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Supervisor: doc. RNDr. Ing. Michal Černý, Ph.D.
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Abstract

Title: Hedge Ratio Estimation in Inventory Management

Author: Barbora Máková

Department: Department of Econometrics

Supervisor: doc. RNDr. Ing. Michal Černý, Ph.D.

Companies dependent on commodities for their production have to deal

with volatile commodity prices and should employ measures for risk reduction

as unfavourable spot price development may cause significant losses. A use-

ful tool for diminishing the risk is hedging on futures market; however, this

approach faces a crucial question of optimal hedge ratio determination (ratio

between spot and futures units). Our thesis examines nine different ways of

optimal hedge ratio estimation (naive, Sharpe, mean extended Gini coefficient,

generalized semivariance, value at risk, and minimum variance through OLS,

error correction, GARCH, and bivariate GARCH models) and evaluates their

efficiency using the data on eight different commodities. The results differ

across the respective commodities and cannot be generalized. Two conclusions

resulting from the analysis refer to performance of naive and OLS hedge ratios

and constant vs time varying hedge ratios. We find that complex hedge ratios,

such as bivariate GARCH or VaR hedge ratios, do not outperform naive and

OLS hedge ratios and that the results of constant hedge ratios are mostly as

good as results of time-varying hedge ratios.

Keywords optimal hedge ratio, commodities, efficiency



Abstrakt

Název: Odhad zajǐsťovaćıho poměru v ř́ızeńı zásob

Autor: Barbora Máková

Katedra: Katedra ekonometrie

Vedoućı práce: doc. RNDr. Ing. Michal Černý, Ph.D.

Společnosti, jejichž výroba je závislá na komoditách, jsou vystaveny volatilitě

cen komodit, která může zp̊usobit významné ztráty. Proto by tyto společnosti

měli využ́ıt opatřeńı vedoućı ke sńıžeńı rizika plynoućıho z volatility. Užitečným

nástrojem pro kontrolu risku je zajǐstěńı spotové pozice na trhu s futures, tento

př́ıstup se však setkává s problémem, jak určit optimálńı zajǐsťováćı poměr

(poměr mezi počtem jednotek ve spotové a futures pozici). Tato teze zkoumá

devět r̊uzných metod odhadováńı optimálńıho zajǐsťovaćıho poměru (naivńı,

Sharpe, pr̊uměrný rozš́ı̌rený Gini koeficient, rozš́ı̌rená semivariance, value at

risk a minimálńı rozptyl pomoćı metody nejmenš́ıch čtverc̊u, korekce chyb,

GARCH a dvourozměrného GARCH modelu) a hodnot́ı jejich účinnost pro

osm r̊uzných komodit. Výsledky se pro r̊uzné komodity lǐśı, a proto nemohou

být zobecněny. Na základě naš́ı analýzy můžeme udělat dva závěry týkaj́ıćı

se účinnosti naivńıho zajǐsťovaćıho poměru a zajǐsťovaćıho poměru źıskaného

pomoćı metody nejmenǰśıch čtverc̊u a konstantńıho vs. časově proměnného

zajǐsťovaćıho poměru. Zjistili jsme, že složité zajǐsťovaćı poměry založené

na dvourozměrném GARCH modelu nebo value at risk nejsou účinněǰśı než

jednoduché zajǐsťovaćı poměry (naivńı, založené na metodě nejmenš́ıch čtverc̊u)

a že účinnost konstantńıho zajǐsťovaćıho poměru je pro většinu komodit stejně

dobrá jako účinnost časově proměnných zajǐsťovaćıch poměr̊u.

Kĺıčová slova optimálńı zajǐsťovaćı poměr, komodity, účinnost
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Chapter 1

Introduction

Risk is an integral part of most human activities. Modern society is aware of

ubiquity of risk and tries to measure its magnitude, evaluates its impact, and

develops tools for mitigation of its negative effects. Our thesis deals with the

problem of commodity price volatility and examines several ways how to reduce

its undesirable effects. Managing this type of risk is extremely important as

it affects nearly every company. Further, commodity price volatility has been

increasing over time, which can be tracked using volatility of one of the most

important global commodity price indices - Standard & Poor Goldman Sachs

Commodity Index; the yearly volatility was 13 percent in 1981, then increased

to 20 percent and regularly exceeded this level in 2000’s; finally, it reached 23

percent in 2011.

Companies dependent on commodities for their production have had to deal

with volatile commodity prices for years. Unpredictable spot price development

has negative influence on creation of a company’s business plan and may cause

significant losses. Nonetheless, many companies do not manage price volatility

and some of them are not even aware of their exposures. Hedging of a spot

position on futures market is a simple way how to avoid the losses. It secures

the spot position by taking an opposite position in futures, whose returns are

correlated with the spot returns; hence, a loss in terms of spot value is balanced

by a gain in futures value, the risk in terms of variance decreases, and the

income is stabilized. The crucial problem is setting the optimal ratio between

units of futures and spot assets; this ratio is called hedge ratio.

There are many strategies that can be employed for hedging and they differ

in the complexity of optimal hedge ratio estimation. A hedger may choose

from a variety of hedging ratios stretching from simple hedge ratios, i.e. naive
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hedge ratio, OLS hedge ratio, to complex hedge ratios, i.e. bivariate GARCH

hedge ratio or VaR hedge ratio. Moreover, hedging does not have to focus on

variance minimization, mean returns may be taken into account as well. We

provide a comprehensive analysis of both minimum variance and mean variance

hedge ratios and examine their efficiency for eight different commodities. The

following types of hedge ratios are studied: naive, minimum variance, Sharpe,

mean extended Gini coefficient, generalized semivariance, and Value at Risk

hedge ratios. The minimum variance hedge ratios are estimated based on OLS,

error correction model, GARCH and bivariate GARCH models. We examine

a wide range of commodities that includes: Beef, Coffee, Copper, Corn, Oil,

Platinum, Soybeans, and Wheat. We use daily data from May 1, 2007 to

August 31, 2013 period, divide the dataset to in-sample and out-of-sample

parts and compare efficiency of daily changing hedge ratios, weekly changing

hedge ratios and constant hedge ratios. The efficiency is measured by reduction

in variance and Value at Risk. As far as we know, this is the first study

comparing efficiency of all the above mentioned hedge ratios for a wide range

of commodities; the thesis thus makes a considerable empirical contribution to

the existing literature as it allows a direct comparison of various approaches.

Moreover, it can be used by companies as a guide for choosing the optimal

hedge ratio.

We find that the efficiency of individual hedge ratios significantly differs

for the examined commodities and it is impossible to make general conclu-

sions about the quality of individual hedge ratios. Each spot position requires

different type of hedging and the hedger should employ efficiency analysis of

the hedging strategies before choosing the optimal hedge ratio. However, two

conclusions resulting from our study can be made still: constant hedge ratios

have mostly as good results as time-varying hedge ratios, and complex hedge

ratios (bivariate GARCH, VaR) do not significantly outperform simple hedging

strategies, such as naive hedging or OLS hedge ratio. Further, the simple hedge

ratios are less costly to apply and some companies may thus favour them.

The thesis is structured as follows: the next chapter contains an introduc-

tion to futures. Chapter 3 presents an overview of the existing types of hedge

ratios and the related literature, while Chapter 4 deals with methodology and

detailed description of hedge ratios estimations and calculations. Consequently,

Chapter 5 constitutes the principal part of the work as it examines the used

data and discusses the findings of our analysis. Finally, Chapter 6 concludes

the thesis.



Chapter 2

Futures

The modern history of futures began by establishment of the oldest organized

futures exchange, Dojima Rice Exchange in Osaka, Japan, in 18th century

(Bakken 1966). However, evidence suggest that products similar to futures

contract were used thousand years ago, for example in India 2000 B.C., where

merchants made consignment transactions for goods sold in India (Duffie 1989).

This implies that risk management is not an achievement of modern society,

people tried to evaluate costs of uncontrollable events and prevent them as

early as four thousand years ago.

Futures are highly standardized contracts binding two parties – seller and

buyer - to sell or buy a specific asset at a given price and time. Futures can be

held to maturity or closed by buying the opposite type of contract (if you are

seller in a contract you have to enter the same contract as a buyer and thus

close your position; it is not a problem to close the position as the contracts are

highly standardized, and only a minority of traders holds futures till maturity).

It is said that sellers are in short position and buyers in long position.

Futures are traded at organized exchanges which stand as an intermediary

between the two parties and diminish the risk of counter-party failure. In

fact, the exchange is the official counter-party of both, buyer and seller, it

enters into contract with many buyers and sellers and at the settlement day,

or in case of closing the contract, it simply matches the most suitable buyer

and seller. Changes in price of underlying assets are reflected daily in the

futures prices and settlements occur on daily basis. For this reason, all clients

must have a margin account at the exchange with a given amount of money

that is used for daily settlements. At the beginning of a contract, an initial

margin, higher than maintenance margin that is required to be on the account,
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is paid. If the money on margin account decreases under the maintenance

margin level, client receives a margin call to replenish it. If she is unable to

top-up the margin, her position is automatically closed. On the other hand,

if the investment is successful, investor may withdraw any amount above the

initial margin. This process is called marking to market and causes that the

money amount exchanged on the delivery date is given by spot price not by

the price specified in the contract because settling the difference on margin

accounts actually resets the last day futures price F0 to today’s settlement

price F1.

We may illustrate the process on an example. We enter a futures contract

on 100,000 bushels of Soybeans as a seller at $1,280 per future. As the Soybeans

contract size is 5,000 bushels, we have a short position in 20 futures contract

on soya beans in total value of $25,600. The initial margin is set to $100 per

contract and maintenance margin is $75 per contract. As we have 20 contracts,

the initial margin is $2,000 and maintenance margin takes value of $1,500.

Table 2.1 shows possible futures prices at a given day, daily and cumulative

gains and losses, and the development in the marginal account balance.

Table 2.1: Marginal account

Day Futures D. gain/loss D. gain/loss Cum. gain/loss Margin Margin
price per contract account call

0 1280 2000
1 1269 11 220 220 2220
2 1264 5 100 320 2320
3 1273 -9 -180 140 2140
4 1296 -23 -460 -320 1680
5 1307 -11 -220 -540 1460 40
6 1315 -8 -160 -700 Pos. closed

When today’s closing settlement price is lower than the previous day actual

price, we make a gain as we have a future to sell the underlying asset for

a higher price than for what it is settled today. The change is reflected daily

on the margin account.

2.1 Hedging with futures

So if a company is engaged in producing or processing of some commodity which

match the standards of futures and if a future with the desired settlement day

exists, hedging is very easy – the company only enters the respective position in
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Figure 2.1: Spot and futures prices converging

required number of contracts and waits until the settlement day. For example,

a farmer producing corn of a quality standardized by an exchange knows that

she will produce approximately 200,000 tons of corn in September 2014. The

contract size for corn futures is 127 tons, so the farmer will enter short position

in 1,575 futures contracts for corn with settlement day in September 2014. (He

wants to sell the corn for a given price in September 2014.)

But this matching of both the underlying assets and dates is very rare, so

companies often enter a position in a futures contract on correlated assets or

with a settlement day close to the desired settlement day. This problem is

described by Witzany (2011). If the maturity of a future is longer than the

desired maturity then there is time basis risk. If we want to sell an asset at

time T1 which is earlier than maturity of the future T2 we can enter the short

position in the contract and close it at time T1, and then we will sell the asset

for the spot price S1 and make a gain from the futures (F0 − F1), where Fi is

futures price at time i. Analogously, if the futures price decreases, a seller in

a contract gains in a similar manner.

The seller has: S1+(F0−F1) = F0+(S1−F1), where the difference S1−F1 is

called the basis and it is not necessary equal to zero before maturity; however,

the risk is negligible, as spot price and futures price converge at the time of

settlement, see Figure 2.1.

The risk increases if there is a difference in the underlying assets as well;

then we can only assume a positive correlation in the prices. In our study, we

focus on this type of the problem. We try to minimize the risk of changes in

spot prices. We assume a case when a company owns N units of an asset and
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Figure 2.2: Variance in spot returns vs. variance of hedged portfolio
(naive hedging)

wants to fix their future value. The current value of the asset is V0 = N · S0

and without hedging the future value would be VT = N · ST at time T . We

assume that there is positive correlation between the changes in spot price of

the assets (∆S = ST − S0) and futures price of a contract on a related asset

(∆F = FT − F0), so the company enters into the short position in a futures

contract. If the spot price decreases, the futures price decreases as well. The

company diminishes the loss from the decrease in spot price by the gain from the

futures contract. The change in the portfolio’s value is ∆V = N ·∆S−M ·∆F ,

where M is the number of entered futures. The main question is how many

futures contract we should use to minimize the risk. In other words, how M

should be determined to minimize fluctuation in the portfolio’s value. The

futures position should correspond to h · N units of underlying assets, where

h is an unknown coefficient called “hedge ratio” and h = M/N . Hedging can

significantly diminish the risk of spot position defined by variance in returns as

depicted in Figure 2.2. Too small hedge ratio does not cover risks corresponding

to the asset ownership, too high hedge ratio, on the other hand, opens a new

risky position in the underlying asset. We deal with estimation of optimal

hedge ratio in the following sections.



Chapter 3

Types of hedge ratios and

literature overview

Determination of optimal hedge ratio depends on the objective function that

is optimized and different authors take various approaches to its definition.

One of the widely-used strategies is to minimize variance (risk) of the portfolio

with so called minimum variance hedge ratio; this approach is easy to under-

stand and implement but it ignores the expected return of the hedged portfolio.

Hence, many other hedge ratios have been proposed recently; we can name, for

example, mean-variance hedge ratio, hedge ratio derived from maximization of

expected utility or minimizing of the mean extended-Gini coefficient, and gen-

eralized semivariance-based hedge ratio. All of the models ignore transaction

costs and investment in other securities than futures. Another attribute dis-

tinguishing the approaches is the dynamic nature of hedge ratio. Some studies

consider static hedge ratio and use unconditional probability distribution for

estimation, other studies allow hedge ratio to vary over time employing ARCH

and GARCH models. In the following sections, we describe the chosen methods

for derivation of hedge ratios and results of studies employing these methods.

3.1 Definition of hedge ratio

Hedge ratio can be established using either price changes (profits) or return

of portfolio. Portfolio value is defined as summation of values of all assets

belonging to the portfolio, in our case we are restricted to a portfolio consisting

ofM units in futures contracts andN spot asset’s units. Change in the portfolio

value over one time unit t is defined as ∆Vt = N ·∆St −M ·∆Ft and related
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hedge ratio is h = M/N as explained in Chapter 2; ∆St = St − St−1 and

∆Ft = Ft − Ft−1.

Return on portfolio is given by Rpt =
NStRst−MFtRft

NSt
where Rs,t+1 = (St+1−St)

St

and Rf,t+1 = (Ft+1−Ft)
Ft

are returns on spot asset and futures contract, respec-

tively. The hedge ratio is then defined as H = MFt/NSt and return on portfolio

can be rewritten to Rpt = Rst −HRft.

3.2 Minimum variance hedge ratio (MV)

The MV hedge ratio belongs among static hedge ratios which remain constant

over time. The hedge ratio was derived by Johnson (1960) and the derivation

is based on minimization of risk defined as variance in the value of the hedged

portfolio. Using hedge ratio defined in the terms of price changes, we get the

variance in changes given by the following equation:

V ar(∆Vt) = N2V ar(∆St) +M2V ar(∆Ft)− 2NMCov(∆S,∆F ). (3.1)

To get the hedge ratio, we have to derive the equation according to the number

of futures and set the derivation equal to 0:

2MV ar(∆Ft)− 2NCov(∆S,∆F ) = 0 (3.2)

From the previous section we know that h = M/N , so we get

h = M/N =
Cov(∆S,∆F )

V ar(∆St)
. (3.3)

Alternatively, for the revenues-based hedge ratio, H, we have

V ar(Rp) = V ar(Rs) +H2V ar(Rf )− 2HCov(Rs, Rf ) (3.4)

and

H =
Cov(Rs, Rf )

V ar(Rf )
. (3.5)

The MV hedge ratio is very simple and easy to understand, but it focuses on

risk of portfolio and ignores expected return. As expected return is disregarded,

the MV hedge ratio is the same as the mean-variance hedge ratio only in case

of infinitely risk averse investors or zero expected return on futures contracts.

The minimum variance hedge ratio can be modified to dynamic hedge ratio
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by making it dependent on conditional or current information. The hedge ratio

is then given by h|Ωt = M
N

= Cov(∆S,∆F )|Ωt−1

V ar(∆F )|Ωt−1
.

There are several approaches for estimation of the minimum variance hedge

ratio such as OLS method, GARCH method, or cointegration and error correc-

tion methods. Detailed description of methods used in this study can be found

in Chapter 4.

The MV method is greatly covered in existing literature.

3.2.1 Literature overview

Ederington (1979) and Myers and Thompson (1989) use the OLS method in

their studies, regressing changes of spot prices on changes of futures prices, the

coefficient of futures prices is an estimator of hedge ratio. Ederington employs

the price changes hedge ratio and examines the hedge ratios for GNMA’s,

Treasury Bills, Wheat and Corn in years 1976-1977. The author operates with

nearby contracts and the hedging period of 2 and 4 weeks and he finds that the

hedge ratio approaches 1 with increasing length of the hedging period. Further,

he examines the hedging effectiveness defined as

e = 1− V ar(Rp)

V ar(Rs)
; (3.6)

hedging effectiveness increases with length of hedging period as well. While

the estimated hedge ratios for GNMA’s, Wheat and Corn take values between

0.75 and 0.95 in case of 2 weeks hedging and between 0.84 and 1.05 for 4 weeks

hedging, the hedge ratio for Treasury Bills is much lower, acquiring values

between 0.11 and 0.31 for 2 weeks hedge and 0.22 and 0.65 for 4 weeks hedge.

Myers and Thompson (1989) examine several OLS approaches for estima-

tion of hedge ratio. Specifically, they employ the simple OLS regression in

levels, price changes, and returns. They point out some drawbacks of each of

the estimators and suggest using a generalized approach regressing (changes

in) spot price on (changes in) futures prices and some other information known

at time t− 1 (e.g. lags of the prices), marking the coefficient of futures prices

as estimators of the hedge ratio. They study the hedge ratios of Wheat, Soy-

beans and Corn in Michigan and assume that the hedging period is one week.

The estimated hedge ratio varies according to the used method. Myers and

Thompson use the generalized approach to evaluate the estimators gained by

OLS with levels, changes, and returns and find that OLS with changes in prices
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gives results closest to the generalized approach. Their hedge ratios based on

the generalized approach take values of 0.85 for Corn, 1.02 for Soybeans and

0.94 for Wheat.

The cointegration and error correction method is used together with either

OLS regressions or GARCH regressions. Kenourgios et al. (2008) compare

several methods of hedge ratio estimators including the error correction model.

Other authors using the error correction models are e.g. Lien and Luo (1993a)

and Chou et al. (1997). Papers using error correction in GARCH models are

discussed later.

Lien and Luo (1993a) examine multi period hedge ratios for foreign cur-

rencies and stock indices, the hedge period is assumed to be one week, and

the nearby futures are employed. They find that spot and futures prices are

cointegrated and the multi period hedge ratio exhibits cyclical patterns with

declining amplitude of the cycles. All of the estimated hedge ratios are very

close to one (not smaller than 0.83 and not larger than 1.01).

Chou et al. (1997) study the error correction model using Nikkei stock index

and find that the model outperforms the conventional OLS model with price

changes in the reduction of the cash position risk. The improvement with

the error correction model averages about 2%. The authors use different time

intervals - from daily to 5-week intervals - and the hedge ratio increases with

the length of the intervals. The conventional hedge ratios vary between 0.75

and 1.01 for different time intervals and the error correction hedge ratios take

values between 0.76 and 0.99 for different time intervals.

Kenourgios et al. (2008) estimate hedge ratio using four different models

- conventional OLS, error correction, GARCH, and EGARCH. They examine

the hedge ratio of S&P500 stock index on weekly basis and find that the error

correction model provides better risk reduction than any other model. However,

all the estimated hedge ratios are very close, taking values between 0.945 and

0.958.

The GARCH model is employed by e.g. Baillie and Myers (1991), Park and

Switzer (1995), or Park and Jei (2010). Baillie and Myers use the bivariate

GARCH(1,1) model; they examine the hedge ratios of six commodities - Beef,

Coffee, Corn, Cotton, Gold, and Soybeans, using daily data. The hedge ratios

are estimated based on the conditional variance-covariance matrix, so the study

results in time-varying hedge ratios. The authors find that the hedge ratios

follow a unit root process. The in-sample and out-of-sample comparison of the
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GARCH-based hedge ratio and constant hedge ratios shows that the GARCH-

based hedge ratio is significantly better.

Park and Switzer (1995) employ the bivariate GARCH(1,1) model for es-

timation of the hedge ratios for stock indices and compare the results with

results of unhedged portfolio, naive hedging, OLS hedge ratio, and OLS with

error correction term hedge ratio. The hedging period is one week. The results

show that the GARCH estimators noticeably improve the hedging effectiveness

compared to the other three named methods.

Park and Jei (2010) try to adopt more flexible bivariate density functions,

as they consider asymmetric individual conditional variance equations and in-

corporate asymmetry in the conditional correlation equation for the dynamic

conditional correlation GARCH model. They examine the results based on

reduction in returns variance and Value at Risk, using daily data on Corn and

Soybeans. The authors discover that asymmetric and flexible density specifi-

cations increase the goodness-of-fit but do not guarantee better hedging per-

formance. Further, they find an inverse relationship between the variance of

hedge ratios and the hedging effectiveness.

Kroner and Sultan (1993) use the bivariate error correction model with

GARCH error to estimate the hedge ratios of five currencies, weekly data. The

in-sample and out-of-sample analyses show that the proposed hedging strategy

is superior to the other conventional strategies.

3.3 Optimum mean-variance hedge ratio

The mean variance framework incorporates both risk and return into the deriva-

tion of optimal hedge ratio, but function used for the optimization is not strictly

defined. For example, Hsln et al. (1994) propose to maximize the following ex-

pected utility function for derivation of the optimal hedge ratio:

maxMV (E(Rp), σp;A) = E(Rp)− 0.5Aσ2
p, (3.7)

where A stands for risk aversion, σp for standard error of portfolio’s revenues,

and σ2
p for variance of the portfolio’s revenues. Hsln et al. (1994) assume expo-

nential utility function and normal returns, which reduce expected the utility

maximization approach to the mean variance analysis with linear, additive

function. They then derive the hedge ratio from the first order condition of the
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equation, obtaining

H = −

[
E(Rf )

Aσ2
f

− ρσs
σf

]
, (3.8)

where ρ denotes correlation coefficient of the returns on the spot and futures

positions and σs,σf stand for the returns on the spot and futures positions,

respectively. A drawback of this method is the necessity of individual’s aversion

parameter knowledge for derivation of the optimal hedge ratio; further, different

people would choose different hedge ratios based on their specific aversion to

risk.

We can derive the conditions for equality of the MV hedge ratio and the

mean-variance ratio from Equation 3.8. The returns-based MV hedge ratio can

be rewritten using the correlation coefficient:

H =
Cov(Rs, Rf )

V ar(Rf )
=
ρσsσf
σ2
f

=
ρσs
σf ,

(3.9)

which corresponds to the second part of the mean-variance-based hedge ratio

equation, and we can confirm that these two ratios are equal if and only if

investors are infinitely risk averse (A −→ ∞) or the expected return on the

portfolio is zero (E(Rf ) = 0). The second condition is fulfilled if the futures

prices follow a simple martingale process. Some of the hedge ratios described

below can be labelled as mean variance hedge ratios as well.

Hsln et al. (1994) use daily currencies data and the hedging horizon of 14,

30, 60, 90, and 120 days. The authors compare the hedging effectiveness of

hedging with futures, and options and the results indicate that futures are a

better hedging tool.

3.4 Sharpe hedge ratio

Sharpe ratio is a tool for examination of investment performance by adjusting

for risk developed by Sharpe (1966). It measures risk premium or excess return

per unit of deviation in investment, and Sharpe originally called it the “reward

for variability” ratio. Sharpe ratio was firstly defined as S = E(Rp)−r
σp

, where r

stands for the risk-free interest rate. E(Rp) and σp represent expected return

of portfolio and standard deviation of the portfolio’s returns, respectively.
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Howard and D’Antonio (1984) argue that the optimal level of future con-

tracts can be obtained by maximizing Sharpe ratio as defined above:

maxMθ =
E(Rp)− r

σp
. (3.10)

This leads to the optimal number of futures given by:

M = −N (S/F )(σs/σf )[(σs/σf )(E(Rf )/(E(Rs)− r))− ρ]

[1− (σs/σf )(E(Rf )ρ/(E(Rs)− r))]
. (3.11)

And the optimal hedge ratio can be written as

H = −(σs/σf )[(σs/σf )(E(Rf )/(E(Rs)− r))− ρ]

[1− (σs/σf )(E(Rf )ρ/(E(Rs)− r))]
. (3.12)

Again, in case of zero expected return on futures (E(Rf ) = 0) we get H = ρ σs
σf

,

which is equal to the MV hedge ratio. The advantage of the Sharpe index-

based hedge ratio is that it does not explicitly incorporate the risk-aversion

parameter. However, Chen et al. (2001) highlight also some downsides of this

type of hedge ratio; Sharpe ratio is non-linear function of hedge ratio, and the

second order condition has to be checked to ensure maximum Sharpe ratio.

Further they show some examples of undefined optimal hedge ratio; in these

cases, Sharpe ratio monotonically increases with hedge ratio.

The Sharpe hedge ratio is covered in study by De Jong et al. (1997) who

compares hedge ratios based on minimum variance, generalized semivariance

and Sharpe hedge ratio using currencies futures. The paper finds that the naive

hedge ratio outperforms the other hedge ratios.

3.5 Maximum expected utility hedge ratio

Another principle that takes into account both risk and return is the expected

utility maximization principle. The above mention types of hedge ratios incor-

porating both risk and return are consistent with the mean-variance framework;

however, the consistency with the expected utility maximization principle is en-

sured only under special conditions. These are quadratic utility function and

jointly normally distributed returns. To make the hedge ratio consistent with

the expected utility maximization principle, some authors focus on maximiza-

tion of expected utility. The utility function varies among studies on this topic;

for instance, Cecchetti et al. (1988) assume the utility function to be logarithm
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of terminal wealth. Their hedge ratio maximizes the following function:∫
log[1 +Rs −HRf ]f(Rs, Rf )dRsdRF , (3.13)

where f(Rs, Rf ) is bivariate normal density function.

Cecchetti et al. use the third-order linear bivariate ARCH model to get the

conditional variance-covariance matrix and then employ numerical maximiza-

tion of the objective function with respect to the hedge ratio. They examine

monthly data on Treasury bonds. The hedge ratio varies over a sizeable range,

from 0.52 to over 0.91, depending on expectations about risk and return.

3.6 Minimum mean extended-Gini coefficient

hedge ratio (MEG)

The usage of mean extended-Gini coefficient in construction of optimal portfolio

was firstly proposed by Shalit and Yitzhaki (1984), and they mark it as a

workable alternative to the classical Markowitz’s mean-variance CAMP. The

mean extended-Gini coefficient is defined as:

Γυ(Rp) = −υCov(Rp, (1−G(Rp))
υ−1), (3.14)

where G is cumulative probability distribution and υ stands for the risk aversion

parameter; the hedge ratio is based on minimization of Γυ(Rp). We may divide

investors into three categories according to the υ parameter: risk seekers have

υ between 0 and 1, υ of risk neutral investors is equal to 1, and υ bigger than

1 implies risk aversion. The cumulative probability distribution, G, is usually

unknown and has to be estimated empirically. Two approaches for calculation

of the MEG hedge ratio are presented in Chapter 4.

Shalit (1995) proves that the minimum MEG hedge ratio is equal to the

MV hedge ratio under the condition of jointly normally distributed futures

and spot returns. He studies dependence of the hedge ratio on the value of risk

parameter and finds that the relationship differs for various types of underlying

assets, especially for small values of the risk parameter. In most of the cases,

the hedge ratio starts to increase with the increasing risk parameters at some

point, but there are some exceptions.
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3.6.1 Literature overview

This approach is widely used and can be found in papers by Kolb and Okunev

(1992), Lien and Shaffer (1999), and others. Cheung et al. (1990) use the mean-

Gini coefficient in their paper. Kolb and Okunev (1993) propose incorporation

of the mean extended-Gini coefficient to utility function in order to take the

expected return into account as well. They maximize the following utility

function: U(Rp) = E(Rp) − Γυ(Rp). This hedge ratio is denoted as the M-

MEG hedge ratio. If future prices follow a martingale process and the expected

return is equal to 0, the two hedge ratios are equal.

Lien and Luo (1993b) use stock index futures with weekly hedge period and

find that the MEG hedge ratio approaches the MV hedge ratio for υ = 9, and

the hedge ratio converges to a constant for large υ . The results indicate that

the hedge ratio decreases with the risk aversion parameter υ. The MEG hedge

ratio for low υ parameter is more stable than the hedge ratio for large υ.

Lien and Shaffer (1999) estimate the MEG hedge ratio based on the in-

strumental variable method used by Shalit (1995) and calculate the true MEG

hedge ratio using the cumulative probability distribution. The authors use

daily stock index data and find that the MEG hedge ratio obtained through

the instrumental variable method is different than the true hedge ratio.

Kolb and Okunev (1992) examine the hedge ratios for Corn, Copper, Gold,

German mark, and S&P 500 index on daily basis. The risk aversion parameter,

υ, varies from 2 to 200. The paper finds that the MEG hedge ratio is close

to the MV hedge ratio for low υ, but the two hedge ratios are significantly

different for higher values of υ. The changes in the hedge ratio with increasing

υ vary for different types of commodities. The hedge ratio is more stable for

larger υ.

3.7 Minimum generalized semivariance hedge

ratio (GSV)

Definition of risk as a variance in prices is very conservative as it considers all

extremes (positive and negative) to be undesirable. Besides, the mean-variance

analysis is reliable only under the following restrictions: quadratic utility func-

tion or normal distribution of returns with negative exponential utility func-

tion. The semivariance analysis was proposed to overcome the limitation of

the mean-variance analysis. The main advantage of semivariance minimiza-
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tion is its focus on the reduction of losses. The concept was firstly presented

by Markowitz (1959) and then developed by Mao (1970), who uses the lower

partial moments of the assets distribution. Fishburn (1977), Bawa (1978), and

Harlow and Rao (1989) develop a generalized semivariance-based risk-return

model which forms the basis for the general semivariance hedge ratio research.

Fishburn formulates α− t model where he describes the expected disutility

of outcome lower than the target return, t, weighted by the measure for risk

aversion, α. The risk is defined by the two-parameter function:

Gα,δ(Rp,b) =

∫ δ

−∞
(δ −Rp,b)

αdF (Rp,b), (3.15)

where Gα,δ(Rp,b) stands for expected utility of loss, δ is the target return, α

measures risk aversion for below-target returns, Rp,b is the below-target return,

and F (Rp,b) is probability distribution function of the below-target return in a

hedged portfolio. The GSV hedge ratio is obtained by minimizing Gα,δ(Rp).

Again, we can divide investors into three categories according to the α

parameter: α between 0 and 1 denotes a risk seeking individual, α equal to

1 stands for a risk neutral individual, and α larger than one corresponds to

risk averse investors. Bawa (1978) and Fishburn (1977) show that GSV is

consistent with the concept of stochastic dominance, but Chen et al. (2001)

argue that the stochastic dominance consistency of GSV does not imply the

stochastic dominance of the GSV hedge ratio. The consistency is conditioned

by independence of the hedge ratio on the target return. The GSV hedge

ratios usually differ for various target returns, the independence condition is

thus not satisfied, and the GSV hedge ratio is not necessarily consistent with

the stochastic dominance concept. Lien and Tse (1998) prove that the GSV

hedge ratio and the MV hedge ratio are identical under conditions of jointly

normal distribution of futures and spot returns and future prices following a

pure martingale process. The GSV hedge ratio is another representative of

static hedge ratios.

The hedge ratio can be extended to the M-GSV hedge ratio where the

optimal hedge ratio maximizes the following risk-return function

U(Rp) = E(Rp)−Gα(t, Rp). (3.16)

This approach is proposed in the paper by Chen et al. (2001).

Chen et al. use weekly stock index data and estimate several types of hedge
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ratios including the minimum generalized semivariance hedge ratio, which is

extended to the mean-returns hedge ratio in the paper. They find that the

mean-return generalized semivariance hedge ratio varies less than the mini-

mum generalized semivariance hedge ratio for lower and relevant levels of risk

aversion. The mean-return generalized semivariance hedge ratio converges to

higher values than the minimum variance hedge ratio for large values of risk

aversion.

3.8 Minimum Value at Risk hedge ratio (VaR)

The minimum variance approach ignores higher moments of return distribution,

and it can increase negative skewness or kurtosis of hedge portfolio returns. To

avoid this problem, Harris and Shen (2006) suggest using of the minimum Value

at Risk and minimum conditional Value at Risk hedge ratios, estimated non-

parametrically using historical simulations. The Value at Risk is defined as the

largest loss on portfolio that can be expected with a given probability over a

certain time horizon and was firstly outlined in the “safety-first” criterion by

Roy (1952).

Harris and Shen suppose that a portfolio consist of two assets - the short

position in the second asset is used to hedge the long position in the first asset

- which corresponds to our model of the long position in spot market and the

short position in futures market, so we can mark the per-period returns as Rs

and Rf . They assume that the mean returns for both assets are zero.

The return of hedged portfolio is given by

Rp = Rs −HRf . (3.17)

The variance of hedged portfolio return is defined as

σ2
p = var(Rs −HRf ) = σ2

s +H2σ2
f − 2Hρs,fσsσf , (3.18)

where σ2
s and σ2

f are variances of Rs and Rf , respectively, and ρs,f is correlation

between Rs and Rf .

The skewness of hedged portfolio is given by

sp =
E[R3

p]

σ3
p

=
ssσ

3
s − 3Hsaσ

2
sσf + 3H2sbσsσ

2
f −H3sfσ

3
f

(σ2
s +H2σ2

f − 2Hρs,fσsσf )3/2
, (3.19)
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where the skewness and co-skewness coefficients can be written as ss = E[R3
s ]

σ3
s

,

sf =
E[R3

f ]

σ3
f

, sa =
E[R2

sRf ]

σ2
sσf

, and sb =
E[RsR2

f ]

σsσ2
f

.

And the kurtosis coefficient is given by

kp =
E[R4

p]

σ4
p

=
ksσ

4
s − 4Hkaσ

3
sσf + 6H2kbσ

2
sσ

2
f − 4H3kcσsσ

3
f +H4sfσ

4
f

(σ2
s +H2σ2

f − 2Hρs,fσsσf )2
,

(3.20)

where the kurtosis and co-kurtosis coefficients are defined as ks = E[R4
s ]

σ4
s

, kf =
E[R4

f ]

σ4
f

,

ka =
E[R3

sRf ]

σ3
sσf

, kb =
E[R2

sR
2
f ]

σ2
sσ

2
f

, andkc =
E[RsR4

f ]

σsσ4
f

.

If we suppose that our returns are zero, the Value at Risk of a portfolio can

be written as:1

V aRp = −σpqαp (sp, kp), (3.21)

where qαp denotes α percent quantile of the standardised distribution of hedged

portfolio returns, and α is equal to one minus the VaR confidence level. In

case of normally distributed returns, sp is equal to 0, kp is equal to 3, and

VaR is a constant multiple of the standard deviation of returns. Reduction in

skewness and growth in kurtosis increase the VaR of portfolio returns for high

VaR confidence levels.

Harris and Shen (2006) empirically show that the minimum VaR and C-

VaR hedge ratios generate out-of-sample improvements in the VaR and C-VaR

of hedged portfolio compared to the minimum-variance hedging.

Cao et al. (2010) argue that the non-parametric approach relies on a large

historical sample of spot and futures prices data and it is unable to capture the

time-varying nature of the hedge ratio; hence, they suggest a semi-parametric

approach based on the Cornish and Fisher (1937) expansion approximating

quantile qαp using higher moments of the distributions of hedge portfolio re-

turns. For skewness and kurtosis of the return distribution, the Cornish-Fisher

expansion approximates qαp by

q̃αp (sp, lp) = c(α)+
1

6
[c(α)2−1]sp+

1

24
[c(α)3−3c(α)](kp−3)− 1

36
[2c(α)3−5c(α)]s2

p,

(3.22)

where c(α) is the α percent quantile of the standard normal distribution.2 The

1The mean spot and futures returns of our commodities are very close to zero, so we can
use this assumption. Further, it is a common assumption when dealing with daily financial
asset returns.

2The number c(α) is negative.
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Cornish-Fisher approximation for the VaR of the hedge portfolio is then given

by

V aRp = −σpq̃αp (sp, kp). (3.23)

To obtain the minimum-VaR hedge ratio, Cao et al. (2010) differentiate

Equation 3.23 with respect to the hedge ratio, H, and set the first derivative

equal to zero getting the following first-order condition:

∂σp
∂H

(A1 + A2sp + A3kp1A4s
2
p) + σp(A2

∂sp
∂H

+ A3
∂kp
∂H

+ 2A4sp
∂sp
∂H

) = 0, (3.24)

where A1 = c(α)− 1
8
[c(α)3 − 3c(α)], A2 = 1

6
[c(α)2 − 1], A3 = 1

24
[c(α)3 − 3c(α)],

and A4 = 1
36

[2c(α)3 − 5c(α)].

Harris and Shen (2006) employ daily data for foreign currencies and find

that the minimum-variance hedging substantially increases portfolio’s kurtosis,

so the reduction in VaR is lower than the reduction in standard deviation;

the VaR of the minimum-VaR portfolio is by fifteen percent lower than the

VaR of the minimum-variance hedge portfolio. Further, the results show that

the minimum VaR hedge ratios are typically considerably smaller than the

minimum-variance hedge ratios. The differences in variance reduction are not

significant.

Cao et al. (2010) employ daily stock indices data and use the semi-parametric

method of minimum-VaR and minimum-CVaR hedge ratios estimation based

on the Cornish-Fisher expansion. They find that the semi-parametric approach

is superior to the non-parametric approach by Harris and Shen (2006) because

it provides a larger reduction in negative skewness and excess kurtosis, so the

hedged portfolios have lower VaR.

3.9 Dynamic hedge ratio

Because keeping hedge ratio static over time may not be the optimal approach

of hedging, we present two ways of dynamic hedging. The first approach re-

calculates hedge ratio based on current covariance of spot and future prices

(σsf ) and variance of future prices (σ2
f ). The MV hedge ratio is then calculated

based on conditional information: h1|Ωt−1 =
σsf |Ωt−1

σ2
f |Ωt−1

.

Lien and Luo (1993) propose a multi-period model instead. They minimize

variance of wealth at the end of T periods planning horizon, WT . Nt stands for

the spot position at the beginning of period t, Mt denotes the futures position
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at the beginning of period t, and Mt = −htNt holds, ht is the hedge ratio. The

wealth at the end of planning horizon is

WT = W0+
T−1∑
t=0

N [St+1 − St − ht(Ft+1 − Ft)] = W0+
T−1∑
t=0

N [∆St+1 − ht∆(Ft+1)].

(3.25)

The optimal hedge ratio ht is given as:

ht = −Cov(∆St+1,∆Ft+1)

V ar(∆Ft+1)
−

T−1∑
t=i+1

Ni

Nt

Cov(∆Ft+1,∆Si+1 + hi∆Fi+1)

V ar(∆Ft+1)
. (3.26)

The correlation of changes in current prices and changes in futures prices or

future spot prices implies a difference between the multi-period and single-

period hedge ratios.



Chapter 4

Estimation of the optimal hedge

ratio

We estimate several types of hedge ratio and compare the results with un-

hedged portfolio and the naive hedge. Specifically, we focus on minimum vari-

ance hedge ratio based on OLS model, error correction model, GARCH model,

GARCH model with error correction and bivariate GARCH model, Sharpe

hedge ratio, MEG hedge ratio, GSV hedge ratio and minimum-VaR hedge ra-

tio. The estimation methodology for each hedge ratio is described in details in

this section.

4.1 Estimation of the MV hedge ratio

There are several approaches used for estimation of the MV hedge ratio in-

cluding several OLS methods and GARCH methods allowing the hedge ratio

to change over time. We start the analysis investigation of studying individual

series to find the order of the series and to detect possible autocorrelation.

We identify the series order using Augmented Dickey Fuller test employing

the following regression to detect the non-stationarity:

∆yt = α + βt+ γyt−1 + δ1∆yt−1 + ...+ δp−1∆yt−p+1 + εt, (4.1)

where α stands for constant, β is coefficient of time trend and p is lag order

of autoregressive process. If α = 0 and β = 0, the equation corresponds to

random walk modelling. The number of lags is influenced by the autocorrelation

structure of variables.

If a series is integrated of order one, we have to use its differences to make
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it stationary as regressing non-stationary time series may lead to spurious re-

gression showing a relationship between series that does not exists and shows

up only because of the common trend. All spot and futures prices time series

we use are integrated of order one, so we must set all regressions in differences.

4.1.1 OLS method

The price-change hedge ratio is defined as the ratio between covariance of spot

and futures price changes and variance of futures price change. To implement

this rule, it is necessary to estimate the relevant covariance and variance from

the available data first. The conventional approach of the hedge ratio estima-

tion uses ordinary least square regression of changes in spot prices on changes

in futures prices presented for example in Junkus and Lee (1985) or Carter and

Loyns (1985). Some researchers also regress levels or returns of spot prices on

levels or returns of futures prices (Ederington 1979 and Brown 1985, respec-

tively). Myers and Thompson (1989) argue that the regression of level prices is

based on a very unrealistic assumption that equilibrium prices equal constant

plus a serially uncorrelated shock. Further, Myers and Thompson claim that

the regression with returns implies conditional covariance matrix of spot and

futures price levels changing over time; a simple regression can be used only if

the optimal hedge ratio does not change over time. Hence, a new, strong con-

dition is imposed on the spot and futures prices, specifically ST = FT . Based

on these arguments, the regression with price changes is the most realistic one.

The regression of price changes can be written down as

∆St = α0 + α1∆Ft + εt (4.2)

and the hedge ratio based on price changes, h, is given by the coefficient α1. The

validity and efficiency of the OLS technique is conditioned by satisfying the OLS

assumptions: correct specification of the linear function, zero condition mean

of error ε, no perfect collinearity among the independent variables or sample

variation in the independent variable in case of one independent variable model,

homoskedasticity, no serial autocorrelation in errors, and normally distributed

unobserved error.

The first three assumptions ensure unbiasedness of OLS estimates; under

the assumptions one to five (Gauss-Markov assumptions) OLS is the best linear

unbiased estimator; under assumptions one to six, OLS estimates are normally
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distributed, conditional on independent variables, and the usual construction

of confidence intervals is valid. The assumption of heteroskedasticity is often

violated; the problem is solved by ARCH and GARCH models described in the

following subsection.

Myers and Thompson (1989) point out that the OLS method uses uncon-

ditional sample moments instead conditional ones. They propose to use con-

ditional variance and covariance using currently available information in the

optimal hedge ratio calculation:

h =
M

N
=
Cov(∆S,∆F )|Ωt−1

V ar(∆F )|Ωt−1

, (4.3)

where Ωt−1 denotes the current information including vector of variables Xt−1

known at t− 1.

Changes in spot and futures prices are described by the following equilibrium

model

∆St = α0Xt−1 + ut and ∆Ft = β0Xt−1 + vt, (4.4)

ut and vt are stochastic shocks with zero mean and no serial correlation condi-

tional on Xt.

Myers and Thompson set the hedge ratio equal to the ratio of the esti-

mated condition covariance between spot and futures prices and the estimated

condition variance of the futures prices; they show that the conditional covari-

ance matrix of spot and futures prices is equal to the covariance matrix of the

residuals, ut and vt, so the hedge ratio is given by the following equation:

ĥ|Xt−1 =
Ĉov(ut, vt|Xt−1)

V̂ ar(vt|Xt−1)
. (4.5)

In general, the hedge ratio obtained through the Equation 4.5 is different than

the hedge ratio given by Equation 3.3, the two hedge ratios equal under a

condition of spot and futures prices following random walk:

∆St = α0 + ut and ∆Ft = β0 + vt. (4.6)

If this condition does not hold, the OLS hedge ratio is not optimal.

Myers and Thompson suggest to use a single-equation approach to the gen-

eralized optimal hedge ratio estimation motivated by the proposition that the

generalized optimal hedge ratio estimator is equal to the OLS estimate of γ
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under conditions described in Equation 4.6:

∆St = γ∆Ft + αXt−1 + εt. (4.7)

The equation is called “augmented reduced form”. Further, the authors assume

that Xt−1 contains only a constant and lags, but they do not specify the number

of lags that should be used. To find the optimal number of lags, we estimate

several types of the model and use Adjusted R2 and information criteria (Akaike

and Bayesian) to evaluate the models. We estimate two hedge ratios using the

simple OLS model: using the basic model and the best model according to the

criteria, and we compare the results. Theoretically, the more specified model

should provide more efficient hedge ratio as better describe the data.

4.1.2 Cointegration and error correction model

If two time series contain a unit root, it is possible that the series are coin-

tegrated, and we need to estimate the error-correction model. It is now well

known that spot and futures prices are non-stationary and the cointegration

relationship plays an important role in the statistical modelling of the prices

(Lien and Luo 1993b; Ghosh 1993; Wahab and Lashgari 1993; Tse 1995).

The cointegration model was developed by Engle and Granger (1987). ∆St

and ∆Ft denote continuously compounded (log) returns of spot a futures prices.

Suppose that both spot and futures prices are integrated of order one and the

returns are thus stationary. The series are cointegrated if their linear com-

bination is stationary; in other words, if there exist a coefficient β such that

St = βFt + ut where ut ∼ I(0). The error correction model can be specified as

∆St = αs +
m∑
i=1

βsi∆St−i +
n∑
j=1

γsj∆Ft−j + θszt−1 + εst, (4.8)

∆Ft = αf +
k∑
i=1

βfi∆St−i +
l∑

j=1

γfj∆Ft−j + θfzt−1 + εft, (4.9)

where zt−1 = is a stationary linear combination of St and Ft.

Myers and Thompson (1989) suggest to use the following model

∆St = αs + λ∆Ft

m∑
i=1

βsi∆St−i +
n∑
j=1

γsj∆Ft−j + θszt−1 + εst, (4.10)
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the OLS estimate of λ is the minimum variance hedge ratio.

4.1.3 ARCH and GARCH models

The Autoregressive Conditional Heteroskedasticity (ARCH) model deals with

dynamic forms of heteroskedasticity. Even if variance of errors is constant,

there are other ways how heteroskedasticity can arise. The ARCH model was

suggested by Engle (1982), who looks at the conditional variance of ut given

past errors; in this case the conditioning on all outcomes of independent vari-

ables is left implicit. The first order ARCH(1) model is given by the following

equation:

E(u2
t |ut−1, ut−2, . . . ) = E(u2

t |ut−1) = α0 + α1u
2
t−1. (4.11)

The equation represents the conditional variance of ut given the past ut

only if the errors are not serially correlated, E(ut|ut−1, ut−2, . . . ) = 0. The

conditional variance is always positive; hence, α0 > 0 and α1 >= 0. If α1 = 0,

there is no dynamic in the variance equation.

The ARCH(1) model can be also written as

u2
t = α0 + α1u

2
t−1 + vt, (4.12)

the conditional expected value of vt is zero, E(vt|ut−1, ut−2, . . . ) = 0.

This expression reminds the autoregressive model of u2
t , and the stabil-

ity condition is the same as in the usual AR(1) model, α1 < 1. Positive α1

implies positive autocorrelation in squared errors, even though ut itself may

not be serially correlated. According to Wooldridge (2008), the OLS assump-

tions one through five are not violated by serial correlation in squared errors

and we can use OLS on the regression model yt = β0 + β1zt + ut. The usual

heteroskedasticity-robust standard errors and test statistics are valid, yet us-

ing the ARCH model, it is possible to obtain consistent estimators of βj that

are asymptotically more efficient than the OLS estimators. Moreover, ARCH

models also apply in case there are dynamics in the conditional mean. We have

the following model:

E(yt|zt, yt−1, zt−1, yt−2, . . . ) = β0 + β1zt + β2yt−1 + β3zt−1. (4.13)

A typical approach supposes that the conditional variance of yt is constant, but
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the variance could follow the ARCH model,

V ar(yt|zt, yt−1, zt−1, yt−2, . . . ) = V ar(ut|zt, yt−1, zt−1, yt−2, . . . ) = α0 + α1u
2
t−1,

(4.14)

where ut = yt − E(yt|zt, yt−1, zt−1, yt−2, . . . ). The model consists of two equa-

tions: Mean equation

yt = β0 + β1zt + β2yt−1 + β3zt−1, (4.15)

and variance equation

V ar(ut|zt, yt−1, zt−1, yt−2, . . . ) = E(ut)
2 = α0 + α1u

2
t−1. (4.16)

There are more approaches to estimation of the model; either we can use

equation by equation approach estimating each equation separately using OLS,

or we can estimate the equations jointly using maximum likelihood estimation.

In our work, we choose the latter option.

The ARCH model is not restricted to one lag in the residuals equation and

sometimes large number of squared lagged residuals must be included to specify

the model correctly. This problem is solved by Bollerslev (1986) who extends

the ARCH model and introduces the GARCH model which allows more flexible

lag structure, including lags of E(ut)
2, to the right hand side of the equation,

where E(ut−1)2 is the predicted variance for the period (t− 1):

E(ut)
2 = α0 + α1u

2
t−1 + δ1E(ut−1)2. (4.17)

This describes GARCH(1,1,) which can be generalized to GARCH (p,q) as

E(ut)
2 = α0 + α1u

2
t−1 + α2u

2
t−2 + . . . + αqu

2
t−q + δ1E(ut−1)2 + δ2E(ut−2)2+

+. . . + δpE(ut−p)
2.

(4.18)

Kenourgios et al. (2008) suggest to apply the GARCH(1, 1) estimation on

the basic model introduced in the OLS section, i.e. the variance of regres-

sion disturbances is modelled as a linear function of lagged squared regression

disturbances and conditional variance:

∆St = α0 + α1∆Ft + εt and σ2
t = γ0 + γ1σ

2
t−1 + δ1ε

2
t−1, (4.19)
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where σ2
t is variance of residuals, ε2t is squared residual, δ1 is ARCH parameter,

γ1 is GARCH parameter, and α1 is estimator of the optimal hedge ratio. We

enhance the model by including lags of spot and futures price differences and the

error correction term, and we use the information criteria to identify the best

model, again. We estimate both the simple and specified versions of the model,

to find whether the specification has an influence on the hedging efficiency.

The bivariate GARCH models allow updating of hedge ratio over the hedg-

ing period. The bivariate GARCH model was firstly used by Cecchetti et al.

(1988) in context of the maximum expected utility hedge ratio, and it was fur-

ther developed by Baillie and Myers (1991) estimating the minimum variance

hedge ratio. Baillie and Myers use the VEC-GARCH model, but we employ the

CCC-GARCH (constant conditional correlation GARCH) model because the

estimation using this model usually converges to a solution. That is in contrary

to the other models, which often have problems with non-positive definiteness

of conditional covariance matrix or do not find a solution even after thousands

of iterations in our analysis, as we find out during our analysis.

The difference is that the VEC-GARCH models the conditional covariance

matrix, Gt, directly, whereas the CCC-GARCH model uses an indirect ap-

proach. The CCC-GARCH model uses simple conditions to ensure positive

definiteness of Gt, and the estimation is much easier than in the case of usual

MGARCH models.

The variance-covariance matrix in the CCC-GARCH model is defined as

follows:

Gt = DtRDt, (4.20)

whereR is constant conditional correlation matrix andDt = diag(σ1t, σ2t, . . . , σNt).

The structure of the R matrix is

R =


1 ρ12 · · · ρ1N

ρ12 1 · · · ρ2N

...
...

. . .
...

ρ1N ρ2N · · · 1

 (4.21)
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The dynamics can be characterized in the following way:

Gt =


σ2

1t σ12,t · · · σ1N,t

σ12,t σ2
2t · · · σ2N,t

...
...

. . .
...

σ1N,t σ2N,t · · · σ2
Nt

 (4.22)

σ2
it = γi,0 + γi,1σ

2
i,t−1 + δi,1ε

2
i,t−1 where i = 1, . . . , N, (4.23)

σij,t = ρijσitσjt where i, j = 1, . . . , n, i 6= j (4.24)

The conditions to ensure positivity of variances and stationarity are γi,0 > 0,

γi,1 > 0, δi,1 > 0, and
∑p

j=1 γij,1 +
∑q

j=1 δij,1 < 1. Positive definiteness of the

variance-covariance matrix is given by the correlation matrix and the regular

requirements of positivity constraints are the same as for the GARCH model.

The model can be estimated using the maximum likelihood method.

Baillie and Myers (1991) propose a hedge ratio based on the variance-

covariance matrix of the following model:

∆Yt = µ+ et, (4.25)

which can be re-written as[
∆St

∆Ft

]
=

[
µ1

µ2

]
+

[
e1t

e2t

]
, et|Ωt−1 ∼ N(0, Gt), (4.26)

where Gt is conditional covariance matrix of et, Gt =

[
G11,t G12,t

G21,t G22,t

]
, and as

shown above Gt = DtRDt, Dt = diag(σ1t, σ2t, . . . , σNt) and R represents the

correlation matrix. The conditional MV hedge ratio is given by

Ht−1 =
G12,t

G22,t

. (4.27)

As the variance-covariance matrix varies over time, the hedge ratio differs each

period as well.

Kroner and Sultan (1993) combine the error correction model with the

GARCH estimation. Specifically, they use the following model[
∆St

∆Ft

]
=

[
µ1

µ2

]
+

[
θs(St−1 − Ft−1)

θf (St−1 − Ft−1)

]
+

[
e1t

e2t

]
, (4.28)
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where St and Ft denotes logarithm prices, error process follows GARCH process

and the hedge ratio is given by Ht−1 = G12,t

G22,t
, as before. However, they assume

that the β parameter is equal to one. In other words, instead of regular station-

ary linear combination of spot and futures prices, they include the basis into

the regression. Not only this is a generalization we want to avoid, but the basis

can also be non-stationary, which would cause model misspecification. As we

want the system of equations to be as well specified as possible, we conduct a

univariate analysis at first to find out which variables best explain the changes

in spot and futures prices separately. We include lags of the dependent variable

and lags of the linear combination of the series as explanatory variables, and

use the information criteria to choose the appropriate specification. Then we

use the CCC-GARCH model to estimate the equations.

4.1.4 Akaike and Bayesian information criteria (AIC and

BIC)

As we mention in the description of the individual econometric methods, the

Akaike and Bayesian information criteria are used for evaluation of estimated

models. Both criteria are based on likelihood function and they compare the

positive effect of independent variables on the value of likelihood and their

negative effect resulting from possible overfitting and loss of degrees of freedom.

The Akaike information criterion can be expressed as:

AIC = 2k − 2 ln(L), (4.29)

where k stands for number of parameters in the model and L is maximized

value of likelihood function for the model.

The value of the Bayesian criterion for large sample size, n, is:

BIC = −2 ln(L) + k ln(n), (4.30)

where k denotes number of parameters in the model and L is maximized value

of likelihood function of the model, again.

The Bayesian information criterion has larger penalties for number of pa-

rameters in the model than the Akaike one. The “best” model is characterized

by the minimum values of the information criteria.
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4.2 Estimation of the Sharpe hedge ratio

The estimation of the Sharpe hedge ratio is based on Equation 3.12, where we

replace the theoretical moments by the sample moments (e.g. the expected

return can be replaced by the sample average return etc.) and simply calculate

the hedge ratio. The Sharpe ratio approach includes a risk-free interest rate

in the hedge ratio calculation. As the target of commodity hedging is to avoid

losses caused by a decrease in the commodity price, we assume that the zero

return is acceptable for a hedging company, so the risk-free return is set to 0.

Further, as pointed out by Chen et al. (2001), Sharpe ratio is non-linear

function of hedge ratio, so finding the hedge ratio that maximizes Sharpe ratio

is not straightforward. To be sure that we found the optimal hedge ratio we

must either examine the second order conditions or plot a graph of Sharpe

ratio on hedge ratio and find out whether we have the real maximum or a

minimum of Sharpe ratio instead. We have decided to use the latter way for

the examination.

Using the out-of-sample dataset, we compute hundreds of hedge ratios for

slightly different samples, so we do not examine the graph for each optimal

hedge ratio; we rather examine the graph of the first sample and then use the

method of comparison of Sharpe ratios for the found hedge ratios. If there are

insignificant differences among the optimal hedge ratios, we assume that the

chosen hedge ratios are optimal without studying the graphs.

4.3 Estimation of the MEG hedge ratio

In our study, we restrict to the minimum MEG hedge ratio, whose estimation

is based on Equation 3.14. Let us repeat it here:

Γv(Rp) = −vCov(Rp, (1−G(Rp))
v−1). (4.31)

The cumulative distribution function, G, is usually unknown, so we have to

estimate it. Lerman and Yitzhaki (1984) suggest to use its empirical distri-

bution; determination of the empirical distribution requires ranking the sam-

ple in the ascending order and dividing the rank by the size of the sample,

G(Rp,i) =
Rank(Rp,i)

N
. The sample points then stand for discrete estimates of

G. For example, we have a sample (Rp,1, Rp,2, Rp,3, Rp,4) where Rp,2 > Rp,4 >

Rp,1 > Rp,3. Using the aforementioned approach, we get the following sample
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points of G: {2/4, 4/4, 1/4, 3/4}. Then we simply use the sample values to cal-

culate the MEG coefficient, and the optimal hedge ratio is chosen to minimize

the MEG coefficient. The simplest method to solve this problem is using a grid

search, where we put thousands slightly different hedge ratios (∆ = 0.0001) to

the equation and then find the one minimizing the MEG coefficient.

It is also possible to use an approach proposed by Shalit (1995), who shows

that the MEG hedge ratio can be expressed as:

H =
Cov{Rs, [1−G(Rp)]

v−1}
Cov{Rf , [1−G(Rp)]v−1}

, (4.32)

Lien and Shaffer (1999) note that if we add an assumption that the ranking

of Rp, and Rf are identical, we can rewrite the hedge ratio as:

H =
Cov{Rs, [1− Ĝ(Rf )]

v−1}
Cov{Rf , [1− Ĝ(Rf )]v−1}

=

∑T
t=1(Rs,t − R̄s)(zt − z̄)∑T
t=1(Rf,t − R̄f )(zt − z̄)

, (4.33)

where zt = [1−Ĝ(Rf,t)]
v−1, z̄, R̄f , R̄s are means of zt, Rf,t and Rs,t, respectively,

and Ĝ(Rf ) stays for empirical distribution of futures returns.

Lien and Shaffer further show that the assumption of identity of Rp and Rf

ranking holds for hedge ratios smaller than one. This approach is very simple;

to get the optimal hedge ratio, we only estimate the empirical distribution of

futures returns and then plug the sample values into the equation.

The MEG hedge ratio operates with the risk parameter. We have decided

to use the following five risk parameters in our study: 1.5, 2, 5, 10, and 20 to

find out how the hedge ratio changes with increasing risk parameter.

We employ both types of the MEG hedge ratio calculation with all men-

tioned values of risk parameter and compare the results. We have to be aware

that the approach suggested by Shalit is not appropriate in some cases as the

assumption does not hold and the hedge ratio is larger than one. The Shalit’s

approach is marked as the MEG 1 or Gini 1 hedge ratio, and the method of

grid search is marked as the MEG 2 or Gini 2 hedge ratio.

4.4 Estimation of the GSV hedge ratio

The GSV approach focuses only on returns lower than the target, which are

undesirable in contrary to the above target returns. The GSV model can be
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rewritten to simplify the calculation as:

Gα,δ(Rp) =
1

T

T∑
t=1

(δ −Rp,t)
αU(δ −Rp,t), (4.34)

where

U(δ −Rp,t) =

{
1, for δ ≥ Rp,t

0, for δ < Rp,t

To find the optimal hedge ratio we use the same approach as in the first way of

MEG hedge ratio estimation - the grid search. In this case, we save the GSV

value for a slowly increasing series of hedge ratios and then identify the mini-

mum value of GSV and pair it with the related hedge ratio. We should check

whether the solution does not lie at a boundary of the hedge ratios interval; it

would mean that the GSV value is decreasing with increasing/decreasing hedge

ratio and the identified solution is not optimal.

When computing the GSV value, we have to define the target return. We

suppose that a company hedges to prevent losses and 0% return would be

acceptable, so we set the target equal to 0.

The GSV approach as well as the MEG coefficient uses the risk parameter;

however, looking at the GSV hedge ratio for a chosen commodity, we find out

that the GSV hedge ratio increases quicker with the increasing risk parameter

than MEG hedge ratio and hence we choose smaller risk parameters, specifically

1, 2, 3, 4, and 5.

4.5 Estimation of the minimum VaR hedge ra-

tio

The hedge ratio based on the minimum VaR is solved numerically. We must

obtain the first derivative of the VaR with respect to the hedge ratio and set

the result equal to zero to fulfil the first order condition. Recal the equation:

∂σp
∂H

(A1 + A2sp + A3kp1A4s
2
p) + σp(A2

∂sp
∂H

+ A3
∂kp
∂H

+ 2A4sp
∂sp
∂H

) = 0,

where A1 = c(α)− 1
8
[c(α)3 − 3c(α)], A2 = 1

6
[c(α)2 − 1], A3 = 1

24
[c(α)3 − 3c(α)],

and A4 = 1
36

[2c(α)3 − 5c(α)].

The skewness and kurtosis functions used for calculation of VaR are complex
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and contain hedge ratios of high powers leading to non-linearity of VaR in the

hedge ratio. We face a similar problem as in the case of Sharpe ratio; we often

obtain more values of hedge ratio fulfilling the first order condition and it is

necessary to verify the second order condition or to examine the graph of the

VaR on hedge ratio.

As we mostly obtain more values of hedge ratio satisfying the first order

condition, we first compute the value of VaR for each hedge ratio to identify the

one which is most probably the optimal one, and then we verify its optimality

using the graphs. In the out-of-sample part of data, we use the same approach

as in the case of Sharpe ratio.

We use 95% VaR, so we have c(0.05) = −1.645.

4.6 Efficiency analysis

To compare and evaluate the results, we divide the dataset to the in-sample

part used for estimation and the out-of-sample part used for evaluation of the

results. A reduction in returns variance and VaR are used for measurement

of the results and comparison of individual hedging ratios. We define the

reduction in the returns variance as:

e = 1− var(Rp)

var(Rs)
. (4.35)

The Value at Risk is computed using the Cornish-Fisher expansion that we

use for finding the minimum VaR hedge ratio. It is defined as:

V aRp = −σpc(α) +
1

6
[c(α)2 − 1]sp +

1

24
[c(α)3 − 3c(α)](kp − 3)−

− 1

36
[2c(α)3 − 5c(α)]s2

p,
(4.36)

where c(α) stands for the α percent quantile of the standard normal distribution

and it is a negative number. As mentioned above, we calculate 95% VaR which

corresponds to c(0.05) = −1.645.

We evaluate the performance of hedge ratios in the in-sample part as well,

even though it does not correspond to hedging in the real world, where the

historical data are used for estimation of hedge ratio for the future period. We

use the estimated hedge ratios and apply the hedging strategy on daily data.

Except for the bivariate GARCH models, all hedge ratios are constant. For
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the bivariate GARCH models we evaluate both, hedging with changing hedge

ratios and hedging with average hedge ratios. We calculate reduction in returns

variance and VaR and compare the results.

There are several approaches how to compare the power of individual hedge

ratios using the out-of-sample data. We can simple use the estimated hedge

ratios from the in-sample part of data and apply them on the out-of sample

data. However, this would be unrealistic as the hedging period would be too

long and the company would not change the hedge ratio over the period (except

for the hedge ratio given by the bivariate GARCH, again). Or we may use a

more realistic approach and re-estimate the hedge ratio periodically using the

estimate as hedge ratio for the next period.

As the hedging period should be the same as the frequency of the data and

our data sample is limited, we have decided to use the daily hedging period

to ensure reliability of the analysis, but we are aware of the fact that most of

companies using hedging do not adjust their hedge ratio daily because it would

be too expensive due to transaction costs.

We use the rolling window method with 1000 last historical observations at

t used to estimate the hedge ratio employed at t + 1, in t + 1 we roll over the

sample and use 1000 last observations to estimate the hedge ratio for t+2, and

so on. It is not a strictly out-of-sample approach, but we think it is the most

realistic one and it is suitable to be applied on our data.

In the last part of the efficiency analysis, we try to employ the daily data, yet

we extend the hedging period. It is assumed, that the hedge period is one week

(5 working days), meaning that the company adjusts the hedge ratio weekly.

The hedge ratios are estimated on daily basis and the company calculates the

average hedge ratio from the past week data and uses it as the hedge ratio for

the following week. Again, we compare the power of the hedge ratios using the

reduction in variance and VaR.

4.7 Programs used in the analysis

For estimation of the optimal hedge ratios we use two different programs –

STATA and Matlab. STATA is used for the econometric analysis of the mini-

mum variance hedge ratio and Matlab is used for numerical derivation of the

hedge ratios in case of minimum VaR hedge ratio, Sharpe hedge ratio, mini-

mum MEG hedge ratio, and minimum GSV hedge ratio. These hedge ratios

are found either using the first order conditions or grid search. The programs
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written to find the optimal hedge rations in Matlab can be found in the Ap-

pendix.

We must also use programming in STATA, as the incorporated rolling win-

dow options are limited and do not enable us to use multiple steps process

necessary in case of the error correction models and the multivariate GARCH

models. As we use the rolling window approach to find the hedge ratios in the

out-of-sample data amounting to hundreds of observations, we use for cycles

in the do. file in STATA to estimate them. These codes are enclosed in the

Appendix as well.



Chapter 5

Empirical analysis

In this chapter, we describe the data used in our analysis and evaluate the

results of the procedures described in the previous section.

5.1 Data description

Each futures contract is usually active (regarding trading) only in the last

three months, when it is the futures with maturity closest to the current date.

Further, prices during the delivery month are volatile and unreliable. Therefore,

we have decided to use nearby futures contracts and replace the current nearby

contract by the following nearby contract on the first day of the settlement

month in order to provide reliable data. Nearby futures contract is a contract

with the nearest delivery month to the trading day.3 Nearby futures are linked

to create a continuous series of futures prices. When calculating the daily

returns, we ensure that the differences are made using prices of one contract,

which is especially important at the point of rolling futures over; mixing prices

of two different futures together would distort the results and the returns would

not correspond to the market behaviour.

To create such a series, we need separate data about each futures contract

with settlement day in a chosen historical period. We tried to find the data

using the Reuters Eikon tool; however, the historical data are presented as

continuous contracts there and we did not find any detailed description of their

composition. As we strictly need to generate the specific series described above,

3For example, let us have two futures contracts on Wheat, one with settlement day on
May 15, 2014 and the other with settlement day on July 15, 2014. On April 20, 2014, the
nearby futures is the first one, but as we reach May 1, 2014 the nearby futures changes to
the second one with settlement day in July.
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we have to rely on the only free database providing the daily data about spot

and futures prices of commodities: www.quandl.com.

The spot prices presented in the database are obtained from the Wall Street

Journal Market Data Center (WSJ MDC), which publishes daily spot prices

since May 1, 2007; further, it contains an outage in published data in fall 2013

and thus limits our dataset from both sides to a period ranging from May 1,

2007 to August 31, 2013. Most of the used futures are traded on the Chicago

Mercantile Exchange (CME), the Chicago Board of Trade (CBOT) and the

New York Mercantile Exchange (NYMEX). In this selection, we try to cover

all types of commodities. A detailed overview of used commodities and related

data can be found in Table 5.1.

Table 5.1: Commodities overview

Commodity Type Spot Source

Beef Farms and fishery Beef, Select, gr. 1-3 USDA via WSJ
Coffee Agriculture, softs Coffee, Colombian, NY WSJ
Copper Industrial metals Copper, gr. high Comex via WSJ
Corn Agriculture, grains #2 Yellow C., Central Illinois USDA via WSJ
Oil Energy WTI Crude Oil US Dep. of Energy
Platinum Rare metals Platinum, Engelhard fabr. p. WSJ
Soybeans Agriculture, grains #1 Yellow S., Illinois USDA via WSJ
Wheat Agriculture, grains #2 Soft Red W., St Louis USDA via WSJ

Futures Settlement months Exchange Cont. un.

45% Select, gr. 3, live Feb,Apr,Jun,Aug,Oct,Dec CME 40,000 p.
Arabica Coffee (”C”) Mar,May,Jul,Sep,Dec ICE 37,500 p.

Copper, gr. 1 El. Cathodes Mar,May,Jul,Sep,Dec COMEX 25,000 p.
#2 Yellow C. Mar,May,Jul,Sep,Dec CBOT 5,000 b.

Light Sweet Crude Oil Jan-Dec,monthly NYMEX 1,000 br.
Platinum, min 99.95% pure Jan,Apr,Jul,Oct NYMEX 50 t.o.
#1 Yellow S., 6% premium Jan,Mar,May,Jul,Aug,Sep,Nov CBOT 5,000 b.

#2 Soft Red Winter W. Mar,May,Jul,Sep,Dec CME 5,000 b.

Note: p.=pounds, b.=bushels, t.o.=troy ounces, br.=barrels

We did not find corresponding spot prices for some commodity futures;

hence, the closest substitutes are used instead. For example, there are futures

for Live Cattle, but the spot prices reported by the WSJ MDC contain only

spot prices for Beef; similarly, the main underlying asset for Soybeans futures

are #2 Yellow Soybeans and we have data about #1 Yellow Soybeans, which

can be traded under the Soybeans futures as well but with a 6% premium.

These discrepancies may cause weaker correlation between the spot and futures

prices and price returns. Nevertheless, this is a real problem faced by hedging
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companies; a specific asset they want to hedge is hardly ever covered by futures,

so they have to use a similar asset with correlated prices and price returns.

Daily data from period May 1, 2007 - August 31, 2013 are collected, amount-

ing to approximately 1600 observations. We divide the data sample into two

sub-samples, one is used for the in-sample analysis and the other is used for

evaluation of the results. The analysis is performed using the first 1000 obser-

vations (approximately two thirds); the remaining observations (one third) are

then used for evaluation of the hedge efficiency.

We use price logarithms and their differences as it is the standard approach

to deal with daily financial data. Note that differences of logarithms can be

considered returns. Overview of statistic properties of the data can be found

in Table 5.2.

Table 5.2: Statistics of spot and futures returns

Com. # obs. mean min max SD skewn. kurt.

Beef
spot 1597 0.00013 -0.02545 -0.03444 0.00574 0.66850 6.88984
fut. 1597 -0.00027 0.03685 0.03576 0.00863 -0.12892 4.29509

Coffee
spot 1596 0.00013 -0.09529 0.07151 0.01452 -0.33878 5.64634
fut. 1596 -0.00017 -0.11254 0.07510 0.01891 -0.24657 4.57074

Copper
spot 1597 -0.00005 -0.11693 0.11769 0.02134 -0.11060 5.73470
fut. 1597 -0.00011 -0.11506 0.08677 0.02108 -0.13169 5.32469

Corn
spot 1595 0.00011 -0.12112 0.10888 0.02330 -0.21902 5.26587
fut. 1595 0.00000 -0.10409 0.08662 0.02145 -0.14973 4.50513

Oil
spot 1599 0.00029 -0.12827 0.16414 0.02520 0.09122 8.56198
fut. 1599 -0.00013 -0.11433 0.13340 0.02309 -0.22963 6.60682

Platinum
spot 1614 0.00005 -0.10048 0.10981 0.01574 -0.65839 8.60172
fut. 1614 -0.00001 -0.11147 0.08138 0.01681 -0.67533 7.54907

Soybeans
spot 1599 0.00036 -0.12737 -0.07411 0.01853 -0.59680 6.20499
fut. 1599 0.00068 0.07345 0.06476 0.01729 -0.31581 4.71835

Wheat spot 1599 0.00019 -0.21770 0.18684 0.03163 -0.26102 7.37045
fut. 1599 -0.00040 -0.10017 0.08794 0.02387 -0.08397 4.29273

All means of price returns are very close to zero, which supports the usage

of our zero means assumption in the minimal Value at Risk hedge ratio. Every

mean of spot returns except for the return on spot Corn is positive, whereas

the futures returns are mostly negative. The lower mean returns on futures are

balanced by lower standard deviations in the returns for all Grains, Oil and

Copper. The biggest difference between the spot and futures returns’ standard

deviations can be observed on the example of Wheat: the standard deviation

of futures returns equals to 2/3 of the standard deviation of spot returns. If

the spot and futures returns are highly correlated, it is possible that the hedge
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ratio is higher than one to cover the changes in spot returns by smaller changes

in futures returns.

Skewness of a symmetric distribution is equal to 0; all returns except for spot

returns on Oil and Beef have negative skewness meaning that their distributions

have long left tails. In other words, small gains are quite frequent but there are

a few extreme losses as well (considering zero mean). Kurtosis of all returns

is higher than kurtosis of normal distribution, meaning that their distributions

are leptokurtic or sharper than the normal distribution and have fat tails. Fat

tails signal a higher probability of extreme values.

The skewness and kurtosis results show that the returns series are not nor-

mally distributed, and support the approach used by Cao et al. (2010), who

deals with non-normally distributed series in the calculation of the Value at

Risk hedge ratio. The largest departure from normality is for Platinum spot

and futures returns, which have skewness coefficients equal to -0.668 and -0.675,

respectively, and their kurtosis coefficients take value of 8.60 for spot returns

and 7.55 for futures returns. The graphs of returns are presented in Figure B.1

in the Appendix and show that the returns oscillate around zero. In the graph

of Wheat spot and futures prices, it is visible that the spot return volatility

is much higher than the futures return volatility. The higher volatility in the

first third of the series of Beef, Copper, Corn, Oil, Platinum, and Soybeans is

associated with the financial crisis.

An important factor influencing hedge ratio is the correlation between the

spot and futures returns. As we choose individual commodities, we try to

obtain spot and futures prices of the closest assets based on the description and

trends in prices, but this approach does not ensure correlation of the returns

as presented in Table 5.3.

Table 5.3: Correlation of spot and futures returns

Correlation levels differences

Beef 0.9383 0.0681
Coffee 0.8957 -0.0156
Copper 0.9997 0.9570
Corn 0.9850 0.8655
Oil 0.9971 0.9258
Platinum 0.9988 0.7335
Soybeans 0.9908 0.9289
Wheat 0.8899 0.8214
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Spot and futures returns on Beef are correlated only very weakly with cor-

relation coefficient equal to 0.068. The returns on Coffee spot and futures

are actually negatively correlated, even though the correlation of levels and

graphs of levels indicate that the assets given by spot and futures are a good

match. (The graphs are presented in Figure B.2 in the Appendix.) Although

the futures are clearly a bad hedging tool for the commodities and a hedging

company would not choose them to hedge its position, we do not exclude them

from the hedging ratio analysis to examine the effect of poorly chosen futures

on hedging.

Other commodities are highly correlated in both, levels and returns, and

hence the futures for hedging are well chosen. We can now move to the hedge

ratio estimations.

5.2 Results

The approaches to the hedge ratio estimation can be divided into two groups -

one is based on econometric analysis and the other employs numerical-solving

methods. As the econometric part is more complex we describe the results of

individual parts of the whole process in a separate subsection.4

The numerical-solving based methods of finding hedge ratios are thoroughly

described in the previous chapter and we do not repeat them here, only a

discussion of results is provided in this section. For more details, return to the

previous chapter or see the Matlab code presented in the Appendix.

5.2.1 Econometric Analysis

We start the econometric analysis with the unit root test to determine whether

the levels or the differences are stationary. Based on the graphs of returns, we

employ Augmented Dickey Fuller test without constant. The regressions with

different number of lags (0-5) are estimated and we keep the results of the one

with significant coefficients only. We are not able to reject the null hypothesis

of unit root for the levels of spot and futures prices of all commodities at a 10%

level of significance and we conclude that the price levels are not stationary.

The test is then applied to returns; in this case, we reject the null hypothesis

of unit root for all returns. The conclusion of unit root analysis is the finding

that all spot and futures price series are integrated of order one, so we have to

4All presented results are for the first 1000 observations.
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use its differences in the econometric analysis. The results of tests are shown

in Table 5.4.

Table 5.4: Results of unit root test

levels differencies

Com. returns const. # lags t. stat. p-value const. # lags t. stat. p-value

Beef
spot no 4 0.491 >10% no 0 -9.628 <1%
futures no 0 0.636 >10% no 0 -31.101 <1%

Coffee
spot no 0 2.005 >10% no 2 -16.455 <1%
futures no 0 1.523 >10% no 0 -32.749 <1%

Copper
spot no 4 -0.122 >10% no 3 -15.085 <1%
futures no 1 -0.041 >10% no 3 -15.14 <1%

Corn
spot no 0 0.721 >10% no 0 -31.394 <1%
futures no 0 0.764 >10% no 0 -30.337 <1%

Oil
spot no 3 0.464 >10% no 4 -14.774 <1%
futures no 0 0.529 >10% no 0 -32.664 <1%

Plat.
spot no 0 0.481 >10% no 0 -31.054 <1%
futures no 1 0.432 >10% no 0 -29.636 <1%

Soyb.
spot no 0 0.775 >10% no 0 -31.626 <1%
futures no 0 0.74 >10% no 0 -30.722 <1%

Wheat spot no 1 0.176 >10% no 0 -34.861 <1%
futures no 0 0.246 >10% no 0 -32.181 <1%

1% critical value = -2.58, 5% critical value = -1.95, 10% critical value = -1.62

Then we run the simple OLS regression to obtain the basic hedge value

determined by the coefficient β0 in the regression model

∆St = α + β0∆Ft + εt.

The results for each commodity are presented in Table 5.5.

All β0 coefficients except for Coffee are significant. Albeit insignificant, β0

for Coffee is negative, reflecting the negative correlation between the spot and

futures returns. The coefficient for Beef is significant but low, signalling that

the ratio between number of futures used for hedging and the related spot

position is very small. The Coffee and Beef models have low Adjusted R2

arising from the very weak correlation, we would thus mark both of the models

as poor and unreliable.

The values of Adjusted R2 of other models are much higher, taking values in

range between 0.54 and 0.92 (for Platinum and Copper, respectively). There is

a clear positive relationship between the quality of model measured by Adjusted

R2 and the correlation between spot and futures returns. β0 coefficient in the

Platinum model is the smallest one taking value of 0.7, the other are much

closer to 1, and the coefficients for Oil and Wheat are even larger than one,
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Table 5.5: Results of simple OLS regression

Beef Coffee Copper Corn Oil Plat. Soyb. Wheat

β0 0.0431* -0.0032 0.9701* 0.9691* 1.0150* 0.6976* 0.9910* 1.1601*
(0.021) (0.024) (0.009) (0.018) (0.015) (0.021) (0.012) (0.024)

α 0.0002 0.0010* 0.0001 0.0006 0.0006 0.0001 -0.0002 0.0007
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Adj. R2 0.0034 0.0010 0.9187 0.7550 0.8284 0.5340 0.8726 0.7018
S. corr.1 0 0.5420 0 0 0.3995 0 0 0
Heter.2 0.5304 0.6821 0 0.7671 0 0.0103 0 0.0037
ARCH3 0.0579 0.0001 0 0 0 0 0 0
AIC -7422 -5664 -7123 -5906 -5995 -5976 -6995 -5035
BIC -7412 -5654 -7113 -5896 -5985 -5966 -6985 -5025
1p-value, Breusch-Godfrey LM test for autocorrelation, 2 lags, H0: no autocorrelation
2p-value, Breusch-Pagan test for heteroskedasticity, H0: no heteriskedasticity
3p-value, LM test for autoregressive cond. heteroskedasticity, 1 lag, H0: no ARCH eff.
*significant at 5% level

Table 5.6: Results of specified OLS regression

Beef Coffee Copper Corn Oil Plat. Soyb. Wheat

β0 0.0544* 0.0246 0.9738* 0.9728* simple 0.6747* 0.9951* 1.1621*
(0.018) (0.013) (0.009) (0.016) OLS (0.017) (0.012) (0.024)

γ1 0.4177* -0.2458* -0.3611* -0.4007* best -0.4327* -0.2591* -0.1467*
(0.028) (0.030) (0.029) (0.029) (0.026) (0.031) (0.031)

β1 0.1025* 0.6039* 0.3601* 0.4648* 0.5586* 0.2504* 0.0806
(0.018) (0.013) (0.030) (0.032) (0.025) (0.033) (0.043)

β2 - 0.2514* 0.0235* - - - -
(0.022) (0.009)

α 0.0002 0.0006* 0.0001 0.0008* 0.0001 -0.0002 0.0008
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Adj. R2 0.2097 0.6788 0.9299 0.7986 0.6925 0.8809 0.7119
S. corr.1 0 0.0036 0 0 0 0.1449 0.9378
Heter.2 0.0001 0.0003 0 0.0219 0.5948 0.9272 0.6744
ARCH3 0.0058 0 0 0 0 0 0
AIC -7644 -6781 -7254 -6093 -6382 -7052 -5062
BIC -7624 -6756 -7229 -6074 -6362 -7033 -5042
1p-value, Breusch-Godfrey LM test for autocorrelation, 2 lags, H0: no autocorrelation
2p-value, Breusch-Pagan test for heteroskedasticity, H0: no heteriskedasticity
3p-value, LM test for autoregressive cond. heteroskedasticity, 1 lag, H0: no ARCH eff.
*significant at 5% level
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meaning that a hedging company has to use more units of underlying asset at

futures market than it owns at spot market to hedge its position.

Most of the models have autocorrelated or heteroskedastic errors and show

signs of ARCH effect; hence, we try to specify the models better.

The specification can be improved using lag values of both dependent and

independent variables. The best model is determined by information criteria.

The general model can be written as:

∆St = α + β0∆Ft + γ1∆St−1 + β1∆Ft−1 + β2∆Ft−2 + γ2∆St−2 + εt,

but some of the coefficients can be zero to specify the desired model. The

results are presented in Table 5.6.

Several combinations of lags are tried for each model and the best specified

models are chosen according to the information criteria. The best model of

Oil has no lags; one lag of the dependent and independent variables is added

to the other models, and Coffee and Copper models contain two lags of the

independent variable. The improvement can be tracked using the values of

information criteria and Adjusted R2. The biggest improvement in terms of

Adjusted R2 can be observed in Beef and Coffee models. The β0 coefficient

increases in most of the models, but the difference between the two coefficients

is insignificant for models with good explanatory power.

The residuals of the five models are still autocorrelated, so the specification

of the models is not ideal despite the improvements.

As all our series are integrated of order one, it is appropriate to test the

presence of cointegration. Results can be found in Table 5.7.

Table 5.7: Results of cointegration test

Com. const. # lags t. stat. p-value coeff.

Beef no 1 -3.811 <1% 1.0778
Coffee no 3 -0.646 >10% -
Copper no 4 -7.153 <1% 1.0002
Corn no 2 -3.315 <1% 0.9570
Oil no 2 -8.123 <1% 0.9976
Platinum no 4 -3.495 <1% 1.0092
Soybeans no 2 -4.232 <1% 0.9895
Wheat no 1 -1.763 5%>x<10% 0.9101

All series except for Coffee have cointegrated spot and futures returns, so
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we improve the OLS models by including the error term:

∆St = α + β0∆Ft + δ1zt−1 + εt

and

∆St = α + β0∆Ft + γ1∆St−1 + β1∆Ft−1 + γ2∆St−2 + β2∆Ft−2 + δ1zt−1 + εt,

where zt−1 is lag of the linear combination of spot and futures prices. The

results are shown in Tables 5.8 and 5.9

Table 5.8: Results of simple ECM regression

Beef Coffee Copper Corn Oil Plat. Soyb. Wheat

β0 0.0475* not 0.9746* 0.9703* 1.0275* 0.6989* 0.9901* 1.1636*
(0.020) cointegr. (0.008) (0.017) (0.014) (0.019) (0.012) (0.024)

δ1 -0.0239* -0.3889* -0.0887* -0.1022* -0.2384* -0.0623* -0.0113*
(0.003) (0.025) (0.013) (0.013) (0.018) (0.008) (0.004)

α 0.0003 -0.0002 0.0003 0.0005 0.0003 -0.0002 0.0006
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Adj. R2 0.0531 0.9347 0.7658 0.8378 0.601 0.8799 0.7037
S. corr.1 0.0042 0.0001 0.0392 0.0448 0.0012 0.0128 0.0212
Heter.2 0.2999 0.0945 0.0392 0 0.0002 0 0.0044
ARCH3 0.0158 0 0 0 0 0 0
AIC -7472 -7340 -5950 -6051 -6130 -7053 -5041
BIC -7457 -7325 -5936 -6036 -6115 -7038 -5026
1p-value, Breusch-Godfrey LM test for autocorrelation, 2 lags, H0: no autocorrelation
2p-value, Breusch-Pagan test for heteroskedasticity, H0: no heteriskedasticity
3p-value, LM test for autoregressive cond. heteroskedasticity, 1 lag, H0: no ARCH eff.
*significant at 5% level

The error correction term is significant in all models; the values of Adjusted

R2 increase, and the information criteria suggest that the models with the error

correction term are better than the simple models. The estimators of hedge ra-

tio increase compared to the simple models and the problem of autocorrelation

and heteroskedasticity in residuals diminishes.

According to the ARCH test, the ARCH effect is present in the models of all

commodities, so we use the GARCH (1,1) suggested by the authors discussed

in Chapter 3. Again, two models are used - a simple one

∆St = α + β0∆Ft + εt

σ2
t = λ0 + λ1σ

2
t−1 + θ1ε

2
t−1,
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Table 5.9: Results of specified ECM regression

Beef Coffee Copper Corn Oil Plat. Soyb. Wheat

β0 0.0596* not 0.9774* 0.9731* simple 0.6827* 0.9941* 1.1632*
(0.018) cointegr. (0.008) (0.016) ECM (0.016) (0.011) (0.024)

γ1 0.3387* -0.3235* -0.3723* best -0.5654* -0.2560* -0.0941*
(0.031) (0.034) (0.029) (0.032) (0.030) (0.017)

β1 0.0955* 0.3215* 0.4389* 0.6141* 0.2472* -
(0.018) (0.034) (0.032) (0.028) (0.032)

γ2 0.1129* -0.2252* - -0.1919* - -
(0.031) (0.030) (0.028)

β2 0.0482* 0.2397* - 0.2705* - -
(0.018) (0.031) (0.029)

δ1 -0.0153* -0.2416* -0.0584* -0.0817* -0.0616* -0.0091*
(0.003) (0.028) (0.012) (0.017) (0.008) (0.004)

α 0.0002 -0.0001 0.0006 0.0002 -0.0002 0.0006
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Adj. R2 0.2460 0.9411 0.8030 0.7289 0.8881 0.7123
S. corr.1 0.0231 0.9884 0.0523 0.0389 0.0053 0.0574
Heter.2 0.0002 0.8810 0.5515 0.0021 0.0155 0.3654
ARCH3 0.016 0 0 0 0 0
AIC -7679 -7426 -6114 -6497 -7113 -5063
BIC -7645 -7392 -6090 -6463 -7089 -5043
1p-value, Breusch-Godfrey LM test for autocorrelation, 2 lags, H0: no autocorrelation
2p-value, Breusch-Pagan test for heteroskedasticity, H0: no heteriskedasticity
3p-value, LM test for autoregressive cond. heteroskedasticity, 1 lag, H0: no ARCH eff.
*significant at 5% level
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and the model with the best information criteria

∆St = α + β0∆Ft + γ1∆St−1 + β1∆Ft−1 + γ2∆St−2 + β2∆Ft−2 + δ1zt−1 + εt

σ2
t = λ0 + λ1σ

2
t−1 + θ1ε

2
t−1.

Some of the βi and γi coefficients can be again equal to zero. The results are

in Tables 5.10 and 5.11.

Table 5.10: Results of simple GARCH(1, 1) regression

Beef Coffee Copper Corn Oil Plat. Soyb. Wheat

β0 0.0398* -0.0584* not 1.0857* 1.0028* 0.6904* 1.0072* 1.2042*
(0.019) (0.015) converge (0.004) (0.003) (0.017) (0.008) (0.014)

α 0.0002 0.0016* 0.0011* 0.0002* 0.0001 0.0002 -0.0002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

θ1 0.1391* 0.2307* 1.0741* 0.7107* 0.1168* 0.4408* 0.7472*
(0.036) (0.031) (0.073) (0.022) (0.015) (0.041) (0.075)

λ1 -0.1607 0.3617* 0.5178* 0.5954* 0.8834* 0.5629* 0.0463
(0.090) (0.066) (0.012) (0.006) (0.011) (0.023) (0.024)

λ0 0.0000* 0.0001* 0.0000* 0.0000* 0.0000* 0.0000* 0.0002*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log likel. 3721 2868 3467 3966 3176 17904 2634
AIC -7433 -5725 -6925 -7922 -6342 -7681 -5258
BIC -7408 -5701 -6900 -7897 -6317 -7656 -5234
*significant at 5% level

The GARCH estimation is based on the maximum likelihood method, which

is an iterative procedure converging when the difference between two iterations

is small enough. We encounter the problem of non-converging likelihood sev-

eral times in our study. GARCH model likelihoods are notoriously difficult to

maximize and solving the problem is beyond the scope of the thesis;5 hence,

the GARCH results are not presented for Copper and the hedge ratio estimated

using the specified GARCH model was not found either for Beef and Wheat.

The Beef time series data do not strictly reject the null hypothesis of no

ARCH effect and the GARCH model has a zero impact on the information

criteria. The information criteria of the other models, on the contrary, signif-

icantly increase. The reaction of the hedge ratios on the change in the type

of estimation differs across the commodities. As STATA do not report Ad-

5Further, we want stay consistent in estimations of the hedge ratios for different commodi-
ties, so we do not use any specification of GARCH options or different methods of estimation.
Another problem with the GARCH estimation is that the non-convergence issue often ap-
pears somewhere in the out-of-sample data that are used for the rolling window procedure,
e.g. the estimation is run 600 times and finding an option convenient for all regression would
be very time demanding.
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Table 5.11: Results of specified GARCH(1, 1) regression

Beef Coffee Copper Corn Oil Plat. Soyb. Wheat

β0 not 0.0326* not 1.0830* 1.0039* 0.6647* 0.9933* not
converge (0.009) converge (0.006) (0.003) (0.013) (0.003) converge

γ1 -0.1150* -0.2665* - -0.5478* -0.1499*
(0.037) (0.042) (0.033) (0.041)

β1 0.6185* 0.2732* - 0.5913* 0.1441*
(0.009) (0.045) (0.027) (0.041)

γ2 - - - -0.1903* 0.0100 -
(0.028) (0.029)

β2 0.1677* - - 0.2606* -0.0533
(0.024) (0.030) (0.029)

δ1 - -0.0168* -0.1342* -0.0916* -0.0139*
(0.003) (0.007) (0.017) (0.003)

α 0.0006* 0.0014* 0.0012* -0.0002 0.0010*
(0.000) (0.000) (0.000) (0.000) (0.000)

θ1 0.4137* 1.0787* 0.8109* 0.0865* 1.6838*
(0.040) (0.078) (0.028) (0.013) (0.162)

λ1 0.1054* 0.5226* 0.4969* 0.9111* 0.3768*
(0.049) (0.016) (0.013) (0.011) (0.020)

λ0 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*
(0.000) (0.000) (0.000) (0.000) (0.000)

Log likel. 3481 3482 4021 3431 3910
AIC -6947 -6948 -8029 -6841 -7800
BIC -6907 -6909 -8000 -6792 -7751
*significant at 5% level
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justed R2 for GARCH estimations, we express the fitting quality using the

log likelihood values, which cannot be compared to the previous estimations.

More details regarding the hedge ratio estimation can be found in the following

subsection comparing the results.

The last model we employ is the bivariate GARCH model - again in the basic

and specified versions. The specification for each variable is determined using

the univariate analysis and information criteria. While in the other models the

hedge ratio was given by the estimated β0 coefficient, it is determined by the

variance-covariance matrix in the bivariate GARCH model. The models are

∆St = α1 + ε1,t

σ2
1,t = λ10 + λ11σ

2
1,t−1 + θ11ε

2
1,t−1

∆Ft = α2 + ε2,t

σ2
2,t = λ20 + λ21σ

2
2,t−1 + θ21ε

2
2,t−1

and

∆St = α1 + γ11∆St−1 + δ11zt−1 + ε1t

σ2
1,t = λ10 + λ11σ

2
1,t−1 + θ11ε

2
1,t−1

∆Ft = α2 + β21∆St−1 + δ21zt−1 + ε2,t

σ2
2,t = λ20 + λ21σ

2
2,t−1 + θ21ε

2
2,t−1

The hedge ratio is then defined as Ht−1 = G12,t

G22,t
, where G12,t and G22,t are

elements of the variance-covariance matrix. Results can be found in Tables

5.12 and 5.13.

We cannot make any conclusions about the hedge ratio based on the regres-

sion results as it is given by estimation of the variance-covariance matrix and

varies over time. The estimations of the bivariate GARCH models have the

highest information criteria, so we can conclude that the models fit the data

best and we suppose that the related hedge ratios are the most efficient out

of the econometric hedge ratios. We examine this hypothesis in the following

section.
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Table 5.12: Results of simple bivariate GARCH regression

Beef Coffee Copper Corn Oil Plat. Soyb. Wheat

α1 0.0001 0.0015* 0.0010 0.0033* 0.0026* 0.0006 0.0011 0.0015
(0.000) (0.000) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)

θ11 0.1543* 0.1999* 0.0738* 0.1659* 0.1188* 0.0693* 0.0438* 0.0921*
(0.047) (0.049) (0.007) (0.029) (0.011) (0.011) (0.005) (0.015)

λ11 -0.1448* 0.4472* 0.9471* 0.7651* 0.9026* 0.9262* 0.9472* 0.8935*
(0.063) (0.149) (0.005) (0.042) (0.008) (0.011) (0.007) (0.018)

λ10 0.0000* 0.0001* 0.0000* 0.0001* 0.0000 0.0000* 0.0000* 0.0000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

α2 -0.0002 0.0007 0.0009 0.0026* 0.0021* 0.0006 0.0013* 0.0005
(0.000) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)

θ21 0.0342* 0.0219* 0.0755* 0.1573* 0.1040* 0.0652* 0.0377* 0.0572*
(0.009) (0.010) (0.007) (0.027) (0.011) (0.011) (0.005) (0.012)

λ21 0.9515* 0.9417* 0.9464* 0.7756* 0.9166* 0.9196* 0.9524* 0.9013*
(0.013) (0.024) (0.005) (0.042) (0.008) (0.014) (0.007) (0.023)

λ20 0.0000 0.0000 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log likel. 7043 5406 6116 5412 5976 5889 6128 4907
AIC -14067 -10794 -12214 -10807 -11934 -11760 -12238 -9797
BIC -14023 -10750 -12170 -10762 -11890 -11715 -12194 -9752
*significant at 5% level
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Table 5.13: Results of specified bivariate GARCH regression

Beef Coffee Copper Corn Oil Plat. Soyb. Wheat

γ11 0.4418* not - - - - - not
(0.031) converge converge

δ11 -0.0183* -3.3303* 0.0791* - -0.2956* -
(0.003) (0.165) (0.025) (0.020)

α1 0.0001 -0.0033* 0.0023* 0.0028* -0.0002 0.0011
(0.000) (0.001) (0.001) (0.001) (0.000) (0.001)

θ11 0.0616* 0.1442* 0.0796* 0.1197* 0.0737* 0.0438*
(0.025) (0.012) (0.010) (0.011) (0.011) (0.005)

λ11 -0.3410 0.8782* 0.9344* 0.9014* 0.9225* 0.9472*
(0.182) (0.010) (0.008) (0.008) (0.011) (0.007)

λ10 0.0000* 0.0000* 0.0000 0.0000 0.0000* 0.0000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

δ21 0.0037 -3.0953* 0.1291* 0.0887* - -
(0.005) (0.161) (0.022) (0.011)

α2 -0.0002 -0.0031* 0.0017* 0.0019* 0.0006 0.0013*
(0.000) (0.001) (0.001) (0.001) (0.000) (0.001)

θ21 0.0339* 0.1545* 0.0748* 0.1049* 0.0642* 0.0377*
(0.009) (0.013) (0.010) (0.011) (0.011) (0.005)

λ21 0.9519* 0.8711* 0.9369* 0.9153* 0.9229* 0.9524*
(0.013) (0.010) (0.009) (0.008) (0.013) (0.007)

λ20 0.0000 0.0000* 0.0000 0.0000* 0.0000* 0.0000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log likel. 7151 6516 5446 6009 5988 6128
AIC -14279 -13011 -10869 -11999 -11957 -12238
BIC -14220 -12957 -10815 -11950 -11908 -12194
*significant at 5% level
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5.2.2 Estimated Hedge Ratios

We estimate 25 different hedge ratios for each commodity - 8 types of hedge

ratios are obtained through econometric analysis and 17 hedge ratios are com-

puted. Strictly speaking, the computed group includes only 4 different types of

hedge ratios as the MEG (Gini) hedge ratio and the GSV hedge ratio depend

on the risk parameters and we estimate the MEG and GSV hedge ratios for

five different risk parameters and compare the results. Further, there are two

approaches for calculation of the GSV hedge ratio and we employ both of them.

There are some missing hedge ratios due to reasons described in the previ-

ous section and due to instability of the Sharpe hedge ratio results. Maximal

Sharpe ratio cannot be always found in a reasonable interval of hedge ratios,6

as depicted in the Figure 5.1. The first figure shows a graph of Sharpe ratio

of Soybeans calculated on observations 1-1000 with a peak at approximately

1.1, whereas the second figure represents the Sharpe ratio graph of the same

commodity based on observations 350-1350. In the latter case, the maximal

Sharpe ratio is not found on the given interval of hedge ratios and increases

with decreasing hedge ratio. This strange behaviour implies a high volatility

in the hedge ratios calculated by the formula based on Sharpe ratio and we

rather omit these problematic commodities.

Figure 5.1: Dependence of Sharpe ratio on hedge ratio

An overview of the in-sample hedge ratios can be found in Table 5.14, the

out-of-sample results are presented in Table 5.15. Further, we provide graphs

of all constant hedge ratios for each commodity presented in the Appendix. To

compare the constant hedge ratios and the time-varying hedge ratios obtained

through the bivariate GARCH estimation, we plot only the main constant hedge

ratios and the bivariate GARCH hedge ratios obtained through specified models

6We consider the interval (-2, 2).
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to prevent the figures from looking overfull, the figures are presented later in this

section. Comparisons of the simple and specified bivariate GARCH hedge ratios

can be found in the Appendix as well. Beside the series of the bivariate GARCH

hedge ratios, we use their averages in the comparative analysis. The out-of-

sample graphical documentation includes graphs of the hedge ratios obtained

by the rolling window method and graphs of averages of these ratios.

Table 5.14: Hedge ratio - in-sample

HR, in-sample Beef Coffee Copper Corn Oil Platinum Soybeans Wheat

OLS, sim 0.0431 -0.0032 0.9701 0.9691 1.0150 0.6976 0.9910 1.1605
OLS, spec 0.0544 0.0246 0.9738 0.9728 - 0.6747 0.9951 1.1621
ECM, sim 0.0475 - 0.9746 0.9703 1.0275 0.6989 0.9901 1.1636
ECM, spec 0.0596 - 0.9774 0.9777 - 0.6827 0.9941 1.1632
GARCH, sim 0.0398 -0.0584 - 1.0857 1.0028 0.6904 1.0072 1.2042
GARCH, spec - 0.0326 - 1.0830 1.0035 0.6833 0.9945 -
bGARCH, sim, a 0.0465 -0.0081 0.9642 0.9565 0.9956 0.7021 0.9790 1.1340
bGARCH, spec, a 0.0573 - 0.9823 0.9766 0.9939 0.7016 0.9782 -
Sharpe - - 0.8448 - 1.0398 - - 1.2871
Gini, v=1.5 0.0434 -0.0289 0.9681 0.9639 1.0274 0.6773 0.9837 1.1498
Gini, v=2 0.0425 -0.0275 0.9717 0.9704 1.0159 0.6874 0.9887 1.1603
Gini, v=5 0.0424 -0.0011 0.9786 0.9772 0.9953 0.7111 0.9981 1.1778
Gini, v=10 0.0413 0.0192 0.9799 0.9798 0.9804 0.7399 1.0052 1.1896
Gini, v=20 0.0342 0.0335 0.9800 0.9862 0.9626 0.7671 1.0157 1.2100
Gini2, v=1.5 0.0313 -0.0023 0.9988 1.0450 1.0116 0.6945 1.0111 1.1416
Gini2, v=2 0.0302 -0.0023 0.9993 1.0499 1.0123 0.7039 1.0124 1.1436
Gini2, v=5 0.0348 0.0160 0.9995 1.0539 1.0201 0.7234 1.0107 1.1573
Gini2, v=10 0.0409 0.0319 0.9978 1.0509 1.0295 0.7368 1.0032 1.1733
Gini2, v=20 0.0541 0.0451 0.9904 1.0308 1.0427 0.7472 0.9896 1.2012
GSV, α=1 0.0424 -0.0259 1.0000 1.0519 1.0069 0.6966 1.0143 1.1353
GSV, α=2 0.0593 -0.0023 0.9591 0.9794 1.0381 0.7193 0.9936 1.1811
GSV, α=3 0.0766 -0.0266 0.8195 0.8031 1.0381 0.7106 0.9883 1.2294
GSV, α=4 0.0939 -0.0957 0.7321 0.6997 1.0752 0.6707 0.9845 1.3081
GSV, α=5 0.1065 -0.1000 0.6882 0.6471 0.9804 0.6056 0.9627 1.4000
VaR 0.0413 -0.0004 1.0002 1.0366 1.1046 0.7289 1.0345 1.1877

The in-sample results do not allow for making generalizations of the impact

of the estimation type on the value of hedge ratio, but we describe the features

that hold for most of the cases:

1. Hedge ratio increases with the level of specification of the econometric

models, from the lowest value for the simple OLS to the highest values for the

specified error correction models.

2. The simple bivariate GARCH model reports the lowest hedge ratios com-

pared to the univariate econometric models.

3. The MEG hedge ratios obtained through the two described methods differ.

4. The VaR hedge ratios are among the highest ones.
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Table 5.15: Hedge ratio - average of daily HR, out-of-sample

HR, out-of-sample Beef Coffee Copper Corn Oil Platinum Soybeans Wheat

OLS, sim 0.0434 0.0121 0.9861 0.8970 1.0127 0.6813 0.9724 1.0861
OLS, spec 0.0519 0.0224 0.9860 0.8919 - 0.6555 0.9760 1.0886
ECM, sim 0.0444 - 0.9863 0.8981 1.0207 0.6881 0.9720 1.0875
ECM, spec 0.0553 - 0.9866 0.9021 - 0.6638 0.9754 1.0850
GARCH, sim 0.0378 -0.0159 - 1.0208 1.0030 0.6947 0.9697 1.1045
GARCH, spec - 0.0134 - 1.0302 1.0043 0.6801 0.9794 -
bGARCH, sim 0.0502 -0.0111 0.9840 0.9030 0.9405 0.6553 1.0122 0.9803
bGARCH, spec 0.0634 - 0.9705 0.8847 0.9390 0.6250 1.0237 -
Sharpe - - 0.8606 - 1.1272 - - 1.5383
Gini, v=1.5 0.0433 -0.0021 0.9834 0.9064 1.0213 0.6645 0.9739 1.0866
Gini, v=2 0.0431 -0.0048 0.9825 0.9148 1.0133 0.6710 0.9751 1.0930
Gini, v=5 0.0429 0.0107 0.9832 0.9229 0.9986 0.6877 0.9738 1.0978
Gini, v=10 0.0432 0.0251 0.9858 0.9156 0.9874 0.7104 0.9760 1.0978
Gini, v=20 0.0393 0.0299 0.9903 0.8971 0.9738 0.7356 0.9804 1.1034
Gini2, v=1.5 0.0345 0.0135 0.9998 1.0137 1.0085 0.6807 1.0037 1.0734
Gini2, v=2 0.0341 0.0135 1.0001 1.0184 1.0087 0.6859 1.0044 1.0751
Gini2, v=5 0.0399 0.0180 1.0003 1.0141 1.0134 0.6968 1.0005 1.0883
Gini2, v=10 0.0442 0.0182 1.0000 0.9961 1.0198 0.7056 0.9919 1.1046
Gini2, v=20 0.0511 0.0242 0.9984 0.9407 1.0280 0.7085 0.9750 1.1219
GSV, α=1 0.0357 0.0175 1.0004 1.0254 1.0067 0.6759 1.0063 1.0744
GSV, α=2 0.0544 0.0128 0.9868 0.9005 1.0255 0.6921 0.9754 1.1153
GSV, α=3 0.0692 -0.0035 0.9402 0.7058 1.0255 0.6866 0.9312 1.1349
GSV, α=4 0.0919 -0.0455 0.9235 0.6053 1.0366 0.6535 0.8745 1.1321
GSV, α=5 0.1168 -0.0857 0.9845 0.5563 0.9810 0.5933 0.8081 1.1410
VaR 0.0344 0.0062 1.0019 1.0113 1.0673 0.6993 1.033 1.1161
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The average out-of-sample hedge ratios listed in Table 5.15 are generally

lower than the in-sample hedge ratios, even though the change of correlation

structure of returns is not as clear. The above mentioned statements hold also

for the out-of-sample hedge ratios, but the claim about the bivariate GARCH

hedge ratio is significantly challenged by the Soybeans example, where the

bivariate GARCH hedge ratios are much higher than any other econometric

hedge ratio.

The efficiency of the hedge ratios is measured by employing four different

methods: in-sample hedge ratios, out-of-sample daily changing hedge ratios,

out-of-sample weekly changing hedge ratios, and average out-of-sample hedge

ratios. A table summarizing all results would be too complex, so we present the

outcomes for each commodity separately, the tables can be found as Tables A.1

to A.8 in the Appendix. In addition to the tables, we present the results of the

efficiency analysis in graphs included in the subsections describing outcomes

for each commodity.

Table 5.16: Numbering of hedge ratio types

Type Hedge ratio

1 Naive
2 OLS, simple
3 OLS, specified
4 ECM, simple
5 ECM, specified
6 GARCH, simple
7 GARCH, specified
8 bGARCH, simple
9 bGARCH, specified
10 bGARCH, simple, av.
11 bGARCH, specified, av.
12 Sharpe
13 Gini, v=1.5
14 Gini2, v=1.5
15 GSV, α=1
16 VaR

The results differ for various commodities and cannot be generalized. Hence,

we provide a more detailed analysis of the hedge ratios and their efficiency for

individual commodities. In the efficiency graphs, we use a numbering of the

hedge ratio types provided in Table 5.16. Moreover, results of the MEG and

GSV hedge ratios for different risk parameters are analysed in a special subsec-

tion. We use the MEG and GSV hedge ratios with the lowest risk parameters,

characterizing hedgers close to risk neutrality, to compare these types of hedge
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Figure 5.2: Beef - overview of main in-sample HR

ratios with the others. Although we consider rather risk neutral hedgers (not

infinitely risk averse), the hedge ratios obtained through different approaches

should be close due to the nearly zero mean returns.

Beef

As noted before, we have chosen the futures whose returns poorly correlate with

the spot returns, which is not appropriate for hedging of the spot position. This

fact is reflected in the quality of outcomes as the models are not well specified.

In spite of the unreliability of the outcomes, we provide a brief discussion as

the coefficients estimating the hedge ratios are significantly different from zero

in all models.

Considering the in-sample analysis, the hedge ratios can be divided into

two groups based on their values: the specified versions of OLS, the ECM and

bivariate GARCH models (in average) provide high hedge ratios approaching

0.06, and the other estimators result in the values between 0.04 and 0.05,

as shown in Figure B.5. Figure 5.2 displays that the bivariate hedge ratio

fluctuates along the first group of the hedge ratios; but it drops in the range

of 380 (November 11, 2008) to 500 (May 1, 2009), which is associated with

the higher volatility of the returns in this period. The hedge ratios obtained

through the simple and specified bivariate GARCH models have very similar

patterns, but the “specified” hedge ratios are higher (the correlation between

the two hedge ratios is 87%) as depicted in Figure B.3.
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Figure 5.3: Beef - overview of out-of-sample HR

The hedge ratios in the out-of-sample analysis are obtained through the

rolling window approach and thus vary over time. The x-axis in Figure 5.3

defines the out-of-sample period for which the given hedge ratio should be

used. Most of the hedge ratios are relatively constant, although they slightly

decrease and then increase in the second half of the sample. This is connected

to the changes in correlation of the spot and futures returns.7 The correlation

is firstly stable, but there is a drop followed by an increase in the second half

of the out-of-sample period, as shown in Figure B.4. All hedge ratios except

for the bivariate GARCH hedge ratios are strongly autocorrelated, supporting

the hypothesis that it would be appropriate to use constant hedge ratios.

The bivariate GARCH hedge ratios resulting from the rolling window method

are less volatile than the in-sample bivariate hedge ratios. Interestingly, they

develop differently than the other hedge ratios in time. Specifically, we can

observe the opposite patterns - a growth followed by a decrease - in the second

half of the sample.

Looking at the average out-of-sample hedge ratios in Figure B.6 in the

Appendix , we find that the mean specified bivariate GARCH hedge ratio

equals to 0.64, which is much higher than the other mean hedge ratios ranging

between 0.55 and 0.35. The ranking is similar as in the in-sample analysis:

7For estimation of hedge ratio for t+ 1, we use observations from the range t− 1000 to t.
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Figure 5.4: Beef - reduction in variance and VaR

the specified bGARCH, OLS, and ECM hedge ratios are the highest, followed

by the simple bGARCH, OLS, and ECM hedge ratios, and the lowest hedge

ratios are obtained through the numerical approaches and the simple GARCH

model. Most of the hedge ratios are slightly lower than in the case of in-sample

analysis.

The efficiency analysis recorded in Figure 5.4 confirms that the chosen fu-

tures poorly match the spot position. The worst performing hedge strategy is

clearly the naive hedge ratio equal to 1, which is in the case of poorly corre-

lated spot and futures returns indeed a badly chosen plan. An overview of the

hedging efficiency can be found in Table 5.11 in the Appendix and an overall

summary including mean revenues, variance, VaR, skewness and kurtosis and

their reduction, using different hedge strategies, is listed in Tables A.17 and

A.18 in the Appendix.

Although the returns maximization is not the main subject when searching

for the optimal hedge ratio, we can briefly evaluate the impact of hedging on the

mean returns represented in Tables A.17 and A.18 in the Appendix. Again, we

discuss only the GSV and MEG hedge ratios with the lowest risk parameter.

As the hedge ratios are close the zero, the effect is negligible and the mean

returns are very close to 0; the bGARCH hedge ratio has the most significant

positive effect. In general, the effects are positive but weak.

Coffee

The Coffee hedge ratios analysis faces the identical problem as the Beef hedge

ratio analysis - poorly and even negatively correlated spot and futures returns
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resulting from inappropriate choice of the futures for hedging. Further, the

data shows no cointegration, and the hedging coefficients in the OLS models

are insignificant. The GARCH coefficients are significant, but the values given

by the specified and simple models greatly differ - the simple GARCH implies

a negative hedge (-0.06), whereas the specified GARCH suggests a positive

hedge (0.04), so the span of possible hedge ratios is wide, as presented in Figure

B.7. The bivariate GARCH fluctuates along -0.01 and, it does not intersect

any of the other hedge ratios, unlike the bGARCH hedge ratios of the other

commodities, which approves that the span of the hedge ratios is large and the

hedge ratio estimations are unreliable.

Figure 5.5: Coffee - overview of main in-sample HR

Most of the out-of-sample hedge ratios are increasing, the specified GARCH

and VaR hedge ratios are decreasing, and the simple bGARCH hedge ratio stays

constant with low volatility (see Figure 5.6). The averages of the out-of-sample

hedge ratios in Figure B.8 in the Appendix take values between -0.02 and 0.02,

so the interval narrows. However, the results of the hedging effectiveness show

that the hedging has a null effect for all hedging strategies except for the naive

one, which has a strongly negative effect. An overview of the efficiency results is

presented in Table A.2 in the Appendix and an overall summary of the hedging

results is summed up in Tables A.19 and A.20 in the Appendix. Considering

the returns, the effect of hedging is negligible.
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Figure 5.6: Coffee - overview of out-of-sample HR

Figure 5.7: Coffee - reduction in variance and VaR
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Copper

The Copper spot and futures prices returns are highly correlated (the corre-

lation coefficient is approximately 95%) and the values of Adjusted R2 of the

econometric models are highest of all the models; the estimated hedge ratios

should be close to one and the hedging should be highly efficient.

Most of the hedge ratios are in the interval (0.96, 1) and the highest values

are obtained through the MEG 2, GSV and VaR methods. Recall, that the

MEG 2 and MEG 1 hedge ratios should be nearly identical if their values

are lower than 1. In our case, the MEG 1 hedge ratio is smaller and takes

value of 0.968, so it is probable that the two approaches for the MEG hedge

ratio computation have generally different results. We examine this hypothesis

in Section 5.2.3. The Sharpe hedge ratio is an outlier with value of 0.84, as

presented in Figure B.9 in the Appendix. Results of the econometric models

are very close, yet the GARCH models do not converge for some sub-samples

and hence we do not provide the GARCH hedge ratios. The specified bivariate

GARCH hedge ratio fluctuates along the value estimated by the econometric

models, and at one point it decreases to the value of the Sharpe hedge ratio as

illustrated in Figure 5.8. Even though the patterns in the simple and specified

bivariate GARCH hedge ratios seem to be very similar (see Figure B.11 in the

Appendix), the two hedge ratios series are nearly uncorrelated, so the efficiency

results of these two hedge ratios may differ.

The correlation between the spot and futures returns slightly increases

across the sample (from 0.96 to 0.97 with a peak of 0.98), but the changes

are negligible - we would arguably not be able to track them in the out-of-

sample hedge ratio results. Looking at Figure 5.9 depicting the out-of-sample

hedge ratios, we find that the most time-varying hedge ratio is the Sharpe

hedge ratio; the bivariate GARCH hedge ratios are generally stable (there are

three significant deflections reaching up to 1.5, but the hedge ratios return back

to 1 quickly), and the other hedge ratios seem to be nearly constant, taking

values close to 1. The constancy is supported by high autocorrelation of all

hedge ratios.

The average out-of-sample hedge ratios are nearly identical as the constant

in-sample hedge ratios (see Figure B.10 in the Appendix), so the efficiency of

the daily changing hedge ratios and the constant hedge ratios should be close.

The MEG 2, GSV and VaR hedge ratios take values close to 1 and the average

Sharpe hedge ratio is slightly higher than 0.85.
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Figure 5.8: Copper - overview of main in-sample HR

Figure 5.9: Copper - overview of out-of-sample HR without Va
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Figure 5.10: Copper - reduction in variance and VaR

The evaluation of the hedge ratio efficiency can be found in Figure 5.10.

The hedging decreases VaR and variance approximately by 90%. While the

hedging performance in terms of variance is best in the case of the in-sample

analysis, VaR is more successfully reduced in the out-of-sample hedging.

The Sharpe hedge ratio is the least efficient in terms of both variance and

VaR. Although the econometric hedge ratios are not equal to 1, the hedg-

ing effectiveness of the naive hedging is close to the performance of the OLS

and ECM models. The OLS and ECM models provide nearly identical re-

sults for all types of the out-of-sample hedging and also for VaR and variance,

which is caused by the fact that the daily changing hedge ratios are nearly

constant. The average bivariate GARCH models are more successful than the

time-varying bivariate GARCH models in terms of VaR and less successful in

term of variance; the constant hedging reduces variance and VaR more than the

daily or weekly changing hedge ratios. The specified bivariate GARCH hedge

ratio outperforms the simple one. We can conclude that the bGARCH hedge

ratio does not significantly outperform the other types of hedge ratios. The

computational hedge ratios (MEG 2, GSV and VaR) behave similarly as the

OLS and ECM hedge ratios, and the daily/weekly changing hedge ratios are

as successful as the constant hedging. The similar performance of the constant

and time-varying hedging supports the constant hedge ratio hypothesis. In the

case of this combination of spot position and futures, we would recommend

to use the naive hedging, as it is the least demanding regarding calculation;

a hedging company has to control only the changes in correlation of spot and

futures returns.

An overview of the hedging efficiency can be found in Table A.3 in the

Appendix and an overall summary of the hedging for Copper is presented in
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Tables A.21 and A.22 in the Appendix.

The effect of the in-sample hedging on the mean returns is negative, whereas

the impact of the out-of-sample hedging is positive. Considering the in-sample

returns, the hedging reduces the mean returns by 56% on average. Performance

of most of the hedge ratios is comparable, only the simple bGARCH and Sharpe

hedge ratios stand out with returns reduction of 50%, which is probably caused

by the fact that these two hedge ratios are, on average, the lowest ones. The

out-of-sample impact is stronger and it turns negative mean returns to positive.

The best performing hedge ratio is the VaR hedge ratio - it provides a 120%

increase in the mean returns on average. (The VaR hedge ratio is the highest,

so its impact is the strongest. As the hedge ratios are nearly constant, the

value plays a main role in the mean returns effect; hence, we mention it only

briefly at the end of each subsection.) The naive hedging performs comparable

with the average as it increases the out-of-sample returns by 113%.

Corn

Corn shows relatively strong correlation in the spot and futures returns but the

correlation decreases with time (from 0.85 to 0.8). The values of Adjusted R2 of

econometric models are not as large as for Copper but suggest that the models

are still well specified. We suppose that the hedge ratios will be between 0.8

and 1 and the hedging efficiency will be slightly lower than for Copper.

The estimated hedge ratios create three groups: one consists of the GARCH

hedge ratios reaching value 1.08, the second group includes the MEG 2, VaR,

and GSV hedge ratios as in the Copper case with values around 1.05, and

they are followed by all other econometric hedge ratios with values in range of

(0.95-0.98) as depicted in Figure B.13 in the Appendix. The specified bivariate

GARCH hedge ratio fluctuates along all three groups taking values between

0.8 and 1.2 with two peaks reaching 1.4 and 1.8 as shown in Figure 5.11. The

simple and specified bivariate GARCH hedge ratios are strongly correlated and

follow very similar patterns. (See Figure B.12 in the Appendix.) Hence, we

suppose that the hedging strategies would have identical efficiency results.

Examining the out-of-sample daily changing hedge ratios, we find that the

GARCH hedge ratios come closer to the second group during the time, the

bivariate GARCH hedge ratios remain volatile (unlike for Copper) with sim-

ilar patterns, and the other hedge ratios, except for VaR, seem to be nearly

constant with a slight decrease in time, related to the drop in correlation. The
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Figure 5.11: Corn - overview of main in-sample HR

autocorrelation of all hedge ratios is very high, favouring constant hedge ratios.

The described features can be found in Figure 5.12.

The means of the out-of-sample hedge ratios shown in Figure B.14 in the

Appendix confirm that the hedge ratios remain in two groups - the first one is

higher than the second one, the decrease compared to the in-sample results is

caused by the drop in correlation.

The difference in the efficiency between the two groups of hedge ratios can

be also found in Figure 5.13. The reduction in variance is larger than 70%,

while the reduction in VaR is lower, taking values between 65% and 70% for

the out-of-sample analysis (the in-sample analysis has better results with VaR

reduction of app. 73%). So the hedging efficiency is worse than in the case of

Copper as we supposed. The variance reduction reflects the values of Adjusted

R2.

In the terms of variance, the least successful are the GARCH hedge ratios,

followed by the MEG 2, GSV and VaR signalling that the hedge ratios are

probably overestimated. These hedge ratios perform better than the others in

case of the in-sample VaR reduction, but the out-of-sample VaR reduction is

poor again. The naive hedge ratio works well in the in-sample analysis, where

it is comparable with the OLS and ECM hedging in both VaR and variance,

but it significantly underperforms in the out-of-sample efficiency. The OLS and

ECM models provide stable results of approximately 75% reduction in variance
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Figure 5.12: Corn - overview of out-of-sample HR

for all four types of variance efficiency analysis, and they reach the highest VaR

reduction for the changing hedge ratios and an average VaR reduction for the

constant hedge ratios. Good and stable results are provided particularly by the

MEG 1 hedge ratio.

The bivariate GARCH hedge ratios underperform in the in-sample and

daily changing variance analysis, where the best performing hedge ratios are

the naive, OLS, ECM and average bGARCH hedge ratios, but it strongly

outperforms the other hedge ratios in the weekly changing and constant hedge

ratios variance efficiency. The performance of bGARCH hedge ratios in terms

of the VaR reduction is comparable to the OLS, ECM, and naive approaches

for the in-sample analysis, they underperform in the daily and weekly changing

hedge ratios efficiency and provide the best results for the constant hedging.

The specified bGARCH slightly outperforms the simple bGARCH in terms of

the variance reduction.

The variance reduction supports the constant hedge ratio hypothesis, but

the VaR reduction suggests the opposite. The efficiency analysis does not have

a clear winner, but, based on the simplicity of estimation and stable results,

we would recommend to use OLS hedging for Corn.

An overview of the efficiency results can be found in Table A.4 in the Ap-

pendix and an overall summary is presented in Tables A.23 and A.24 in the
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Figure 5.13: Corn - reduction in variance and VaR

Appendix. The impact of the hedging on the mean returns is similar as in the

case of Copper - positive for the out-of-sample hedging and negative for the

in-sample-hedging, but the effect is much weaker. The in-sample performance

of all hedge ratios is close to 21% of returns reduction. The out-of-sample

returns increase, yet they stay negative. The performance differs across the

types of hedging; constantly good results are given by the simple GARCH and

simple bGARCH models with returns increase by approximately 36%. The

simple OLS performance is ordinary, taking values of 29% in the out-of-sample

returns growth.

Oil

The Oil’s spot and futures spot returns are strongly correlated and the correla-

tion increases through the observed period from 91% to 98%; this growth may

be observable in the out-of-sample analysis graphs. The econometric analysis

suggests that a specification of the OLS and ECM models does not improve

the fitting, and the Adjusted R2 is above 0.8 for both basic models. Again, we

suppose that the reduction in the efficiency will be significant (close to the case

of Copper) and hedge ratios will take values close to 1.

The in-sample hedge ratios are mixed up differently than in the cases of

Copper and Corn though all of them have values larger or very close to 1

(see Figure B.15 in the Appendix). The highest hedge ratio is the VaR hedge

ratio, followed by the Sharpe hedge ratio. Other hedge ratios create a group

taking values between 0.99 and 1.03. Figure 5.11 includes the time-varying

specified bGARCH as well. The bGARCH hedge ratios fluctuate along the

above mentioned group of hedge ratios, but it regularly reaches the VaR hedge

ratio as well. Moreover, there are several peaks with values approaching 1.4 and
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Figure 5.14: Oil - overview of main in-sample HR

even 1.7. The simple and specified bGARCH hedge ratios have similar patterns

and are strongly correlated, so their performance results shall be close.

The out-of-sample analysis shows that the bGARCH hedge ratio’s ampli-

tude is quite small; further, the bGARCH hedge ratios are lower than 1 and

hardly ever reach the level of the other hedge ratios. The Sharpe hedge ratio,

which gradually increases to the 1.4 value and then drops back to 1, is the most

extreme hedge ratio. A similar drop can be observed in the VaR hedge ratio.

Both of the drops are probably caused by the increase in returns’ correlation.

The other hedge ratios stay cumulated around 1 and seem to be constant, which

is supported by strong autocorrelation. The features are shown in Figure 5.15.

The average Sharpe hedge ratio takes value of 1.123 and reaches the highest

average value, replacing the VaR hedge ratio compared to the in-sample results.

The ranking and values of the other hedge ratios remain nearly unchanged

except for the bGARCH hedge ratio, which decreases to 0.94. (See Figure B.16

in the Appendix.)

Efficiency analysis is presented in Figure 5.16 and Table A.5 in the Ap-

pendix. Further, an overall summary can be found in Tables A.25 and A.26

in the Appendix. The hedge ratios provide much larger variance and VaR

reduction in the out-of-sample analysis than in the in-sample analysis. The

in-sample variance reduction is approximately 82%, while the out-of-sample
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Figure 5.15: Oil - overview of out-of-sample HR VaR

reduction reaches 98%. The in-sample VaR reduction is 82% as well, but the

out-of-sample reduction is smaller than the variance reduction, taking values

of 92%. The in-sample variance reduction is close to the Adjusted R2 values

again.

All the hedge ratios provide roughly the same in-sample variance reduc-

tion, only the averages of bGARCH hedge ratios are slightly worse. The out-

of-sample variance reductions are comparable as well, the only outlier is the

Sharpe hedge ratio, with the daily and weekly changing hedge ratios provid-

ing only 95% variance reduction. Results for the in-sample VaR reduction are

identical, and the out-of-sample results lower the position of the bGARCH,

Sharpe, and VaR hedge ratios, reaching values of 0.89 for the bGARCH and

VaR hedge ratios and only 0.8 for the Sharpe hedge ratio (taking into account

only the daily and weekly changing hedge ratios, the constant bGARCH and

Sharpe hedge ratios perform well). The simple and specified bGARCH hedge

ratios efficiency is nearly the same.

Both efficiency analyses support the hypothesis of a constant hedge ratio.

The results do not provide any key for quality ranking of the hedging strate-

gies, but, similarly as in case of Copper, we would recommend using the naive

hedging as it is very simple and its performance is as good as the performance

of other much more complicated hedge ratios.
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Figure 5.16: Oil - reduction in variance and VaR

Tables A.25 and A.26 provide information about the impact of the hedg-

ing on the mean returns. The hedging increases the mean returns in both the

in-sample and out-of-sample analyses, and while the increase in the in-sample

hedging is negligible, the out-of-sample growth is considerable. The best per-

former is the VaR hedge ratio, increasing the mean return from -0.00002 to

0.0004 and 0.0002, respectively. The other hedge ratios do not fall behind and

increase the mean returns to 0.00018 and 0.0009, which holds for the recom-

mended naive hedge ratio as well. Finally, the mean returns are still very close

to zero, so we assume that the increase will not have a larger effect on a decision

of a hedging company.

Platinum

Platinum has, besides Coffee and Beef, the less correlated spot and futures

returns, which will affect both values of hedge ratios and hedging effectiveness.

Further, the correlation decreases from 0.74 to 0.68 and then returns to its

original value. This drop may be observable in the out-of-sample hedge ratios.

Adjusted R2 significantly increases with level of specification from 0.53 to 0.73.

Figures B.19 in the Appendix and 5.17 show the results of the in-sample

analysis; the first one depicts the constant hedge ratios and the other one cap-

tures the bGARCH hedge ratio as well. The VaR hedge ratio stands out with

the value of 0.73, the other hedge ratios are concentrated between 0.705 and

0.675. Highest are the average bGARCH hedge ratios, followed interestingly

by the simple econometric hedge ratios (for Copper and Corn, the simple hedge

ratios were slightly lower than the specified ones), and the group is completed

by the GSV and MEG 2 hedge ratios, with the MEG 2 hedge ratio being higher

than the MEG 1 hedge ratio as in the case of Copper and Corn. The MEG 1
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Figure 5.17: Platinum - overview of main in-sample HR

hedge ratio can be found among the specified hedge ratios that have the lowest

values.

The specified bivariate GARCH hedge ratio takes on more extreme values

than in the previous examples; mostly, it fluctuates along the constant hedge

ratios but at one point it increases to 1.75 and then it drops back. The Plat-

inum prices increased before the financial crisis and then significantly dropped

between June and October 2008, which may relate to the financial crisis. In

2009 the Gold price was very high, so some investors used Platinum instead and

the price increased again. This may relate to the peak at approximately 500th

observation corresponding to April 2009. The simple and specified bivariate

GARCH ratios look very similar and are highly correlated. Hence, the results

of these two should correspond. (See Figure B.18 in the Appendix.)

Figure 5.15 sums up the out-of-sample hedge ratios. The bGARCH hedge

ratios have the highest variance, but the hedge ratios are significantly lower

than in the in-sample analysis, as all hedge ratios’ values can be found in

range from 0.45 to 0.8. The other hedge ratios seem to be constant in the first

half of the sample, followed by a small drop and an increase for some of the

hedge ratios, which relates to the changes in returns’ correlation as described

above. Nevertheless, the autocorrelation of hedge ratios is strong (including

the bGARCH hedge ratios), supporting the constant hedge ratio hypothesis.

To compare the in-sample values and the average out-of-sample values of
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Figure 5.18: Platinum - overview of out-of-sample HR

hedge ratios we look at Figure B.20 in the Appendix. The value of the VaR

hedge ratio decreases and moves closer to the other hedge ratios. The simple

hedge ratios still have higher values than the specified hedge ratios, but the

ranking changed (1. GARCH, 2. ECM, and 3. OLS, while in the in-sample

analysis it was 1. ECM, 2. OLS, and 3. GARCH). The gaps between the hedge

ratios increased. The bivariate GARCH hedge ratios are the lowest ones (the

average specified bGARCH is lower than 0.63). The ranking of the MEG 1,

MEG 2, and GSV remains the same but the values shift down by approximately

0.01.

The lower correlation causes low efficiency of the naive hedging; otherwise,

the variance reduction is approximately 54% for all hedge strategies (except

for the naive hedge ratio) and all types of the efficiency examination. The

variance reduction corresponds to the lower values of Adjusted R2. The VaR

reduction is higher for the in-sample analysis with values around 38% and the

out-of-sample VaR reduction is approximately 30% only, as shown in Figure

5.19.

Although the in-sample constant hedge ratios vary between values 0.73 and

0.67, there are no differences in their in-sample effectiveness measured by vari-

ance. The same holds on for all of the out-of-sample hedge ratios, even though

the range of the hedge ratios’ values increases. Considering the in-sample anal-
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Figure 5.19: Platinum - reduction in variance and VaR

ysis, the worst performing hedge ratios are the bivariate GARCH hedge ratios,

but their out-of-sample variance performance is comparable to the performance

of the other hedge ratios.

The VaR hedge ratio shows significant differences between the in-sample and

out-of-sample analyses, but, disregarding the naive and the bGARCH hedge ra-

tios, the results do not show significant differences between individual hedge

ratios. The simple and specified OLS hedge ratios and the ECM and specified

GARCH hedge ratios provide the same results, the simple GARCH underper-

forms in the in-sample hedging. The bivariate GARCH hedge ratios have a

low efficiency in both the in-sample and out-of-sample analyses, only its per-

formance in the constant out-of-sample analysis is comparable to the others.

The MEG 1 provides the best results out of the computational hedge ratios and

also for the daily and weekly changing hedge ratio in the out-of-sample analysis

considering all hedge ratios. On the other hand, it slightly underperforms in

the constant out-of-sample hedging.

The variance and VaR reduction is similar for the constant and time-varying

hedging, which supports the hypothesis of the constant hedge ratio. The results

do not significantly favour any of the examined hedge ratios and the complex

econometric hedge ratios rather underperform. Comparing the complexity of

calculation and results, we recommend to use the basic OLS regression for

estimation of the optimal hedge ratio.

An overview of efficiency results is presented in Table A.6 in the Appendix

and an overall summary can be found in Tables A.27 and A.28 in the Ap-

pendix. The effect of hedging on the mean returns is negative in the in-sample

analysis and positive in the out-of-sample analysis; however, it does not change

positivity of the in-sample returns and negativity of the out-of-sample returns.
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Performance of all hedge strategies is similar.8 On average, they increase the

out-of-sample returns by 80% and decrease the in-sample returns by 50%. The

performance of the recommended simple OLS hedge ratio does not stand out

and the returns stay in ten-thousandths.

Soybeans

The correlation coefficient of the Soybeans’ spot and futures returns is, on

average, larger than 0.9, signalling a strong correlation; however, the correlation

decreases with time from 0.94 to 0.88. The drop may be tracked in the out-

of-sample hedge ratios. The values of Adjusted R2 correspond to the high

correlation and slowly increase with the level of model specification from 0.87

to 0.89. We suppose that the hedge ratio will be close to 1 and the variance

efficiency will approach the 87% level.

Figure B.21 in the Appendix shows the values of the constant in-sample

hedge ratios while Figure 5.20 depicts only the main constant hedge ratio to-

gether with the specified bivariate GARCH hedge ratio. The highest hedge

ratio is provided through the VaR approach as in the cases of Platinum, Oil,

and Copper and reaches the value of 1.03. In addition to the VaR hedge ratios,

there are three other hedge ratios higher than one. These are the the GSV,

MEG 2, and simple GARCH hedge ratios. The other hedge ratios are lower

than 1 - the specified types of the OLS and ECM hedge ratios are higher than

the simple ones (as in the case of Corn and Copper), but the values are close,

placing around the value of 0.99. The bivariate GARCH hedge ratio is the low-

est with value under 0.98 (similar pattern is observed for Oil). The specified

bGARCH hedge ratio is mostly lower than the other hedge ratios, but there are

three peaks approaching the value of 1.3 and one drop with value under 0.8.

The fluctuation of the bGARCH hedge ratios is lower than in the case of other

hedge ratios and it is comparable to the fluctuation of the Copper bGARCH

hedge ratio. The bGARCH hedge ratios nearly copy each other and are highly

correlated as shown in Figure B.23 in the Appendix. Hence, we assume that

the results will be similar.

Looking at the out-of-sample results in Figure 5.21, the increased volatility

of the bGARCH hedge ratio clearly stands out as its value reaches 2.5. The

only possible reason for this extreme increase, we are able to identify, is a

relatively steep drop in the correlation (decrease by 0.15 within one step). The

8Except for the naive hedge ratio, which is much larger than the other hedge ratios and
thus leads to more extreme results.
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Figure 5.20: Soybeans - overview of main in-sample HR

other hedge ratios seem to stay relatively constant and there is no decrease

predicted based on the correlation reduction. Further, all hedge ratios except

for the bGARCH hedge ratios are strongly autocorrelated.

The average values of the out-of-sample hedge ratios totally switched rank-

ing compared to the in-sample analysis. The VaR hedge ratio is the lowest one

taking the value of 0.8, whereas the bGARCH hedge ratios take the highest

values of approximately 1.02 and 1.01, and they are followed by the MEG 2

and GSV hedge ratios as in the in-sample case. The simple GARCH is lower

than the specified GARCH, but both of them fit to the group of econometric

hedge ratios excluding the bGARCH hedge ratio. The other hedge ratios’ val-

ues are close to 0.97. The described features are presented in Figure B.22 in

the Appendix.

The in-sample reduction in both VaR and variance is much larger than

the out-of-sample reduction, as shown in Figure 5.22. The in-sample VaR

and variance reduction is comparable among the hedge strategies, as only the

bGARCH hedge ratios underperform in the variance reduction. The other

hedge ratios reduce the in-sample variance by 87%, which corresponds to the

values of AdjustedR2 in the econometric analysis, again. The average in-sample

VaR reduction is 81%.

The out-of-sample performance in terms of variance is similar across the
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Figure 5.21: Soybeans - overview of out-of-sample HR

hedging strategies as well, providing 83.5% variance reduction. Only the GARCH

and bGARCH hedge ratios slightly underperform in the case of the daily and

weekly changing hedge ratios. The VaR measure allows us to evaluate the

hedge ratios better. It signals that hedging with the constant hedge ratios is

more efficient than hedging with the time-varying hedge ratios, and the OLS

and ECM hedge ratios outperform all other strategies in the constant hedging.

Considering the time-varying hedging, the MEG 2, GSV, and VaR hedge ratios

stand out. Both the above mentioned groups reduce the VaR by approximately

73.5% and they are closely followed by the naive hedge ratio, which reduces the

Figure 5.22: Soybeans - reduction in variance and VaR
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VaR by 73%. The variance reduction supports the hypothesis of the constant

hedge ratios while the VaR reduction does not. As the results for the OLS,

ECM, MEG, GSV, and VaR hedge ratios are inconsistent for the time-varying

and constant hedging, we would recommend using the simplest type of hedging

- the naive hedge ratio, which has stable results.

An overview of the VaR and variance reduction results can be found in

Table A.7 in the Appendix and an overall summary is in Tables A.29 and A.30

in the Appendix. Soybeans is the only commodity with negative hedging effect

for both the in-sample and out-of-sample returns. The best performing hedge

ratios are the bGARCH hedge ratios, reducing the 0.00061 and 0.00021 returns

to -0.00014 and -0.0003, only. The recommended naive hedge ratio performs

worse and reduces the returns to -0.00019 and -0.00039, respectively; however,

the differences are negligible and returns are still nearly zero, so we keep the

recommendation.

Wheat

Correlation between the spot and futures returns is lower than in the case of

the other grains, Soybeans and Corn; it begins at 0.84, then slowly decreases

to 0.77 and, at the end, it jumps back to 0.82. As the differences are quite

significant we may find them in the graph of the out-of-sample hedge ratios.

Adjusted R2 of all econometric models is close to 0.7, so we suppose that the

in-sample variance reduction will be around 70%. Further, we know that the

variance in the futures returns is much smaller than in the spot returns, which

probably causes higher than 1 hedge ratios.

An overview of the constant in-sample hedge ratios can be found in Figure

B.24 in the Appendix. All hedge ratios are higher than 1 as we predict in the

previous paragraph. The highest is the Sharpe hedge ratio, taking the value

close to 1.3, followed by the simple GARCH and VaR hedge ratios. The VaR

hedge ratio belongs to the highest ones in most of the cases (Copper, Oil, Plat-

inum, Soybeans) while the Sharpe and GARCH hedge ratios are unpredictable.

The Sharpe hedge ratio is examined only for three commodities; once it is the

smallest hedge ratio (Copper) and once the highest one (Oil). The GARCH

hedge ratios are the highest one for Corn. Further, the specified hedge ratios

are higher than the simple ones (like for Corn and Copper); the GSV and MEG

hedge ratios are smaller than most of the econometric hedge ratios and MEG
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Figure 5.23: Wheat - overview of main in-sample HR

2 is smaller than MEG 1, which is unusual. The lowest hedge ratios are the

average bGARCH hedge ratios (same as for Soybeans and Oil).

The time-varying simple bGARCH hedge ratio is plotted in Figure 5.23.

Its amplitude is large and the hedge ratio crosses the level of 2 several times.

We do not see any reason for this volatility in the middle of the sample. At

the beginning and end of the sample, the hedge ratio is relatively stable with

values lower than the other hedge ratios. The specified bivariate GARCH ratio

encounters convergence problem for some sub-samples so we do not report its

results; we try to estimate the specified bivariate GARCH at least for the in-

sample data and we find that the simple and the specified hedge ratios are

nearly identical with correlation coefficient of 0.999.

Examining the out-of-sample hedge ratios in Figure 5.24, we can see that

the most time-varying hedge ratio is the Sharpe hedge ratio, which takes values

close to 2 for approximately 100 observations. It is probable that the Sharpe

hedge ratio is overestimated and its efficiency is low. The bGARCH hedge

ratio is similarly volatile as in the case of the in-sample hedging, but it has

two peaks at the beginning of the sample and then it fluctuates along 1. The

other hedge ratios linearly decrease by roughly 0.2 which relates to the above

mentioned drop in the correlation between the returns. Autocorrelation in the

hedge ratios is again very strong, so a constant hedge ratio may be used.

If we compare the average out-of-sample hedge ratios with the in-sample
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Figure 5.24: Wheat - overview of out-of-sample HR

hedge ratios in Figure B.25 in the Appendix, we find that the Sharpe hedge ratio

increases to nearly 1.3 and the bGARCH hedge ratio decrease below 1. The

rest of the hedge ratio slightly decreases but the order changes only minimally.

Focusing on the efficiency of the hedge ratios depicted in Figure 5.25, we

can say that the in-sample variance reduction is higher than the out-of-sample

reduction with values close to 70%, which corresponds to the Adjusted R2

again. In the in-sample analysis, the performance of all hedge ratios is compa-

rable. The Sharpe hedge ratio provides the worst results, the other results are

comparable with the naive hedge ratio slightly standing out.

Disregarding the underperforming Sharpe hedge ratio, the VaR reduction

results are balanced as well. Most of the hedge ratios provide results close

to 60% and the bGARCH hedge ratio slightly outperforms the others in the

daily-changing hedge ratio analysis.

The constant and time-varying results are close, which supports the hypoth-

esis of constant hedge ratio. The simplest naive hedge ratio provides results

comparable with the hedge ratios obtained through complex econometric esti-

mations or calculations, so we recommend to use the naive hedge ratio.

An overview of the efficiency results can be found in Table A.8 in the Ap-

pendix and an overall summary is listed in Tables A.31 and A.32 in the Ap-

pendix. The hedging increases the mean returns in both the in-sample and
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Figure 5.25: Wheat - reduction in variance and VaR

out-of-sample analyses, while the growth in the out-of-sample data is more sig-

nificant and it turns negative mean returns to positive. The best performing

hedge ratios are the OLS and ECM hedge ratios increasing the returns from

0.00046 and -0.00027 to 0.00068 and 0.00060, respectively. The naive hedge

ratio increases the returns less to 0.00065 and 0.00048. As the returns are so

close to zero, we do not suppose that it would have a significant impact on

decisions of a hedging company. So we think that the naive hedge is still the

best choice.

Conclusion

Overall, the reduction of variance and Value at Risk is high, proving the use-

fulness of hedging. Disregarding Coffee and Beef with futures returns poorly

matching the spot returns and the futures thus being inappropriate for hedging,

the reduction in variance takes values between 55% and 99%. The outcomes

for VaR reduction are lower with values between 30% and 90%.

Despite its simplicity, the naive hedge ratio is quite successful in the risk

reduction, especially considering the commodities with strongly correlated re-

turns; on the contrary, the bivariate GARCH hedge ratio is complicated to

compute and its performance does not stand over the others. The Sharpe

hedge ratio is examined only for three different commodities (Copper, Oil,

Wheat), but its is the worst performing hedge ratio in most of the cases, par-

ticularly in hedging with the time-varying hedge ratios. Another hedge ratio

with outcomes not as good as one would expect based on the complexity of its

calculation is the VaR hedge ratio, which does not outpreform even in the VaR

reduction.

Our results suggest that the constant hedge ratios are as efficient as the
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time-varying hedge ratios in most of the cases. Further, the hedge ratios are

highly correlated in time, which supports the hypothesis that time-varying

hedge ratios are not necessary. We do not condemn re-estimation of hedge

ratio as it may differ due to a change in correlation structure in time, but we

consider daily re-estimation to be useless.

We find that the in-sample reduction of variance corresponds to Adjusted

R2 of the given econometric model. This relation arises from the definition

of Adjusted R2 - i.e. how much volatility of dependent variable is explained

by the model. Using the hedge ratio resulting from the model to insure the

portfolio would clearly lead to a similar reduction in the portfolio’s variance.

Nevertheless, the relation cannot be described by equation as the econometric

model usually includes more variables contributing to the volatility explanation,

so the Adjusted R2 should be used only as an approximate measure of hedge

ratio efficiency.

Our analysis shows that it is impossible to make general conclusions about

the quality of individual hedge ratios. Each spot position has to be treated

differently, and an analysis of the hedge ratios efficiency of each type of hedging

strategy should be made before employing a specific hedge ratio. Based on

our analysis we can conclude that complex hedging strategies (the bivariate

GARCH or VaR hedge ratios) do not outperform simple hedging strategies

such as the naive hedging or the OLS hedge ratio, so it may be convenient to

use the simple methods to avoid additional costs related to re-estimation of the

optimal hedge ratios.

An overview of the best performing out-of-sample hedge ratios and the

recommended hedge ratios including their value and value of VaR and variance

reduction can be found in Table 5.17.

Table 5.17: Best and recommended hedge ratios

Best Type ∆ var HR Best Type ∆ VaR HR Recom. ∆ var ∆ VaR HR

Beef MEG1 day 1% 0.04 MEG2 cons. 3% 0.03 - - - -
Coffee MEG1 cons. 0% 0.00 G.,si cons. 5% -0.02 - - - -
Copper bG.,si cons. 90% 0.98 GSV week 94% 1.00 naive 90% 94% 1.00
Corn bG.,si week 77% 0.90 MEG1 cons. 70% 0.91 OLS,si 76% 69% 0.90
Oil naive - 99% 1.00 OLS,si day 93% 1.01 naive 99% 93% 1.00
Plat. MEG1 day 55% 0.66 MEG1 cons. 30% 0.66 OLS,sp 55% 29% 0.66
Soyb. VaR day 84% 0.80 OLS,si cons. 74% 0.97 naive 84% 73% 1.00
Wheat bG.,si cons. 61% 0.98 bG.,si week 64% 0.98 naive 60% 62% 1.00
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5.2.3 MEG and GSV hedge ratios

We use two different methods of hedge ratio estimations: the first one (MEG

1 or Gini 1) is based on Shalit’s approach and it is valid only for hedge ratios

smaller than 1. The second method (MEG 2 or Gini 2) uses grid search and

the standard expression for Gini coefficient and it is universal. Findings of the

papers examining the MEG hedging differ and we try to re-examine some of

the results. Lien and Shaffer (1999) find that the hedge ratios obtained by the

two above-mentioned types of estimation differ. Lien and Luo (1993b) say that

the hedge ratio decreases with the risk aversion parameter and it is close to the

OLS hedge ratio for the risk parameter equal to 9. Kolb and Okunev (1992)

say that the MEG hedge ratio is close to the OLS hedge ratios for small risk

parameters, while it significantly differs for high risk parameter.

We use five different risk parameters for the MEG hedge ratio estimation:

1.5, 2, 5, 10, and 20, and five risk parameters for the GSV hedge ratio estima-

tion: 1, 2, 3, 4, 5. Our target is to study the behaviour of the hedge ratios and

try to make some generalizations. We are interested in the hedge ratios close to

those obtained through the econometric analysis (the minimum variance hedge

ratios); although the mean-variance hedge ratio is theoretically equal to the

minimum variance hedge ratio under the assumption of an infinitely risk averse

hedger, the hedge ratios diverge from the OLS hedge ratio with the increasing

risk parameter. Therefore, we limit the risk parameters to the values listed

above. The results are presented in Tables A.9 to A.16 in the Appendix.

The results for Beef and Coffee are not discussed here because they are

unreliable as we show earlier. For comparison of the MEG 1 and MEG 2

estimators, we can use only the Platinum results, as the values of the other

hedge ratios exceed the level of 1, and thus the MEG 1 results are unreliable.

We find that both the MEG 1 and MEG 2 hedge ratios increase with the risk

parameter and the MEG 1 hedge ratio covers a wider range of values. The

values of the MEG 1 and MEG 2 hedge ratios generally differ, but we can

say that both of them are close to the OLS hedge ratios for rather low risk

parameters. Both types of MEG hedge ratios have a similar effect on the

variance and VaR reduction. Essentially, low risk parameter is more efficient

in the variance reduction, whilethe high risk parameter is more efficient in the

VaR reduction.

The above described feature holds only for Platinum, the MEG 2 hedge

ratios of the other commodities provide different results. Corn reports higher
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reduction of variance and VaR for high risk parameter, whereas Oil and Wheat

reports most effective reduction for low risk parameter. There is not any ob-

servable pattern in the Copper and Soybeans results. Also the changes in the

hedge ratios do not show out uniform dependence on the risk parameter; the

MEG 2 hedge ratio increases with the risk parameter for Oil, Platinum, and

Wheat, and decreases for Soybeans, Corn, and Copper. One may note that

the groups of commodities in the efficiency analysis and the hedge ratio val-

ues overlap. Hence, the most general statement we can make about the MEG

2 hedge ratios is that the lower hedge ratios reduce variance and VaR more

successfully, but we are unable to link any of the characteristics to the risk

parameter.

The OLS hedge ratio is usually smaller than most of the MEG 2 hedge

ratios, so the convergence to the hedge ratio is given by the relation between

the hedge ratio value and the risk parameter. We can say that the MEG 2

hedge ratio coincides with the OLS hedge ratio for low risk parameter values in

case of Platinum, for medium risk parameter values in case of Oil and Wheat,

and for high risk parameter values for Copper, Corn, and Soybeans. However,

the risk parameters we use are small compared to the risk parameters used by

Lien and Luo (1993b) and Kolb and Okunev (1992), who use risk parameters

as high as 200. In such measure, we could conclude that the MEG 2 hedge

ratios match the OLS hedge ratios for low values of risk parameter.

Disregarding Wheat results,9 the GSV hedge ratio is lowest for the risk

parameter equal to 5, but the hedge ratio does not always gradually decrease

with the risk parameter as for Copper, Corn, and Soybeans. In some cases,

it gradually increases with the risk parameter and then it starts to decrease

or even sharply drops (e.g. for Oil and Platinum). In most of the cases, the

GSV hedge ratio provides better variance and VaR reduction for low values of

the risk parameter, the exception is Platinum, again. Although the results for

the GSV hedge ratio are more uniform, we cannot make general statements, as

there are some exceptions with opposite results.

The MEG 2 and GSV results confirm that it is impossible to generalize

the effect of individual parameters as it has a different impact on different

commodities.

9Hedge ratio increases with the risk parameter for Wheat.
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Conclusion

Hedging is an effective instrument for lowering the risk resulting from volatility

in spot commodity prices; the risk is reduced by taking an opposite position on

futures market. As spot and futures returns correlate, loss on spot market is

offset by gain on futures market and vice versa. Even though hedging is widely

examined in the theoretical literature, not all companies use it in practice.

However, with increasing volatility of commodity prices, it becomes more and

more important.10

A hedging company faces several problems: it has to choose futures for

hedging and determine the ratio between spot and futures units. This ratio is

called hedge ratio. The main criterion for futures selection is correlation of its

returns with spot returns; the hedging efficiency increases with the correlation.

If the match between futures and spot returns is poor, there is virtually no risk

reduction at all. The optimal hedging ratio is a subject of many financial papers

and there is a wide variety of approaches suggested for hedge ratio estimation.

Our thesis provides a complex theoretical overview of hedge ratio types, dis-

cusses their implementation into practice and examines efficiency of individual

hedge ratios using eight different commodities. As far as we know, this is the

first comprehensive study of so many types of hedge ratios applied to higher

number of commodities; hence, it is a valuable addition to the existing liter-

ature. Further, the detailed description of hedge ratios’ implementation and

evaluation can be used by actual companies as instructions for identification of

the most appropriate hedging strategy.

Specifically, we examine the following hedge ratios: naive, minimum vari-

10We illustrate the problem of increasing volatility on Standard & Poor Goldman Sachs
Commodity Index, whose annual volatility increased from 13 percent in 1981 to 23 percent
in 2011.
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ance, Sharpe, mean extended Gini coefficient, generalized semivariance, and

Value at Risk hedge ratios. Most of the hedge ratios are obtained through

calculation or grid search, while the minimum variance hedge ratio estimation

employs an econometric analysis. There are several econometric models suit-

able for the estimation and we study all of them, i.e. OLS, error correction

model, GARCH and bivariate GARCH models.

We apply the hedge ratio on daily data of eight commodities: Beef, Coffee,

Copper, Corn, Oil, Platinum, Soybeans, and Wheat. The data cover period

from May 1, 2007 to August 31, 2013 and contain approximately 1600 obser-

vations. The data sample is divided into in-sample and out-of-sample parts,

where the former is used for analysis and simulation of real hedging, and a

hedge ratios evaluation is then performed on the latter one. We consider three

different levels of time variance - constant hedge ratio, weekly changing hedge

ratio and daily changing hedge ratio. The constant hedge ratio applies the

hedge ratios estimated using the in-sample data on the out-of-sample data, the

daily changing hedge ratio employs rolling window of the last 1000 observations

to estimate the hedge ratio for “tomorrow”, and the week hedge ratio uses av-

erages of last-week’s daily hedge ratio for determination of the hedge ratio for

the next week.11

The efficiency of the hedge ratio types is measured through reduction in

variance and Value at Risk of hedged portfolio compared to the unhedged

portfolio.

The hedge ratios’ value and the efficiency of individual hedge ratios depend

on correlation structure of spot and futures returns of given commodity and

it is impossible to generalize the results. Let us briefly discuss the results for

individual commodities.

Beef and Coffee face a problem of poor correlation between spot and futures

return, so the risk reduction is close to none.

The most successful hedge ratio in terms of the variance reduction for Cop-

per is the specified bivariate GARCH hedge ratio, but it underperforms in

terms of the VaR reduction. The most stable results regarding the two types

of efficiency are provided by the naive hedge with the out-of-sample VaR re-

duction of 95% and the out-of-sample variance reduction of 90%. All Copper

hedge ratios lie in interval 0.95 to 1.

Corn efficiency results are significantly different for the VaR and variance

11Ad the daily hedge ratio: At time t, observations (t− 1000) to t are used for estimation
of hedge ratio in t+ 1.
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reductions; the most stable results are obtained through the MEG 1 hedge ratio,

as it has above-average results for the variance reduction (76%) and average

results for the VaR reduction (70%) considering the out-of-sample part. The

Corn hedge ratios are divided into two groups, one takes values of about 1.02,

the other hedge ratios are much lower with the values close to 0.9.

Oil hedging is the most efficient one with 98% of the variance reduction

and 93% of the VaR reduction. Performance for all hedge ratios except for

the bGARCH and Sharpe hedge ratios is comparable. The named hedge ratios

underperform and take the most extreme values, 0.95 and 1.15, respectively.

The other hedge ratio values accumulate along unity.

Worse performance of Platinum hedging relates to the lower correlation

between returns, the VaR reduction is only 30% and the variance reduction

takes value of approximately 55%. The variance efficiency is balanced across the

hedge ratios, with only the bGARCH and naive hedge ratios underperforming.

The MEG 1 hedge ratio slightly stands out in the VaR efficiency, but the

results of all hedge ratios except for the bGARCH and naive are comparable.

The Platinum hedge ratios are lower than others with values between 0.65 and

0.7.

Soybeans hedging has the average efficiency; the variance reduction is nearly

84% and the VaR reduction is 73%. The results for the variance reduction are

very similar, while the VaR efficiency significantly differs not only for individual

hedge ratios but also for the the types of hedging (i.e. constant vs time varying).

Considering the time varying hedging, the best results are provided by the MEG

2, GSV, and VaR hedge ratios. On the other, the OLS and ECM hedge ratios

stand out in the constant hedging. The naive hedge ratio performs good as

well. Regarding the hedge ratio values, we can divide the hedge ratios into two

groups: bGARCH, VaR, GSV, and MEG 2 are slightly higher than 1, and the

other hedge ratios take values close to 0.98.

The performance of Wheat hedging is rather subnormal; VaR and variance

are reduced by approximately 60%. Results of individual hedge ratios are

relatively close, only the Sharpe hedge ratio significantly underperforms. The

naive and simple bGARCH hedge ratios are slightly better than the others.

Most of the hedge ratios’ values are close to 1.1.

We confirm that the value of Adjusted R2 of used econometric models cor-

responds to the in-sample volume variance reduction as it is indicated by the

definition of Adjusted R2. Although, Adjusted R2 is influenced by all depen-



6. Conclusion 86

dent variables and the real in-sample reduction is thus usually smaller than the

value of Adjusted R2.

There are only two generalizations resulting from our analysis, and they

refer to the performance of the naive and OLS hedge ratios and the constant

vs time varying type of hedging. The more complex hedge ratios, such as

the bGARCH or VaR hedge ratios, do not significantly outperform the simple

naive and OLS hedge ratios. Moreover, the naive and OLS hedge ratios provide

more stable results and one of them always ranks among the best performing

hedge ratios. Good results of the naive hedge ratio are conditioned by strong

correlation of returns. Considering the usage simplicity of these two types of

hedge ratios, some companies may favour them.

The constant hedge ratios mostly provide just as good efficiency result as

the time-varying hedge ratios, so the daily re-estimation of hedge ratios does

not pay off. Nevertheless, it is appropriate to periodically check the hedge ratio

values to detect possible significant changes in time and thus avoid losses.

Based on the analysis, we advise commodities hedgers to remember the

following principle. The performance of all types of hedge ratios is individual

for each commodity and depends on correlation structure of returns and price

developments; hence, every hedging issue should be considered separately. We

recommend performance evaluation of the hedge ratios using historical data

and then choosing the optimal type of hedge ratio based on comparison of risk

reduction and costs related to calculation/estimation. Our thesis can be used as

a guide for implementation and performance evaluation of the above mentioned

hedge ratios. Even though we use futures traded on American exchanges, Eu-

ropean companies may use futures traded on European commodities exchanges

(e.g. EEX for energy, LME for metals), which better reflect the movement in

European spot prices.
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Appendix A

Tables

Table A.1: Beef - variance and VaR reduction

Beef in-sample out-of sample, day out-of sample, const. out-of sample, week
%∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR

Naive -214.87% -89.691% -193.93% -76.055% -193.93% -76.055% -193.93% -76.055%
OLS,si 0.437% -1.698% 0.408% 1.253% 0.509% 1.361% 0.457% 1.275%
OLS,sp 0.407% -1.233% 0.407% 0.189% 0.511% 0.161% 0.445% 0.194%
ECM,si 0.433% -1.408% 0.412% 0.863% 0.516% 0.892% 0.459% 0.879%
ECM,sp 0.374% -2.173% 0.425% -0.106% 0.493% -0.235% 0.460% -0.107%
GARCH,si 0.435% -1.611% 0.443% 1.939% 0.499% 1.717% 0.490% 1.964%
GARCH,sp - - - - - - - -
bGARCH,si 0.305% -1.178% 0.425% 1.555% 0.498% 1.727% 0.490% 1.625%
bGARCH,sp 0.364% -0.583% 0.489% 0.435% 0.513% 1.178% 0.500% 0.552%
bGARCH,si,a 0.434% -1.513% - - 0.515% 0.995% - -
bGARCH,sp,a 0.390% -1.702% - - 0.502% -0.059% - -
Sharpe - - - - - - - -
Gini, v=1.5 0.437% -1.691% 0.583% 1.254% 0.510% 1.330% 0.516% 1.175%
Gini2, v=1.5 0.404% -0.133% 0.500% 2.170% 0.449% 2.517% 0.450% 2.120%
GSV, α=1 0.437% -1.713% 0.399% 0.600% 0.507% 1.437% 0.354% 0.527%
VaR 0.436% -1.712% 0.448% 1.512% 0.504% 1.553% 0.454% 1.862%



A. Tables II

Table A.2: Coffee - variance and VaR reduction

Coffee in-sample out-of sample, day out-of sample, const. out-of sample, week
%∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR

Naive -182.09% -84.887% -165.37% -49.774% -165.37% -49.774% -165.37% -49.774%
OLS,si 0.002% -0.254% -0.258% 0.690% 0.037% 0.005% -0.164% 0.806%
OLS,sp -0.138% -2.478% -0.327% 0.409% -0.385% 0.009% -0.301% 0.460%
ECM,si - - - - - - - -
ECM,sp - - - - - - - -
GARCH,si -0.549% -5.146% -0.447% 0.146% 0.171% 4.675% -0.381% 0.306%
GARCH,sp -0.230% -3.362% -0.106% 0.690% -0.550% -0.730% -0.078% 0.791%
bGARCH,si 0.004% -0.642% 0.141% 0.780% 0.087% 0.425% 0.117% 0.834%
bGARCH,sp 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% - -
bGARCH,si,a -0.002% -0.381% - - 0.086% 0.422% - -
bGARCH,sp,a - - - - - - - -
Sharpe - - - - - - - -
Gini, v=1.5 -0.117% -2.584% 0.010% 0.051% 0.215% 2.365% -0.076% 0.012%
Gini2, v=1.5 0.002% -0.180% -0.029% 1.035% 0.027% -0.042% -0.099% 0.996%
GSV, α=1 -0.091% -1.923% -0.426% -1.359% 0.205% 1.993% -0.491% -1.207%
VaR 0.000% -0.028% 0.141% 1.242% 0.004% -0.006% 0.188% 0.591%

Table A.3: Copper - variance and VaR reduction

Copper in-sample out-of sample, day out-of sample, const. out-of sample, week
%∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR

Naive 91.788% 90.224% 90.337% 94.391% 90.337% 94.391% 90.339% 94.391%
OLS,si 91.876% 90.066% 90.254% 93.718% 90.463% 93.453% 90.258% 93.717%
OLS,sp 91.874% 90.394% 90.279% 93.872% 90.457% 93.830% 90.284% 93.870%
ECM,si 91.874% 90.423% 90.293% 93.952% 90.455% 93.896% 90.298% 93.941%
ECM,sp 91.870% 90.507% 90.304% 94.107% 90.448% 94.133% 90.309% 94.124%
GARCH,si - - - - - - - -
GARCH,sp - - - - - - - -
bGARCH,si 92.117% 87.866% 90.102% 90.519% 90.454% 92.454% 90.128% 91.537%
bGARCH,sp 92.439% 89.328% 90.399% 92.653% 90.467% 93.082% 90.426% 92.230%
bGARCH,si,a 91.872% 89.549% - - 90.467% 93.078% - -
bGARCH,sp,a 91.861% 90.643% - - 90.433% 94.267% - -
Sharpe 90.343% 79.843% 86.471% 77.268% 89.087% 82.099% 86.781% 76.880%
Gini, v=1.5 91.875% 89.944% 90.288% 93.648% 90.465% 93.291% 90.289% 93.598%
Gini2, v=1.5 91.795% 90.410% 90.332% 94.417% 90.347% 94.312% 90.334% 94.417%
GSV, α=1 91.788% 90.224% 90.330% 94.458% 90.339% 94.391% 90.332% 94.459%
VaR 91.787% 90.199% 90.328% 94.288% 90.338% 94.402% 90.330% 94.281%



A. Tables III

Table A.4: Corn - variance and VaR reduction

Corn in-sample out-of sample, day out-of sample, const. out-of sample, week
%∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR

Naive 75.444% 72.584% 74.708% 65.797% 74.708% 65.797% 74.708% 65.797%
OLS,si 75.520% 72.975% 75.623% 69.675% 75.469% 66.736% 75.688% 69.651%
OLS,sp 75.519% 72.935% 75.542% 69.073% 75.387% 66.521% 75.598% 69.070%
ECM,si 75.520% 72.963% 75.620% 69.728% 75.444% 66.670% 75.685% 69.708%
ECM,sp 75.514% 72.883% 75.500% 69.650% 75.278% 66.282% 75.548% 69.618%
GARCH,si 74.427% 77.734% 73.319% 65.410% 71.576% 64.215% 73.277% 65.425%
GARCH,sp 74.477% 77.619% 73.146% 65.698% 71.698% 64.237% 73.055% 65.429%
bGARCH,si 74.324% 72.667% 74.712% 64.446% 75.583% 67.051% 76.795% 64.427%
bGARCH,sp 74.924% 72.365% 75.195% 64.631% 76.276% 69.363% 76.583% 64.592%
bGARCH,si,a 75.507% 72.384% - - 75.723% 67.464% - -
bGARCH,sp,a 75.516% 72.894% - - 75.302% 66.304% - -
Sharpe - - - - - - - -
Gini, v=1.5 75.518% 72.880% 75.927% 69.891% 75.578% 67.038% 75.869% 69.825%
Gini2, v=1.5 75.057% 74.886% 73.878% 66.355% 73.251% 65.216% 73.861% 66.348%
GSV, α=1 74.969% 75.234% 73.504% 66.156% 72.991% 65.425% 73.500% 66.154%
VaR 75.154% 74.405% 73.427% 64.498% 73.555% 65.121% 73.643% 64.484%

Table A.5: Oil - variance and VaR reduction

Oil in-sample out-of sample, day out-of sample, const. out-of sample, week
%∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR

Naive 82.838% 83.118% 98.722% 92.718% 98.722% 92.718% 98.722% 92.718%
OLS,si 82.857% 83.308% 98.682% 92.853% 98.676% 92.822% 98.683% 92.853%
OLS,sp - - - - - - - -
ECM,si 82.844% 82.748% 98.636% 92.853% 98.605% 92.619% 98.636% 92.852%
ECM,sp - - - - - - - -
GARCH,si 82.845% 82.989% 98.715% 92.720% 98.717% 92.733% 98.715% 92.719%
GARCH,sp 82.846% 82.962% 98.712% 92.729% 98.715% 92.737% 98.712% 92.728%
bGARCH,si 82.826% 83.268% 98.332% 88.389% 98.726% 92.697% 98.412% 88.687%
bGARCH,sp 82.821% 83.333% 98.335% 88.857% 98.727% 92.691% 98.422% 89.059%
bGARCH,si,a 80.312% 81.107% - - 98.727% 92.517% - -
bGARCH,sp,a 81.773% 82.477% - - 98.616% 92.679% - -
Sharpe 82.807% 82.851% 94.792% 81.389% 98.503% 91.878% 94.751% 80.784%
Gini, v=1.5 82.844% 82.746% 98.636% 92.762% 98.605% 92.622% 98.633% 92.758%
Gini2, v=1.5 82.856% 83.228% 98.700% 92.762% 98.691% 92.773% 98.699% 92.760%
GSV, α=1 82.851% 82.940% 98.711% 92.765% 98.706% 92.760% 98.710% 92.766%
VaR 82.211% 82.094% 97.783% 88.334% 97.468% 88.477% 97.796% 89.097%



A. Tables IV

Table A.6: Platinum - variance and VaR reduction

Platinum in-sample out-of sample, day out-of sample, const. out-of sample, week
%∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR

Naive 43.410% 30.865% 38.736% 26.983% 38.736% 26.983% 38.736% 26.983%
OLS,si 53.451% 38.285% 54.455% 29.330% 54.269% 29.744% 54.501% 29.360%
OLS,sp 53.393% 38.552% 54.611% 29.125% 54.483% 29.625% 54.639% 29.118%
ECM,si 53.450% 38.469% 54.410% 29.472% 54.253% 29.800% 54.442% 29.500%
ECM,sp 53.426% 38.513% 54.584% 29.474% 54.423% 29.086% 54.608% 29.490%
GARCH,si 53.445% 37.326% 54.236% 29.809% 54.351% 29.418% 54.288% 29.796%
GARCH,sp 53.428% 38.506% 54.466% 29.421% 54.419% 29.096% 54.506% 29.450%
bGARCH,si 51.513% 33.863% 53.457% 27.007% 54.265% 29.759% 54.482% 28.857%
bGARCH,sp 51.720% 35.438% 53.575% 28.418% 54.186% 29.873% 54.627% 27.851%
bGARCH,si,a 53.448% 38.470% - - 54.211% 29.888% - -
bGARCH,sp,a 53.449% 38.470% - - 54.218% 29.893% - -
Sharpe - - - - - - - -
Gini, v=1.5 53.405% 38.290% 54.644% 30.451% 54.465% 29.330% 54.613% 30.441%
Gini2, v=1.5 53.450% 37.503% 54.551% 29.428% 54.306% 29.603% 54.522% 29.426%
GSV, α=1 53.450% 38.028% 54.524% 29.196% 54.281% 29.698% 54.480% 29.180%
VaR 53.343% 37.776% 54.244% 29.764% 53.757% 30.381% 54.291% 29.778%

Table A.7: Soybeans - variance and VaR reduction

Soybeans in-sample out-of sample, day out-of sample, const. out-of sample, week
%∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR

Naive 87.262% 80.636% 83.743% 73.095% 83.743% 73.095% 83.743% 73.095%
OLS,si 87.269% 80.853% 83.699% 71.301% 83.731% 73.631% 83.707% 71.312%
OLS,sp 87.267% 80.937% 83.711% 71.080% 83.738% 73.491% 83.719% 71.094%
ECM,si 87.269% 80.753% 83.702% 71.424% 83.729% 73.514% 83.709% 71.431%
ECM,sp 87.268% 80.996% 83.712% 71.195% 83.737% 73.577% 83.720% 71.205%
GARCH,si 87.246% 80.648% 83.579% 70.637% 83.742% 72.513% 83.588% 70.655%
GARCH,sp 87.268% 80.977% 83.664% 70.592% 83.737% 73.541% 83.670% 70.592%
bGARCH,si 86.472% 80.094% 83.621% 70.613% 83.735% 72.011% 83.571% 71.913%
bGARCH,sp 86.602% 80.512% 83.535% 71.220% 83.735% 72.019% 83.583% 70.650%
bGARCH,si,a 87.256% 80.699% - - 83.695% 72.142% - -
bGARCH,sp,a 87.254% 80.674% - - 83.692% 72.041% - -
Sharpe - - - - - - - -
Gini, v=1.5 87.264% 80.840% 83.726% 70.453% 83.712% 72.720% 83.711% 70.449%
Gini2, v=1.5 87.233% 80.681% 83.757% 73.187% 83.738% 72.191% 83.754% 73.092%
GSV, α=1 87.221% 80.707% 83.756% 73.164% 83.733% 71.944% 83.754% 73.061%
VaR 87.101% 80.732% 83.792% 73.205% 83.661% 72.902% 83.768% 73.441%



A. Tables V

Table A.8: Wheat - variance and VaR reduction

Wheat in-sample out-of sample, day out-of sample, const. out-of sample, week
%∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR %∆ var %∆ VaR

Naive 68.865% 58.379% 60.015% 62.217% 60.015% 62.217% 60.015% 62.217%
OLS,si 70.208% 57.790% 56.931% 61.543% 55.612% 59.168% 56.979% 61.545%
OLS,sp 70.208% 57.810% 56.900% 61.521% 55.549% 59.267% 56.946% 61.524%
ECM,si 70.207% 57.849% 56.871% 61.540% 55.487% 59.363% 56.919% 61.543%
ECM,sp 70.207% 57.837% 56.974% 61.535% 55.506% 59.334% 57.022% 61.537%
GARCH,si 70.108% 59.338% 55.909% 60.858% 53.741% 58.220% 55.980% 60.899%
GARCH,sp - - - - - - - -
bGARCH,si 69.469% 60.064% 58.953% 61.290% 60.569% 61.429% 58.255% 63.841%
bGARCH,sp 69.501% 60.502% - - 60.525% 61.464% - -
bGARCH,si,a 70.171% 58.371% - - 56.606% 60.405% - -
bGARCH,sp,a - - - - - - - -
Sharpe -69.372% -58.922% -18.117% -22.894% -49.400% -51.474% 17.704% 20.519%
Gini, v=1.5 70.202% 58.121% 57.158% 61.523% 56.028% 59.154% 57.142% 61.523%
Gini2, v=1.5 70.189% 58.469% 57.539% 62.515% 56.332% 59.652% 57.531% 62.557%
GSV, α=1 70.175% 58.492% 57.442% 63.258% 56.561% 60.240% 57.421% 63.258%
VaR 70.169% 59.413% 55.973% 60.210% 54.480% 58.215% 55.935% 60.095%

Table A.9: Beef - MEG and GSV hedge ratios



A. Tables VI

Table A.10: Coffee - MEG and GSV hedge ratios

Table A.11: Copper - MEG and GSV hedge ratios



A. Tables VII

Table A.12: Corn - MEG and GSV hedge ratios

Table A.13: Oil - MEG and GSV hedge ratios



A. Tables VIII

Table A.14: Platinum - MEG and GSV hedge ratios

Table A.15: Soybeans - MEG and GSV hedge ratios



A. Tables IX

Table A.16: Wheat - MEG and GSV hedge ratios
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Appendix B

Figures



B. Figures XXVII

Figure B.1: Spot and futures prices



B. Figures XXVIII

Figure B.2: Spot and futures prices



B. Figures XXIX

Figure B.3: Beef - overview of in-sample bivariate GARCH HR

Figure B.4: Beef - correlation between spot and futures returns, out-
of-sample



B. Figures XXX

Figure B.5: Beef - overview of in-sample constant HR

Figure B.6: Beef - overview of average out-of-sample HR



B. Figures XXXI

Figure B.7: Coffee - overview of in-sample constant HR

Figure B.8: Coffee - overview of average out-of-sample HR



B. Figures XXXII

Figure B.9: Copper - overview of in-sample constant HR

Figure B.10: Copper - overview of average out-of-sample HR



B. Figures XXXIII

Figure B.11: Copper - overview of in-sample bivariate GARCH HR

Figure B.12: Corn - overview of in-sample bivariate GARCH HR



B. Figures XXXIV

Figure B.13: Corn - overview of in-sample constant HR

Figure B.14: Corn - overview of average out-of-sample HR



B. Figures XXXV

Figure B.15: Oil - overview of in-sample constant HR

Figure B.16: Oil - overview of average out-of-sample HR



B. Figures XXXVI

Figure B.17: Oil - overview of in-sample bivariate GARCH HR

Figure B.18: Platinum - overview of in-sample bivariate GARCH HR



B. Figures XXXVII

Figure B.19: Platinum - overview of in-sample constant HR

Figure B.20: Platinum - overview of average out-of-sample HR



B. Figures XXXVIII

Figure B.21: Soybeans - overview of in-sample constant HR

Figure B.22: Soybeans - overview of average out-of-sample HR



B. Figures XXXIX

Figure B.23: Soybeans - overview of in-sample bivariate GARCH HR

Figure B.24: Wheat - overview of in-sample constant HR



B. Figures XL

Figure B.25: Wheat - overview of average out-of-sample HR



Appendix C

STATA and Matlab codes

C.1 STATA

Error correction model

program ECM

forvalue i=1/600{

generate m=‘i’

generate j=999+‘i’

regress LnS LnF in ‘=m’/‘=j’, noconstant

generate a=_b[LnF]

generate z=LnS-a*LnF

regress dLnS dLnF l.dLnS l.dLnF l.z in ‘=m’/‘=j’

generate HRecm‘i’=_b[dLnF]

drop m

drop j

drop a

drop z

}

end ECM

GARCH

program GARCH

forvalue i=1/600{

generate m=‘i’

generate j=999+‘i’

regress LnS LnF in ‘=m’/‘=j’, noconstant



C. STATA and Matlab codes XLII

generate a=_b[LnF]

generate z=LnS-a*LnF

arch dLnS dLnF l.dLnS l.dLnF l.z in ‘=m’/‘=j’, arch(1/1) garch(1/1)

generate HRgarchecm‘i’=_b[dLnF]

drop m

drop j

drop a

drop z

}

end

GARCH

bivariate GARCH

program cccGARCH

forvalue i=1/600{

generate m=‘i’

generate j=999+‘i’

regress LnS LnF in ‘=m’/‘=j’, noconstant

generate a=_b[LnF]

generate z=LnS-a*LnF

mgarch ccc (dLnS=l.z) (dLnF=l.z) in ‘=m’/‘=j’, arch(1/1) garch(1/1)

predict H*, variance

generate HRstandccc‘i’=H_dLnF_dLnS/H_dLnF_dLnF

drop m

drop j

drop a

drop z

drop H_dLnF_dLnS

drop H_dLnF_dLnF

drop H_dLnS_dLnS

}

end

cccGARCH
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C.2 Matlab

Sharpe hedge ratio

hedge_sharpe = zeros(600,1);

for i = 1:600

j = 999 + i;

clear hh sigma_1 sigma_2 rho_12 meanRf mean Rs;

sigma_1 = var(dLnS(i:j)) ^ (1/2);

sigma_2 = var(dLnF(i:j)) ^ (1/2);

rho_12 = corr(dLnS(i:j), dLnF(i:j));

meanRs = mean(dLnS(i:j));

meanRf = mean(dLnF(i:j));

hh = -((sigma_1/sigma_2) * ((sigma_1/sigma_2) * ...

(meanRf/meanRs) - rho_12))/ (1 - (sigma_1/sigma_2) *...

(meanRf*rho_12/meanRs));

hedge_sharpe(i) = hh;

end

MEG hedge ratio

The first approach:

hedge_gini = zeros(600,1);

for i = 1:600

j = 999+i;

meanRs = mean(dLnS(i:j));

meanRf = mean(dLnF(i:j));

vi=1.5;

[vs, vin] = sort(dLnF(i:j));

[x, rank] = sort(vin);

N = size(dLnF(i:j),1);

G = rank ./ N;

y = (1 - G) .^ (vi - 1);

meany = mean(y);

nominator = (dLnS(i:j) - meanRs) .* (y - meany);

denominator = (dLnF(i:j) - meanRf) .* (y - meany);
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hedge = sum(nominator)/sum(denominator);

hedge_gini(i) = hedge;

end

The second approach:

hedge_gini2 = zeros(600,1);

for i = 1:600

j = 999+i;

gini = zeros(10001,1);

for l = 1:10001;

p = -0.1 + (l - 1) * 0.0001;

meanRs = mean(dLnS(i:j));

meanRf = mean(dLnF(i:j));

return = dLnS(i:j) - p .* dLnF(i:j);

vi=1.5;

[vs, vin] = sort(return);

[x, rank] = sort(vin);

N = size(return,1);

G = rank ./ N;

y = (1 - G) .^ (vi - 1);

gini2 = -vi * sum((return - mean(return)) .* (y - mean(y)));

gini(l) = gini2;

end

hedge = 0.4 + (find (gini == min(gini))- 1) * 0.0001;

hedge_gini2(i) = hedge;

end

GSV hedge ratio

hedge_GSV = zeros(600,1);

for i = 1:600

j = 999+i;

GSV = zeros(10001,1);
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for l = 1:10001;

clear p delta alpha return N U a GSV2;

p = 0.4 + (l - 1) * 0.0001;

delta = zeros(1000,1);

alpha = 1;

return = dLnS(i:j) - p .* dLnF(i:j);

N = size (return, 1);

cond = delta - return;

U = zeros(1000,1);

for m=1:1000

if (cond(m) < 0)

U(m) = 0;

else

U(m) = 1;

end

end

a = ((delta - return) .^ alpha) .* U;

GSV2 = (1/N) * sum(a);

GSV(l) = GSV2;

end

hedge_GSV(i)= 0.4 + (find (GSV == min(GSV))- 1) * 0.0001;

end

VaR hedge ratio

HR = zeros(20,600);

VAR = zeros(20,600);

OHedge = zeros(1,600);

for i = 1:600

clear solution n m j c a_1 a_2 a_3 a_4 z var h variance...

variance_2 sk k k_1 k_2 k_a k_b k_c s_1 s_2 s_a s_b ...

sigma_1 sigma_2 rho_12;
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j = 999 + i;

sigma_1 = var(dLnS(i:j)) ^ (1/2);

sigma_2 = var(dLnF(i:j)) ^ (1/2);

rho_12 = corr(dLnS(i:j),dLnF(i:j));

s_1 = skewness(dLnS(i:j));

s_2 = skewness(dLnF(i:j));

s_a = mean(((dLnS(i:j) - mean(dLnS(i:j))) .^ 2) .* ...

(dLnF(i:j) - mean(dLnF(i:j)))) / (var(dLnS(i:j)) * ...

(var(dLnF(i:j)) ^ (1/2)));

s_b = mean((dLnS(i:j) - mean(dLnS(i:j))) .* ...

(dLnF(i:j) - mean(dLnF(i:j))) .^ 2) / ...

(var(dLnF(i:j)) * (var(dLnS(i:j)) ^ (1/2)));

k_1 = kurtosis(dLnS(i:j));

k_2 = kurtosis(dLnF(i:j));

k_a = mean(((dLnS(i:j) - mean(dLnS(i:j))) .^ 3) .* ...

(dLnF(i:j) - mean(dLnF(i:j)))) / ((var(dLnS(i:j)) ^ ...

(3/2)) * (var(dLnF(i:j)) ^ (1/2)));

k_b = mean(((dLnS(i:j) - mean(dLnS(i:j))) .^ 2) .* ...

(dLnF(i:j) - mean(dLnF(i:j))) .^ 2) / (var(dLnF(i:j)) * ...

var(dLnS(i:j)));

k_c = mean((dLnS(i:j) - mean(dLnS(i:j))) .* (dLnF(i:j) - ...

mean(dLnF(i:j))) .^ 3) / ((var(dLnF(i:j)) ^ (3/2)) * ...

var(dLnS(i:j)) ^ (1/2));

syms h real

variance(h) = sigma_1 ^ 2 + h ^ 2 * sigma_2 ^ 2 - 2 * h * ...

rho_12 * sigma_1 * sigma_2;

variance_2(h) = variance ^ (1/2);

sk(h) = (s_1 * sigma_1 ^ 3 - 3 * h * s_a * sigma_1 ^ 2 * ...

sigma_2 + 3 * h ^ 2 * s_b * sigma_1 * sigma_2 ^ 2 - h ^ 3 * ...

s_2 * sigma_2 ^ 3) / (variance ^ (3/2));

k(h) = (k_1 * sigma_1^4 - 4 * h * k_a * sigma_1 ^ 3 * ...

sigma_2 + 6 * h ^ 2 * k_b * sigma_1 ^ 2 * sigma_2 ^ 2 - ...

4 * h ^ 3 * k_c * sigma_1 * sigma_2 ^ 3 + h ^ 4 * k_2 * ...

sigma_2 ^ 4) / (variance ^ 2);
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c=-1.645;

a_1 = c - 1/8 * (c ^ 3 - 3 * c);

a_2 = 1/6 * (c ^ 2 - 1);

a_3 = 1/24 * (c ^ 3 - 3 * c);

a_4 = -1/36 * (2 * c ^ 3 - 5 * c);

z(h) = diff(variance_2, h) * (a_1 + a_2* sk + a_3* k + ...

a_4* sk ^ 2) + variance_2 * (a_2 * diff(sk,h) + a_3 * ...

diff(k,h) + 2 * a_4 * sk * diff(sk,h));

var(h)= - variance_2 * (c + 1/6 * (c ^ 2 - 1) * sk + ...

1/24 * (c ^ 3 - 3 * c) * (k - 3) - 1/36 * (2 * c ^ 3 - ...

5 * c) * sk ^ 2);

solution = solve(z == 0, h);

if isequal(solution, nil)

HR(1,i)=999;

OHedge(1,i)=999;

else

HR(1:size(solution,1),i) = solution;

m = size(solution,1) + 1;

for n=1:m

VAR(n, i) = var(HR(n,i)) ;

end

bb=min(find(VAR(1:m,i)== min(VAR(1:m,i))));

OHedge(1,i)=HR(bb,i);

end

end
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