.02	0.245				
α	RES(-1)	-0.31	0.040	-0.32	0.033				

Table 9: Error Correction Model - ARDL approach

One should bear in mind that this ECM is slightly different⁷⁰ from that proposed in Chapter 2.4.1. and which results are summarized in Table 7. Anyway, it gives comparable perspective about the short-run dynamics. The coefficient α here states, that approximately one third of the "variance from equilibrium" from previous period will be corrected in current period. The mixed results from previous ECM are due to its different form within ARDL approach.

3.7. Bilateral trade flows – Case of Germany, France, Italy, Spain and Netherlands

The analysis described in previous chapters was based on aggregate export demand model using effective exchange rate for the computation of exchange rate volatility. In the

⁷⁰ Apart from differentiated values of all explanatory variables and Error-Correction Term, it contains also differentiated value of lagged export.

next two sub-chapters, the attention will be focused on estimating bilateral trade flows between particular countries. The following analyses will be slightly restricted comparing to previous parts as far as adjustments of the basic model are concerned, but on the other hand more thorough in terms of individual countries involved. The data for each particular country are tested on the basic model (1) proposed in Chapter 2.3. Similar to Chapter 3.1., prior to estimating regression coefficients of particular export demand models, it is necessary to test for stationarity of time series. Graphical analysis again precedes Dickey-Fuller and Augmented Dickey Fuller tests. Figures 4 to 8 exhibit upward trends in variables capturing the development of GDP, export as well as of exchange rate EUR/CZK in time.

Figure 4: Variables – Germany (index values, 2000 = 100, dif = 1st difference)

Figure 6: Variables – Italy (index values, 2000 = 100, dif = 1st difference)

Figure 7: Variables – Spain (index values, 2000 = 100, dif = 1^{st} difference)

All variables seem to be non-stationary either due to presence of upward trend or due to non equal variance over time⁷¹. Tables 10 to 14 summarize the results of Dickey-Fuller and Augmented Dickey-Fuller tests of stationarity⁷².

Variable	The Dicke ir	y-Fuller reg ntercept bu	gressions i t not a tren	nclude an Id	The Dicke int	Stationarity			
Variable	Ac	Actual value			Ac	tual valu	e	Critical	otationality
	DF	ADF(1)	ADF(2)	value	DF	ADF(1)	ADF(2)	value	
InXde	-0,935	-0,675	-0,294	-2,991	-2,641	-2,355	-1,908	-3,612	Not Proved
InXdeD	-5,912	-4,697	-3,936	-2,991	-5,831	-4,732	-4,088	-3,612	Proved
InEReur	-0,837	-1,043	-1,120	-2,991	-1,450	-2,116	-2,616	-3,612	Not Proved
InEReurD	-3,383	-2,428	-2,648	-2,991	-3,302	-2,363	-2,577	-3,612	Proved
VAReur	-1,537	-2,271	-2,300	-2,991	-1,666	-2,333	-2,259	-3,612	Not Proved
VAReurD	-3,844	-3,204	-2,442	-2,991	-3,933	-3,351	-2,562	-3,612	Proved
InGDPde	2,816	1,556	2,284	-2,991	1,034	0,201	1,027	-3,612	Not Proved
InGDPdeD	-2,675	-2,383	-1,028	-2,991	-3,330	-3,198	-1,858	-3,612	Proved

Table 10: Dickey-Fuller and Augmented Dickey Fuller tests – Germany

As can be seen from Table 10, variable measuring growth of GDP in Germany is not I(1), so it is not possible to use Engle-Granger test to test for long-run equilibrium⁷³. The

⁷¹ Measures of volatility does not seem to be equal over time, all other variables are trended.

⁷² Full results and outcomes from econometric SW could be found on <u>http://jurecka.webz.cz/</u> or be send upon request.

⁷³ For more information see Chapter 3.4. – Engle-Granger test.

graphical analysis (Figure 4) suggests that the growth of GDP in Germany was much lower than the growth of real export to this country. Regression results summarized in Table 15 also support our previous statements that the development of German GDP does not seem to be much correlated with Czech exports to this country⁷⁴. It could be assumed, that the growing export to Germany could be better explained by other explanatory variables. It might also be the case, that the export demand model for Germany might be much complex including other explanatory variables. The estimates of the regression coefficients from basic bilateral export demand model are summarized in Tables 15 and 19⁷⁵.

Variable	The Dic	key-Fuller re intercept bu	gressions ir it not a trend	nclude an d	The Dicke int	Stationarity			
Vallable	Α	ctual valu	Ie	Critical	A	ctual valu	Critical	Stationarity	
	DF	ADF(1)	ADF(2)	value	DF	ADF(1)	ADF(2)	value	
InXfra	-0,012	0,923	0,932	-2,991	-3,463	-1,386	-1,393	-3,612	Not Proved
InXfraD	-11,052	-4,336	-4,379	-2,991	-11,256	-4,575	-4,877	-3,612	Proved
InEReur	-1,941	-2,440	-2,160	-2,991	-1,885	-2,346	-2,012	-3,612	Not Proved
InEReurD	-3,339	-3,370	-2,305	-2,991	-3,364	-3,476	-2,421	-3,612	Proved
VAReur	-1,263	-1,362	-2,335	-2,991	-1,503	-1,555	-2,364	-3,612	Not Proved
VAReurD	-4,176	-1,940	-2,196	-2,991	-3,976	-1,681	-1,930	-3,612	Proved
InGDPfra	0,764	0,876	0,914	-2,991	-2,466	-2,094	-2,276	-3,612	Not Proved
InGDPfraD	-6,363	-4,109	-3,254	-2,991	-6,428	-4,227	-3,282	-3,612	Proved

Table 11: Dickey-Fuller and Augmented Dickey Fuller tests – France

As can be seen from Tables 11 - 14, for France, Italy, Spain and Netherland, all relevant time series are I(1) and could be therefore cointegrated, e.g. the regression should not be spurious.

Variable	The Dick	key-Fuller re intercept bu	gressions ir t not a trenc	iclude an I	The Dic i	0			
	Actual value			Critical	А	ctual valu	le	Critical	Stationarity
	DF	ADF(1)	ADF(2)	value	DF	ADF(1)	ADF(2)	value	
InXita	-1,409	-0,939	-0,301	-2,991	-4,233	-3,897	-2,896	-3,612	Not Proved
InXitaD	-6,514	-5,801	-7,990	-2,991	-6,356	-5,714	-8,091	-3,612	Proved
InEReur	-1,941	-2,440	-2,160	-2,991	-1,885	-2,346	-2,012	-3,612	Not Proved
InEReurD	-3,339	-3,370	-2,305	-2,991	-3,364	-3,476	-2,421	-3,612	Proved
VAReur	-1,263	-1,362	-2,335	-2,991	-1,503	-1,555	-2,364	-3,612	Not Proved
VAReurD	-4,176	-1,940	-2,196	-2,991	-3,976	-1,681	-1,930	-3,612	Proved
InGDPita	1,563	1,162	1,368	-2,991	-0,095	-1,014	-0,492	-3,612	Not Proved
InGDPitaD	-3,115	-3,238	-2,255	-2,991	-3,383	-3,387	-2,189	-3,612	Proved

Table 12: Dickey-Fuller and Augmented Dickey Fuller tests – Italy

 $^{^{74}}$ As can be seen from Table 10, time series for German GDP are not I(1). Regression results stated in Table 15 might be therefore misleading.

⁷⁵ For full regression results see Appendix VIII.

Variable	The Dic	key-Fuller re intercept b	egressions i ut not a tren	nclude an d	The Dick in	Stationarity			
	Actual value			Critical	А	ctual valu	Critical	Stationarity	
	DF	ADF(1)	ADF(2)	value	DF	ADF(1)	ADF(2)	value	
InXesp	-0,800	-0,439	-0,146	-2,991	-4,654	-3,472	-2,579	-3,612	Not Proved
InXespD	-7,759	-6,009	-8,767	-2,991	-7,534	-5,858	-8,828	-3,612	Proved
InEReur	-1,941	-2,440	-2,160	-2,991	-1,885	-2,346	-2,012	-3,612	Not Proved
InEReurD	-3,339	-3,370	-2,305	-2,991	-3,364	-3,476	-2,421	-3,612	Proved
VAReur	-1,263	-1,362	-2,335	-2,991	-1,503	-1,555	-2,364	-3,612	Not Proved
VAReurD	-4,176	-1,940	-2,196	-2,991	-3,976	-1,681	-1,930	-3,612	Proved
InGDPesp	1,497	1,462	2,160	-2,991	-0,080	-0,821	0,316	-3,612	Not Proved
InGDPespD	-3,021	-3,591	-1,633	-2,991	-3,178	-4,189	-2,166	-3,612	Proved

Table 13: Dickey-Fuller and Augmented Dickey Fuller tests – Spain

Table 14: Dickey-Fuller and Augmented Dickey Fuller tests – Netherlands

Variable	The Dic	key-Fuller re intercept b	egressions i ut not a tren	nclude an d	The Dickey-Fuller regressions include an intercept and a linear trend				
Variable	Actual value			Critical	Actual value			Critical	Stationarity
	DF	ADF(1)	ADF(2)	value	DF	ADF(1)	ADF(2)	value	
InXned	-1,409	-0,939	-0,301	-2,991	-4,233	-3,897	-2,896	-3,612	Not Proved
InXnedD	-6,515	-5,801	-7,990	-2,991	-6,356	-5,714	-8,091	-3,612	Proved
InEReur	-1,941	-2,440	-2,160	-2,991	-1,885	-2,346	-2,012	-3,612	Not Proved
InEReurD	-3,339	-3,370	-2,305	-2,991	-3,364	-3,476	-2,421	-3,612	Proved
VAReur	-1,263	-1,362	-2,335	-2,991	-1,503	-1,555	-2,364	-3,612	Not Proved
VAReurD	-4,176	-1,940	-2,196	-2,991	-3,976	-1,681	-1,930	-3,612	Proved
InGDPned	0,764	0,876	0,914	-2,991	-2,466	-2,094	-2,276	-3,612	Not Proved
InGDPnedD	-6,363	-4,109	-3,254	-2,991	-6,428	-4,227	-3,282	-3,612	Proved

Tables 15-19⁷⁶ suggest, that the significance of variable "exchange rate" measuring the impact of the change of bilateral exchange rate on volumes of real exports declines comparing to aggregate export demand models. On the other hand, the significance of the impact of exchange rate variability improves substantially, at least in case of Germany, France and Italy.

Table 15: Regression estimates – Germany

Coeff.	Variable	Experted sign	Actual sign	Value	p-value	Note
β0	-	Not relevant	-	-3,2702	0,728	Non-signifficant
β1	InEReur	-	+	0,8853	0,155	Non-signifficant
β3	VAReur	?	_	0,0019	0,035	Signifficant
β4	InGDPger	+	+	0,8674	0,725	Non-signifficant

⁷⁶ For full regression results see Appendix VIII.

Coeff.	Variable	Expected sign	Actual sign	Value	p-value	Note
				-		
β0	-	Not relevant	-	26,8809	0,000	Signifficant
β1	InEReur	-	+	1,1213	0,074	Non-signifficant
β3	VAReur	?	-	-0,0015	0,038	Signifficant
β4	InGDPfra	+	+	5,7521	0,000	Signifficant

Table 16: Regression estimates – France

Table 17: Regression estimates – Italy

Coeff.	Variable	Expected sign	Actual sign	Value	p-value	Note
				-		
β0	-	Not relevant	-	36,0123	0,015	Signifficant
β1	InEReur	-	+	1,1808	0,183	Non-signifficant
β3	VAReur	?	-	-0,0017	0,125	Non-signifficant
β4	InGDPita	+	+	7,6782	0,052	Signifficant

Table 18: Regression estimates - Spain

Coeff.	Variable	Expected sign	Actual sign	Value	p-value	Note
				-		
β0	-	Not relevant	-	12,7657	0,000	Signifficant
β1	InEReur	-	-	-0,3902	0,682	Non-signifficant
β3	VAReur	?	_	0,0001	0,934	Non-signifficant
β4	InGDPesp	+	+	5,4329	0,000	Signifficant

Table 19: Regression estimates – Netherland

Coeff.	Variable	Expected sign	Actual sign	Value	p-value	Note
				-		
β0	-	Not relevant	-	32,0039	0,000	Signifficant
β1	InEReur	-	-	-0,7177	0,424	Non-signifficant
β3	VAReur	?	-	-0,0002	0,817	Non-signifficant
β4	InGDPned	+	+	8,6850	0,000	Signifficant

One possible explanation might be, that in case of aggregate export demand model, the impact of volatilities of different currencies comprised in effective exchange rate might mutually cancel out. Another interesting finding is the strong positive relationship between export and the growth of GDP. Expecially in France, Spain and Netherland, extremely strong

correlation between these two variables could be identified. Just to reminder, the Log-log regression model assures that the values of particular coefficients measure the foreign income, exchange rate and exchange rate volatility elasticities of Czech real export demand.

3.9. Bilateral trade flows – Case of Slovakia

It the following part, the bilateral export demand model for the case of the second largest Czech export partner – Slovakia, is examined. Considering qualitative aspects, this market is more similar to Czech one than any other above mentioned countries, and the examination of the main determinants of Czech export to Slovakia and its comparison to previous results might be therefore useful.

Figure 9, similar to figures related to West-european countries, also exhibits upward trends in variables capturing the development of GDP and export in time. Growth of GDP in Slovak republic was significantly higher comparing to other analyzed countries. Exchange rate CZK/SKK seems to be relatively stable as both currencies strengthen considerably to

Euro in last years. Table 20⁷⁷, similarly to previous cases, summarizes the outcomes from Dickey-Fuller and Augmented Dickey-Fuller test of stationarity. It could be concluded, that the first differences of all necessary variables are stationary and the time series could be cointegrated.

Variable	The Dick	ey-Fuller r intercept b	egressions out not a tre	include an nd	The Dick in				
variable	A	Actual value			A	Actual value			Stationarity
	DF	ADF(1)	ADF(2)	value	DF	ADF(1)	ADF(2)	value	
InXsk	-0,413	0,473	0,279	-2,991	-3,060	-1,866	-2,134	-3,612	Not Proved
InXskD	-8,217	-3,714	-4,974	-2,991	-8,399	-3,869	-5,086	-3,612	Proved
InERsk	-1,941	-2,440	-2,160	-2,991	-1,885	-2,346	-2,012	-3,612	Not Proved
InERskD	-3,339	-3,370	-2,305	-2,991	-3,364	-3,476	-2,421	-3,612	Proved
VARskk	-1,263	-1,362	-2,335	-2,991	-1,503	-1,555	-2,364	-3,612	Not Proved
VARskkD	-4,176	-1,940	-2,196	-2,991	-3,976	-1,681	-1,930	-3,612	Proved
InGDPsk	-0,856	-0,503	0,639	-2,991	-4,116	-5,428	-3,588	-3,612	Not Proved
InGDPskD	-5.900	-6.751	-16,491	-2,991	-5.784	-6,868	-28,132	-3,612	Proved

Table 20: Dickey-Fuller and Augmented Dickey Fuller tests – Slovakia

Table 21⁷⁸ provides us with the results of the regression measuring the parameters of the Czech-Slovak bilateral export demand model.

Coeff.	Variable	Expected sign	Actual sign	Value	p-value	Note
β0	-	Not relevant	-	-2,2302	0,177	Non-signifficant
β1	InERskk	-	+	-0,3086	0,452	Non-signifficant
β3	VARskk	?	-	-0,0008	0,072	Signifficant
β4	InGDPsvk	+	+	1,8177	0,000	Signifficant

Table 21: Regression estimates - Slovakia

Similarly to the case of West-European countries, Table 21 suggest, that the significance of variable "exchange rate" declines comparing to aggregate export demand models. On the other hand, the significance of the impact of exchange rate variability improves substantially again. Furthermore, contrary to Germany, the impact of growth of foreign GDP remains highly significant for the case of Slovak republic.

⁷⁷ Full results and outcomes from econometric SW could be found on <u>http://jurecka.webz.cz/</u> or be send upon request

⁷⁸ For full regression results see Appendix VII.

4. Summary and Conclusions

In this study, the impact of exchange rate variability on the demand for real exports has been examined. The main conclusions from the theoretical part are as follows. Firstly, there is no definite predictable impact of the growth of exchange rate volatility on real exports and this effect is a matter of ex post empirical investigation for each individual country. Secondly, we have to distinguish the terms exchange rate volatility and misalignment. Volatility refers rather to short-term fluctuations of exchange rates whereas misalignment refers to persistent departures of real exchange rates from their equilibrium values and its impact on trade is indisputably negative.

In the second part, the Czech real export demand was modeled using standard procedures of econometric analysis and the study yielded the following main results. The standard real export demand model had to be adjusted for the conditions of Czech economy by adding a dummy variable capturing the turmoil around monetary crisis in the end of the year 1997 and beginning of 1998 and by adding a variable of lagged foreign real GDP. According to our expectations, both additional variables turned out be insignificant in the long-run what just supported our theory, that inclusion of dummy variables for outliers to the model is meaningful to capture short-to-medium run inequalities, but do not have much sense in investigation of long-run relations.

Furthermore, there seems to be a strong, statistically significant dependence of real export on changes in foreign real GDP not only in current period, but also in the previous one. Moreover, the impact of the growth of foreign real GDP in current period is approximately twice as strong as in the previous period.

The structural stability of the parameters was tested as well but no structural break points were found and it is then assumed, that the regression coefficients in the model are a good representation of the examined relationships.

All variables turned out to be non-stationary, but the cointegration analysis revealed that there is an equilibrium relationship among them and that the regression was not spurious. Additionally, the long-term effects of the particular variables turned out to be significant and much stronger than the short-term ones. The export demand price and income elasticities were again in accordance with theory much higher that in the short-run. The dynamics of the model was outlined using the error correction models. The main conclusion is that there is no clear-

cut effect of the real effective exchange rate volatility on Czech real exports neither in the short-run, nor in the long-run. Finally, the examination of bilateral export demand models revealed the growth of signification of the variable capturing exchange rate volatility. Negative sign at coefficients of these variables favor the common theory of negative impact of exchange rate volatility on bilateral exports. Interestingly, the strong positive relationship between export and the growth of GDP was found in the most cases of bilateral export demand model. Especially in France, Spain and Netherland, extremely strong correlation between these two variables could be identified.

The further research could be extended to the examination of this effect to the whole groups of countries, e.g. new EU joiners, CEE countries etc., using the panel data analysis. Another way for further studies could lead to improvement of basic bilateral models by adding country specific variables to capture individual conditions.

References

- Akhtar, M.A., and Hilton, R.S.: "Effects of Exchange Rate Uncertaininy on German and U.S. Trade"; Federal Reserve Bank of New York, *Quarterly review* 9, Spring 1984, 7-16
- Akhtar, M.A., and Hilton, R.S.: "Exchange Rate Uncertainty and International Trade: Some Conceptual Issues and New Estimates for Germany and the United States"; Federal Reserve Bank of New York, December 1983
- Arize, G.: "The Effects of Exchange-rate Volatility on U.S. Exports: An Empirical Investigation", *Southern Economic Journal* 62, 34-43, 1995
- Bacchetta, P. and Wincoop E. v.: "Trade Flows, Prices, and The Exchange Rate Regime"; *Working Papers 00.11, Swiss National Bank*, Study Center Gerzensee, 2000
- Bailey, M.J., and Tavlas, G.S., and Ulan, M.: "Exchange Rate Variability and Trade Performance: Evidence for the Big Seven Industrial Countries"; *Wirtschaftliches Archiv* 122, 1986, 466-477
- Belke, A., and Gros, D.: "Evidence of the Costs of Intra-European Exchange Rate Variability"; CEPS Working Document No. 121, October 1998
- Bergin P.R., and Tchakarov, I.: "Does Exchange Rate Risk Matter for Welfare?" *NBER Working Papers 9900*, National Bureau of Economic Research, Inc., 2003
- Coe, D. T., Subramanian A., Tamirisa, N.T. and Bhavnani R.: "The Missing Globalization Puzzle"; *IMF Working Paper* 02/171, (Washington: International Monetary Fund), 2002
- Cushman, D.O.: "The Effects of Real Exchange Rate Risk on International Trade", *Journal of International Economics* 15, August 1983, 45-63
- Chowdhury , A.R.: "Does the Exchange Rate Volatilty Depress Trade Flows? Evidence from Error-Correction Models"; The Review of Economics and Statistics, vol. 75, No. 4 (Nov. 1993), 700 706
- Deardorff, A. IV.: "Determinants of Bilateral Trade: Does Gravity Work in a Neoclassical World?"; in J.A. Frankel, ed. by The Regionalization of the World Economy, (Chicago: University of Chicago Press), pp. 7-22, 1998
- DeGrauwe, P.: "Exchange Rate Variability and Slowdown in Growth of International Trade"; *IMF Staff Papers* 35, 1988, 63-84
- Dell'Ariccia, G.: "Exchange Rate Fluctuations and Trade Flows: Evidence from the European Union," *IMF Staff Papers 46(3)*, pp. 315-334, 1999

- Dickey, D., and Fuller, W.: "Distribution in Estimation of Autoregressive Time Series with a Unit Root"; *Journal of the American Statistical Association* 74, 1979, 427-431
- Dixit, A. K.: "Entry and Exit Decisions under Uncertainty"; *Journal of Political Economy* (97:3), 1989, pp.620-638.
- Engle, R., and Granger, C.W.J.: "Cointegration and Error Correction: Representation, Estimation and Testing"; *Econometrica* 55, 1987, 251-276
- Engle, R.: "Estimates of the Variance of U.S. Inflation Based upon ARCH Model"; *Journal of Money, Credit and Banking,* August 1983, 286-301
- European Commission, Directorate-General for Economic and Financial Affairs: "The Impact of Exchange Rate Movements on Trade within the Single Market", Reports and Studies, No. 4, 1995
- Franke, G.: "Exchange Rate Volatility and International Trade"; *Journal of International Finance* 10, June 1991, 295-305
- Frankel, J. and Shang-Jin Wei: "Trade Blocs and Currency Blocs"; *NBER Working Papers, No. 4335*, Cambridge, Massachusetts: National Bureau of Economic Research, 1993
- Giovannini, A.: "Exchange Rates and Traded Goods Prices"; *Journal of International Economics* 24, 1988, 45-68
- Gotur, P.: "Effects of Exchange Rate Volatility on Trade: Some Further Evidence"; *IMF Staff Papers* 32, 1985, 475-512
- Gujarati, D.N.: "Basic Econometrics"; *McGraw-Hill*, New York, U.S.A, 2003
- Harris, R.I.D. and Sollis, R.: "Applied Time Series Modelling and Forecasting"; Chapter 3, *Wiley*, 2003
- Hendry, D.F. and Ericsson, N.R.: "An Econometric Analysis of *UK Money Demand in Monetary Trends in the United States and the United Kingdom* by Milton Friedman and Anna J. Schwartz"; *American Economic Review*, March 1991, 8-38
- Hooper, P. and Kohlhagen, S.: "The Effect of Exchange Rate Uncertainty on the Prices and Volumes of International Trade"; *Journal of International Trade* 8, (nov. 1978), 483 511
- Horváth, R.: "Exchange Rate Variability, Pressures and Optimum Currency Area Criteria: Implications for the Central and Eastern European Countries"; Czech National Bank Working Paper Series 8, August 2005
- International Monetary Fund (IMF), Exchange Rate Volatility and World Trade, Occasional Paper No. 28, Washington, D.C., July 1984

- Jansen, D.W.: "Does Inflation Uncertainity Affect Output Growth? Further Evidence"; *The Federal Reserve Bank of St. Louis Review*, July August 1989, 43-54
- Johansen, S.: "Statistical Analysis of Cointegrating Vectors"; *Journal of Economic Dynamics and Control*, June-September 1988, 708-712
- Kenen, P. and Rodrik, D.: "Measuring and Analyzing the Effects of Short-term Volatility in Real Exchange Rates"; *The Review of Economics and Statistics* 68, 1986, 311-315
- Koray, F. and Lastrapes, W.D.: "Real Exchange Rate Volatility and U.S. Bilateral Trade: a VAR Approach"; *The Review of Economics and Statistics* 71, November 1989, 708-812
- Koray, F. and Lastrapes, W.D.: "Exchange Rate Volatility and U.S. Multilateral Trade Flows"; *Journal of Macroeconomics* 12, Summer 1990, 341-362
- Koren, M., and Seidl A.: "Exchange Rate Uncertainty and Export Prices"; *mimeo, Harvard University*, 2003
- Krugman P.: "Exchange-Rate Instability"; *Massachusetts Institute of Technology*, 1989
- Lanyi, A. and Suss, E.: "Exchange Rate Variability: Alternative Measures and Interpretation"; *Staff Papers*, Vol. 29 (December), pp. 527–60. 1982
- Laurenceson, J. and Chai J.C.H.: "Financial Reform and Economic Development in China"; *Edward Elgar* Cheltenham, UK, 1993
- Meese, R. A. and Rogoff, K.: "Empirical Exchange Rate Models of the Seventies," *Journal of International Economics*, Vol. 14, pp. 3-24, 1983
- McCallum, J.: "National Borders Matter: Canada U.S. Regional Trade Pattern"; *American Economic Review*, 85, 615-23, 1995
- McDonald R., and Siegel, D.: "The value of waiting to invest", *Quarterly Journal* of *Economics*, pp. 707-727., 1986
- McKenzie, A.D.: "The Impact of Exchange Rate Volatility on Australan Trade Flows"; *Journal of International Financial Markets, Institutions & Money* 8: 21-38, 1998
- Obstfeld, M., and Rogoff, K.: "Risk and Exchange Rates," *National Bureau of Economic Research Working Paper 6694.*, 1998
- Pesaran, M. H., and Pesaran B.: "Working with Microfit 4.0: Interactive Econometric Analysis"; *Oxford University Press*, Oxford, 1997

- Pesaran, M. H., Yongcheol Shin and Smith R.J.: "Bounds Testing Approaches to the Analysis of Level Relationships"; *Journal of Applied Econometrics* 16(3): 289-326. 2001
- Polak, J. J.: "The Choice of an Exchange Rate Regime"; in Dahlan M. Sutalakrana (ed.), *Development Issues in the Current International Monetary System: Essays in Honor of Byanti Khoswaman* (Singapore: Addison Wesley), 1988
- Pozo, S.: "Conditional Exchange Rate Volatility and and the Volume of International Trade: Evidence From Early 1990s"; *The Review of Economics and Statistics* 74, 1992, 325-329
- Rose, A. K.: "One Money, One Market: Estimating the Effect of Common Currencies on Trade"; Economic Policy, 15, 7-46, 2000
- Sargan, J.D.; "Wages and Prices in the United Kingdom: A Study in Econometric Methodology"; *Quantitative Economics and Econometric Analysis*, Basil Blackwell, Oxford, U.K., 1984
- Sargan, J.D., and Bargava, A.S.: "Testing Residuals from Least-Squares Regression for being Generated by the Gaussian Random Walk"; *Econometrica*, vol. 51, 1983, pp. 153-174.
- Sercu, P., and Vanhulle, C.: "Exchange Rate Volatility Exposure to and the Value of Exporting Firms"; *Journal of Banking and Finance* 16, February 1992, 155-182
- Tenreyro, S.: "On the Trade Impact of Nominal Exchange Rate Volatility"; *Federal Reserve bank of Boston Working Paper*, No 03-2, 2003
- Thursby, J.G., and Thursby, M.C.: "Bilateral Trade Flows, the Linder Hypothesis, and Exchange Risk"; *The Review of Economics and Statistics* 69, 1987, 488-495
- Thursby, J.G., and Thursby, M.C.: "The Uncertainity Effect of Floating Exchange Rates: Emprical Evidence on International Trade Flows"; in Arndt et al., *Exchange rates, Trade and the U.S. Economy* (Cambridge, MA: Ballinger Publishing Co., 1985), 153-166
- Wei, Shang-Jin: "Currency Hedging and Goods Trade"; *European Economic Review*, 43, pp. 1371-1394, 1999
- Wooldridge, J.M.: "Econometric Analysis of Cross section and Panel Data"; *The MIT Press*, Cambridge, Massachusetts, U.S.A. and London, England, 2001

Appendix

For calculations in empirical part of this thesis, MicroFit econometric pack gained legally during studies at Staffordshire University in England was used. Data were obtained from IMF IFS CD-ROM kindly lent by Czech National Bank and public internet sources of Czech Statistical Office and Czech National Bank and can be viewed at http://jurecka.webz.cz/.

Appendix I: Computation of the Trade Weighted Foreign GDP

The same trade weights for individual countries are employed by computation of the variable representing the real foreign income as are used in computation of the effective exchange rate by Czech National Bank. The following Table presents the particular weights:

Country	EER CR (%)
Austria	2,1
Belgium	2,5
Netherlands	4,0
Finland	1,3
France	14,4
Germany	20,6
Ireland	1,0
Italy	11,9
Luxembourg	0,2
Portugal	1,2
Spain	6,3
Slovakia	7,6
Russia	4,5
Poland	5,0
United Kingdom	4,7
United States	4,0
Japan	1,3
Hungary	1,9
Sweden	1,6
Switzerland	1,6
Denmark	0,6
China	1,4

The Czech National Bank currently uses the weight 65.7 % to cover all countries which are the members of the EURO zone. I recalculated the weights for each individual EURO country by using the shares of their GDP within the whole zone in the year 2000 as the weights. The possible differences should have only marginal effects on the whole value of the variable foreign real GDP. The effect of the change of real GDP of Ireland and Greece were left out due to lack of data. As the shares of these 2 countries on overall Czech export are negligible, I do not regard it as an important misspecification of this variable.

Appendix II: Outputs from the analysis of stationarity using DF and ADF tests.

If the value of the test statistic is higher than the critical value stated below the results (in absolute values), the hypothesis of the presence of unit-root is rejected on the 5% level of significance, i.e. the time series are stationary.

*****	The Dick ********	Unit ro cey-Fuller re	ot tests for va gressions ind ********	ariable LNX clude an inte	R rcept but not	a trend
36 obser Sample	vations used period from 1 ********	in the estim 996Q2 to 2 *******	ation of all A 005Q1 **********	DF regressio	ons. **********	*****
	Test Statisti	ic LL	AIC	SBC	HOC	
DF	94787	43.2892	41.2892	39.7057	40.7365	
ADF(1)	52021	46.7926	43.7926	41.4173	42.9635	
ADF(2)	66915	48.2084	44.2084	41.0414	43.1030	
ADF(3)	39003	49.6642	44.6642	40.7054	43.2825	
ADF(4)	43406	50.1150	44.1150	39.3645	42.4570	
******	*****	******	*****	*******	******	******
95% crit LL = M SBC = S	ical value for aximized log chwarz Baye	the augmer -likelihood sian Criterio	AIC = A on HQC = 1	Fuller statisti Akaike Inforr Hannan-Qui	c = -2.9446 mation Criter nn Criterion	ion
******* 36 obser	The Dick ************************************	Unit ro key-Fuller re ********* in the estim	ot tests for va gressions ind ************************************	ariable LNX clude an inte ************************************	R rcept and a l *********** ons.	inear trend *********
Sample :	period from 1 *******	996Q2 to 2	005Q1 ********	********	******	*****
	Test Statistic	LL	AIC	SBC	HQC	
DF	-3.1060	47.4788	44.4788	42.1036	43.6498	
ADF(1)	-2 0/108	18 8540	11 8540	11 6860	12 7196	
· · ·	-2.0+00	40.0040	44.0040	41.0009	43./480	
ADF(2)	-2.9934	48.8340 52.5377	47.5377	43.5789	45.7486 46.1560	
ADF(2) ADF(3)	-2.9934 -2.3676	52.5377 52.6595	47.5377 46.6595	43.5789 41.9089	43.7480 46.1560 45.0014	
ADF(2) ADF(3) ADF(4) *******	-2.9934 -2.3676 -3.1447 ********	52.5377 52.6595 55.2842	47.5377 46.6595 48.2842	41.0809 43.5789 41.9089 42.7419	43.7486 46.1560 45.0014 46.3498	*****
ADF(2) ADF(3) ADF(4) ******* 95% criti LL = M SBC = S	-2.9934 -2.3676 -3.1447 *********** ical value for aximized log schwarz Baye	52.5377 52.6595 55.2842 ********** the augmer -likelihood sian Criterio	47.5377 46.6595 48.2842 ***********************************	41.0809 43.5789 41.9089 42.7419 Fuller statisti Akaike Inforn Hannan-Qui	45.7486 46.1560 45.0014 46.3498 ********** c = -3.5386 nation Criter nn Criterion	*******************************
ADF(2) ADF(3) ADF(4) ******* 95% crit LL = M SBC = S	-2.9934 -2.3676 -3.1447 *********** ical value for aximized log schwarz Baye	43.3340 52.5377 52.6595 55.2842 ********** the augmer -likelihood sian Criterio Unit ro	47.5377 46.6595 48.2842 48.2842 AIC = A AIC = A AIC = 3 AIC = 3	43.5789 43.5789 41.9089 42.7419 Fuller statisti Akaike Inforn Hannan-Qui	45.7486 46.1560 45.0014 46.3498 ********** c = -3.5386 nation Criter nn Criterion	***************************

36 observations used in the estimation of all ADF regressions.

Sample period from 1996Q2 to 2005Q1

-	-	-				
*****	******	********	********	********	*********	******
	Test Statistic	LL	AIC	SBC	HQC	
DF	-9.4029	46.2465	44.2465	42.6629	43.6938	

43.8020
44.3827
43.6412

ADF(4)	-3.8143	53.3527	47.3527	42.6021	45.6946		
*******	*******	*********	*********	*********	*********	**************	****

95% critical value for the augmented Dickey-Fuller statistic = -2.9446LL = Maximized log-likelihoodAIC = Akaike Information CriterionSBC = Schwarz Bayesian CriterionHQC = Hannan-Quinn Criterion

Unit root tests for variable LNXRD

The Dickey-Fuller regressions include an intercept and a linear trend

36 observations used in the estimation of all ADF regressions.

Sample period from 1996Q2 to 2005Q1

******	********	******	*********	********	*********	******
	Test Statistic	LL	AIC	SBC	HQC	
DF	-9.2341	46.2511	43.2511	40.8758	42.4221	
ADF(1)) -3.6153	47.6384	43.6384	40.4714	42.5330	
ADF(2)) -4.1308	49.4886	44.4886	40.5298	43.1068	
ADF(3)) -2.7414	50.0241	44.0241	39.2736	42.3661	
ADF(4)) -3.7540	53.3847	46.3847	40.8423	44.4502	
******	******	******	**********	********	******	*****

95% critical value for the augmented Dickey-Fuller statistic = -3.5386

LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable LNGDPR

The Dickey-Fuller regressions include an intercept but not a trend

36 observations used in the estimation of all ADF regressions.

Sample period from 1996Q2 to 2005Q1

******	*******	*******	*********	******	*****
	Test Statistic	LL	AIC	SBC	HQC
DF	91665	98.4516	96.4516	94.8681	95.8989
ADF(1)	49742	101.8445	98.8445	96.4692	98.0155
ADF(2)	33621	102.3052	98.3052	95.1381	97.1998
ADF(3)	.11164	112.0905	107.0905	103.1317	105.7088
ADF(4)	034433	122.3072	116.3072	111.5566	114.6491
******	*******	********	*********	******	****

95% critical value for the augmented Dickey-Fuller statistic = -2.9446 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

		Unit ro	ot tests for var	riable LNGD	PR	
	The Dick	ey-Fuller re	gressions inc	lude an intere	cept and a linea	r trend
******	*******	********	**********	******	************	*****
36 observ	vations used i	in the estimation	ation of all AI	DF regression	ıs.	
Sample p	period from 1	996Q2 to 20	005Q1	-		
******	******	*******	*********	******	*****	*****
	Test Statistic	LL	AIC	SBC	HQC	
DF	-4.1565	105.6943	102.6943	100.3190	101.8652	
ADF(1)	-2.9275	106.0026	102.0026	98.8356	100.8973	
ADF(2)	-2.6971	106.0396	101.0396	97.0808	99.6579	
ADF(3)	-1.3358	113.1560	107.1560	102.4054	105.4979	
ADF(4)	-3.2342	127.8811	120.8811	115.3388	118.9467	
******	*******	********	**********	******	********	******
95% criti	ical value for	the augmen	ted Dickey-F	uller statistic	= -3.5386	
LL = Ma	aximized log-	-likelihood	AIC = AI	kaike Inform	ation Criterion	

SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

*****	The Dick	Unit root ey-Fuller reg	tests for vari ressions inclu *******	iable LNGDI ide an interce ********	PRD pt but not a trend ************************************
36 observ Sample pe	ations used i eriod from 1 *****	n the estimati 996Q2 to 200 *******	on of all AD 5Q1 *******	F regressions	•
T DF ADF(1) ADF(2) ADF(3) ADF(4) ********* 95% critic LL = Ma SBC = Sc	est Statistic -8.6433 -6.0350 -9.7403 -1.6816 -2.2290 ***********************************	LL 103.2114 104.2617 116.2920 133.9138 135.8329 ************************************	AIC 101.2114 101.2617 112.2920 128.9138 129.8329 ********** cd Dickey-Fu AIC = Ak HQC = Ha	SBC 99.6278 98.8864 109.1250 124.9550 125.0824 ************************************	HQC 100.6587 100.4327 111.1867 127.5320 128.1749 2.9446 tion Criterion Criterion
******** 36 observ Sample po *******	The Dick ********** ations used i eriod from 1 *********	Unit root ey-Fuller reg *********** n the estimati 996Q2 to 200 *******	tests for vari ressions inclu ********** ion of all AD 05Q1 *********	iable LNGDH ude an interce ***********************************	PRD ppt and a linear trend ************************************
T DF ADF(1) ADF(2) ADF(3) ADF(4) ********* 95% critic LL = Ma SBC = Sc	est Statistic -8.4655 -5.8739 -9.5068 -1.6418 -2.1758 ********** cal value for ximized log- hwarz Bayes	LL 103.2784 104.2923 116.2962 133.9157 135.8696 ************ the augmente likelihood sian Criterion	AIC 100.2784 100.2923 111.2962 127.9157 128.8696 ********** ed Dickey-Fu AIC = Ak HQC = Ha	SBC 97.9031 97.1252 107.3374 123.1651 123.3273 ***********************************	HQC 99.4493 99.1869 109.9145 126.2576 126.9352 -3.5386 tion Criterion Criterion
******** 35 observ Sample po ******	The Dick ********** ations used i eriod from 1 *********	Unit root ey-Fuller regi ************************************	tests for vari ressions inclu ********** ion of all AD 5Q1 ********	iable LGDPF ide an interce *********** F regressions *********	RL pt but not a trend ************************************
T DF ADF(1) ADF(2) ADF(3) ADF(4) ******** 95% critic LL = Ma SBC = Sc	est Statistic 18974 .19389 .25909 .37732 .21955 ***********************************	LL 97.9943 101.3720 101.5687 109.1623 119.0212 *********** the augmente likelihood sian Criterion	AIC 95.9943 98.3720 97.5687 104.1623 113.0212 ********** d Dickey-Fu AIC = Ak HQC = Ha	SBC 94.4389 96.0390 94.4580 100.2740 108.3552 ***********************************	HQC 95.4574 97.5667 96.4949 102.8201 111.4105 -2.9472 tion Criterion Criterion

Unit root tests for variable LGDPRL

The Dickey-Fuller regressions include an intercept and a linear trend

Г	Cest Statistic	LL	AIC	SBC	HQC
DF	-3.8039	104.5409	101.5409	99.2079	100.7356
ADF(1)	-2.6069	104.9446	100.9446	97.8339	99.8708
ADF(2)	-2.5377	105.0814	100.0814	96.1930	98.7391
ADF(3)	-1.3742	110.3361	104.3361	99.6701	102.7254
ADF(4)	-3.2801	124.8287	117.8287	112.3849	115.9495

95%	critical	value	for the	augmented	Dickey	-Fuller	statistic =	-3.5426
тт	Maria	· · · · · · · · · · · · · · · · · · ·	1 1:1	1:1	AIC	A 1- a : 1- a	T. f	Cuitania

LL = Maximized log-likelihood AIC = Akaike Information Criterion

SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable LGDPRLD

The Dickey-Fuller regressions include an intercept but not a trend

34 observations used in the estimation of all ADF regressions.

35 observations used in the estimation of all ADF regressions.

Sample period from 1996Q4 to 2005Q1

	Test Statistic	LL	AIC	SBC	HQC
DF	-8.6923	97.9878	95.9878	94.4614	95.4673
ADF(1)) -5.0385	98.1526	95.1526	92.8630	94.3718
ADF(2)) -7.1244	105.4934	101.4934	98.4407	100.4523
ADF(3)) -1.8036	115.0996	110.0996	106.2837	108.7983
ADF(4) -2.2052	116.1744	110.1744	105.5954	108.6128

95% critical value for the augmented Dickey-Fuller statistic = -2.9499LL = Maximized log-likelihoodAIC = Akaike Information CriterionSBC = Schwarz Bayesian CriterionHQC = Hannan-Quinn Criterion

Unit root tests for variable LGDPRLD

The Dickey-Fuller regressions include an intercept and a linear trend

34 observations used in the estimation of all ADF regressions.

Sample period from 1996Q4 to 2005Q1

******	*****	*******	******	*****	******
	Test Statistic	LL	AIC	SBC	HQC
DF	-8.6032	98.1550	95.1550	92.8654	94.3742
ADF(1)	-5.0041	98.3374	94.3374	91.2847	93.2964
ADF(2)	-7.0504	105.6916	100.6916	96.8757	99.3903
ADF(3)) -1.8030	115.2547	109.2547	104.6757	107.6931
ADF(4)	-2.1811	116.2889	109.2889	103.9466	107.4670
******	********	*********	*******	********	************
95% cri	itical value for	the augmente	ed Dickey-Fu	ller statistic =	-3.5468
LL = N	laximized log-	-likelihood	AIC = Ak	aike Informat	ion Criterion
SBC =	Schwarz Baye	sian Criterior	HQC = Ha	annan-Quinn	Criterion

The Dickey-Fuller regressions include an intercept but not a trend

36 observations used in the estimation of all ADF regressions.

Sample period from 1996Q2 to 2005Q1

*****	*****	*******	*****	******	******	*****
	Test Statistic	LL	AIC	SBC	HQC	
DF	69894	79.7237	77.7237	76.1402	77.1710	

ADF(1)80223 80.0001 //.0001 /5.2908 /0.8370 ADF(2)78998 80.8854 76.8854 73.7184 75.7800 ADF(3)62609 82.5860 77.5860 73.6272 76.2043 ADF(4)60711 82.6477 76.6477 71.8972 74.9897 95% critical value for the augmented Dickey-Fuller statistic = -2.9446 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion Unit root tests for variable LNREER The Dickey-Fuller regressions include an intercept and a linear trend 36 observations used in the estimation of all ADF regressions. Sample period from 1996Q2 to 2005Q1 Test Statistic LL AIC SBC HQC DF -2.3698 82.2973 79.2973 76.9220 78.4683 ADF(1) -3.3523 85.6852 81.6852 78.5182 80.5798 ADF(2) -3.4197 86.2994 81.2994 77.3406 79.9177 ADF(3) -2.7265 86.3460 80.3460 75.5955 78.6880 ADF(4) -2.8441 86.8593 79.8593 74.3170 77.9249 95% critical value for the augmented Dickey-Fuller statistic = -3.5386 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
ADF(3)62609 82.5860 77.5860 73.6272 76.2043 ADF(4)60711 82.6477 76.6477 71.8972 74.9897 95% critical value for the augmented Dickey-Fuller statistic = -2.9446 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion Unit root tests for variable LNREER The Dickey-Fuller regressions include an intercept and a linear trend 36 observations used in the estimation of all ADF regressions. Sample period from 1996Q2 to 2005Q1 Test Statistic LL AIC SBC HQC DF -2.3698 82.2973 79.2973 76.9220 78.4683 ADF(1) -3.3523 85.6852 81.6852 78.5182 80.5798 ADF(2) -3.4197 86.2994 81.2994 77.3406 79.9177 ADF(3) -2.7265 86.3460 80.3460 75.5955 78.6880 ADF(4) -2.8441 86.8593 79.8593 74.3170 77.9249 95% critical value for the augmented Dickey-Fuller statistic = -3.5386 LL = Maximized log-likelihood AIC = Akaike Information Criterion
ADF(4)60711 82.6477 76.6477 71.8972 74.9897 95% critical value for the augmented Dickey-Fuller statistic = -2.9446 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion Unit root tests for variable LNREER The Dickey-Fuller regressions include an intercept and a linear trend 36 observations used in the estimation of all ADF regressions. Sample period from 1996Q2 to 2005Q1 Test Statistic LL AIC SBC HQC DF -2.3698 82.2973 79.2973 76.9220 78.4683 ADF(1) -3.3523 85.6852 81.6852 78.5182 80.5798 ADF(2) -3.4197 86.2994 81.2994 77.3406 79.9177 ADF(3) -2.7265 86.3460 80.3460 75.5955 78.6880 ADF(4) -2.8441 86.8593 79.8593 74.3170 77.9249 95% critical value for the augmented Dickey-Fuller statistic = -3.5386 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
 95% critical value for the augmented Dickey-Fuller statistic = -2.9446 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion Unit root tests for variable LNREER The Dickey-Fuller regressions include an intercept and a linear trend 36 observations used in the estimation of all ADF regressions. Sample period from 1996Q2 to 2005Q1 Test Statistic LL AIC SBC HQC DF -2.3698 82.2973 79.2973 76.9220 78.4683 ADF(1) -3.3523 85.6852 81.6852 78.5182 80.5798 ADF(2) -3.4197 86.2994 81.2994 77.3406 79.9177 ADF(3) -2.7265 86.3460 80.3460 75.5955 78.6880 ADF(4) -2.8441 86.8593 79.8593 74.3170 77.9249 95% critical value for the augmented Dickey-Fuller statistic = -3.5386 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
95% critical value for the augmented Dickey-Fuller statistic = -2.9446 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion Unit root tests for variable LNREER The Dickey-Fuller regressions include an intercept and a linear trend ************************************
LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion Unit root tests for variable LNREER The Dickey-Fuller regressions include an intercept and a linear trend 36 observations used in the estimation of all ADF regressions. Sample period from 1996Q2 to 2005Q1 ************************************
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion Unit root tests for variable LNREER The Dickey-Fuller regressions include an intercept and a linear trend ************************************
Unit root tests for variable LNREERThe Dickey-Fuller regressions include an intercept and a linear trend***********************************
The Dickey-Fuller regressions include an intercept and a linear trend ************************************
36 observations used in the estimation of all ADF regressions. Sample period from 1996Q2 to 2005Q1 ************************************
36 observations used in the estimation of all ADF regressions. Sample period from 1996Q2 to 2005Q1 ************************************
Sample period from 1996Q2 to 2005Q1Test StatisticLLAICSBCHQCDF-2.3698 82.2973 79.2973 76.9220 78.4683 ADF(1)-3.3523 85.6852 81.6852 78.5182 80.5798 ADF(2)-3.4197 86.2994 81.2994 77.3406 79.9177 ADF(3)-2.7265 86.3460 80.3460 75.5955 78.6880 ADF(4)-2.8441 86.8593 79.8593 74.3170 77.9249 ***********************************

Itest StatisticLLAICSBCHQCDF-2.3698 82.2973 79.2973 76.9220 78.4683 ADF(1)-3.3523 85.6852 81.6852 78.5182 80.5798 ADF(2)-3.4197 86.2994 81.2994 77.3406 79.9177 ADF(3)-2.7265 86.3460 80.3460 75.5955 78.6880 ADF(4)-2.8441 86.8593 79.8593 74.3170 77.9249 ***********************************
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
ADF(1) = 3.3523 = 85.0632 = 81.0832 = 78.3162 = 80.3798 ADF(2) = 3.4197 = 86.2994 = 81.2994 = 77.3406 = 79.9177 ADF(3) = 2.7265 = 86.3460 = 80.3460 = 75.5955 = 78.6880 ADF(4) = 2.8441 = 86.8593 = 79.8593 = 74.3170 = 77.9249 ************************************
ADF(2) = 5.4157 = 66.2574 = 61.2574 = 77.5466 = 75.59177 ADF(3) = 2.7265 = 86.3460 = 80.3460 = 75.5955 = 78.6880 ADF(4) = 2.8441 = 86.8593 = 79.8593 = 74.3170 = 77.9249 ************************************
ADF(4) -2.8441 86.8593 79.8593 74.3170 77.9249 ************************************

95% critical value for the augmented Dickey-Fuller statistic = -3.5386LL = Maximized log-likelihoodAIC = Akaike Information CriterionSBC = Schwarz Bayesian CriterionHQC = Hannan-Quinn Criterion
LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
Linit root tests for veriable LNDF'FDD
Unit root tests for variable LINREERD

36 observations used in the estimation of all ADF regressions.
Sample period from 1996Q2 to 2005Q1

Test Statistic LL AIC SBC HQC
DF -4.5722 80.5676 78.5676 76.9841 78.0149
ADF(1) -3.9939 80.8488 77.8488 75.4735 77.0198
ADF(2) -4.6185 83.1216 79.1216 75.9545 78.0162
ADF(3) = -5.7505 = 85.2118 = 78.2118 = 74.2550 = 70.8500 = 77.2002 = 77.2002 = 77.2012 = 75.7201 = 75.7701 = 75.77
ADF(4) = -5.3607 - 65.3902 - 77.3902 - 72.0397 - 73.7321

<pre>************************************</pre>

<pre>************************************</pre>
<pre>************************************</pre>
<pre>************************************</pre>
<pre>************************************</pre>

<pre>************************************</pre>
<pre>************************************</pre>

95% critical value for the augmented Dickey-Fuller statistic = -3.5386

LL = Maximized log-likelihood	AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion	HQC = Hannan-Quinn Criterion

*****	The Dic ********	Unit roo ckey-Fuller re	ot tests for var egressions inc ********	iable VAR5 lude an interc	cept but not a trend *********************************	
36 observ Sample p ******	vations used eriod from ********	in the estima 1996Q2 to 20	tion of all AI 05Q1 *********	OF regression	S. ********	
T DF ADF(1) ADF(2) ADF(3) ADF(4) ******** 95% criti LL = Ma SBC - Sc	Cest Statistic -1.7997 -2.1682 -2.6978 -2.6685 -3.2590 ********** cal value fo aximized log	LL -194.4803 -193.1947 -191.4326 -191.2634 -189.3279 ************************************	AIC -196.4803 -196.1947 -195.4326 -196.2634 -195.3279 *********** ted Dickey-Fu AIC = Ak	SBC -198.0638 -198.5700 -198.5996 -200.2222 -200.0785 ************************************	HQC - 197.0330 - 197.0237 - 196.5380 - 197.6451 - 196.9860 ************************************	
********* 36 observ	The Dic **********	Unit roc key-Fuller re in the estima	ot tests for var gressions incl ************************************	iable VAR5 ude an interce ***********************************	ept and a linear trend ************************************	
Sample p	eriod from ********	1996Q2 to 20 ******	05Q1 *********	*********	*****	
T DF	Cest Statistic -2.0451	LL -193.3953	AIC -196.3953	SBC -198.7705	HQC -197.2243	
ADF(1)	-2.3292	-192.3571	-196.3571	-199.5241	-197.4624	
ADF(3) ADF(4)	-2.7019 -3.2253	-190.7053 -188.9685	-196.7053 -195.9685	-201.4559 -201.5108	-198.3634 -197.9029	
95% criti LL = Ma SBC = So	cal value fo aximized log chwarz Baye	r the augmen g-likelihood esian Criterio	ted Dickey-Fu AIC = Ak n HQC = H	aller statistic = aike Informa annan-Quinn	 -3.5386 ation Criterion Criterion 	
*****	The Dic ********	Unit roo key-Fuller re	ot tests for var gressions incl ********	iable VAR5I ude an interce	D ept but not a trend *******************************	
36 observ Sample p	vations used period from	in the estima 1996Q2 to 20	tion of all AI 05Q1	OF regressions	S.	
******* T	********** est Statistic	********** LL	*********** AIC	**************************************	**************************************	
DF	-4.9112	-195.5918	-197.5918	-199.1753	-198.1445	
ADF (1)	-3.1448	-195.1211	-198.1211	-200.4964	-198.9501	
ADF(2)	-2.9633	-194.9850	-198.9850	-202.1521	-200.0904	
ADF(3)	-2.3235	-194.7831	-199.7831	-203.7419	-201.1648	
ADF(4) ******	-3.7578	-189.0985 *******	-195.0985 *********	-199.8491 *********	-196.7566 ***********************************	

95% critical value for the augmented Dickey-Fuller statistic = -2.9446LL = Maximized log-likelihoodAIC = Akaike Information CriterionSBC = Schwarz Bayesian CriterionHQC = Hannan-Quinn Criterion

Unit root tests for variable VAR5D

The Dickey-Fuller regressions include an intercept and a linear trend

36 observations used in the estimation of all ADF regressions. Sample period from 1996Q2 to 2005Q1

	Test Statistic	LL	AIC	SBC	HQC	
DF	-4.9728	-195.1759	-198.1759	-200.5512	-199.0049	
ADF(1)) -3.2059	-194.8245	-198.8245	-201.9915	-199.9299	
ADF(2)) -3.0499	-194.6254	-199.6254	-203.5842	-201.0071	
ADF(3)) -2.4104	-194.4858	-200.4858	-205.2364	-202.1439	
ADF(4)) -3.9711	-188.2232	-195.2232	-200.7655	-197.1576	
******	*********	*******	*******	********	**********	******

95% critical value for the augmented Dickey-Fuller statistic = -3.5386

LL = Maximized log-likelihood AIC = Akaike Information Criterion

SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable VAR8

The Dickey-Fuller regressions include an intercept but not a trend

36 observations used in the estimation of all ADF regressions. Sample period from 1996Q2 to 2005Q1

*****	**********	******	*****	*******	*******	******
	Test Statistic	LL	AIC	SBC	HQC	
DF	-1.6376	-150.7696	-152.7696	-154.3532	-153.3223	
ADF(1) -1.8286	-149.9077	-152.9077	-155.2829	-153.7367	
ADF(2	.) -2.6107	-145.8076	-149.8076	-152.9747	-150.9130	
ADF(3) -2.9512	-144.8157	-149.8157	-153.7745	-151.1975	
ADF(4	-2.7550	-144.7766	-150.7766	-155.5272	-152.4347	

95% critical value for the augmented Dickey-Fuller statistic = -2.9446LL = Maximized log-likelihoodAIC = Akaike Information CriterionSBC = Schwarz Bayesian CriterionHQC = Hannan-Quinn Criterion

Unit root tests for variable VAR	Unit roo	ot tests fo	r variable	VAR8
----------------------------------	----------	-------------	------------	------

The Dickey-Fuller regressions include an intercept and a linear trend

36 observations used in the estimation of all ADF regressions.

Sample period from 1996Q2 to 2005Q1

	Test Statistic	2 LL	AIC	SBC	HQC	
DF	-1.7304	-149.2683	-152.2683	-154.6436	-153.0974	
ADF(1)	-1.8384	-148.8364	-152.8364	-156.0034	-153.9418	
ADF(2)) -2.5374	-145.3712	-150.3712	-154.3300	-151.7529	
ADF(3)) -2.8274	-144.5144	-150.5144	-155.2650	-152.1725	
ADF(4)	-2.6093	-144.4910	-151.4910	-157.0333	-153.4254	
******	********	*******	******	******	*********	*****

95% critical value for the augmented Dickey-Fuller statistic = -3.5386 LL = Maximized log-likelihood AIC = Akaike Information Criterion

SPC Schwarz Devesion Criterion UCC Hannen Oving Criterion

SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable VAR8D

The Dickey-Fuller regressions include an intercept but not a trend

36 observations used in the estimation of all ADF regressions.

Sample period from 1996Q2 to 2005Q1

	Test Statistic	LL	AIC	SBC	HQC			
DF	-4.9405	-151.6449	-153.6449	-155.2284	-154.1976			
ADF(1)) -2.5766	-149.2818	-152.2818	-154.6570	-153.1108			
ADF(2)) -2.2740	-149.2714	-153.2714	-156.4384	-154.3768			
ADF(3)) -2.4273	-148.8349	-153.8349	-157.7937	-155.2166			
ADF(4) -2.4990	-148.5071	-154.5071	-159.2577	-156.1652			
******	*********	*********	********	********	*****			
95% cr	itical value fo	r the augmer	ted Dickey-F	uller statistic	= -2.9446			
LL = N	Aaximized log	g-likelihood	AIC = A	kaike Informa	ation Criterion			
SBC =	Schwarz Bay	esian Criterio	on $HQC = H$	Iannan-Quinr	n Criterion			
Unit root tests for variable VAR8D								
		Unit ro	ot tests for va	riable VAR8	D			
	The Dic	Unit ro key-Fuller re	ot tests for va gressions inc	riable VAR8 lude an interc	D ept and a linear trend			
*****	The Dic	Unit ro key-Fuller re	ot tests for va gressions inc	riable VAR8 lude an interc	D ept and a linear trend ************************************			
****** 36 obse	The Dic	Unit ro key-Fuller re **********	ot tests for va gressions inc ************************************	riable VAR8 lude an interc ************** DF regression	D ept and a linear trend ************************************			
****** 36 obse Sample	The Dic	Unit ro key-Fuller re ********* in the estime 1996Q2 to 20	ot tests for va gressions inc ************************************	riable VAR8 lude an interc *********** DF regression	D ept and a linear trend ************************************			
****** 36 obse Sample *****	The Dic ************************************	Unit ro key-Fuller re in the estime 1996Q2 to 20 ******	ot tests for va gressions inc ************************************	riable VAR8 lude an interc *********** DF regression ******	D ept and a linear trend ************************************			
****** 36 obse Sample *****	The Dic The Dic vervations used period from ************************************	Unit ro key-Fuller re ********** i in the estim 1996Q2 to 2 ********** LL	ot tests for va gressions inc ************************************	riable VAR8 lude an interc *********** DF regression ********** SBC	D ept and a linear trend ************************************			
****** 36 obse Sample ***** DF	The Dic ************************************	Unit ro key-Fuller re **********************************	ot tests for va egressions inc ************************************	riable VAR8 lude an interc ************************************	D ept and a linear trend ************************************			
****** 36 obse Sample ****** DF ADF(1	The Dic ************************************	Unit ro key-Fuller re **********************************	ot tests for va egressions inc ************************************	riable VAR8 lude an interce ***********************************	D ept and a linear trend ************************************			
****** 36 obse Sample ****** DF ADF(1 ADF(2	The Dic ************************************	Unit ro key-Fuller re **********************************	ot tests for va egressions inc ************************************	riable VAR8 lude an interco ************************************	D ept and a linear trend ************************************			
******* 36 obse Sample ****** DF ADF(1 ADF(2 ADF(3	The Dic ************************************	Unit ro key-Fuller re **********************************	ot tests for va or tests for va or service of all Al oo5Q1 ************ AIC - 153.6439 -152.7670 -153.7657 -154.2861	riable VAR8 lude an interce ***********************************	D ept and a linear trend ************************************			

95% critical value for the augmented	Dickey-Fuller statistic = -3.5386
LL = Maximized log-likelihood	AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion	HQC = Hannan-Quinn Criterion

Appendix III: Comparison of Individual Export Demand Models

ARIZE, VAR5

*****	*****	Ordinary Le	east Squares	Estimation	******	****
Dependent variable	e is LNXR					
41 observations us	ed for estim	ation from 1 *******	.995Q1 to 2	.005Q1 ****************	******	****
Regressor	Coefficie	nt Stand	lard Error	T-Ratio[Prob]		
CON	-11.4726	5.49	9310	-23.2662[.000]		
LNGDPR	3.8917	.32	026	12.1518[.000]		
LNREER	41075	.28	142	-1.4595[.153]		
VAR5	.8767E-4	.10	75E-3	.81564[.420]		
*****	*****	********	******	*****	******	*****
R-Squared		.96646	R-Bar-Sc	juared	.96375	
S.E. of Regression	L	.070020	F-stat.	•	F(3, 37)	355.4348[.000]
Mean of Depender	nt Variable	4.4824	S.D. of D	ependent Variable	.36774	
Residual Sum of S	quares	.18141	Equation	Log-likelihood	52.9456	
Akaike Info. Criterion 48.9456		48.9456	Schwarz Bayesian Criterion 45.5		45.5185	
DW-statistic		1.0984		•		
*****	******	*******	*******	*****	******	*****

Diagnostic Tests

* Test Statistics * LM Version * F Version * * * * * * A:Serial Correlation*CHSQ(4)= 15.0724[.005]*F(4, 33)= 4.7960[.004]* * * B:Functional Form *CHSQ(1)= 2.4793[.115]*F(1, 36)= 2.3170[.137]* * * *CHSQ(2)= 1.4964[.473]* Not applicable * * C:Normality * ·* * * D:Heteroscedasticity*CHSQ(1)= .017521[.895]*F(1, 39)= .016674[.898]* ***** ****************** A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

ARIZE, VAR8

*****	Or *********	dinary Lea ******	st Square	s Estimation ********	*******	****
Dependent variable 41 observations us	e is LNXR ed for estimati	on from 19 *******	95Q1 to 2	2005Q1 *********	******	*****
Regressor	Coefficient	Standard	l Error	T-Ratio[Prob]		
CON	-11.4189	.4959	8	-23.0227[.000]		
LNGDPR	3.8190	.3110	8	12.2764[.000]		
LNREER	34971	.2721	9	-1.2848[.207]		
VAR8	.1422E-3	.2814E	-3	.50548[.616]		
*****	*****	******	******	****	******	*****
R-Squared	.96	610	R-Bar-Sc	uared	.96335	
S.E. of Regression	.07	'0404	F-stat.		F(3, 37)	351.4338[.000]
Mean of Depender	nt Variable 4.4	824	S.D. of I	Dependent Variable	.36774	
Residual Sum of S	quares .183	340	Equation	Log-likelihood	52.7214	
Akaike Info. Criter	rion 48.	7214	Schwarz	Bayesian Criterion	45.2942	
DW-statistic	1.0933 ******	*****	******	******	******	*****
***	د من	Diagn	ostic Test	5	ste ste ste ste ste ste ste ste ste	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲
*****	*****	***********	· ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	• • • • • • • • • • • • • • • • • • •	****	****
* Test Statistics	[*] LIVI vers	\$10n *	F Ve	rsion * *********	*****	****
* *	*		*			
* A.Somial Connols	tion*CIISO(1)- 15 2	11 00 1200	*E(1 22)_ 197	40[002]*	
* A:Serial Correla * *		4)- 15.2	203[.004] *	F(4, 55) = 4.87	49[.003]*	
* B:Functional For	m *CHSQ(1)= 3.316	3[.069]*F	(1, 36)= 3.1681	[.084]*	
* *	*		*			
* C:Normality * *	*CHSQ(2)=	1.5323[.	465]* *	Not applicable	*	
* D:Heteroscedastie	city*CHSQ(***********	l)= .00264 *******	16[.959]* ******	F(1, 39)= .00251	29[.960]* ********	*****
A:Lagrange mult B:Ramsey's RES	iplier test of re ET test using tl	sidual seria ne square c	al correlat	ion d values		

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

ARIZE + GDPR(-1), VAR5

*****	C	Ordinary Le	east Squares	s Estimation	****
Dependent variab	le is LNXR				
40 observations us	sed for estimat	tion from 1 *******	995Q2 to 2	2005Q1 **************	******
Regressor CON LNGDPR LNGDPR(-1) LNREER	Coefficient -11.4982 2.6750 1.4118 59661	Stand .503 .710 .745 .292	ard Error 344 089 58 13	T-Ratio[Prob] -22.8391[.000] 3.7629[.001] 1.8936[.067] -2.0423[.049]	
VAR5	.1182E-3	.108	8E-3	1.0864[.285]	• • • • • • • • • • • • • • • • • • •
R-Squared S.E. of Regression Mean of Depende Residual Sum of S Akaike Info. Crite DW-statistic	n nt Variable Squares . erion 4 **********	.96718 .068470 4.4983 16408 48.1677 1.2613 ********	R-Bar-Squ F-stat. S.D. of De Equation I Schwarz E	uared pendent Variable Log-likelihood Bayesian Criterion	.96343 F(4, 35) 257.8503[.000] .35804 53.1677 43.9455
ale	ate	Diag	nostic Tests	5	
**************************************	**************************************	********** rsion * **********	********** * F Vei *********** *	**************************************	*******
* A:Serial Correl	ation*CHSQ(*	(4)= 9.4	819[.050]* *	F(4, 31)= 2.40	79[.071]*
* B:Functional For	rm *CHSQ((1)= 1.49	54[.221]*F	(1, 34)= 1.320	5[.259]*
* C:Normality * *	*CHSQ(2)	= 2.2263	[.329]* *	Not applicable	*
* D:Heteroscedast	icity*CHSQ(**********	1)= .0839 ********	977[.772]*F ********	F(1, 38)= .07994	46[.779]* ********
A:Lagrange mul	tiplier test of r	esidual ser	ial correlati	on	

B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

ARIZE + GDPR(-1), VAR8

		Ordinary	Least Squar	es Estimation		
*****	*******	*****	*****	*****	*****	****
Dependent variable	IS LNXR		100500	200501		
40 observations used	1 for estim *******	ation fron	n 1995Q2 to **********	2005Q1 *************	*****	****
Regressor	Coeffici	ent Sta	ndard Error	T-Ratio[Prob)]	
CON	-11.404	9 .	50342	-22.6548[.000]	
LNGDPR	2.6266		72503	3.6228[.001]	
LNGDPR(-1)	1.3526		74907	1.8057[.080]	
LNREER	50967		28068	-1.8159[.078	5]	
VAR8	.2085E-3	3	2814E-3	.74115[.464]	
*****	******	******	*********	*****	*******	*****
R-Squared		.96660	R-Bar-Squa	ared	.96278	
S.E. of Regression		.069074	F-stat.		F(4,35)	253.2013[.000]
Mean of Dependent	Variable	4.4983	S.D. of Dep	endent Variable	.35804	
Residual Sum of Squ	uares	.16699	Equation Lo	og-likelihood	52.8159	
Akaike Info. Criterio	on	47.8159	Schwarz Ba	yesian Criterion	43.5937	

DW-statistic 1.2380 **Diagnostic Tests** Test Statistics * LM Version * F Version * * * * * * * A:Serial Correlation*CHSQ(4)= 9.4037[.052]*F(4, 31)= 2.3820[.073]* * * B:Functional Form *CHSQ(1)= 2.2714[.132]*F(1, 34)= 2.0470[.162]* * * * C:Normality *CHSQ(2)= 2.2293[.328]* Not applicable * * D:Heteroscedasticity*CHSQ(1)= .11208[.738]*F(1, 38)= .10678[.746]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values

ARIZE + GDPR(-1) + DV, VAR5

Ordinary Least Squares Estimation							

Dependent variable i	is LNXR						
40 observations used ******	l for estin *******	nation from	m 1995Q2 to 2 *****	2005Q1 *********	******	*****	
Regressor	Coefficie	ent Sta	andard Error	T-Ratio[Prol	b]		
CON	-11.650	3	.47799	-24.3737[.000	0]		
LNGDPR	2.7008		.66884	4.0380[.000)]		
LNGDPR(-1)	1.4780		70195	2.1055[.043]			
LNREER	LNREER65497		27593	-2.3737[.023]			
VAR5	.9694E-	4 .1	028E-3	.94337[.352	.94337[.352]		
DV2Q98	.15673	.0	66532	2.3557[.024	4]		
*****	******	******	******	******	*****	*****	
R-Squared		.97178	R-Bar-Squar	red	.96764		
S.E. of Regression		.064411	F-stat.		F(5, 34)	234.2019[.000]	
Mean of Dependent	Variable	4.4983	S.D. of Depe	endent Variable	.35804		
Residual Sum of Squ	.14106	14106 Equation Log-likelihood					
Akaike Info. Criterion 50.1914 Schwarz Bayesian Criterion 45.1248							
DW-statistic		1.6397	-				

Diagnostic Tests							

* Test Statistics * LM Version * F Version *							

* *		*	*				
* A:Serial Correlation*CHSO(4)= 2.4793[.648]*F(4, 30)= .49559[.739]*							
* * * *							
* B:Functional Form	*CHSQ	(1)= 1	.4047[.236]*F	F(1, 33)= 1.20	010[.281]*		

* C:Normality *CHSQ(2)= 1.9806[.371]* Not applicable *

* D:Heteroscedasticity*CHSQ(1)= .041552[.838]*F(1, 38)= .039515[.843]*

A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

ARIZE + GDPR(-1) + DV, VAR8

Ordinary Least Squares Estimation							

Regressor CON LNGDPR LNGDPR(-1) LNREER VAR8 DV2Q98 ************************************	Coefficient -11.5776 2.6695 1.4220 58355 .1505E-3 .15873 **********	Standard Error .47891 .68191 .70488 .26573 .2657E-3 .067109 ************************************	T-Ratio[Prob] -24.1749[.000] 3.9148[.000] 2.0174[.052] -2.1960[.035] .56640[.575] 2.3653[.024]	**************************************			
Mean of Dependent Variable4.4983S.D. of Dependent Variable.35804Residual Sum of Squares.14340Equation Log-likelihood55.8625Akaike Info. Criterion49.8625Schwarz Bayesian Criterion44.7958DW-statistic1.6042							
Diagnostic Tests * Test Statistics * LM Version * F Version * * * * * * * * A:Serial Correlation*CHSQ(4)= 2.9649[.564]*F(4 , 30)= .60042[.665]* * * * * * * * B:Functional Form *CHSQ(1)= 2.2470[.134]*F(1 , 33)= 1.9641[.170]* * C:Normality * CHSQ(2)= 1.9262[.382]* Not applicable * * D:Heteroscedasticity*CHSQ(1)= .018330[.892]*F(1 , 38)= .017422[.896]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values							
Dependent variable is LNXR 40 observations used for estimation from 1995Q2 to 2005Q1							
RegressorCoefficientStandard ErrorT-Ratio[Prob]CON-11.4049.50342-22.6548[.000]LNGDPR2.6266.725033.6228[.001]LNGDPR(-1)1.3526.749071.8057[.080]							

LNREER	50967	.280)68	-1.8159[.078]		
VAR8	.2085E-3	.281	.2814E-3 .74115			
*****	*******	*****	******	*****	******	*****
R-Squared		.96660	6660 R-Bar-Squared		.96278	
S.E. of Regression		.069074	F-stat.		F(4,35)	253.2013[.000]
Mean of Dependent Variable		4.4983	S.D. of Dependent Variable		.35804	
Residual Sum of	of Squares	.16699	Equation Log-likelihood		52.8159	
Akaike Info. Ci	riterion	47.8159	Schwarz E	Bayesian Criterion	43.5937	
DW-statistic		1.2380				
*****	*****	*****	******	*****	********	*****
**************************************	**************************************	D18 ********* Version	agnostic Tes ******** * F V	sts ***********************************	******	****
******	******	*****	********	************	*****	*****
* *		*	*			
* A:Serial Cor	relation*CHS	SQ(4) = 9	0.4037[.052 *]*F(4, 31)= 2.3	820[.073]*	
* B:Functional l * *	Form *CHSC	Q(1) = 2.2	2714[.132]* *	F(1, 34)= 2.04	70[.162]*	
* C:Normality *	*CHSQ(2)= 2.229 *	93[.328]* *	Not applicable	*	
* D:Heterosceda *********	asticity*CHS(**********	Q(1)= .1	1208[.738]* ********	F(1, 38)= .106	78[.746]* ********	*****
A:Lagrange m	ultiplier test o	of residual s	erial correla	ation		

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Appendix IV: Stock Adjustment Mechanism

SAM, VAR5

*****	Ordir *******	ary Least S	Squares Esti *******	mation *********	*******	*****
Dependent variable	is LNER					
40 observations use	ed for estim ********	ation from	1995Q2 to *******	2005Q1 ***********	*****	*****
Regressor	Coefficie		lard Error	T-Ratio[Prob]		
CON	-6.0084	1.3	023	-4.6138[.000]		
LNER(-1)	.48152	.11	005	4.3756[.000]		
LNGDPR	2.4498	.42	934	5.7060[.000]		
LNREER	63888	.24	244	-2.6352[.012]		
LNVAR5	.015782	.01	2217	1.2919[.205]		
*****	******	*******	*******	******	********	*****
R-Squared		.97695	R-Bar-Squ	ared	.97432	
S.E. of Regression		.057376	F-stat.		F(4, 35)	370.9160[.000]
Mean of Dependent Variable		4.4983	S.D. of Dependent Variable		.35804	
Residual Sum of Squares		.11522	Equation Log-likelihood		60.2385	
Akaike Info. Criterion		55.2385	Schwarz Bayesian Criterion		51.0163	
DW-statistic		2.2981	Durbin's h-	Durbin's h-statistic		89]
*****	*******	********	*******	*****	********	*****

Diagnostic Tests

* Test Statistics * LM Version * F Version * * * * * * A:Serial Correlation*CHSQ(4)= 8.3953[.078]*F(4, 31)= 2.0587[.110]* * B:Functional Form *CHSQ(1)= .092459[.761]*F(1, 34)= .078772[.781]* * * *CHSQ(2)= .14733[.929]* Not applicable * C:Normality * * D:Heteroscedasticity*CHSQ(1)= .67551[.411]*F(1, 38)= .65276[.424]* *************** *****

A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

SAM, VAR8

Ordinary Least Squares Estimation ************************************							
Dependent variab 40 observations us	le is LNER sed for estim	nation from	n 1995Q2 t ********	o 2005Q1 *********	****		
Regressor Coefficient		t Standard Error		T-Ratio[Prob]			
CON	-5.9056	1.	3129	-4.4981[.000]			
LNER(-1)	.48203	.11078		4.3513[.000]			
LNGDPR	2.3370	.42	454	5.5047[.000]			
LNREER	54615	.22	2790	-2.3965[.022]			
LNVAR8	.014261	.013082		1.0902[.283]]		

R-Squared		.97665	R-Bar-Squ	ared	.97398		
S.E. of Regression	n	.057755	F-stat.		F(4, 35) 365.9410[.000]		
Mean of Dependent Variable		4.4983 S.D. of Dep		pendent Variable	.35804		
Residual Sum of Squares		.11675 Equation L		.og-likelihood	59.9747		
Akaike Info. Criterion		54.9747 Schwarz Ba		ayesian Criterion	50.7525		
DW-statistic	2.3117	Durbin's h-statistic		-1.3813[.167]			

Diagnostic Tests Test Statistics * LM Version * F Version * * * * * * * A:Serial Correlation*CHSQ(4)= 8.9308[.063]*F(4, 31)= 2.2277[.089]* * * B:Functional Form *CHSQ(1)= .30891[.578]*F(1, 34)= .26462[.610]* * * * C:Normality *CHSQ(2)= .16994[.919]* Not applicable * * D:Heteroscedasticity*CHSQ(1)= .64425[.422]*F(1, 38)= .62206[.435]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values
Appendix V: Engle – Granger Cointegration Test

ARIZE, VAR5

*****	(*************	Ordinary Lea	st Squares Estimation	*****
Dependent var 39 observation	iable is RES5 s used for estima ******	tion from 19 ******	995Q3 to 2005Q1 ******************************	******
Regressor RES5(-1) ***********	Coefficient .45178 ********	Standard .14642 *******	Error T-Ratio[Prob] 2 3.0856[.004]	******
R-Squared S.E. of Regress Mean of Deper Residual Sum Akaike Info. C DW-statistic	sion ndent Variable of Squares hiterion	.20035 .061692 1427E-3 .14463 52.8062 1.6580	R-Bar-Squared F-stat. S.D. of Dependent Variable Equation Log-likelihood Schwarz Bayesian Criterion Durbin's h-statistic	.20035 *NONE* .068989 53.8062 51.9744 2.6372[.008] *****
*****	*****	Diagn ********	ostic Tests **************************	*****
* Test Statisti	cs * LM Ve *****	rsion * ********	F Version *	*****
* * * * A:Serial Corr * B:Functional * * C:Normality * D:Heterosced	elation*CHSQ(Form *CHSQ(*CHSQ(2)	* 4)= 16.068 * 1)= .1124 * = .57405[. * 1)= 1.210	* 7[.003]*F(4,34)=5.9563 * 5[.737]*F(1,37)=.10699 * 750]* Not applicable 0[.271]*F(1,37)=1.1847	[.001]* [.745]* * [.283]*
A:Lagrange n B:Ramsey's R	nultiplier test of r	residual seria	al correlation	[,205] ***********************

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

ARIZE, VAR8

*****	*********	Ordinary I	Least Squares	Sestimation	*****
Dependent variab 39 observations u ***********	le is RES8 sed for estim	nation from	1995Q3 to 2	005Q1 ******	****
Regressor RES8(-1) ***********	Coefficient .45407	Standa .146	rd Error 507 *********	T-Ratio[Prob] 3.1087[.004] ******	****
R-Squared		.20275	R-Bar-Squa	red	.20275
S.E. of Regression	n	.061887	F-stat.		*NONE*
Mean of Depende	ent Variable	.9270E-	S.D. of Dep	endent Variable	.069311
Residual Sum of	Squares .	14554	Equation Lo	g-likelihood	53.6834
Akaike Info. Crite	erion	52.6834	Schwarz Ba	yesian Criterion	51.8517

DW-statistic 1.6681 2.5293[.011] Durbin's h-statistic **Diagnostic Tests** Test Statistics * LM Version * F Version * A:Serial Correlation*CHSQ(4)= 14.9282[.005]*F(4, 34)= 5.2713[.002]* * B:Functional Form *CHSQ(1)= .099451[.752]*F(1, 37)= .094592[.760]* * * * C:Normality *CHSQ(2)= .59194[.744]* Not applicable * D:Heteroscedasticity*CHSQ(1)= 1.1570[.282]*F(1, 37)= 1.1312[.294]* *************** ***** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values ARIZE + GDPR(-1), VAR5 Ordinary Least Squares Estimation Dependent variable is RES5LAG 39 observations used for estimation from 1995Q3 to 2005Q1 RegressorCoefficientStandard ErrorT-Ratio[Prob]RES5LAG(-1).36737.150652.4385[.020] R-Squared.13523R-BarS.E. of Regression.060992F-stat. .13523 R-Bar-Squared .13523 *NONE* Mean of Dependent Variable -.6296E-3 S.D. of Dependent Variable .065587 Residual Sum of Squares .14136 Equation Log-likelihood 54.2517 Akaike Info. Criterion 53.2517 Schwarz Bayesian Criterion 52.4199 1.9556 Durbin's h-statistic .40916[.682] DW-statistic ****** Diagnostic Tests Test Statistics * LM Version * * * F Version * * * A:Serial Correlation*CHSQ(4)= 9.1651[.057]*F(4, 34)= 2.6111[.053]* * * B:Functional Form *CHSQ(1)= .1609E-3[.990]*F(1, 37)= .1526E-3[.990]* * * * C:Normality *CHSQ(2)= .51207[.774]* Not applicable * * * D:Heteroscedasticity*CHSQ(1)= .10287[.748]*F(1, 37)= .097856[.756]* A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals

ARIZE + GDPR(-1), VAR8

******	Ordinary L	east Squares Est	timation ***********	******
Dependent variable is RES8L 39 observations used for estin	AG nation from	1995Q3 to 2005 *********	Q1 ********	*****
Regressor Coeffic RES8LAG(-1) .380	ient Star 17 . *********	ndard Error 14998 **********	T-Ratio[Prob] 2.5347[.015]	*****
R-Squared S.E. of Regression Mean of Dependent Variable Residual Sum of Squares Akaike Info. Criterion DW-statistic	.14459 .061265 4071E-3 .14263 53.0774 1.9535	R-Bar-Squared F-stat. S.D. of Depend Equation Log- Schwarz Bayes Durbin's h-stat	l dent Variable likelihood sian Criterion tistic *********	.14459 *NONE* .066240 54.0774 52.2456 .41460[.678] ******
*****	Diag *******	nostic Tests	*****	*****
* Test Statistics * LMV	Version	* F Version	n * ********	******
* *	*	*		
* A:Serial Correlation*CHSQ * *	(4)= 10.89 *	970[.028]*F(4 *	, 34)= 3.2959	[.022]*
* B:Functional Form *CHSQ * *	* .0036	5752[.952]*F(*	1, 37)= .00348	70[.953]*
* C:Normality * * * * * *CHSQ(2)= .57524 *	[.750]* Not *	applicable	*
* D:Heteroscedasticity*CHSQ *********	2(1)= .112 ********	202[.738]*F(1	, 37)= .10658 *********	[.746]* *******
A:Lagrange multiplier test o B:Ramsey's RESET test usin	f residual sen	rial correlation of the fitted va	lues	

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Appendix VI: Error Correction Model (Engle – Granger)

ARIZE, VAR5

Ordinary Least Squares Estimation										
Dependent variable is LNERD 39 observations used for estimation from 1995Q3 to 2005Q1 ************************************										
Regressor CON LNGDPRD LNREERD VAR5D RES5(-1)	Coefficient .011371 2.4351 33800 .9796E-4 53663	Standard Error .012628 .71511 .42229 .1987E-3 .16702	T-Ratio[Prob] .90043[.374] 3.4052[.002] 80039[.429] .49310[.625] -3.2129[.003]	*****						
R-Squared	.42	558 R-Bar-Squ	uared .3	5801						

S.E. of Regression Mean of Dependent Variable Residual Sum of Squares Akaike Info. Criterion DW-statistic *****	.061650 .028308 .12922 51.0019 2.0921	F-stat. S.D. of Dependent Variable Equation Log-likelihood Schwarz Bayesian Criterion	F(4,34) .076943 56.0019 46.8430	6.2977[.001]
	Diagno	ostic Tests		
********	********	*************************	*******	*****
* Test Statistics * LM V ******************	ersion *	* F Version *	****	****
* *	*	*		
* A:Serial Correlation*CHSQ((4)= 7.096 *	57[.131]*F(4, 30)= 1.6683 *	6[.183]*	
* B:Functional Form *CHSQ	(_* 1)= 5.16	74[.023]*F(1, 33)= 5.0402	2[.032]*	
* C:Normality * CHSQ(2)= .42801 *	[.807]* Not applicable	*	
* D:Heteroscedasticity*CHSQ ******************************	(1)= .3763 *********	E-4[.995]*F(1, 37)=.3570	E-4[.995]* ********	*****
A.T	· · · · · 1 · · · ·	· · · · · · · · · · · · · · · · · · ·		

A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

ARIZE, VAR8

	C	rdinary Le	ast Squares	s Estimation		
******	*******	******	******	*****	*******	*****
Dependent varial	ole is LNERI)				
39 observations u	used for estin	nation from	1995Q3 to ******	o 2005Q1 ************	****	*****
Regressor	Coefficient	Standa	urd Error	T-Ratio[Prob]		
CON	.011508	.012	616	.91217[.368]		
LNGDPRD	2.4399	.715	546	3.4102[.002]		
LNREERD	34818	.421	02	82699[.414]		
VAR5D	.8022E-4	.1970)E-3	.40717[.686]		
RES8(-1)	52953	.164	78	-3.2135[.003]		
*****	*********	*******	******	*****	*******	*****
R-Squared		.42563	R-Bar-S	quared	.35806	
S.E. of Regressio	n	.061647	F-stat.		F(4,34)	6.2989[.001]
Mean of Depende	ent Variable	.028308	S.D. of I	Dependent Variable	.076943	
Residual Sum of	Squares	.12921	Equation	Log-likelihood	56.0036	
Akaike Info. Crit	erion	51.0036	Schwarz	Bayesian Criterion	46.8447	
DW-statistic		2.0916				
*****	*********	*******	******	*****	*******	******
		Dia	ignostic Te	sts		
*****	*********	*******	*******	******	*******	******
* Test Statistics ************************************	* LM \ *******	Version ********	* F V ****	Version * **************	*****	*****
* *		*	*			
* A:Serial Correla * *	ation*CHSQ((4)= 7.14 *	487[.128]* *	F(4, 30) = 1.6833	3[.180]*	
* B:Functional Fo	orm *CHSQ	(*1)= 5.2	2778[.022] [*]	*F(1, 33)= 5.164	8[.030]*	
* C:Normality	*CHSQ(2)= .4709	1[.790]*	Not applicable	*	

* D:Heteroscedastici	ity*CHSQ(1 **********)= .0149	33[.903]*F(********	(1, 37)= .014172 **************	2[.906]* *********	****
A:Lagrange multip B:Ramsey's RESE C:Based on a test of	blier test of res T test using th	sidual seri le square	al correlation of the fitted	on values Is		
D:Based on the reg	gression of squ	ared resi	duals on squ	ared fitted values		
ARIZE + GDPR(-1), VAR5					
	Ordin	hary Leas	t Squares Es	stimation		
**************	***********	******	*******	*****	********	*****
Dependent variable	18 LNERD	n from 1	0.0502 + 20	00501		
39 ODServations use	a for estimatic	DN IFOIN 1 ******	995Q5 to 20 ******	NSQI *************	******	****
Regressor	Coefficient	Stand	ard Error	T-Ratio[Prob]		
CON	.031769	.014	4096	2.2538[.031]		
LNGDPRD	1.5442	.68	147	2.2659[.030]		
LGDPRDL	-1.3892	.67	296	-2.0643[.047]		
LNREERD	32797	.36	154 CAE 2	90715[.371]		
VAK5D DES5LAC(1)	.834/E-4	.170	04E-3 925	.4/30/[.039]		
KESJLAU(-1) *************	00223 ********	14. ******	0 <i>33</i> ********	-4.4039[.000] ************	******	*****
R-Squared		58572	R-Bar-Squ	ared	.52295	
S.E. of Regression).)53143	F-stat.		F(5, 33)	9.3314[.000]
Mean of Dependent	Variable .0	28308	S.D. of De	pendent Variable	.076943	
Residual Sum of Sq	uares .0	93198	Equation L	og-likelihood	62.3749	
Akaike Info. Criteri	on 5	6.3749	Schwarz B	ayesian Criterion	51.3842	
DW-statistic	1	.4059				
*****	*****	*****	********	******	******	****
		Diagr	nostic Tests			
*****	**********	******	******	*****	*******	*****
* Test Statistics * **********	LM Vers	ion * *******	F Ver:	sion * **********	*****	****
* *	*		*			
* A:Serial Correlatio	on*CHSQ(4))= 13.007	72[.011]*F(*	4, 29)= 3.6280[.016]*	
* B:Functional Form * *	• *CHSQ(1)= 2.307	74[.129]*F(*	1, 32)= 2.0123[.166]*	
* C:Normality * *	*CHSQ(2)= *	1.2573[.533]* N	Not applicable *	:	
* D:Heteroscedastici	ity*CHSQ(1 **********)= .4716 *******	59[.492]*F(*********	1, 37)= .45298[*********	.505]* *********	****
A:Lagrange multip	olier test of res	sidual seri	al correlatio	on volues		
C:Record on a test	a test using th	e square	of residue			
D:Based on the reg	gression of squ	ared resi	s of residua duals on squ	ared fitted values		

*

ARIZE + GDPR(-1), VAR8

*

*

*

CON	.031851	1	.014208	2.2418[.0	32]	
LNGDPRD	1.5665	5	.68780	2.2776[.0)29]	
LGDPRDL	-1.3928	5	.67811	-2.0539[.0	48]	
LNREERD	34331		.36364	94407[.3	52]	
VAR5D	.5216E-4	4	.1757E-3	.29682[.7	768]	
RES8LAG(-1)	64119		.14660	-4.3738[.0	00]	
*****	******	******	******	*****	*****	*****
R-Squared		.57939	R-Bar-Square	ed	.51566	
S.E. of Regression		053548	F-stat.		F(5, 33)	9.0916[.000]
Mean of Dependent Va	ariable	.028308	S.D. of Deper	ndent Variable	.076943	
Residual Sum of Squar	res	.094623	Equation Log-	-likelihood	62.0791	
Akaike Info. Criterion		56.0791	Schwarz Baye	sian Criterion	51.0884	
DW-statistic		1.4312	-			
*****	******	******	******	*****	*****	*****
		Di	agnostic Tests			
***************************************	******	*******	***********	************	*****	*****
* Test Statistics * ***********************************	LM V(******	ersion *******	* F Vers	10n * *********	*****	****
* *		*	*			
* A:Serial Correlation *	*CHSQ(*4)= 12	.7296[.013]*F(*	4, 29)= 3.51	31[.019]*	
* B:Functional Form	*CHSQ(* 1)= 2.	1808[.140]*F(*	1, 32)= 1.89	54[.178]*	
* C:Normality * *	*CHSQ(2)= 1.	3193[.517]* *	Not applicable	*	
* D:Heteroscedasticity *****	*CHSQ(******	1)= .5 ******	4045[.462]*F(*********	1, 37)= .5199	94[.475]* ********	*****
A:Lagrange multiplie B:Ramsey's RESET t	er test of test using	residual a g the squa	serial correlation are of the fitted	n values		

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Appendix VII: ARDL method

Lags: 4, VAR5

Autoregressive Distributed Lag Estimates ARDL(2) selected based on Akaike Information Criterion										
Dependent variabl	e is LNER									
37 observations us	ed for estimation	tion from	n 1996Q	1 to	2005Q1					
******	*******	******	******	****	********	****	*******	******	***	
Regressor	Coefficient	Stand	ard Erro	or	T-Ratio[P	rob]				
LNER(-1)	.39222	.12	684		3.0922[.0	04]				
LNER(-2)	.30207	.16	043		1.8828[.0	69]				
CON	-3.8077	1.6	5270		-2.3404[.	026]				
LNGDPR	1.9271	.47	627		4.0463[.0	[000				
LNREER	80609	.24	506		-3.2893[.0	003]				
LNVAR5	.022212	.01	4056		1.5802[.1	124]				
*****	*****	******	******	****	*******	****	******	******	***	
R-Squared	.9′	7714	R-Bar-	Squa	red		97345			
S.E. of Regression	ı .0	54817	F-stat.	Ē(5, 31)		264.9569	[.000]		

Mean of Dependent Variable 4.5414 S.D. of Dependent Variable .33640 Residual Sum of Squares Equation Log-likelihood .093153 58.2113 Akaike Info. Criterion 52.2113 Schwarz Bayesian Criterion 47.3785 DW-statistic 1.9195 **Diagnostic Tests** * Test Statistics * LM Version * * F Version * * * * * A:Serial Correlation*CHSQ(4)= 7.9879[.092]*F(4, 27)= 1.8585[.147]* * B:Functional Form *CHSQ(1)= .055484[.814]*F(1, 30)= .045055[.833]* * C:Normality *CHSQ(2)= 1.1039[.576]* Not applicable * * D:Heteroscedasticity*CHSQ(1)= 1.1696[.279]*F(1, 35)= 1.1425[.292]* ***** A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Lags: 4, VAR5, Long-run coefficients

Estimated Long Run Coefficients using the ARDL Approach ARDL(2) selected based on Akaike Information Criterion Dependent variable is LNER 37 observations used for estimation from 1996Q1 to 2005Q1 Coefficient Standard Error T-Ratio[Prob] Regressor CON -12.4549 1.6690 -7.4625[.000] LNGDPR 6.3036 1.8525 3.4028[.002] -2.6367 1.6775 LNREER .060155 -1.5718[.126] LNVAR5 .072655 1.2078[.236]

Lags: 4, VAR5, ECM

Error Correction Representation for the Selected ARDL Model ARDL(2) selected based on Akaike Information Criterion									
Dependent variable is dLNER 37 observations used for estimation from 1996Q1 to 2005Q1									
Regressor dLNER1 dCON dLNGDPR dLNREER dLNVAR5 ecm(-1)	Coefficient 30207 -3.8077 1.9271 80609 .022212 30572	Standard Error .16043 1.6270 .47627 .24506 .014056 .14285	T-Ratio[Prob] -1.8828[.069] -2.3404[.026] 4.0463[.000] -3.2893[.003] 1.5802[.124] -2.1401[.040]						

List of additional temporary variables created:

dLNER = LNER-LNER(-1)

dLNER1 = LNER(-1) - LNER(-2)

dCON = CON-CON(-1)									
dLNGDPR = LNGDPR-LNGDPR(-1)									
dLNREER = LNREER-LNREE	dLNREER = LNREER-LNREER(-1)								
dLNVAR5 = LNVAR5-LNVA	R5(-1)								
ecm = LNER + 12.4549*CON	-6.3036* ******	LNGDPR + 2.6367*LNREE	R072655*LNVAR5						
R-Squared	.55027	R-Bar-Squared	.47773						
S.E. of Regression	.054817	F-stat. F(5, 31)	7.5860[.000]						
Mean of Dependent Variable	.027297	S.D. of Dependent Variable	.075853						
Residual Sum of Squares	.093153	Equation Log-likelihood	58.2113						
Akaike Info. Criterion	52.2113	Schwarz Bayesian Criterion	47.3785						
DW-statistic	1.9195	-							
*****	******	****	****						

R-Squared and R-Bar-Squared measures refer to the dependent variable dLNER and in cases where the error correction model is highly restricted, these measures could become negative.

Lags: 4, VAR8

Autor ARDL(2) se	egressive D elected base	istributed I d on Akaik	ag Estin e Inform	nates ation Criterion		
Dopondont voriabl	• * • • • • • • • • • • • • • • • • • •	*****	*****	******	* * * * * * * * * *	*****
37 observations us	ed for estim	ation from	1996Q1 ******	to 2005Q1	******	*****
Regressor	Coefficie	nt Stand	lard Erro	r T-Ratio[Pro	bl	
LNER(-1)	.39072	.12	908	3.0269[.003	5]	
LNER(-2)	.28736	.16	297	1.7632[.08	8]	
CON	-3.7771	1.6	554	-2.2817[.03	0]	
LNGDPR	1.8146	.48	307	3.7565[.00]	1]	
LNREER	67773	.234	442	-2.8911[.00	7]	
LNVAR8 **************	.017012	.014	4369 *******	1.1839[.24	5] *******	*****
R-Squared		.97636	R-Bar-S	Squared	.97	255
S.E. of Regression		.055736	F-stat.	F(5, 31)	256	.0886[.000]
Mean of Depender	nt Variable	4.5414	S.D. of	Dependent Variab	le .336	540
Residual Sum of S	quares	.096302	Equation	n Log-likelihood	57.	5961
Akaike Info. Criter	rion	51.5961	Schwar	z Bayesian Criteri	on 46.	7634
DW-statistic		1.9215				
******	*******	*******	******	******	*******	*****
		Diagnos	tic Tests			
******	********	*******	******	****	*******	*****
* Test Statistics	* LM V ********	ersion ********	* F ******	Version *	*******	*****
* *		*		*		
* A:Serial Correlat	ion*CHSQ(4)= 8.05 *	50[.090]	*F(4, 27)= 1.8	3784[.143]	*
* B:Functional For	m *CHSQ	(1)=.003	6029[.95	2]*F(1, 30)=.0	029216[.9	57]*
* C:Normality	*CHSQ(2)= 1.263	1[.532]*	Not applicable	*	
* D:Heteroscedasti	city*CHSQ *********	(1)= .82	611[.363]*F(1, 35)= .7	9930[.377]* ***********
A:Lagrange mult B:Ramsey's RES	iplier test of	f residual se	rial corre	elation		

B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals

Lags: 4, VAR5, Long-run coefficients

Estimated	Long Run Coeff	ficients using the AI	RDL Approach	
ARDL(2) selected based on Akaike Information Criterion				
*****	******	*****	*******	
Dependent varia	ble is LNER			
37 observations used for estimation from 1996Q1 to 2005Q1				

Regressor	Coefficient	Standard Error	T-Ratio[Prob]	
CON	-11.7329	1.4193	-8.2669[.000]	
LNGDPR	5.6368	1.4657	3.8457[.001]	
LNREER	-2.1053	1.3619	-1.5459[.132]	
LNVAR8	.052844	.051671	1.0227[.314]	

Lags: 4, VAR8, ECM

Error Correction Representation for the Selected ARDL Model
ARDL(2) selected based on Akaike Information Criterion

Dependent variable is dLNER

37 observations used for estimation from 1996Q1 to 2005Q1

*****	*****	*****	****
Regressor	Coefficient	Standard Error	T-Ratio[Prob]
dLNER1	28736	.16297	-1.7632[.088]
dCON	-3.7771	1.6554	-2.2817[.030]
dLNGDPR	1.8146	.48307	3.7565[.001]
dLNREER	67773	.23442	-2.8911[.007]
dLNVAR8	.017012	.014369	1.1839[.245]
ecm(-1)	32192	.14453	-2.2274[.033]
*****	****	*****	*****

List of additional temporary variables created: dLNER = LNER-LNER(-1)dLNER1 = LNER(-1)-LNER(-2)dCON = CON-CON(-1)dLNGDPR = LNGDPR-LNGDPR(-1) dLNREER = LNREER-LNREER(-1)dLNVAR8 = LNVAR8-LNVAR8(-1) ecm = LNER + 11.7329*CON -5.6368*LNGDPR + 2.1053*LNREER -.052844*LNVAR8 **R-Squared** .53506 **R-Bar-Squared** .46007 S.E. of Regression .055736 F-stat. F(5, 31) 7.1351[.000] Mean of Dependent Variable .027297 S.D. of Dependent Variable .075853

Residual Sum of Squares.096302Equation Log-likelihood57.5961Akaike Info. Criterion51.5961Schwarz Bayesian Criterion46.7634DW-statistic1.9215

R-Squared and R-Bar-Squared measures refer to the dependent variable

dLNER and in cases where the error correction model is highly restricted, these measures could become negative.

Appendix VIII: Regressions – bilateral trade flows⁷⁹

Germany

Orc ********************	linary Least S	Squares Estimatior	l ********	*****	
Dependent variable is LN2 29 observations used for e	XGER stimation from	m 1999Q4 to 2006 **********	5Q4 ***********	*****	
Regressor C	Coefficient	Standard Error	T-Ratio[Prob)]	
С	-3.2702	8.7135	37530[.711]	
LNER	.88532	.60316	1.4678[.155		
VAREUR -	.0019710	.8829E-3	-2.2324[.035	5]	
LNGDPGER	.86743 2.4396		.35557[.725]	
*****	*******	*****	*****	- :*******	
R-Squared	.63389	R-Bar-Squared		.58996	
S.E. of Regression	.077914	F-stat. $F(3, 2)$	25)	14.4284[.000]	
Mean of Dependent Varia	ble 4.6992	S.D. of Depende	ent Variable	.12167	
Residual Sum of Squares	.15177	Equation Log-likelihood		35.0152	
Akaike Info. Criterion	31.0152	Schwarz Bayesian Criterion		28.2806	
DW-statistic	.96171				
Diagno *************	stic Tests	*****	******	*****	
* Test Statistics * L	M Version	* F Version	n * <******	*****	
* *	*	*			
* A:Serial Correlation*CHSQ(4)= 11.5568[.021]*F(4, 21)= 3.4783[.025]*					
* B:Functional Form *CHSQ(1)= 1.1768[.278]*F(1, 24)= 1.0151[.324]*					
* C:Normality *CHSO * *	Q(2) = .480	28[.787]* Not *	applicable *		
* D:Heteroscedasticity*CH ************************	ISQ(1)= .38	817E-3[.984]*F(*************	1, 27)= .3554E-	3[.985]* *********	
A:Lagrange multiplier te B:Ramsey's RESET test	st of residual using the squa	serial correlation are of the fitted va	lues		

C:Based on a test of skewness and kurtosis of residuals

⁷⁹ Full results from Dickey-Fuller and Augmented Dickey-Fuller test for individual bilateral export demand models can be found at jurecka.webz.cz.

France

Ordinary Least Squares Estimation ************************************
Dependent variable is LNXFRA 29 observations used for estimation from 1999Q4 to 2006Q4 ************************************
RegressorCoefficientStandard ErrorT-Ratio[Prob]C-26.88093.9967-6.7257[.000]
LNER 1.1213 .60145 1.8644[.074] VAREUR 0014928 .6827E-3 -2.1865[.038]
LNGDPFRA 5.7521 1.4127 4.0717[.000]
R-Squared.94057R-Bar-Squared.93344S.E. of Regression.073094F-stat.F(3, 25)131.8913[.000]Mean of Dependent Variable4.9466S.D. of Dependent Variable.28332Residual Sum of Squares.13357Equation Log-likelihood36.8671Akaike Info. Criterion32.8671Schwarz Bayesian Criterion30.1325DW-statistic2.2660
Diagnostic Tests ***********************************
* Test Statistics * LM Version * F Version *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* C:Normality *CHSQ(2)= 1.4984[.473]* Not applicable *
* D:Heteroscedasticity*CHSQ(1)= 1.4149[.234]*F(1, 27)= 1.3849[.250]* ***********************************
A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values
Italy
Ordinary Least Squares Estimation ************************************
Regressor Coefficient Standard Error T-Ratio[Prob] C -36.0123 13.8427 -2.6015[.015] LNER 1.1808 .86135 1.3708[.183]
VAREUR 0017633 .0011095 -1.5893[.125] LNGDPITA 7.6782 3.7705 2.0364[.052] ************************************
R-Squared.77389R-Bar-Squared.74676S.E. of Regression.12960F-stat.F(3, 25)28.5216[.000]Mean of Dependent Variable4.9036S.D. of Dependent Variable.25754Residual Sum of Squares.41993Equation Log-likelihood20.2576Akaike Info. Criterion16.2576Schwarz Bayesian Criterion13.5230DW-statistic1.77701.77701.7770

Diagnostic Tests * Test Statistics * LM Version * F Version * * A:Serial Correlation*CHSQ(4)= 14.6537[.005]*F(4, 21)= 5.3625[.004]* * B:Functional Form *CHSQ(1)= .044494[.833]*F(1, 24)= .036879[.849]* * * C:Normality *CHSQ(2)= 3.4578[.177]* Not applicable * D:Heteroscedasticity*CHSQ(1)= .080349[.777]*F(1, 27)= .075016[.786]* *************** ***** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values C:Based on a test of skewness and kurtosis of residuals D:Based on the regression of squared residuals on squared fitted values Spain Ordinary Least Squares Estimation Dependent variable is LNXESP 29 observations used for estimation from 1999Q4 to 2006Q4 ******** Coefficient Standard Error T-Ratio[Prob] Regressor
 C
 -18.6263
 1.4591
 -12.7657[.000]

 LNER
 -.39016
 .93996
 -.41508[.682]

 VAREUR
 .8321E-4
 .9989E-3
 .083300[.934]

 LNGDPESP
 5.4329
 1.0475
 5.1865[.000]

 R-Squared
 .91975
 R-Bar-Squared
 .91012

 S.E. of Regression
 .10825
 F-stat.
 F(3, 25)
 95.5051[.000]
 Mean of Dependent Variable 5.0594 S.D. of Dependent Variable .36107 Residual Sum of Squares .29296 Equation Log-likelihood 25.4784 Akaike Info. Criterion 21.4784 Schwarz Bayesian Criterion 18.7438 DW-statistic 2.1988 **Diagnostic Tests** Test Statistics * LM Version * F Version * * * A:Serial Correlation*CHSQ(4)= 11.8546[.018]*F(4, 21)= 3.6299[.021]* * B:Functional Form *CHSQ(1)= 2.1179[.146]*F(1, 24)= 1.8909[.182]* * *CHSQ(2)= .90988[.634]* Not applicable * C:Normality * D:Heteroscedasticity*CHSQ(1)= 3.9869[.046]*F(1, 27)= 4.3036[.048]* ****** ***** A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Nederlands

Ordinary Least Squares Estimation					

Dependent variable is LNXNED					
29 observations used for estimation from 1999Q4 to 2006Q4 ************************************					
Regressor	Coefficient	Standard Error	T-Ratio[Prob]		
C	-32.0039	5.8653 -5	5.4565[.000]		
LNER	71768	.88265	81310[.424]		
VAREUR	2343E-3	.0010019	23386[.817]		
LNGDPNED	8.6850	2.0732	4.1892[.000]		
*****	****	*****	*****	*****	
R-Squared	.84511	R-Bar-Squared	.82653		
S.E. of Regressi	on .10727	F-stat. $F(3,$	25) 45.4692[.000]		
Mean of Depen	dent Variable 4	.9036 S.D. of D	ependent Variable	.25754	
Residual Sum o	f Squares .28	766 Equation L	og-likelihood 25	.7434	
Akaike Info. Cr	iterion 21.743	34 Schwarz Bay	vesian Criterion 19	.0088	
DW-statistic	2.3378				
***********	*****	*****	*****	*********	
	Diagnostic Te	ete			
*********	Diagnostic resis				
	************	*****	*****	*****	
* Test Statistic	**************************************	**************************************	**************************************	*****	
* Test Statistic *********	**************************************	**************************************	**************************************	****	
* Test Statistic ************************************	**************************************	**************************************	**************************************	***************	
* Test Statistic ************************************	**************************************	**************************************	**************************************	**************************************	
* Test Statistic ************************************	**************************************	**************************************	**************************************	**************************************	
* Test Statistic ************************************	**************************************	**************************************	**************************************	**************************************	
* Test Statistic ************************************	**************************************	**************************************	**************************************	**************************************	

A:Lagrange multiplier test of residual serial correlation

B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals

D:Based on the regression of squared residuals on squared fitted values

Slovakia

Orc	linary Least Squ	uares Estimation		

Dependent variable is LNXSVK				
29 observations used for estimation from 1999Q4 to 2006Q4 ************************************				
Regressor	Coefficient	Standard Error	T-Ratio[Prob]	
С	-2.2302	1.6067 -1	.3880[.177]	
LNER	30860	.40348	76484[.452]	
VARSKK	7938E-3	.4230E-3	-1.8766[.072]	
LNGDPSVK	1.8177	.18786	9.6758[.000]	

R-Squared S.E. of Regressio	.87990 on .08644	R-Bar-Squared 2 F-stat. F(3	.86549 , 25) 61.0520[.000]	

Mean of Dependent Variable 4.8591 S.D. of Dependent Variable .23569 Residual Sum of Squares .18680 Equation Log-likelihood 32.0032 Akaike Info. Criterion 28.0032 Schwarz Bayesian Criterion 25.2686 DW-statistic 1.3791 **Diagnostic Tests** Test Statistics * LM Version * * * F Version * * * * * A:Serial Correlation*CHSQ(4)= 7.4971[.112]*F(4, 21)= 1.8304[.161]* * * B:Functional Form *CHSQ(1)= .021052[.885]*F(1, 24)= .017435[.896]* * * *CHSQ(2)= .75298[.686]* Not applicable * * C:Normality * * D:Heteroscedasticity*CHSQ(1)= 1.4588[.227]*F(1, 27)= 1.4302[.242]* ***** ***** A:Lagrange multiplier test of residual serial correlation B:Ramsey's RESET test using the square of the fitted values

C:Based on a test of skewness and kurtosis of residuals