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Abstrakt

Název práce: Skóringové modely ve finanćıch
Autor: Michal Rychnovský
Katedra: Katedra ekonometrie
Vedoućı práce: Ing. Jan Zouhar, Ph.D.

Abstrakt: Ćılem této práce je popsat aplikace modelu logistické regrese pro odhad
pravděpodobnosti defaultu klienta a stručně nast́ınit proces vývoje skóringových
funkćı ve finančńı praxi. Nejdř́ıve uvád́ıme teoretický popis logistické regrese, nás-
ledovaný postupným odvozeńım tř́ı nejpouž́ıvaněǰśıch skóringových model̊u. Poté
přicháźıme s formálńı definićı Giniho koeficientu jako mı́ry diverzifikačńı schopnosti
modelu a odvozujeme výpočetńı formule (Somersova typu) pro jeho odhad. Hlavńı
část́ı práce je potom popis úplného procesu vývoje skóringových funkćı, ilustrovaný
na reálných př́ıkladech z praxe.

Kĺıčová slova: Skóringové modely, kreditńı riziko, logistická regrese.

Abstract

Title: Scoring Models in Finance
Author: Michal Rychnovský
Department: Department of Econometrics
Supervisor: Ing. Jan Zouhar, Ph.D.

Abstract: The aim of the present work is to describe the application of the logistic
regression model to the field of probability of default modeling, and provide a brief
introduction to the scoring development process used in financial practice. We start
by introducing the theoretical background of the logistic regression model; followed
by a consequent derivation of three most common scoring models. Then we present
a formal definition of the Gini coefficient as a diversification power measure and
derive the Somers-type formulas for its estimation. Finally, the key part of this
work gives an overview of the whole scoring development process illustrated on
the examples of real business data.

Keywords: Scoring models, credit risk, logistic regression.
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Introduction

Along with the extensive growth of the financial industry all around the world, it
has become especially important to incorporate various advanced mathematical and
statistical methods to evaluate the possible risks resulting from different investment
activities. These technical solutions provide quick and fully automatic tools that
help the market actors make effective decisions. In this thesis we concentrate on
the field of banking and consumer finance companies providing personal loans to
their customers, and introduce several analytical tools to evaluate the potential risk
of the applicants.1

In practice, all the loan providing institutions have a complete underwriting pro-
cess to evaluate the credit risk of an applicant before issuing the loan. This process
usually consists of two main parts – verification of customers’ personal data (i.e.
ID check etc.) and evaluating the customers’ risk – this part is called scoring. In
the terms of correct definition, we can define scoring as an estimation of the condi-
tional probability of default, given the client’s characteristics.

This paper works with the standard theory of logistic regression introduced for
example in Agresti (1990) or Hosmer and Lemeshow (2000) and its connection to
the probability of default modeling (see e.g. Aspey et al. (2003)). Whereas the theo-
retical part about scoring models has been already described in Rychnovský (2008),
this work outlines the practical aspects of the application in the real financial mar-
ket, and thus provide a comprehensive perspective on this issue. The thesis aims to
serve as a brief introductory guide for beginning underwriting analysts as well as for
anybody interested in this field.

In the first chapter we introduce the basic statistical theory of the logistic regres-
sion model and its application to the probability of default modeling. In the second
chapter we use the assumption of independence of predictors to derive three odds-
based scoring models. Third chapter is then dedicated to the quality of scoring
evaluation in the terms of diversification power, and the most emphasis is put on

1This risk is called credit risk – i.e. the risk carried by the creditor – and is connected to the event
called default. Default is usually defined as a violation of debt contract conditions, such as a lack
of will or a disability to pay the loan back. Then, in the case of client’s default, the creditor suffers
a loss.
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the definition and use of the Gini coefficient. Finally, in the last chapter we de-
scribe more details about the development and implementation of scoring models in
practice. Here we offer a complete guideline from the definition of default and data
sample preparation, over the predictors’ selection and categorization, up to the fi-
nal model building and testing. Furthermore, to demonstrate the whole process on
the examples from the real world financial market we analyze the existing business
data and provide possible results of the model.
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Chapter 1

Logistic Regression

In this chapter, mainly based on Agresti (1990) and Hosmer and Lemeshow
(2000), we introduce the logistic regression model as a widely used tool for proba-
bility of default estimation. First we describe the logic of the model and then the
maximum likelihood approach to estimate its parameters and to test their signifi-
cance.

1.1 Logistic Regression Model

For a given vector x = (x0, . . . , xp)′ of client’s characteristics we consider a
random variable Yx with an alternative distribution (where Yx = 1 for default and
Yx = 0 otherwise). Then the expected value of Yx can be written as

E(Yx) = 1 · P(Yx = 1) + 0 · P(Yx = 0) = P(Yx = 1) = π(x),

where π(x) = P(Yx = 1) is the conditional probability of default given the vector of
predictors x.

The aim of this section is to find a convenient model to describe the dependence
of the probability of default π(x) on the vector of clients characteristics x. The first
model we might think of is the linear regression model

π(x) = β′x.

with a vector of parameters β = (β0, β1, . . . , βp)
′.

Even though this model is in practice for its simplicity sometimes used as well,
it is generally not suitable for binary target variables. This is mainly because of
the fact that π(x) is a value of probability in the interval [0, 1], whereas the linear
regression estimated values (i.e. β′x) can be any real numbers.
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Therefore, we define a function called odds as the ratio of the probability of
default and its complement (i.e. the probability of recovery),

odds(x) =
P(Yx = 1)

P(Yx = 0)
=

π(x)

1− π(x)
. (1.1)

The values of this function are then in the interval [0,∞). Now, in order to get
the values in all R, we use logarithmic transformation. This function is then called
logit and is defined as

logit(x) = ln
(
odds(x)

)
= ln

(
π(x)

1− π(x)

)
. (1.2)

If we finally set logit(x) = β′x, we get the specific formula for the logistic
regression model in the form

π(x) =
eβ′x

1 + eβ′x
. (1.3)

Generally, instead of the logit function (1.2) (and its inverse (1.3) respectively)
any other transformation from [0, 1] to R can be used. For example for the dis-
tribution function Φ of the standard normal distribution, we can define the probit
function as

probit(x) = Φ−1
(
π(x)

)
.

However, the logit function is often preferred for its simplicity – formulas (1.2) and
(1.3) are closed and easy to compute. Moreover, the parameters have a straightfor-
ward interpretation, since for a positive unit change of a characteristic xi, the odds
of the client is multiplied by eβi .

1.2 Parameters Estimation

Generally, we assume a sample of n independent clients where for each client
k we have a vector of characteristics (also called predictors or regressors) xk =
(x0

k, . . . , x
p
k)

′ and the target value yk, where yk = 1 in the case of default and yk = 0
otherwise. Our aim is now to estimate the parameters of the model, i.e. vector β
from formula (1.3).

For estimating of parameters of the linear regression model we usually use the
least squares method based on the minimization of the sum of squared differences
between the real and the estimated values. On the other hand, for the logistic model,
we often refer to the maximum likelihood method as an alternative. For more details
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about the maximum likelihood method see for example Lehmann and Casella (1998)
or Van der Vaart (2000).

The maximum likelihood method is based on the construction of the likelihood
function. For every vector of parameters β this function expresses the probability
that exactly all the observations happen. The maximum likelihood estimate of β is
then such a vector β̂ for which this probability is maximal.

Let’s construct the likelihood function for our regression. Using the expression
π(x) from (1.3), we can write the conditional probability that the client k will have
the target value yk as

P(Yxk
= yk) = π(xk)

yk
(
1− π(xk)

)1−yk .

This means that for yk = 1 it is the probability π(xk), and for yk = 0 the probability
1− π(xk).

As the observations are assumed to be independent, we can define the likelihood
function l(β) as the product of the conditional probabilities for independent clients,

l(β) =
n∏

k=1

π(xk)
yk
(
1− π(xk)

)1−yk . (1.4)

In order to find the maximum of this function, we first use logarithmic transfor-
mation. This transformation does not affect the point of the extreme and makes the
function more convenient for differentiation. Thus we get

L(β) = ln
(
l(β)

)
=

n∑
k=1

(
yk ln

(
π(xk)

)
+ (1− yk) ln

(
1− π(xk)

))
. (1.5)

Now we can compute the partial derivatives of (1.5) with respect to β0, β1, . . . , βp

and set them equal to zero. For this we consider the function π from (1.3) as a
function of β and x. This way we get a set of so called likelihood equations in the
form

n∑
k=1

(
yk − π(xk)

)
= 0 (1.6)

n∑
k=1

xi
k

(
yk − π(xk)

)
= 0, (1.7)

for i = 1, 2, . . . , p where xi
k is the i-th component of the vector xk.

This nonlinear set of equations is usually solved numerically using a special
statistical software (e.g. SAS, SPSS, EViews etc.). By solving these equations we

get the maximum likelihood estimate β̂ of the vector of parameters β.
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From the asymptotic properties of the maximum likelihood estimates (see for

example Rao (1973)) we can also get the asymptotic estimates ŜE(β̂i) of the standard

errors of the estimated parameters β̂i. These are based on the information matrix
I(β) =

(
i(β)ij

)p
i,j=0

defined as

i(β)ij = −∂2L(β)

∂βi∂βj

=
n∑

k=1

xi
kx

j
kπ(xk)

(
1− π(xk)

)
.

The variation matrix Var(β) we then get as the inverse of the information matrix,
Var(β) = I−1(β). Then the variance Var(βi) of the i-th component of β is the i-
th diagonal component of the variation matrix Var(β). Finally, by substitution of

β̂ we get the asymptotic estimate of the variance V̂ar(β̂i) and also the asymptotic
estimate of the standard error of i-th parameter,

ŜE(β̂i) =

√
V̂ar(β̂i). (1.8)

1.3 Significance of Parameters

After we have the maximum likelihood estimate β̂ of parameters, we focus on
the statistical significance of the model, as well as the statistical significance of its
individual parameters. Our aim is not to deal with goodness of fit characteristics (in
an absolute sense), but to evaluate how much the individual coefficients contribute
to the fit of the model (in a relative sense).

We start with the tests about individual parameters. From the asymptotic nor-
mality of the maximum likelihood estimates (see for example Rao (1973)) we know
that

β̂i − βi

ŜE(β̂i)

a∼ N(0, 1).

Thus we can construct the standard Wald test as the ratio of the maximum
likelihood estimate β̂i and its standard error ŜE(β̂i) as

W =
β̂i

ŜE(β̂i)
. (1.9)

Under the null hypothesis that βi = 0, W has the standard normal distribution.
Therefore, if for a given significance level α, |W | is greater than the correspondent
quantile z1−α

2
of the standard normal distribution, we reject the null hypothesis, and

this parameter is significant (with a confidence level of 1− α).
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Based on the Wald test we can also construct the confidence intervals for indi-
vidual parameters for a given α as

βi ∈
(
β̂i − z1−α

2
ŜE(β̂i), β̂i + z1−α

2
ŜE(β̂i)

)
. (1.10)

Now let’s have a look at the statistical significance of a set of parameters or the
model as whole. For the linear regression model we use the residual sum of squares
given by

RSS =
n∑

k=1

(yk − ŷk)
2

and construct the F test as the ratio of the original (also unrestricted) RSS and
the restricted RSS.

For the logistic regression model we define a similar test based on the likelihood
function. Assume that β̂u is an estimated (unrestricted) vector of parameters,

πu(x) =
e(β̂u)′x

1 + e(β̂u)′x

is its model function and l(β̂u) =
∏n

k=1 πu(xk)
yk
(
1− πu(xk)

)1−yk the corresponding
likelihood function.

If we want to test the statistical significance of a set of q parameters (where

q ≤ p), we denote β̂r the restricted vector of parameters, and again

πr(x) =
e(β̂r)′x

1 + e(β̂r)′x

is its model function and l(β̂r) =
∏n

k=1 πr(xk)
yk
(
1− πr(xk)

)1−yk the corresponding
likelihood function.

Then, under the null hypothesis that all the q parameters are equal to zero, the
statistic

G = −2 ln

(
l(β̂r)

l(β̂u)

)
(1.11)

has the χ2 distribution with q degrees of freedom. Therefore, if G is greater than the
quantile χ2

1−α(q), we reject the null hypothesis with the confidence level 1− α, and
conclude that with probability at least 1 − α one of those parameters is not equal
to zero.
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Chapter 2

Scoring Models

In this chapter we would like to describe the basic principle of the most common
scoring models used in finance. First, we start with some important definitions.

2.1 Odds Ratio Definition

Suppose that our database contains s explanatory categorical1 variables (predic-
tors) for each client, where the i-th variable consists of pi categories. Then put

Z =
{
(i, j) : i ∈ {1, . . . , p}, j ∈ {1, . . . pi, }

}
(2.1)

the set of all ordered pairs (i, j) of variables i and their categories j.

Then for each client k we have the vector

xk =
(
(xi

j)k : (i, j) ∈ Z
)

(2.2)

of dummy variables (i.e. (xi
j)k = 1 if the client k lies in the category j of the variable

i, and (xi
j)k = 0 otherwise). Then we denote by B the index set of all defaulted clients

(we also call them bad clients) and G the index set of all non-defaulted clients (good
clients), and in the same spirit we define

Bi
j =

{
k : k ∈ B, (xi

j)k = 1
}

as the index set of all defaulted clients k lying in the category j of the variable i,
and

Gi
j =

{
k : k ∈ G, (xi

j)k = 1
}

1As we will see in the practical examples in Chapter 4 the scoring models very often consist of
categorical predictors only.
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as the index set of all non-defaulted clients k lying in the category j of the variable
i.

Now, based on the database of the observed clients, we define the total odds as
the ratio of the number of defaulted vs. non-defaulted clients in the sample,

odds =
|B|
|G|

, (2.3)

and also for individual categories j of variable i the oddsi
j for the certain category,

oddsi
j =

|Bi
j|

|Gi
j|

. (2.4)

Finally we define the odds ratio (ORi
j) as the ratio of categorical oddsi

j and total
odds,

ORi
j =

oddsi
j

odds
. (2.5)

2.2 Fundamental of Scoring Models

In the beginning we remark that the notation of the variable odds from (2.3) is
consistent with the function odds(x) from (1.1) because with the usual estimates of
algebraic probabilities we can write

odds =
|B|
|G|

=

|B|
|B∪G|
|G|

|B∪G|

≈ P(Y = 1)

P(Y = 0)
.

Now estimate the value of the theoretical function odds(x) from definition (1.1)
based on the empirical values for the introduced variables. We write

odds(x) =
P(Yx = 1)

P(Yx = 0)
≈

|Bx|
|Bx∪Gx|
|Gx|

|Bx∪Gx|

=
|Bx|
|Gx|

, (2.6)

where we denote
Bx =

{
k : k ∈ B, xk = x

}
as the index set of all defaulted clients with the vector of characteristics x, and

Gx =
{
k : k ∈ G, xk = x

}
as the index set of all non-defaulted clients with the vector of characteristics x.

9



As the values |Bx| and |Gx| are dependent on concrete combinations of values of
the vector x, it is usually not convenient to estimate odds(x) using (2.6).2 Therefore,
we alter this expression

odds(x) =
|Bx|
|Gx|

=
|B|
|G|

|Bx|
|B|
|Gx|
|G|

. (2.7)

As the expression |Bx|
|B| can be interpreted as an empirical estimate of the probabil-

ity that a defaulted client will have the vector of characteristics x, we can under the
assumption of independence of predictors3 rewrite this probability as the product of
individual probabilities for individual predictors as

|Bx|
|B|

=
∏

(i,j)∈Z

( |Bi
j|

|B|

)xi
j

.

This means that we compute the product for all categories where xi
j = 1 (i.e. all

relevant categories). In the same spirit we can express |Gx|
|G| and substitute into (2.7).

Thus we get

odds(x) =
|B|
|G|

∏
(i,j)∈Z

(
|Bi

j |
|B|

)xi
j

∏
(i,j)∈Z

(
|Gi

j |
|G|

)xi
j

=
|B|
|G|

∏
(i,j)∈Z

 |Bi
j |

|Gi
j |

|B|
|G|


xi

j

. (2.8)

Finally, using the introduced notation we get the estimate of odds(x) in the form

odds(x) = odds
∏

(i,j)∈Z

(
oddsi

j

odds

)xi
j

= odds
∏

(i,j)∈Z

(ORi
j)

xi
j . (2.9)

This expression, together with the assumption of independence of predictors,
forms the basics of the Independence model.

2.3 Independence Model

The Independence model is the simplest from the three introduced scoring mod-
els. The scoring function is based only on the computed values of odds and ORi

j and

2There are
∏p

i=1 pi of those combinations which leads generally to very few observations in the
single segments; and thus, the estimation of the probabilities would be very inaccurate.

3This assumption can be in practice sometimes difficult to fulfill (especially with a higher number
of predictors); and therefore, we often choose more robust models instead.
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can be according to the previous theory represented in the following way

SIM(x) = odds
∏

(i,j)∈Z

(ORi
j)

xi
j , (2.10)

where x =
(
xi

j : (i, j) ∈ Z
)

is the set of dummy variables representing the client.
Sometimes also a logarithm of this function is used as a scoring function – in this
case the score value corresponds to logit(x),

ln
(
SIM(x)

)
= ln(odds) +

∑
(i,j)∈Z

xi
j ln(ORi

j). (2.11)

The main disadvantage of this model is the assumption of independence and
the fact that all categories have the same weights. Even though the assumption of
independence is in practice seldom completely fulfilled, this model is for its sim-
plicity often used (especially with a low number of predictors which are not much
dependent). There are two more models generalizing this approach by adding a
nonnegative weight to each variable or even to each category.

2.4 WOE Model

Another approach to model the probability of default is the WOE model (for
Weight of Evidence) as a generalization of the function (2.10), where to all variables
we assign a weight according to their statistical importance in contribution to the
final fit. This way we get the scoring function in the form

SWOE(x, λ) = odds
∏

(i,j)∈Z

(ORi
j)

λixi
j , (2.12)

where x =
(
xi

j : (i, j) ∈ Z
)

is again the set of predictors and λ =
(
λi : i ∈ {1, . . . , p}

)
is a vector of parameters (weights) for individual predictors.

Again, the scoring function (2.12) is the estimation of the function odds(x).
Thus, for logit(x) we get a logarithm of the scoring function in the form

ln
(
SWOE(x, λ)

)
= ln(odds) +

∑
(i,j)∈Z

λixi
j ln(ORi

j). (2.13)

From this form of logit(x) we can then estimate the vector of parameters λ =
(
λi :

i ∈ {1, . . . , p}
)

using the logistic regression introduced in Chapter 1.

This model is computationally more difficult than the Independence model but
especially for the databases with higher number of defaults it can provide more
precise estimates of probabilities of defaults. According to Aspey et al. (2003), the
WOE model is suitable for databases with at least 150 defaults.
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2.5 Full Logistic Model

Finally, in the Full logistic model we put a certain weight to each category of the
categorical variables (i.e. to each dummy variable). The scoring function is then in
the form

SFLM(x, λ) = odds
∏

(i,j)∈Z

(ORi
j)

λi
jxi

j , (2.14)

where x =
(
xi

j : (i, j) ∈ Z
)

is again the set of predictors and λ =
(
λi

j : (i, j) ∈ Z
)

is a vector of parameters for all the individual categories of predictors.

These parameters we again estimate using the logistic regression from the form
for logit(x), i.e. from the logarithm of the scoring function,

ln
(
SFLM(x, λ)

)
= ln(odds) +

∑
(i,j)∈Z

λi
jx

i
j ln(ORi

j). (2.15)

This model is the most flexible but also the most complicated from the three in-
troduced models. According to Aspey et al. (2003), the full logistic model is suitable
for databases with at least 1200 defaults. For a comparison of these three models
we refer to Rychnovský (2008).

From the form (2.15) we can see that due to the used logit function this approach
is equivalent to the logistic regression model introduced in Chapter 1. In the following
text we refer to this model and in Chapter 4 we show a real example of this model
and introduce its development.
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Chapter 3

Quality of Scoring

In this chapter we describe one of the most important characteristics of a scoring
model – its diversification power – and introduce two different measures to evaluate
and compare this quality of different models.

3.1 Diversification Power

By diversification power we mean the ability of a scoring model to distinguish
bad clients (i.e. the clients who will default) from good clients. We know that every
scoring model assigns to each client a score value (e.g. the estimated probability of
default). If we then order the clients according to their scores we get an ordering of
clients from which we can see how powerful the model really is.

For an ideal scoring model we would get a line where all the clients with low
score would be good and all the clients with high score would be bad (see Figure
3.1). On the other hand for a random model (i.e. very bad scoring) we would get a
random distribution of good and bad clients in the whole scoring scale (see Figure
3.2).

Figure 3.1: Example of an ideal scoring model.

However, even for a real scoring model it can happen that a client defaults, even
though his score is low; and on the other hand, a client with high score might pay

13



Figure 3.2: Example of a random scoring model.

everything in time. Thus, in reality we get a line where for low score values there
are majority of good clients with a few bad clients among them, and for increasing
score values we get higher proportion of bad clients with some good clients among
them (see Figure 3.3).

Figure 3.3: Example of a real scoring model.

From these examples we can see that the ideal model has a very good diversifica-
tion power, whereas the random model is not useful at all. Our aim is then to find a
model which is as close as possible to the ideal model and as far as possible from the
random model. Therefore, for measuring the diversification power of scoring models,
we introduce the Gini coefficient.

3.2 Gini Coefficient

The term of the Gini coefficient is well known from economics where – together
with the Lorenz curve – it is used for measuring the inequality of income or wealth
in some populations, usually states or regions. However, in the following text we
concentrate on its use in the scoring diversification power measurement. First we
present a formal definition and then we introduce several ways to compute its value
for the whole scoring model performance, as well as for a single predictor.

3.2.1 Definition of the Gini Coefficient

First denote S =
{
S(x), x ∈ X

}
the set of all values of a scoring function

S(x). Then for every value of score s ∈ S we define the distribution function of bad
clients FB(s) as the probability that a randomly chosen bad client will have a score

14



lower then s; and analogically, the distribution function of good clients FG(s) as the
probability that a randomly chosen good client will have a score lower then s.

The explicit distribution functions FG(s) and FB(s) are in practice not known;
and therefore, they are usually replaced by their consistent estimates. The function
FB(s) is estimated as the ratio of bad clients with scores lower than s and all bad
clients, and the function FG(s) is estimated as the ratio of good clients with scores
lower than s and all good clients.

Then we can define the distribution curve1 as the connection of the set

L =
{[

FB(s), FG(s)
]
∈ R2 : s ∈ S

}
, (3.1)

for all values s ∈ S of the scoring function. Then this curve lies in the unit square
connecting the opposite corners (see Figure 3.4).

Figure 3.4: Distribution curve.

We can see that the better diversification power of the model, the closer the
distribution curve is to the edges of the unit square. Therefore, we can describe the
Gini coefficient as the ratio of the oriented area between the distribution curve and
the diagonal of the square (A) and the total area above the diagonal (A + B), thus
GC = A

A+B
(see Figure 3.4).

1This curve is often called ROC curve (from Receiver Operating Characteristic, for more infor-
mation see for example Hanley et al. (1983) or Witzany (2010)) or Lorenz curve.
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Using the fact that the total area above the diagonal is one half of the unit
square (A + B = 1

2
), we can reformulate the expression as GC = 2A. Thus we get

the formal definition in the form

GC = 2

∫
S

(
FG(s)− FB(s)

)
dFB(s) (3.2)

or equivalently

GC = 2

∫
S

FG(s) dFB(s)− 1. (3.3)

The value of the Gini coefficient is then in the interval [−1, 1], where GC = 1
for an ideal diversification power (corresponding to the ideal model from Figure
3.1); GC = 0 for a zero diversification power (for example the random model from
Figure 3.2), and negative values (i.e. the distribution curve below the diagonal) for
a reversal model (i.e. with a contradictory classification).

3.2.2 Computing Gini Coefficient for Model

Assume now that in the model there are no two clients having the same score
value. We take the formal definition of the Gini coefficient introduced in the previous
paragraph and explore a bit more about its real meaning.

Again, as on page 8, we denote by B the index set of all bad clients and G the
index set of all good clients. Then denoting sk the score of the k-th client we can
estimate the distribution functions of bad and good clients as

FB(s) = P(sk < s|k ∈ B) =
|{k : k ∈ B, sk < s}|

|B|

and

FG(s) = P(sk < s|k ∈ G) =
|{k : k ∈ G, sk < s}|

|G|
.

Then the integral from the definition of the Gini coefficient (3.3) can be expressed
as the sum ∫

S

FG(s) dFB(s) =
n∑

l=1

FG(sl) P(sk = sl|k ∈ B).

Because we assume that no two clients have the same score, we have P(sk =
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sl|k ∈ B) = 0 for all l ∈ G and P(sk = sl|k ∈ B) = 1
|B| for all l ∈ B. Thus we get∫

S

FG(s) dFB(s) =
n∑

l=1

FG(s) P(sk = sl|k ∈ B) =
1

|B|
∑
l∈B

FG(sl) =

=
1

|B|
∑
l∈B

|{k : k ∈ G, sk < sl}|
|G|

=

=
1

|B| · |G|
∑
l∈B

|{k : k ∈ G, sk < sl}|.

In the last expression we can denote a =
∑

l∈B |{k : k ∈ G, sk < sl}| as the
number of all pairs of a good and a bad client where the good client has lower score
than the bad client (i.e. number of pairs in a correct order). If we moreover define
b =

∑
l∈B |{k : k ∈ G, sk > sl}| as the number of all pairs of a good and a bad client

where the good client has higher score than the bad client (i.e. number of pairs in
an incorrect order), we get that |B| · |G| = a + b is the number of all pairs of good
and bad clients and the integral can be expressed in the form∫

S

FG(s) dFB(s) =
a

a + b
. (3.4)

After substitution to (3.3) we get

GC = 2
a

a + b
− 1 =

a− b

a + b
. (3.5)

Example 3.1. Using the formula (3.5) we estimate the Gini coefficient of the ex-
ample model from Figure 3.3, as

a = 2 · 5 + 4 · 4 + 3 · 3 + 1 · 2 = 37,

b = 4 · 1 + 3 · 2 + 1 · 3 = 13;

and thus, GC = 0.48.

If we now abandon the assumption that no two clients have the same score, we
can estimate the Gini coefficient by the Somers’ d statistic as

d =
a− b

a + b + c
, (3.6)

where again a =
∑

l∈B |{k : k ∈ G, sk < sl}| is the number of all pairs of a good and
a bad client where the good client has lower score than the bad client (i.e. number
of pairs in a correct order – also called concordant); b =

∑
l∈B |{k : k ∈ G, sk > sl}|

is the number of all pairs of a good and a bad client where the good client has
higher score than the bad client (i.e. number of pairs in an incorrect order – also
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called discordant), and c =
∑

l∈B |{k : k ∈ G, sk = sl}| is the number of all pairs
of a good and a bad client where the good client has the same score as the bad
client (also called irrelevant). This statistics is then used in practice to estimate
the Gini coefficient of scoring models. For more information about the Somers’ d in
categorical data analysis please refer to Somers (1962).

Sometimes, the Gini coefficient is described using the number of interchanges of
neighboring clients necessary to achieve the ideal model. Then we can compute the
Gini coefficient as

GC =
mr −m

mr

,

where m is the number of interchanges necessary for the measured model, and
mr = |G|·|B|

2
is the number of interchanges necessary for a random model. Considering

the fact that m = b and mr = a+b
2

, this approach is equivalent to the formula (3.5).

Example 3.2. For the example model from Figure 3.3 we see 13 interchanges in
Figure 3.5). For a random model we need 1

2
· |G| · |B| = 25 interchanges. Then

GC = 25−13
25

= 0.48.

Figure 3.5: Gini calculation example.
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3.2.3 Computing Gini Coefficient for Predictors

So far we introduced the Gini coefficient as a measure of the diversification power
of scoring models. However, the Gini coefficient is not only useful for comparing the
quality of different models, but also to compare the diversification power of single
predictors. Based on this we can do the preliminary data exploration to understand
which predictors are going to be the most powerful for modeling. Moreover, the Gini
information is also very helpful for categorization and combination of predictors as
we see in Section 4.2.

Even in this case the Gini coefficient is computed using the Somers’ d statistics
(3.6). Imagine for example that we have a predictor with three categories with
different risk performance (let’s call them high, middle and low). Then again denote
G the number of good clients, B the number of bad clients and G1, G2, G3, B1, B2,
B3 the number of good and bad clients in the respective categories (see Table 3.1).

Category Good Bad

high G1 B1

middle G2 B2

low G3 B3

Total G B

Table 3.1: Categorical predictor distribution.

Then all the B1 bad clients from the high category form concordant pairs with
all the G2 and G3 good clients from the better categories. Also the B2 bad clients
from the middle category form concordant pairs with the G3 good clients from the
low category. Therefore, there are a = B1(G2 + G3) + B2G3 concordant pairs in the
model. Analogically, we can compute the b = B3(G1 + G2) + B2G1 discordant pairs.
Finally, we know that for all the pairs in the model we have a + b + c = GB; and
thus,

d =
a− b

a + b + c
=

B1(G2 + G3) + B2G3 −B3(G1 + G2)−B2G1

GB
. (3.7)

If we now define g1 = G1

G
, g2 = G2

G
, g3 = G3

G
and b1 = B1

B
, b2 = B2

B
, b3 = B3

B
as the

proportions of good and bad clients in the respective categories, we get the Somers’
d from (3.7) in the form

d = b1(g2 + g3) + b2g3 − b3(g1 + g2)− b2g1. (3.8)

If we finally denote g = (g1, g2, g3)
′, b = (b1, b2, b3)

′ and U be the upper triangular
unit matrix, we get

d = g′(U ′ − U)b, (3.9)
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because we have

g′(U ′−U)b = (g1, g2, g3)

 0 −1 −1
1 0 −1
1 1 0

 b1

b2

b3

 = b1(g2+g3)+b2g3−b3(g1+g2)−b2g1.

In the general case of a predictor with pi categories we again define g = (g1, . . . , gpi
)′,

b = (b1, . . . , bpi
)′ as the proportions of good and bad clients in the respective cat-

egories, and U as the upper triangular unit matrix. Then the Somers’ d can be
computed using formula (3.9) – see e.g. Lucas (2004).

In the case of a binary predictor, we can simplify the formula (3.9) using the fact
that b1 + b2 = 1 and g1 + g2 = 1,

d = g′(U ′ − U)b = (g1, 1− g1)

(
0 −1
1 0

)(
b1

1− b1

)
= b1 − g1. (3.10)

Example 3.3. Let’s take the family status as a predictor with three categories. See
the distribution in Table 3.2.

Category Good Bad Good (%) Bad (%) Default rate

Others 2, 944 84 2.0% 3.7% 2.77%
Single 119, 009 1802 80.5% 80.1% 1.49%

Married 25, 797 364 17.5% 16.2% 1.39%
Total 147, 750 2, 250 100% 100% 1.50%

Table 3.2: Family status distribution.

Then the Somers’ d can be computed using the general formula (3.9) as

d = (0.020, 0.805, 0.175)

 0 −1 −1
1 0 −1
1 1 0

 0.037
0.801
0.162

 = 0.026765.

Example 3.4. Let’s take the gender of the client as a binary predictor (see Table
3.3). Then we can compute the Somers’ d using (3.10) as d = 0.874−0.741 = 0.133.

Category Good Bad Good (%) Bad (%) Default rate

Male 109, 475 1, 966 74.1% 87.4% 1.76%
Female 38, 275 284 25.9% 12.6% 0.74%
Total 147, 750 2, 250 100% 100% 1.50%

Table 3.3: Sex distribution.

If we want to use a predictor as numerical (in the case that the default rate is
proportional to the values), we can compute the Gini coefficient using the Somers’
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d statistics directly from (3.6) where we consider the ordering according to this
predictor. Alternatively, we can categorize this predictor by deciles (i.e. ten groups
of equal size from the ordered data) and compute the Somers’ d for these categories.
This approach is also useful to see the monotonicity and linearity of the default rate
performance. For some examples see Section 4.2.

3.3 Lift

The last introduced characteristics in this chapter is lift. For the purpose of
scoring modeling, we define the P% value of lift2 as the ratio of the default rate for
the P% worst cases divided by the default rate for the whole population.

Example 3.5. Let’s compute the 20% lift for the example model from Figure 3.3.
There are total 15 clients in the sample with the overall default rate 1

3
. If we take

the 20% worst clients, we get the default rate 2
3

(see Figure 3.6). Therefore, the 20%
lift of this model is 2.

Figure 3.6: Example of 20% lift.

This characteristic is then very helpful for understanding the impact of using
this scoring function. If we know the original default rate do in population and we
would like to reject P% worst clients according to some scoring function, we can
use the P% lift l(P ) of this function to compute the resulting default rate da of the
approved population.

If we denote dr the default rate of the rejected P% population, we get from the
definition of lift that

l(P ) =
dr

do

. (3.11)

2In practice, the most used are 10% and 20% lifts; however, for concrete purposes other values
are chosen. Sometimes even the complete lift curve (e.g. the values for all P ∈ [10, 90]) is used.
In this case we get some information about the overall model performance – similarly to the
distribution curve.
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As the original default rate do is a weighted average of the default rate da of the
approved part and the default rate dr of the rejected part, we can use the equation

do =
Pdr + (100− P )da

100

to derive the formula

da =
100− Pl(P )

100− P
do. (3.12)

Example 3.6. In the population with default rate 1
3

we would like to use a scoring
function with 20% lift 2 and reject 20% worst clients. Then the default rate of the
approved population will be

da =
100− 20 · 2
100− 20

· 1

3
=

1

4
.

This is possible to compare with Example 3.5; even though, the setting is much more
general.
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Chapter 4

Scoring Development Process

In this chapter we describe a basic approach to develop a scoring function in
practise. Of course, many developers can have different experience and thus dif-
ferent methods to achieve good results; however, this methodology should help to
understand the basic theory of scoring development, and perhaps serve as an ele-
mentary manual for beginning underwriting analysts. The development process is
also illustrated on real data examples from financial practise.1 The data is processed
in SQL, SAS and MS Excel.

4.1 Sample Preparation

The first step in the scoring development process is the preparation of the devel-
opment sample, together with the definition of the target and explanatory variables.

4.1.1 Sample and Target Variable Selection

For development we use a sample of historical data where all defaults are known,
i.e. where we know whether the default occurred in the defined time period or not.
This is then connected with the definition of default and available sample size.

Default is usually defined as a violation of debt contract conditions, such as a
lack of will or a disability to pay a loan back. In the case of closed-end consumer

1The data is provided by an unspecified financial company operating on a foreign consumer
finance market. Some characteristics are therefore excluded or undisclosed to protect the anonymity
and know-how of the company. Consequently, neither the results nor the performance is fully
correspondent with the real market situation.
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loans2 we define defaults for single payments. For example by FPD 30 we denote the
first payment default of 30 days, i.e. the case when the customer didn’t pay their
first instalment within 30 days after the due date. Similarly, we can define FPD 90 as
a 90 days default on first payment or SPD 30 and SPD 90 as defaults on the second
payment.

According to the default definition, a corresponding development sample has to
be chosen. For example, if we want to estimate the probability of 30 days default
on the first payment (i.e. FPD 30), we can use all the data which is more than 30
days after the first due date (i.e. a fresh sample).3 On the other hand, if we want to
predict a 90 days default on the first four payments, we need the data which is at
least 90 days after the fourth payment (i.e. much older sample).4

Of course, the population usually change in time and thus the fresh data is always
more valuable. This is the reason that we seldom consider a life-time default (i.e.
a default on any payment) for estimation, because of the old sample. Instead, we
usually define a so called fraud scoring function for defaults on the first payment and
a default scoring function for defaults on some other payments (e.g. the second to
the fourth payment). This solution then offers a suitable compromise to analytically
estimate the life-time default behavior. In our examples we consider a fraud scoring
function with the FPD 90 definition of default.

Another aspect is the sample size. Again we have to face the problem of balancing
the sample size (the bigger sample the better for the statistical results) and the age
of the sample (bigger sample usually means older data). The chosen solution then
depends on the homogeneity of the market – in a fast growing market the freshness
of the sample is very important whereas for a stable market we can allow older
sample with more data. For our example we use a four months sample of 150,000
loans with 2,500 defaults.5

4.1.2 Predictors – Collection, Definition and Coding

After we have the sample defined, we have to find a set of potential predictors for
the default modeling. The first step is to collect all ideas for potential predictors and
focus on finding as many new predictors as possible. Here we can say that predictors
can be usually found in the following categories.

2A closed-end consumer loan or also consumer installment loan is a loan which the customer has
to repay in a predefined number of payments. Opposite to closed-end loans, there can be open-end
(or revolving) loans where the loan conditions change in time (e.g. credit cards).

3The first due date is usually one month after issuing the loan; and therefore, we can use the
data older than approximately 2 months.

4At least 7 months after the loan issuing.
5Neither the sample size nor the default rate is correspondent to the original sales volume and

default rate of the data providing company.
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• Application data – this is the basic data about the client asked in the loan
application form. In this category we find the demographic predictors (e.g.
gender, education, marital status, number of children, region or city etc.),
employment information (e.g. occupation industry, occupation position, length
of employment, monthly income etc.), credit information (e.g. credit amount,
number of payments, monthly annuity etc.) and a lot of additional information
about the client (e.g. whether the client has a home fix line, how many contact
numbers the client provided and more).

• Historical and behavioral data – if it is a known client (for example a current
client of a bank) or a repeated client (for a consumer finance company), we
can even find some information about the account and credit history of the
client. For a current client of a bank it can be for example information about
turnover in the current account or the volume of deposits; for a repeated loan
client it can be last credit amount, current debt amount, number of payments
successfully paid in time, maximal number of days past due date etc.

• Data from databases – in this category we can have all the available data from
credit bureau (e.g. number of active loans in other campanies, current debt
amount, defaults on other loans etc.) as well as the data from other databases
potentially used in underwriting (e.g. health and social security information,
tax information, availability of the provided contacts in yellow pages etc.).

• Additionally collected data – in this category we can consider all the infor-
mation provided by the employee personally dealing with the customer (e.g.
internal comments) as well as the results of verification of the customer data.

• Other and combined predictors – in this category we can classify all the pre-
dictors not fitting into the previous categories (like selling place information,
application time etc.) as well as the predictors combined using more different
information (like total debt-income ratio, affordability limit etc.).

The next step is then a proper and unique definition of all the variables and
database scripts (usually in an SQL, Oracle, SAS or other syntax) to compute these
predictors from the available database. Here we have to make sure that all the pre-
dictors’ values were really known at the moment of approval of the loan. Even though
this is an elementary message, it is very important to keep in mind – especially when
computing historical and behaviorial characteristics – that all the information has
to be censored to the moment of application of the loan.6 Otherwise we would face
a data inconsistence after implementation of such scoring function.

6This means that even though in our database we can see all the successful payments of the
client up to now, we can use only the number of successful payments paid before the application
date of the loan (the same for other predictors like the maximal number of days past due etc.).
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4.1.3 Training, Testing and Validation Sample

After we have all the predictors for the whole sample, we divide the data into
three parts – training, testing and validation.

• Training sample (usually 50%–70% of the data) is the sample for model de-
velopment.

• Testing sample (usually 30%–50% of the data) is the sample for testing the
performance of the model. This is important mainly for testing the stability
of the model in the sense of overfitting (see Section 4.3).

• Validation sample (usually last period of the data – 14–28 days7) is used for
testing the time stability of the model, i.e. testing the model performance on
a future sample (see Section 4.4).

4.1.4 Inconsistence with Original Data

At the end of this section we would like to mention a short comment about
inconsistence of the sample data with the original population. Imagine first that we
currently have a process where every client is approved. Then we have a sample of
full population where we can observe defaults – i.e. a consistent sample. However,
in reality we usually have some underwriting process already in place (either an old
scoring function or another set of rules to decide which client should be approved);
and thus, some clients are rejected. And as the development sample consists of
approved clients only (because otherwise we cannot observe a default), it is not
fully consistent with the original population. Therefore, monitoring of the newly
implemented scoring function is very important.

There exists one way to eliminate this inconsistence. In some developed systems
there is a small proportion of loans (e.g. 1%–5%) which are approved automati-
cally regardless the approval conditions. If the proportion is small enough, it does
not harm the overall risk performance, and it can provide some information about
defaults on the original population.

4.2 Data Exploration and Variable Categorization

The next step of the scoring development process is the data exploration and cat-
egorization. It means that for every potential predictor we look at its diversification

7Testing on the validation sample is one of the last parts of the scoring development process.
Therefore, if the development is expected to last more than two weeks, it is possible to compute
the validation data later on the new sample of the last two weeks.
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power and try to propose some efficient categorization.

4.2.1 First-Step Data Exploration

At the beginning we look at every single predictor to see its performance – i.e.
a distribution of individual values or a share of categories together with the default
rate on individual segments. At the same time we can compute the predictor Gini
introduced in Section 3.2.3. For this we can use for example SQL, SAS or MS
Excel/VBA.

In the case of categorical predictors we get the share and default rate directly
(see Example 4.1) together with the Gini coefficient. For numerical predictors we
can start the data exploration with histograms (see Example 4.2) or deciles of the
predictor values (see an analogy in Example 4.5).

Example 4.1. Education is a categorical predictor with 7 categories (see the dis-
tribution and default rates in Table 4.1 and Figure 4.1) and Gini value of 14.5%.
We can see that the higher education the better risk performance of the clients. For
the category Master and Above the default rate is higher – this can be caused by two
reasons. Firstly, the sample of the clients with a Master degree is very small (148
clients) and the default rate is caused by only 2 defaults. Secondly, as there is no
verification of the achieved education, it is possible that those (defaulted) clients are
cheating with their education.

Education Population Share Default rate

Elementary School 774 0.5% 3.49%
Junior High School 43,526 29.0% 1.92%
Senior High School 38,268 25.5% 1.61%

Technical Secondary School 41,845 27.9% 1.35%
Junior College 17,059 11.4% 0.98%

Bachelor 8,380 5.6% 0.49%
Master and Above 148 0.1% 1.35%

Total 150,000 100.0% 1.50%

Table 4.1: Data exploration example – Education (Gini 14.5%).

Example 4.2. Employment length (i.e. how many months is the client employed
with the current employer) is a numerical predictor with values from 0 to 980. In
this case the observation of single values does not give us much information and it
is better to see a histogram of values for defined time intervals (see Table 4.2 and
Figure 4.2). With this categorization the Gini value of this predictor is 7.2% (i.e.
lower than for Education). Generally, we can see that with higher employment length
the risk is lower. This is again not that true for very high values where the clients can
be cheating. Moreover, we can see that there are significant peaks for the values with
complete years which suggest that the clients are often rounding this information.
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Figure 4.1: Data exploration example – Education (Gini 14.5%).

Employment length Population Share Default rate

less than 3 months 28,181 18.8% 1.80%
less than 6 months 33,112 22.1% 1.49%
less than 9 months 10,841 7.2% 1.47%
less than 12 months 20,798 13.9% 1.52%
less than 15 months 6,201 4.1% 1.60%
less than 18 months 5,498 3.7% 1.64%
less than 21 months 2,136 1.4% 1.64%
less than 24 months 12,508 8.3% 1.35%
less than 27 months 1,967 1.3% 1.37%
less than 30 months 2,426 1.6% 0.95%
less than 33 months 1,122 0.7% 0.71%
less than 36 months 8,223 5.5% 1.34%
less than 39 months 726 0.5% 1.24%
less than 42 months 1,063 0.7% 1.03%
less than 45 months 594 0.4% 0.34%
less than 48 months 3,437 2.3% 1.28%
more than 48 months 11,167 7.4% 1.31%

Total 150,000 100.0% 1.50%

Table 4.2: Data exploration example – Employment length (Gini 7.2%).

4.2.2 Categorization of Predictors

Usually the variables have many initial values or categories. In that case we
cannot use them as predictors directly (because of the overfitting problem) and we
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Figure 4.2: Data exploration example – Employment length (Gini 7.2%).

have to categorize the output into a smaller number of relevant categories. For this
process we can use the tables of the data exploration step. When grouping the results
we should keep the following principals.

• Default rate – according to this principal we try to group the results with
similar default rates together in the same category, and at the same time
achieve a big difference of average default rate among different categories.
This then helps the diversification power of the categorized predictor. When
doing this we have to always mind the sample size for every value or category –
if the sample size is small then we had better follow the business logic instead.

• Business logic – the second requirement for the categories is to keep the busi-
ness logic and understanding. At every moment we should be able to under-
stand and explain why it makes sense to create this particular categorization.
Especially for small sample categories it is more important to keep the business
logic than the default rate principal.

• Reasonable share – last we try to create categories with reasonable shares. If
the share of a category is very small than the diversification power might be
small as well, even if the difference in default rate is significant.8

Example 4.3. As an example we take client’s age as a predictor to be categorized.
As of the local requirements of the company, a client has to be older than 18 years

8E.g. we have two categories of equal share 50% and default rates 1.3% and 1.7%. Then the
Gini value of this predictor is 6.7% (using formula 3.10). Whereas using a categorization of 5%
share with 0.1% default rate and 95% share with 1.57% default rate, we would get a lower Gini of
4.7%.
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and younger than 56 years to be eligible for a loan. Therefore, we can observe all
values of age between 18 and 55 (see Table 4.3 and Figure 4.3). If we compute the
Gini value for the original predictor (with 38 categories) we get 15.33%. Our aim
is now to propose a categorization into some smaller number of categories (let’s say
2–5) with an understandable business logic and a high value of Gini.9

The business logic in this case suggests that the clients with similar age should
have a similar default rate. Therefore, we start our categorization by ordering the
data by age. Now we can look for age segments with relevant shares and similar
default performance. From Table 4.3 we can see that the segment from 18 to 23 years
has similar risk performance and is less risky comparing to the risk performance of
the segment from 24 to 27 years and the rest of the data. As for the segment 28+ there
are no significant differences (i.e. differences on significant samples and explainable
by a business logic), we can conclude that we have found a reasonable categorization
into three categories – we clearly see the default rate similarity, business logic and
sample relevance. See the results of this categorization in Table 4.4 and Figure 4.4.
The Gini value for this categorization is 12.55%.

Figure 4.3: Variable categorization example – Age (Gini 15.33%).

Especially from Figure 4.4 notice that the first category 18–23 is still over 60%
of the total population; and therefore, it might make sense to divide it into two
categories. If we again look at Table 4.3 we can see that the segment 19–21 is less
risky than the rest of this category. This has a business logic as well as the 18
years old clients are too young (usually fresh high school graduates) and their risk
is therefore a little higher (comparable with the group 22-23). This way we created

9It is clear from the definition of Gini that by merging different categories the original Gini will
decrease.
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Age Population Share Default rate Category 1 Category 2

18 10,794 7.2% 1.32% 18–23 18&22–23
19 17,627 11.8% 1.20% 18–23 19–21
20 19,746 13.2% 1.10% 18–23 19–21
21 17,591 11.7% 1.21% 18–23 19–21
22 14,513 9.7% 1.28% 18–23 18&22–23
23 12,912 8.6% 1.36% 18–23 18&22–23
24 10,392 6.9% 1.55% 24–27 24–27
25 7,458 5.0% 1.70% 24–27 24–27
26 5,682 3.8% 1.88% 24–27 24–27
27 4,706 3.1% 1.91% 24–27 24–27
28 4,592 3.1% 2.16% 28+ 28+
29 3,612 2.4% 2.08% 28+ 28+
30 2,598 1.7% 2.19% 28+ 28+
31 2,462 1.6% 2.48% 28+ 28+
32 1,845 1.2% 2.55% 28+ 28+
33 1,540 1.0% 2.01% 28+ 28+
34 1,435 1.0% 1.67% 28+ 28+
35 1,343 0.9% 3.13% 28+ 28+
36 1,209 0.8% 2.15% 28+ 28+
37 1,104 0.7% 2.17% 28+ 28+
38 1,070 0.7% 2.52% 28+ 28+
39 899 0.6% 3.23% 28+ 28+
40 841 0.6% 2.14% 28+ 28+
41 707 0.5% 1.70% 28+ 28+
42 621 0.4% 1.13% 28+ 28+
43 381 0.3% 3.15% 28+ 28+
44 410 0.3% 0.98% 28+ 28+
45 358 0.2% 1.96% 28+ 28+
46 341 0.2% 1.17% 28+ 28+
47 366 0.2% 0.82% 28+ 28+
48 236 0.2% 1.27% 28+ 28+
49 138 0.1% 2.17% 28+ 28+
50 116 0.1% 2.59% 28+ 28+
51 101 0.1% 1.98% 28+ 28+
52 98 0.1% 0.00% 28+ 28+
53 77 0.1% 0.00% 28+ 28+
54 62 0.0% 0.00% 28+ 28+
55 17 0.0% 5.88% 28+ 28+

Total 150,000 100.0% 1.50% 3 Categories 4 Categories

Table 4.3: Variable categorization example – Age (Gini 15.33%).
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Age category Population Share Default rate

18–23 93,183 62.1% 1.23%
24–27 28,238 18.8% 1.72%
28+ 28,579 19.1% 2.17%
Total 150,000 100.0% 1.50%

Table 4.4: Variable categorization example – Age in 3 categories (Gini 12.55%).

Figure 4.4: Variable categorization example – Age in 3 categories (Gini 12.55%).

a categorization into 4 categories according to the above stated principals. See Table
4.5 and Figure 4.5 for the results. The Gini value for this categorization is 13.53%.

Age category Population Share Default rate

18&22–23 38,219 25.5% 1.32%
19–21 54,964 36.6% 1.16%
24–27 28,238 18.8% 1.72%
28+ 28,579 19.1% 2.17%
Total 150,000 100.0% 1.50%

Table 4.5: Variable categorization example – Age in 4 categories (Gini 13.53%).

For the variable age we now have two proposed categorizations – 4 categories with
Gini 13.53% and 3 categories with Gini 12.55%. Similarly we can propose several
categorizations for every variable and include them all in the modeling. Then in
the model development stage (see Section 4.3) we can decide which categorization
performs best for the concrete model.
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Figure 4.5: Variable categorization example – Age in 4 categories (Gini 13.53%).

4.2.3 Combined Predictors

Often it is useful to combine two or more variables together. This is mainly
the case when the variables (or some of their categories) are correlated, and the
information of their combination can help to achieve better results. Sometimes this
approach is also used to reduce the number of parameters of the model. When
constructing the combined variables, we consider all the combinations of the original
variables and then categorize them into a new variable following the same principles
as in the previous paragraph.

Example 4.4. In Table 4.6 and Figure 4.6 we can see all the combinations of client’s
sex and education and their proposed categorization into 4 categories. Thus we can
get a combined predictor with four categories and Gini 21.12% (see the performance
in Table 4.7 and Figure 4.7.

4.2.4 Numerical Predictors

So far we have been talking only about categorical predictors. Although cate-
gorical predictors are much more common in the scoring modeling, there are some
situations where we can use a numerical predictor instead. An important condition
for using a numerical predictor is the monotonicity of the default rate along the
predictor values.10

10This means that with increasing values of the predictor the default rate has to increase (resp.
decrease) for all the predictor’s range. If the default rate is for example first decreasing and then
increasing (i.e. a ”V” shape), it is recommended to categorize it into several categories.

33



Sex & Education Population Share Default rate Category

Male: Elementary 638 0.4% 4.23% M1

Male: Junior High 34,282 22.9% 2.19% M1

Male: Senior High 29,000 19.3% 1.82% M2

Male: Technical High 30,972 20.6% 1.54% M3

Male: Junior College 11,110 7.4% 1.28% M3

Male: Bachelor 5,339 3.6% 0.67% M4 & F
Male: Master and Above 100 0.1% 2.00% M4 & F

Female: Elementary 136 0.1% 0.00% M4 & F
Female: Junior High 9,244 6.2% 0.89% M4 & F
Female: Senior High 9,268 6.2% 0.93% M4 & F

Female: Technical High 10,873 7.2% 0.79% M4 & F
Female: Junior College 5,949 4.0% 0.42% M4 & F

Female: Bachelor 3,041 2.0% 0.16% M4 & F
Female: Master and Above 48 0.0% 0.00% M4 & F

Total 150,000 100.0% 1.50% 4 Categories

Table 4.6: Variable combination example – Sex & Education (Gini 22.24%).

Figure 4.6: Variable combination example – Sex & Education (Gini 22.24%).

Under this condition the performance of a numerical predictor can be sometimes
better than the performance of a corresponding categorized predictor. Moreover,
for small scorecards (i.e. developed scoring function formulas) the presence of a
numerical predictor can help to extend the number of potential score values (i.e.
decrease the number of ties) – and the scoring function is then easier to implement
in production.11

11With a small scorecard (e.g. with only 5 parameters of categorized predictors) it can happen
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Sex & Education Population Share Default rate

Male: Elementary & Junior High 34,920 23.3% 2.23%
Male: Senior High 29,000 19.3% 1.82%

Male: Technical High & Junior College 42,082 28.1% 1.47%
Male: University & Female 43,998 29.3% 0.73%

Total 150,000 100.0% 1.50%

Table 4.7: Variable combination example – Sex & Education in 4 categories (Gini
21.12%).

Figure 4.7: Variable combination example – Sex & Education in 4 categories (Gini
21.12%).

Example 4.5. As an example of a suitable numerical predictor we can take the
down payment rate, i.e. the percentage of the product price paid by the client as an
initial payment at the moment of approving the loan. If we create 10 equal size groups
according to the dawn payment values (i.e. deciles), we can see from Table 4.8 and
Figure 4.8 that the default performance is really monotonous along the down payment
range (the higher down payment the lower risk). Therefore, we can try to use this
predictor (or its transformation) as numerical. At the same time, we categorize this
predictor and let the model select the better one.

that there are many clients with the same score and it might be difficult to setup who should be
approved and who should be rejected. A numerical predictor can help to spread the score values
for easier diversification.
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Down payment Population Share Default rate

1st decile 15,000 10.0% 2.36%
2nd decile 15,000 10.0% 1.84%
3th decile 15,000 10.0% 1.84%
4th decile 15,000 10.0% 1.81%
5th decile 15,000 10.0% 1.80%
6th decile 15,000 10.0% 1.48%
7th decile 15,000 10.0% 1.41%
8th decile 15,000 10.0% 1.19%
9th decile 15,000 10.0% 0.85%
10th decile 15,000 10.0% 0.42%

Total 150,000 100.0% 1.50%

Table 4.8: Numerical variable example – Down payment in 10 categories (Gini
19.75%).

Figure 4.8: Numerical variable example – Down payment in 10 categories (Gini
19.75%).

4.3 Scoring Modeling

Once we have the initial categorization done, we can start with the actual scoring
modeling. For this we can use any type of statistical modeling software like SAS,
SPSS, Eviews or R.
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4.3.1 Initial Models

Now we are in the situation when we have a great amount of different predictors
and their categorizations (usually more than 100) and we have to select the most
important ones for future development. In this case it is usually advised to start
with an automatic selection process for some initial exploration. By different combi-
nations of the forward selection, backward selection and stepwise selection, we can
distinguish the more and the less valuable predictors.

• Forward selection – helps to identify the most powerful predictors (these are
selected first).

• Backward selection – helps to exclude the less powerful or correlated (dupli-
cate) predictors.

• Stepwise selection – we can use the stepwise selection to build the first initial
models from a selected set of predictors.

• Gini information – the information from the variable exploration and catego-
rization step can also help with predictors evaluation.

• Expert expectation – often also an experience and expectation can help to select
good predictors for future modeling.

After this step we have a smaller set of potential predictors and several initial
models for future development. At this moment we observe the most important
characteristics.

• Training Gini – for the initial models it is useful to observe the value of training
Gini. Usually the initial models have more degrees of freedom (and thus these
are not that stable), and their training Gini then stands for some target value
we are trying to achieve with the smaller and more stable models.

• Testing Gini – provides us the information about the out of sample perfor-
mance of the model. From the perspective of stability and future implementa-
tion, this characteristic is even more important than the training Gini. If the
value of the testing Gini is close to the value of training Gini, then we can say
that the model is not overfitted.

• Degrees of freedom – the number of degrees of freedom is the total number of
parameters estimated. Generally, the fewer degrees of freedom the more stable
model we get.

Example 4.6. We get an initial model with 10 predictors and 21 degrees of freedom.
Then this model has the training Gini value of 44.1% and the testing Gini of 35.3%.
This model is then not very stable and we try to decrease the number of degrees of
freedom by excluding, combining or changing its predictors.

37



4.3.2 Correlation Structure

Another important characteristic of a model is the correlation structure of its
predictors’ categories. Most statistical software enables to compute the estimate of
the correlation matrix for individual parameters (see an example in Table 4.11).
If there is a high correlation coefficient (e.g. higher than 0.1), we should try to
understand the reasons, and (if possible) remove correlation from the model. This
can be achieved by two main approaches.

• Remove one of the predictors – first we can try to remove one of the correlated
predictors. If we see that the Gini of the model decreased a lot, we try to find
another convenient predictor to be used instead.

• Combine the predictors – if we know the reason of correlation, we can combine
the correlated predictors (in the terms of Paragraph 4.2.3).12

Example 4.7. We face the problem of correlation between the predictor document
(i.e. the type of the second document provided) and working industry. This is an
example of an understandable correlation because most students (special industry
type) provide their student card as the second document, whereas most of manufac-
turing workers provide their employer card. Therefore, in this case we can suggest
combining of these two predictors.

4.3.3 Final Candidates

After having the initial models, there is a long process of manual optimization in
order to achieve a stable and well performing model. The process contains mainly
the following activities.

• Manual adding and removing of predictors – we try to decrease the number
of degrees of freedom by removing the least significant predictors. After every
change of the model, we try to add another predictor and watch the sensitivity
of Gini.

• Different categorizations of the same predictors – for some predictors we pre-
pared more different categorizations. In different models different categoriza-
tions can perform better.

• Combinations of predictors based on correlation matrix – we try to replace or
combine the correlated predictors.

12Combined predictors are often used in scoring models; however, it is better to avoid combina-
tions of more than 2 (exceptionally 3) different predictors into one.
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This way we try different combinations of predictors and closely watch the key
performance indicators for the final model candidate.

• Training and testing Gini – the aim is to get the testing Gini value close
to the training Gini (for stability) and both of them reasonably high (for
performance). The target level can be partially given by the original training
Gini for the initial models.

• Significance of parameters – all parameters of the model should be significant.

• Correlation matrix – the correlation matrix should not contain high correla-
tions between different predictors (except for a correlation with intercept and
correlations among different categories of the same predictor).

• Degrees of freedom – the lower number of degrees of freedom (with the same
performance otherwise) the simpler and more stable model.

Example 4.8. After the optimization process we can get a candidate model with
7 predictors, 15 degrees of freedom, training Gini 43.2%, testing Gini 42.8% and
acceptable correlation matrix. See the variable selection in Table 4.9, the parameter
estimates and category description13 in Table 4.10 and the correlation matrix in
Table 4.11.

Predictor Description Categories DF Test Value P-value
x1 Retailer Type 2 1 88.7 < 0.0001
x2 Sex & Education 4 3 165.2 < 0.0001
x3 Industry & Document 4 3 88.0 < 0.0001
x4 Goods & Loan 3 2 34.3 < 0.0001
x5 Submitting Time 3 2 28.2 < 0.0001
x6 Client Age 3 2 76.5 < 0.0001
x7 Down Payment (numerical) 1 241.7 < 0.0001

Table 4.9: Variable selection example.

4.4 Stability Testing and Validation

After having several candidate models (usually 2–3) we can test the time stability
of predictors, performance on a new sample and average score precision for some
important segments – to help us choose the most suitable model.

13Some of the category descriptions are not specific to protect the anonymity and know-how of
the data provider.
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Parameter Predictor Description Category Description Estimate
β0 Intercept Intercept −3.5266
β10 Seller Type Contractor 0
β11 Seller Type Employee −0.5009
β20 Sex & Education Male: University & Female 0
β21 Sex & Education Male: Senior High 0.8288
β22 Sex & Education Male: Technical High & Junior College 0.7408
β23 Sex & Education Male: Elementary & Junior High 1.0403
β30 Industry & Document Combination 1 0
β31 Industry & Document Combination 2 −1.1173
β32 Industry & Document Combination 3 −0.2312
β33 Industry & Document Combination 4 −0.4311
β40 Goods & Loan Cheap Others 0
β41 Goods & Loan Cheap Mobile & Expensive Others 0.4336
β42 Goods & Loan Expensive Mobile 0.6738
β50 Submitting Time Weekend 0
β51 Submitting Time Weekday: 14–18 & 21–23 0.3254
β52 Submitting Time Weekday: Others 0.1498
β60 Client Age 28+ 0
β61 Client Age 18–23 −0.5249
β62 Client Age 24–27 −0.2248
β7 Down Payment Initial Payment Percentage −4.4932

Table 4.10: Parameters estimates example.

4.4.1 Stability Testing

First we look at the time stability of the used predictors. We divide the devel-
opment time period into smaller segments (e.g. months or weeks) and compare the
performance on these segments. Ideally all categories should have a stable share in
time and stable default rates.

• Stable share – instability of share (and especially a significant trend) on the
development sample suggests an instability of future predictors. This can lead
to a changing distribution of score.14

• Stable default rate – this is manly to ensure that there are no changes in
the population behavior for the selected predictors, i.e. that the group order
(according the default rate) keeps stable in time.

Example 4.9. As an example, we take the combined predictor of sex and education
and show the stability on 8 time segments (i.e. half a month for each segment).

14Stability of the score distribution is an assumption of a stable underwriting model. Otherwise,
for fixed score cutoffs (i.e. values of score which divide the applicants into different underwriting
strategies) we would get a changing distribution of underwriting strategies shares, and thus instable
approval rate.
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From Figure 4.9 we can see that the shares are quite stable in time. The default rate
stability in Figure 4.10 is not perfect but still the risk order of the selected categories
is consistent.

Figure 4.9: Share stability testing example – Sex & Education.

Figure 4.10: Default stability testing example – Sex & Education.

4.4.2 Testing on Validation Sample

The next step of the candidate model testing process is the validation sample
testing. As introduced in Paragraph 4.1.3, a validation sample consists of the data
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from a later time period than the development sample data. Therefore, this is a kind
of ex ante prediction performance testing.

Same as for the testing sample, we first prepare all the necessary predictors and
their categorizations used for the candidate models, and then compute the score
for every client using the estimated parameters. Finally, we compute the validation
Gini and compare with the training and testing Gini. Small difference of training
and validation Gini suggests a good time stability of the model.

Example 4.10. We test our candidate model of Example 4.8 on a one month vali-
dation sample data. Comparing the training Gini 43.2% and validation Gini 41.9%,
we can conclude that this model is quite stable in time.15

4.4.3 Testing of Average Score

The final step of the pre-selection testing is the testing of average score. As we
know from Chapter 1, score represents the probability of default; and therefore,
we would like to know how much are the average score values consistent with the
average default rate on some specific segments.

First, we can concentrate on the consistence for different values of score. Here it is
important to know whether high or low values of score overestimate or underestimate
the original default rates. For this we can divide the data sample according to score
into deciles – to compare the average score and default rate.

Example 4.11. For our candidate model of Example 4.8 we divide the data into
deciles according to score, and plot the corresponding values of average score and
default rate into a scatter plot. Ideally, all the points should lay on the diagonal of
the square. From Figure 4.11 we can see that the score values are quite consistent
with the default rates and there is no systematical overestimating or underestimating.

Secondly, we can be interested in the consistence for specific segments of the data.
This is important mainly in the case where the segments are particularly important
for our business strategies – and in this case we want to well understand the score
value meaning (i.e. as the expected default rate).

Example 4.12. Again we take as example our candidate model of Example 4.8.
In Table 4.12 we see the average scores and original default rates for all different
commodity types in our data sample.

15Of course, we can expect a different Gini value after implementation to the real production
(because of the sample inconsistence described in Paragraph 4.1.4), and this value decreasing in
time due to changing population behavior; however, with this performance on the validation sample
we can believe that the decrease will not be that rapid.
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Figure 4.11: Example: average score and default rate comparison.

Segment Average score Default rate
Commodity 1 1.64 % 1.62 %
Commodity 2 0.87 % 0.95 %
Commodity 3 1.44 % 1.35 %
Commodity 4 0.81 % 0.73 %

Table 4.12: Example: average score and default rate comparison – Commodity seg-
ment.

4.5 Final Model Selection

Finally, after performing all the necessary tests (some of them described in Sec-
tion 4.4; others suggested by the developer based on the actual needs) we can select
the final model, which best fits our requirements.

After the final model is selected, we can consider the final re-computation of its
parameters on the full available data - i.e. on the data covering all training, testing
and validation samples. Especially for small development samples, this can help to
strengthen the stability of the model.

Example 4.13. After re-computation of the parameters of our final model (i.e. the
candidate model from Example 4.8), we get the new set of parameters estimates in
Table 4.13. If we compare the results with the original training estimates in Table
4.10, we can see that there is a visible difference. However, the main difference is in
decreasing the standard error of these parameters and thus in reducing the confidence
interval size (see Table 4.14).
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Parameter Predictor Description Category Description Estimate
β0 Intercept Intercept −3.729
β10 Seller Type Contractor 0
β11 Seller Type Employee −0.5162
β20 Sex & Education Male: University & Female 0
β21 Sex & Education Male: Senior High 0.8525
β22 Sex & Education Male: Technical High & Junior College 0.7629
β23 Sex & Education Male: Elementary & Junior High 1.01
β30 Industry & Document Combination 1 0
β31 Industry & Document Combination 2 −0.9452
β32 Industry & Document Combination 3 −0.2622
β33 Industry & Document Combination 4 −0.4171
β40 Goods & Loan Cheap Others 0
β41 Goods & Loan Cheap Mobile & Expensive Others 0.5148
β42 Goods & Loan Expensive Mobile 0.7759
β50 Submitting Time Weekend 0
β51 Submitting Time Weekday: 14–18 & 21–23 0.3168
β52 Submitting Time Weekday: Others 0.1987
β60 Client Age 28+ 0
β61 Client Age 18–23 −0.4915
β62 Client Age 24–27 −0.2042
β7 Down Payment Initial Payment Percentage −3.9964

Table 4.13: Parameters estimates example – full model.

4.6 Monitoring in Production

In this section we add one last comment to the monitoring process after the final
model is implemented in the real production. Again, it is very important to under-
stand that the development sample is different from the original (real) population;
and therefore, we have to closely monitor the scoring performance in production as
well. We should focus mainly on the following characteristics.

• Monitoring of Gini performance – it is useful to monitor the Gini performance
in time after implementation to the real production. This way we can observe
the possibly decreasing trend of the scorecard’s diversification power. More-
over, it is recommended to observe the Gini performance on different target
variables (i.e. first payment default, second payment default etc.) and on differ-
ent segments (i.e. regions or commodities) to see the sensitivity of the function.
In addition to that, we can also monitor the lift development in time.

• Monitoring of predictor shares and default rates – this is the same monitoring
as in Paragraph 4.4.1. Here we can notice the changing share or default rate
performance of different predictors.
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Parameter Training Estimate Standard Error Final Estimate Standard Error
β0 −3.5266 0.1826 −3.729 0.1385
β10 0 − 0 −
β11 −0.5009 0.0532 −0.5162 0.0398
β20 0 − 0 −
β21 0.8288 0.0868 0.8525 0.0646
β22 0.7408 0.0840 0.7629 0.0626
β23 1.0403 0.0814 1.01 0.0612
β30 0 − 0 −
β31 −1.1173 0.1247 −0.9452 0.0879
β32 −0.2312 0.0736 −0.2622 0.0551
β33 −0.4311 0.0912 −0.4171 0.0678
β40 0 − 0 −
β41 0.4336 0.1288 0.5148 0.0990
β42 0.6738 0.1330 0.7759 0.1021
β50 0 − 0 −
β51 0.3254 0.0618 0.3168 0.0464
β52 0.1498 0.0669 0.1987 0.0497
β60 0 − 0 −
β61 −0.5249 0.0613 −0.4915 0.0461
β62 −0.2248 0.0739 −0.2042 0.0555
β7 −4.4932 0.2890 −3.9964 0.2119

Table 4.14: Parameters estimates example – standard error comparison.

• Monitoring of average score – this monitoring is again similar to the tests in
Paragraph 4.4.3. However, the main added value is in the context of the whole
underwriting process. If we have for example different underwriting strategies
for different score segments after the first scoring (i.e. it is possible to reject
the application later based on some additional information), we can observe
the difference between average score and average default rate as the result of
this additional underwriting strategy performance.16

16This can be understood in the following way – we see that the expected default rate of a par-
ticular segment (i.e. the average score) is higher, but it is the result of the additional strategy
that the worst cases of this segment are rejected, and thus the the real default rate is lower than
”expected” by observing the average score.
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Conclusions

The aim of this work was to describe the practical application of the logistic
regression model in the field of credit scoring. Also the scoring development process
was introduced and illustrated on real data examples from a financial market. This
paper can be thus used as a basic guideline for beginning underwriting analysts in
different financial companies as well as for anybody interested in this field.

Although the risk-based underwriting process is probably the most common ap-
proach currently used by banks and other financial institutions, we can think of some
generalizations in the terms of expected profit calculation and dynamic scoring sys-
tems. In that case clients are evaluated not solely based on their risk characteristics
but mainly based on their expected profitability for the loan providing company –
thus it can happen that a client having higher probability of default gets higher in-
terest rate on the loan to balance the risk. This approach then enables an advanced
underwriting management to maximize the company’s profit.

All the models in this thesis are oriented to estimate the credit risk of one single
customer. However, in the terms of portfolio management and portfolio risk eval-
uation it is important to consider also the fact that the customers’ defaults can
be dependent (e.g. a bankruptcy of one employer can cause a default of many cus-
tomers). Therefore, the dependence structure of the portfolio has to be described and
used in the portfolio modeling. One of the most famous (and also most criticized)
solutions introduced in Li (2001) uses copula functions to determine the correla-
tion structure. For more details about portfolio credit risk, copulas and correlation
structure we refer to McNeil et al. (2005) and Rychnovský (2010).

For wider context of credit risk modeling we can recommend for example Hull
(2009) or Witzany (2010). Here we can find the connection of the probability of
default modeling to the capital requirements given by Basel II (2001) as well as
some more references to the portfolio credit risk management.
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Appendix A

Different Approaches to Scoring
Modeling

Although this paper is mainly dedicated to the standard logistic regression scor-
ing models, we would like to mention two different approaches to the probability of
default modeling. This chapter is based on Rychnovský (2010) and original sources.

A.1 Dynamic Models

Whereas the scoring models estimate only the probability of default based on
defaults occurring in some predefined horizon, dynamic models understand the time
until default as a random variable. One of the most common dynamic approaches is
based on survival analysis. This section is based mainly on Kalbfleisch et al. (1980)
and Collett (2003).

A.1.1 Survival Analysis

Survival analysis deals with modeling of the time elapsed until some particular
event occurs (it is called exit or end-point), conditional on the specific characteristics
of the subject. In the case of probability of default modeling we model the time until
default of the client with given characteristics. First we introduce several terms of
survival analysis.

Assume that X is an absolutely continuous nonnegative random variable repre-
senting the time to default of a client. Denote F the distribution function and f the
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density of X. Then we define a hazard function (or intensity) of the client as

λ(t) = lim
h→0+

1

h
P(t ≤ X < t + h|X ≥ t). (A.1)

By a survivor function S(t) we denote the probability that the client will not
default until time t (will survive), i.e. S(t) = 1 − F (t). Using this relation we can
rewrite the hazard function (A.1) into the form

λ(t) = lim
h→0+

F (t + h)− F (t)

h

1

S(t)
=

f(t)

S(t)
= − d

dt
ln S(t). (A.2)

From (A.2) we get also a converse relation

S(t) = exp

[
−
∫ t

0

λ(u)du

]
. (A.3)

Finally, we define a cumulative hazard function as

Λ(t) =

∫ t

0

λ(u)du = − ln S(t). (A.4)

A.1.2 Cox Model

D. R. Cox in Cox (1972) assumed the hazard function of subject k at time t in
the form

λ(t; xk) = λ0(t) exp(x′
kβ), (A.5)

where xk is the vector of characteristics of subject k and β is a vector of parameters.
The function λ0(t) is then called a baseline hazard function, independent of the
client’s characteristics. Due to the fact that the relation

λ(t; xk)

λ(t; xl)
=

exp(x′
kβ)

exp(x′
lβ)

depends only on clients’ characteristics, the Cox model is often called the propor-
tional hazards model.

In Cox (1975) Cox introduced a generalization of (A.5) by implementing time
dependent explanatory characteristics xk(t). This model then assumes the hazard
function in the form

λ(t,xk(t)) = λ0(t) exp(xk(t)
′β). (A.6)

The corresponding survivor function is then

S(t,xk(t)) = P (T > t|xk(t)) = exp

[
−
∫ t

0

λ0(u) exp(xk(u)′β)du

]
.
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Then for the case of discrete time and no multiple defaults at any time, we can
derive the Breslow-Crowley maximum likelihood estimator of the baseline hazard
function. If n is the number of clients in our database, Yk(t) is an indicator that
client k has not defaulted until time t, and dNk(t) is an indicator that client k
defaulted in the time interval (t−1, t], we can estimate the baseline hazard function
as

λ̂0(t) =

∑n
k=1 dNk(t)∑n

k=1 exp
(
x′

k(t)β
)
Yk(t)

. (A.7)

For β we then substitute an estimate β̂. If m is the number of defaulted clients
and t1 < · · · < tm are the observed default times, we can define auxiliary functions
M and N as

M(β, tk) =
exp(xk(tk)

′β)∑n
i=1 Yk(tk) exp(xk(tk)′β)

and

N (β, tk) =
m∑

i=1

Yk(tk)xk(tk)M(β, tk).

Using this notation, the estimate of β can be computed from the expression for the
partial likelihood function by solving the equation

m∑
k=1

[xk(tk)−N (β, tk)] = 0. (A.8)

The t-year probability of default can be in terms of (A.3) and (A.6) then esti-
mated as

π(x, t) = 1− exp

[
−
∫ t

0

λ̂0(t) exp(x′β̂)du

]
, (A.9)

where x is the vector of clients characteristics.

For further details as well as formulas for multiple defaults we refer to Collett
(2003). As a parametric alternative to the Cox model also the Accelerated Failure
Time (AFT) model can be used (see e.g. Kalbfleisch et al. (1980)).

A.2 Structural Models

Both the scoring models and and dynamic models belong to the class of so
called reduced form models. These are easily calibrated to estimate the probability
of default but give no information about the circumstances of the default. This is
on the other hand the main aim of so called structural or firm-value models. These
approaches are designed to model the underlying structure of the firm’s value in
time. In the following text we describe the Merton model as the original concept for
many of the present structural models.
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A.2.1 Merton Model

The original model was introduced in Merton (1974). Consider a firm with a
stochastic value process Vt. Assume that the value Vt of the firm’s assets at time t
consists of its equity value St and its debt value Bt (the value in time t of a single
debt obligation with maturity T and face value B). Thus,

Vt = St + Bt for t ∈ [0, T ]. (A.10)

At time T two situations may occur.

1. VT > B. In this case the value of the firm’s assets exceeds the value of the
debt. Here the debt is fully recovered and the shareholders get the residual
value. Then BT = B and ST = VT −B.

2. VT ≤ B. In this case the value of the firm’s assets is less than its liabilities,
and the firm falls into default. Here all the value of the firm’s assets is paid to
the bondholders. Then BT = VT and ST = 0.

Summarizing these two situations, we get similar expressions as are known from
derivatives pricing models,

ST = (VT −B)+ (A.11)

BT = B − (B − VT )+. (A.12)

Therefore, to develop the Black-Scholes-type pricing model, Merton (1974) makes
the following assumptions:

1. There are no transactions costs, taxes, or problems with indivisibilities of as-
sets.

2. There is a sufficient number of investors with comparable wealth levels so that
each investor believes that he can buy and sell as much of an asset as he wants
at the market price.

3. There exists an exchange market for borrowing and lending at the same rate
of interest.

4. Short-sales of all assets, with full use of the proceeds, is allowed.

5. Trading in assets takes place continuously in time.

6. The Modigliani-Miller theorem that the value of the firm is invariant to its
capital structure obtains.
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7. The term-structure is ”flat” and known with certainty. I.e., the price of a
riskless discount bond which promises a payment of one dollar at time T in
the future is P (T ) = exp[−rT ] where r is the (instantaneous) riskless rate of
interest, the same for all time.

8. The dynamics for the value of the firm, Vt, through time can be described by
a diffusion-type stochastic process with stochastic differential equation

dVt = (αVt − C)dt + σVtdWt, (A.13)

where α is the instantaneous expected rate of return on the firm per unit time,
C is the total dollar payouts by the firm per unit time to either its shareholders
or liabilities-holders (e.g., dividends or interest payments) if positive, and it
is the net dollars received by the firm from new financing if negative; σ2 is
the instantaneous variance of the return on the firm per unit time; dWt is a
standard Wiener process.

According to (A.11), the equity value at the terminal time T corresponds to a
European call option on Vt with strike price B and maturity T . Then the value of
the equity today can be expressed in the Black-Scholes-type formula,

S0 = V0Φ(d1)−Be−rT Φ(d2), (A.14)

where Φ is the cumulative distribution function of the standard normal distribution,
and

d1 =
ln V0

B
+ (r + 1

2
σ2)T

σ
√

T
, (A.15)

d2 = d1 − σ
√

T . (A.16)

Moreover, under the risk neutral measure Q we have

ln VT ∼ N

(
ln V0 + (r − 1

2
σ2)T, σ2T

)
.

And thus at time t = 0 we get the probability of default as

π = Q(VT ≤ B) = 1− Φ

(
ln V0

B
+ (r + 1

2
σ2)T

σ
√

T
− σ

√
T

)
, (A.17)

i.e. in the form π = 1− Φ(d2).

For more information about structural models together with some applications
we refer to McNeil et al. (2005) or Schönbucher (2003).
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