University of Economics, Prague

Faculty of Business Administration

Master's Thesis Evaluation by the Supervisor

Title of the Master's Thesis:

Value at Risk models for Energy Risk Management

Author of the Master's Thesis:

Bc. Martin Novák

Goals of the Master's Thesis:

Assuming that there are several commonly used models and concepts measuring risks of underlying assets, what is the optimal risk concept in case of energy commodities and what are the major conceptual differences pertaining to them?

EVALUATION OF THE MASTERS' THESIS	
Criteria (each max 10 points)	Points awarded
1. The goals of the thesis are evident and accomplished	10
2. Demands on the knowledge	10
3. Adequacy and the way of the methods used	8
4. Depth and relevance of the analysis in relation to goals	8
5. Making use of literature/other resources, citing	9
6. The thesis is a well-organised logical whole	10
7. Linguistic and terminological level	10
8. Formal layout and requirements, extent	10
9. Originality, i.e. it is produced by the student	10
10. Practical/theoretical relevance/applicability	10
Total score in points (max 100)	95
Final grading	Excellent (1)

Overall evaluation, additional questions or comments:

The submitted diploma thesis is very well structured and more than fulfills all requirements pertaining to it. The question to answer: The statistical properties of most financial times series resist to be fitted to commonly used probability distributions. Do you think that Mandelbrot and his fractals might help? Do you know any other more advanced techniques apart from historical simulations and Brownian motion-like approaches?

The name of the supervisor: Jiří Hnilica, PhD

The employer of the supervisor:

University of Economics, Prague

04 September 2011

Signature of the supervisor