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Abstract 

This dissertation consists of five articles about economics of sports. The first three articles 

investigate various types of outcome uncertainty and how they relate to match attendance demand, 

while the remaining two articles test the efficiency of sports betting markets. The first article 

presents a new method of calculating match importance. Unlike the previous approaches in the 

literature, it does not require ex-post information and can be used for any type of season outcome. 

The second article shows that the additional playoff stage in the Czech ice hockey “Extraliga” 

lowers the probability of the strongest team becoming a champion and thus increases seasonal 

uncertainty. The third article demonstrates that the inconsistent findings in the literature about the 

link between match uncertainty and attendance could be explained by wrongly specified 

regressions, proposes a new approach to analyzing the effect of match uncertainty and shows that 

attendance demand is maximized if teams of the same quality play against each other. The fourth 

article examines the favorite-longshot bias in the context of betting on tennis matches. It shows 

that the favorite-longshot bias pattern is consistent with bookmakers protecting themselves 

against both better informed insiders and the general public exploiting new information. The fifth 

article investigates the supposedly profitable strategy of betting on soccer draws using the 

Fibonacci sequence. The strategy is tested both in a simulated market and on a real data set and 

found to lose money. 
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Foreword 

The earliest articles dealing specifically with economics of sports date back to 1950s and 1960s 

(Rottenberg 1956; Neale 1964). Since then, economics of sports has developed into a thriving 

field with its own specialized journals, conferences, methods, and topics. The existing literature 

can be divided into two approaches; first, the application of standard economic/econometric tools 

to problems specific to sports industry, such as attendance demand and competition design; 

second, utilizing rich and detailed sports data to analyze more general issues, such as market 

efficiency or labor market discrimination. This dissertation consists of five articles straddling 

both of these approaches; the first three articles investigate various types of outcome uncertainty 

and how they relate to match attendance demand, while the remaining two articles test the 

efficiency of sports betting markets. 

One of the biggest topics specific to economics of sports is the uncertainty of outcome hypothesis. 

This hypothesis was first formulated by Rottenberg (1956) and states that a tighter competition 

with a more uncertain outcome will attract more spectators. The subsequent literature has dealt 

with both properly defining the uncertainty of outcome and analyzing its impact on match 

attendance demand (together with other explanatory variables). The sports economic literature 

distinguishes three different types of uncertainty of outcome (Szymanski 2003, García and 

Rodríguez 2009); match uncertainty (how uncertain the result of one specific match is), seasonal 

uncertainty (how uncertain the competition winner and other similar outcomes are), and 

championship uncertainty (whether there is a long-run domination by one team); however, there 

are many alternative measures of each type of uncertainty and the impact on attendance demand 

is far from clear. 

The first article called “Using Monte Carlo simulation to calculate match importance: The case of 

English Premier League” proposes a new method of calculating match importance (a typical 

variable used in attendance demand models to represent seasonal uncertainty). The previous 

approaches to defining this variable can be classified into the following five groups: first, using a 
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dummy variable equal to one for all matches in the last several rounds of the season (Paul 2003); 

second, setting dummy variables equal to one if a team is mathematically certain to reach a given 

season outcome, such as winning the competition or being relegated (Baimbridge et al.1996; 

García and Rodríguez 2002; Feddersen et al. 2012); third, determining the dummy variable value 

through more complex rules based the current team positions, numbers of points, and the number 

of remaining matches (Baimbridge et al. 1996; Goddard and Asimakopoulos 2004; Simmons and 

Forrest 2006; Benz et al. 2009); fourth, defining the match importance as an interval variable 

calculated from the number of points that were eventually necessary to reach a given season 

outcome (such as winning the competition) and the number of remaining matches (Jennett 1984; 

Borland and Lye 1992; Dobson and Goddard 1992); fifth, defining the match importance for a 

specific outcome as the difference between the probability of reaching the outcome if the team 

wins the match and the probability of reaching the outcome if the team loses the match (Schilling 

1994), where the probabilities are estimated by a Monte Carlo simulation (Scarf and Shi 2008; 

Goossens et al. 2012). 

All these methods have apparent limitations; the approaches based on dummy variables are very 

crude, arbitrary, and (in case of mathematical certainty) overly conservative. The fourth approach 

pioneered by Jennett (1984) correctly treats match importance as an interval variable, but does 

not work as well for other types of season outcomes besides the championship and cannot be 

used for predictions since it requires ex-post information. The fifth approach first proposed by 

Schilling (1994) does not take into account how likely the team is to actually win or lose the 

match whose importance is being calculated or how likely it is to reach the seasonal outcome 

before the match is played. In addition, it can be used only for matches with two possible results 

(it ignores the probability of a draw). The problem with using a suboptimal method is that any 

impact of match importance on match attendance demand is underestimated. 

The method proposed in the first article in this dissertation builds upon the approach of Schilling 

(1994). Match importance is defined as strength of relationship between the match result and a 

given season outcome (e.g. being relegated or not). To arrive at probabilities of various match 

result – season outcome combinations, probabilities of all remaining match results until the end 

of the season are estimated based on past results of all teams and then used to repeatedly simulate 

the rest of the season (the Monte Carlo method). Using actual results of 12 seasons of soccer 
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matches (2000/01-2011/12) in the English Premier League and betting odds, it is shown that the 

proposed method of calculating match importance relies on realistic match and season outcome 

predictions. Unlike Schilling’s approach, the method allows for more than two match result types. 

It produces results similar to those of Jennett (1984), but does not require any information 

unknowable before the match and can be easily adapted to any type of season outcome (not only 

championship, but also promotion, relegation and so on). The proposed method can also be used 

to calibrate other, less complex approaches (e.g. various versions of mathematical certainty). 

The second article in this dissertation, “The impact of playoffs on seasonal uncertainty in the 

Czech ice hockey Extraliga,” analyzes how a specific tournament design choice impacts seasonal 

uncertainty. The hypothesis that higher seasonal uncertainty increases attendance has a 

substantial empirical support (e.g. Szymanski 2003; Pawlowski and Budzinski 2013) and also 

seems to be accepted by competition organizers. The organizers have two ways of increasing the 

uncertainty of outcome; first, increase competitive balance (make the team strengths more equal) 

by redistributing resources through mechanisms such as TV and gate revenue sharing, payroll 

caps, or giving weaker teams earlier draft picks; second, increase seasonal uncertainty by 

modifying the tournament design. A major design choice in team sports is between using only a 

round-robin tournament (e.g. English Premier League) and combining the round-robin 

tournament with an additional playoff stage (e.g. US Major League Soccer).  

The impact off the additional playoff stage on seasonal uncertainty has come into focus only 

recently. Fort and Quirk (1995) and Szemberg et al. (2012) noted that the regular season winner 

is far from certain to also win the playoff stage. However, the regular season winner is not 

necessarily the strongest team in the competition. Longley and Lacey (2012) used team payrolls 

as a proxy for actual team strengths and showed that the payrolls of NHL teams better predict 

results in the regular season than in the playoffs, indicating that the additional playoff stage 

increases seasonal uncertainty. However, this approach is limited by a small dataset and cannot 

be used to find out how exactly the additional playoff stage impacts the championship chances of 

specific teams or to analyze various alternative tournament designs. 

The second article in this dissertation applies the Monte Carlo simulation method to analyze the 

impact of the additional playoff stage on seasonal uncertainty in the Czech ice hockey Extraliga. 
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The Monte Carlo simulation method has been previously used to compare various tournament 

designs by Scarf et al. (2009) and Scarf and Yusof (2011), but not to compare chances of various 

teams with or without the additional playoff stage. The Extraliga is a particularly good candidate 

for this analysis because the regular season uses a balanced schedule not favoring any specific 

team (each team plays exactly two home and two away games against every other team); this 

means that the additional playoff stage is not necessary to determine the champion and is simply 

a design choice. 

In the Monte Carlo simulation method, six different sets of realistic team strengths are derived 

from the actual results of six Extraliga seasons. These strengths are then employed to repeatedly 

simulate all individual matches in a specific tournament design (the regular season only vs. the 

regular season followed by the playoffs) and the completed simulations are then used to estimate 

probabilities of each team winning the regular season and the playoff stage. The simulation 

results show that although the additional playoff stage heavily favors teams that placed better in 

the regular season and consists of quite a lot of games, it lowers the average probability of the 

strongest team becoming a champion from 48 to 39 percent and thus increases seasonal 

uncertainty. This is similar to the result of Longley and Lacey (2012) for the NHL, but the Monte 

Carlo simulation approach enables a deeper analysis; for example, it shows that the more 

dominant the strongest team is, the more their probability of winning the competition is decreased 

by the additional playoff stage; that the third-strongest to the sixth-strongest teams profit most 

from adding the playoffs; that obtaining the best seed (compared to the worst seed) roughly 

triples the championship probability; or that it does not generally make sense for a team to 

deliberately lose some regular season matches to avoid a specific team in the first round of the 

playoffs. 

The higher seasonal uncertainty makes the Extraliga competition more attractive – the supporters 

of the strongest team cannot be so sure about the final outcome and the fans of weaker teams 

have a stronger hope of celebrating the championship title. The fact that securing a higher seed 

significantly increases championship chances makes the regular season finish interesting for fans 

of almost all teams. The higher seasonal uncertainty is also likely to translate into a more even 

distribution of all types of revenues and thus a higher competitive balance. In a positive feedback 

loop, this should further increase seasonal uncertainty. 
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The third article in this dissertation called “Does match uncertainty increase attendance? A non-

regression approach” investigates whether more balanced sports matches attract higher 

attendances. While the uncertainty of outcome hypothesis is strongly supported for seasonal 

uncertainty, the empirical evidence for the impact of match uncertainty on attendance has been 

mixed. So far, the link between match uncertainty and attendance has been examined by 

regressing individual match attendance (or its logarithm) on variables representing qualities of 

both teams, other variables influencing attendance (ticket price, team rivalry, distance between 

teams, weather…), and a variable measuring how the match is balanced. These studies have 

investigated different sports, used different ways of measuring team quality (team ranks or 

points/goals per game) and match uncertainty (difference in team ranks or points per game; 

absolute value of betting spread; quadratic specification of home win probability derived from 

betting odds), and arrived at different results; some studies found that higher match uncertainty 

increases attendance, some found the opposite, some found that attendance increases with home 

win probability (and possibly starts decreasing if home win probability is higher than 0.6-0.7), 

some found no significant effect (Borland and McDonald 2003; Buraimo and Simmons 2008; 

Buraimo and Simmons 2009; Benz et al. 2009; Coates and Humphreys 2011; Pawlowski and 

Anders 2012). 

The third article in this dissertation makes two contributions. First, three simple simulated data 

sets with no impact of match uncertainty on attendance are used to show that many commonly 

used regression specifications produce different (and wrong) results about the link between match 

uncertainty and attendance. This could explain the inconsistent findings in the literature, 

especially if the actual impact of match uncertainty is weak or nonexistent. Second, a new 

approach to analyzing the effect of match uncertainty on attendance is proposed. Using data 

about nine seasons of the English Championship, the article shows that in a pair of matches 

where both home teams are slight favorites, a switch of the corresponding away teams would 

decrease the total attendance. On the other hand, if both home teams are underdogs or strong 

favorites, switching the away teams would increase the total attendance. However, the magnitude 

of such attendance changes is quite small (several percent). These results are consistent with the 

uncertainty of outcome hypothesis and suggest that attendance demand is a bell-shaped function 
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of match balance that is maximized if teams of the same quality play against each other. One 

possible explanation of such a shape could be that there are two groups of potential spectators 

with different preferences; fans in the first group (seasonal ticket holders, hardcore fans) do not 

care about match uncertainty and attend all matches if they have free time and no better 

opportunities, while fans in the second group (occasional spectators) choose to attend only the 

most interesting matches with one criterion being a proper match balance. 

The above results can be directly applied to tournament design; to increase the total attendance of 

a competition while keeping the number of home and away matches of each team constant, a 

higher proportion of matches should be played between evenly matched teams. This could be 

achieved by splitting teams into groups based on team quality instead of on region or by making 

the tournament design more similar to the Swiss system commonly used in chess. However, the 

potential attendance increase would likely be small. 

The last two articles in this dissertation deal with the topic of sports betting market efficiency. 

For analyzing efficiency, sports betting markets are preferable over financial markets, since each 

asset (bet) has a clear value at a specific point in time (after the match) (Thaler and Ziemba 1988). 

Two main efficiency concepts used in economics of sports are strong efficiency (each bet has the 

same expected value) and weak efficiency (there is no systematically profitable betting strategy). 

The literature has mostly concentrated on explaining various biases violating strong efficiency 

and on trying (mostly unsuccessfully) to find a profitable betting strategy (Thaler and Ziemba 

1988; Sauer 1998). 

The fourth article in this dissertation called “What causes the favorite-longshot bias? Further 

evidence from tennis” tries to distinguish between competing explanations for the observation 

that bets on favorites usually have a higher expected value (lose less money) than bets on 

longshots. The literature offers three types of explanations for the so-called favorite-longshot bias 

(Snowberg and Wolfers 2010; Makropoulou and Markellos 2011; Rossi 2011). The first 

explanation claims that bettors are local risk-lovers and bookmakers take advantage by lowering 

the odds on longshots. According to the second explanation, bettors overestimate winning 

probabilities of longshots and bookmakers again take advantage of this psychological bias. The 

third explanation is based on information asymmetry; bookmakers could potentially lose a lot of 



[Foreword] 

[vii] 

 

money if they underestimate longshots and this mispricing is exploited by either better informed 

insiders or by the general public reacting faster than bookmakers to new information. Therefore, 

bookmakers offer lower odds on longshots to protect themselves against this type of loss. 

The fourth article in this dissertation uses a data set of almost 45,000 professional single tennis 

matches to show that the favorite-longshot bias is stronger in later-round matches and in matches 

in high-profile tournaments, i.e. in matches that are likely to attract high betting volumes; on the 

other hand, the favorite-longshot bias is also more pronounced in matches between lower-ranked 

players, which are likely to exhibit low betting volumes. This pattern cannot be explained solely 

by people being local risk-lovers or overestimating chances of longshots; if all bettors had the 

same preferences or biases, the type of match should not matter at all. Even if the risk-loving 

preferences (or the corresponding bias) were exhibited only by occasional bettors, thus causing 

the stronger favorite-longshot bias in matches that are likely to attract high betting volumes, it 

would not explain why the bias is also more pronounced in matches between lower-ranked 

players. 

The most plausible explanation of the results seems to be a combination of two information 

asymmetry approaches: Matches between lower-ranked players are harder to predict, since public 

information is limited and private information about players’ motivation or health problems could 

play a large role; therefore, it makes sense for the bookmaker to set lower odds on the longshot to 

minimize possible losses. On the other hand, private information should not play such a big role 

in later tournament rounds and high-profile tournaments, but in such matches the bookmaker 

faces a different kind of risk; the general public could react faster than the bookmaker to newly 

available information. Combined with a high volume of bets, this could mean a considerable loss, 

so the bookmaker again protects itself by setting lower odds on the longshot. 

The last article in this dissertation called “The Fibonacci strategy revisited: Can you really make 

money by betting on soccer draws?” tests the strategy of betting on soccer draws using the 

Fibonacci sequence. The strategy was found profitable by Archontakis and Osborne (2007) and 

this was later confirmed on a bigger data set by Demir et al. (2012). Since the Fibonacci betting 

strategy is very simple to use, its profitability would mean that sports betting markets are not 

even weakly efficient (there are some other authors who claim to have found profitable strategies 
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– e.g. Kuypers 2000; Goddard and Asimakopoulos 2004; Vlastakis et al. 2009 – but these 

strategies usually rely on hard-to-implement models and identify only a small number of 

profitable betting opportunities). 

The Fibonacci betting strategy is designed for betting on soccer results. It is based on the 

Fibonacci sequence (1, 1, 2, 3, 5, 8, 13…), where the first two numbers equal one and each 

successive number is the sum of the two previous numbers. The strategy works as follows: bet $1 

(the first number in the sequence) on a draw, if losing, bet $1 (the second number) on a draw in 

the next match, if losing again, bet $2 (the third number) on a draw in the next match, and so on 

until a draw actually occurs; after that, start the whole sequence from beginning. Archontakis and 

Osborne (2007) proved that each sequence of bets ending in a draw is profitable if draw odds are 

always at least 2.618 (usually true). The authors also tested the Fibonacci strategy on 32 games in 

2002 FIFA World Cup and found that it would have generated a profit. The strategy was also 

tested by Demir et al. (2012) on a sample of 32 seasons of top European soccer competitions and 

found profitable in all 32 cases. The authors also found the strategy to be profitable in a simple 

simulated strongly efficient market using 1,000 simulations. 

The fifth article in this dissertation first investigates the behavior of the proposed strategy in a 

simulated strongly efficient market and shows that it actually is not and cannot be profitable in 

such a market. However, the strategy could still be profitable in a real market under the following 

two conditions: first, some bets on draws have positive expected values; second, the amounts bet 

on such matches are high enough to more than compensate for expected losses from the other 

bets. This could happen if bookmakers underestimated the probability of a draw after a long 

string of non-drawn matches. Therefore, various versions of the Fibonacci betting strategy are 

tested on a data set of almost 60,000 European soccer matches and also found to be losing 

money. The previous positive results in the literature were likely caused by a very low number of 

trials.  
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1 Using Monte Carlo simulation to 

calculate match importance: The case 

of English Premier League
1
 

This article presents a new method of calculating match importance. Match importance 

is defined as strength of relationship between the match result and a given season 

outcome. Probabilities of all necessary match result – season outcome combinations are 

estimated by Monte Carlo simulation. Using actual results of 12 seasons of English 

Premier League and betting odds, it is shown that both match result and season outcome 

predictions are realistic. The method provides results that are close to Jennett’s 

approach; however, it does not require ex-post information and can be used for any type 

of season outcome.  

1.1 Introduction 

In national team sports competitions, clubs typically strive to win the championship, get 

promoted to a higher league, qualify for other competitions, or avoid relegation. Because the 

competitions usually use a round-robin tournament system (sometimes combined with playoffs), 

not all matches have the same impact on the final outcome of the season – there are highly 

important last-round matches where a single result can decide which team becomes the new 

league champion, as well as unimportant matches between clubs without a realistic chance of 

being either promoted or relegated. It has already been established in the sport economics 

literature that important matches attract more spectators and that match importance influences 

                                                 
1
 A shorter version of this article (without the appendices) was published online ahead of print on May 22, 2013, in 

Journal of Sports Economics, doi: 10.1177/1527002513490172. 
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team performance;
2
 however, there is little agreement on how to actually calculate the importance 

of a specific match. The problem with using a suboptimal method is that any impact of match 

importance is underestimated. 

The goal of this article is to present a new method of calculating match importance. The starting 

premise is that the stronger the relationship between a match result and the season outcome (e.g. 

being relegated or not), the more important the match is. To arrive at probabilities of various 

match result – season outcome combinations, probabilities of all remaining match results until the 

end of the season are estimated based on past results of all teams and then used to repeatedly 

simulate the rest of the season (the Monte Carlo method). Predictions of both individual match 

results and season outcomes are then verified using actual results of 12 seasons of soccer matches 

(2000/01-2011/12) in the English Premier League and betting odds. Finally, the proposed method 

is used to evaluate other common approaches to calculating match importance. 

1.2 Literature 

There are two distinct components of match importance: first, how likely a team is to achieve a 

certain outcome, such as championship, promotion, or relegation (this is usually called seasonal 

uncertainty); second, how much a specific match can influence the probability of this outcome. 

The literature offers various approaches addressing one or both of these components differing in 

complexity and utilized information. 

Probably the simplest possible method of including match importance as an explanatory variable 

in a regression model is to use a dummy variable that equals one for all matches in the last X 

rounds of the season (assuming that late matches tend to be more important). This method can be 

found, for example, in Paul (2003), who used a dummy variable for all NHL matches played in 

March and April. 

                                                 
2
 The literature about the link between match importance and attendance is summarized in García and Rodríguez 

(2009); the relationship between match importance and team performance was found by Goddard and 

Asimakopoulos (2004) and Feddersen et al. (2012).  
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The second alternative is to use the concept of mathematical certainty/impossibility – for 

example, when a team leads a competition by seven points, there are two rounds remaining and a 

win is worth three points, the team is mathematically certain to win the competition (there is not 

even a theoretical possibility of another outcome). For example, Baimbridge et al. (1996) defined 

dummy variables for the certain championship and certain relegation in the English Premier 

League, García and Rodríguez (2002) used a similar approach for Spanish soccer, and Feddersen 

et al. (2012) for multiple European soccer leagues. 

The third approach is to use a more complex rule based on the current team positions, numbers of 

points, and the number of remaining matches; Baimbridge et al. (1996) and Simmons and Forrest 

(2006) used dummies for English soccer teams both being in the promotion zone or in the 

relegation zone; Goddard and Asimakopoulos (2004) asked if a team could be promoted or 

relegated if all other competing teams got one point in each of  their remaining matches; Benz et 

al. (2009) employed a dummy variable equal to one if a German Bundesliga soccer team was no 

more than two points behind the current leader and there were at most six rounds until the end of 

the season. 

The fourth approach, which treats match importance as an interval (rather than binary) variable, 

was introduced by Jennett (1984) for Scottish soccer and later used by others (Borland and Lye 

1992; Dobson and Goddard 1992). Jennett’s approach applied to the uncertainty of winning the 

championship works in this way: first, take the number of points that were eventually necessary 

to win the championship (of course, this ex-post information is not actually available before the 

end of the season, but it could be argued that it is possible to estimate it) – let’s say it is 65. If it is 

still theoretically possible for a team to reach 65 points, set match importance for this team to 

1/(number of matches necessary to reach 65 points), otherwise set match importance to zero. At 

the beginning of the season, all teams are able to reach 65 points, but they would need at least 22 

matches (assuming 3 points for a win), so match importance equals 1/22. As the season 

progresses, importance for a specific team either increases towards 1 or drops to zero (when it is 

no longer possible to win). The match in which the eventual winner reaches 65 points must have 

the importance equal to one (this can happen in the last round or sooner). 
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The last approach, proposed by Schilling (1994), defines match importance for a specific 

outcome as the difference between the probability of reaching the outcome if the team wins the 

match and the probability of reaching the outcome if the team loses the match. To actually 

estimate these probabilities, Scarf and Shi (2008) and Goossens et al. (2012) use a Monte Carlo 

simulation approach similar to the first two steps of the method presented in this article. 

However, neither article offers any verification of season outcome predictions or comparison 

with other methods. 

While this short overview of methods of calculating match importance is by no means 

exhaustive, other methods are usually quite similar or just combine elements of the approaches 

described above. More thorough discussion can be found in García and Rodríguez (2009). 

All the methods described above have apparent limitations. Using a dummy variable for the last 

X rounds of the season is very crude (there are many last-round matches that do not decide 

anything) and does not distinguish between the importance for the home and away team. Using 

mathematical certainty/impossibility is too conservative; a team is expected not to win the 

championship much sooner than it is mathematically eliminated. When using the current team 

positions, numbers of points, and the number of remaining rounds, the chosen rule is necessarily 

arbitrary – as argued, for example, in Cairns (1987) and Peel and Thomas (1992) – and unlikely 

to work well in all possible cases. Jennett’s method correctly treats match importance as a 

variable with more than just two possible values, but cannot be used for predictions (uses ex-post 

information) and cannot be easily adapted for other outcomes other than the championship.
3
 

Schilling’s approach is the only one that takes into consideration strengths of the remaining 

opponents, but does not take into account how likely the team is to actually win or lose the match 

whose importance is being calculated or how likely it is to reach the outcome before the match is 

played. In addition, as noted by Goossens et al. (2012), it can be used only for matches with two 

possible results (it ignores the probability of a draw). All of the methods above (as implemented 

                                                 
3
 For example, if Jennett’s method is used for European qualification, the key qualification matches for the eventual 

league winner will happen when its qualification is not really in doubt anymore. This problem would be compounded 

when using Jennett’s method for relegation; however, Jennett (1984) proposed to modify the fraction denominator to 

the number of matches remaining until the end of the season, which partially solves the problem for this specific 

criterion. 
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in the literature) also disregard final table ranking criteria. In the rest of this article, it is shown 

that the proposed method of calculating match importance solves all these problems. 

1.3 Data 

To show how the presented method works and to verify that it gives realistic results, data about 

English Premier League are used; however, the method can be easily adapted to any other similar 

competition. The dataset consists of days/times and final results of all 4,560 matches played in 12 

seasons (2000/01-2011/12). 

In each season of Premier League, there are 20 teams playing two matches (one home and one 

away) against each other, so each team plays 38 matches per season. Winning a match is worth 

three points, drawing a match one point, and losing a match zero points. English Premier League 

does not use the head-on matches criterion to rank teams with the same number of points, so the 

final table ranking criteria are total points, total goal difference, and total goals scored (in this 

order). The first team becomes the champion and the last three teams are relegated to a lower 

competition – therefore, winning championship and not being relegated are two primary goals 

that enter into match importance calculations. Other possible goals could be qualifying for a 

European competition (usually first five teams) or just placing as well as possible. 

To verify predictions of individual match results, the latest available betting odds of a big British 

bookmaker William Hill are used – these odds have been obtained for all but 16 matches played 

since December 26
th

, 2005; altogether for 2,477 matches. The odds have been converted to 
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implied probabilities of a home win, draw, and away win.
4
 All data including betting odds have 

been exported from a sports database Trefík.
5
 

1.4 Method 

As stated above, the importance of a specific match for a specific team can be decomposed into 

two components – first, the probability that the team reaches a particular season outcome, such as 

championship or not being relegated; second, how this probability depends on the match result. 

More formally, it is necessary to calculate the probabilities of various outcomes conditional on 

the specific match result. The match importance can then be expressed as a measure of 

association between the match result and the season outcome. 

Multiple relevant outcomes imply multiple types of match importance; a particular match can 

have a small influence on the probability that a team wins the competition, a large influence on 

the final rank, and a zero influence on the probability that the team is relegated. These various 

types of match importance are likely to be valued differently by teams and potential match 

spectators.  

The proposed method consists of three steps: first, calculate the result probabilities of all the 

remaining matches of the season; second, use these probabilities to estimate the probabilities of 

match result – season outcome combinations; third, calculate the strength of the association 

between the match result and various season outcomes. 

                                                 
4
 For example, the odds for the Liverpool – Chelsea match played on May 8

th
, 2012, were 2.10 (home win) – 3.30 

(draw) – 3.50 (away win). This traditional form of betting odds indicates what multiple of the original sum the bettor 

gets if the result actually happens. To convert it to probabilities, the numbers are first inverted: 0.476 – 0.303 – 

0.286. The new numbers add up to more than one – in this case 1.065 – to keep the betting agency profitable, so it is 

necessary to divide them by their sum to get the final probabilities 0.447 – 0.284 – 0.269. This common method is 

described, for example, in Benz et al. (2009). 

5
 The database is available at www.trefik.com. betting The data were exported on June 7

th
, 2012 and also selectively 

cross-checked against the website Soccerway (www.soccerway.com). 
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1.4.1 Step 1: Estimating probabilities of match results 

In the first step, it is necessary to estimate probabilities of results of all matches until the end of 

the season. The selected method should be simple to implement, computationally fast, able to 

predict exact scores (necessary to calculate final league tables in step 2), and at the same time 

provide estimates that are “good enough” (i.e. further improvements should have no significant 

impact on match importance values calculated in step 3). 

There are two basic approaches to predicting match results – using betting odds or using the past 

results of both teams. Although betting odds exhibit small but systematic biases,
6
 they can reflect 

all available information not necessarily included in the past results, such as injuries and 

suspensions of key players (Peel and Thomas 1992), so should be the superior option. However, 

the availability of betting odds (especially on exact match scores) is limited and they are usually 

not available at all for matches further in the future.
7
 Therefore, the only feasible choice for 

simulating the whole season is to use the past results. 

To calculate result probabilities of a specific match, this article uses a simplified version of a 

method commonly employed in the sports betting literature and described, for example, in Maher 

(1982) or Dixon and Coles (1997). For a given match, the home team’s average score in the last 

19 home matches (one rolling season, so approximately the last 12 months) and the away team’s 

average score in the last 19 away matches are calculated.
8
 The number of goals scored by the 

                                                 
6
 For example, Cain et al. (2000) analyzed betting odds quoted by William Hill for UK soccer matches and found 

that bets on favorites (as opposed to longshots) had a higher expected value. 

7
 Even most commercial databases, such as trefik.com (used in this article), txodds.com, or archived BetFair odds, go 

back to early 2000s at most and errors and missing data are not unusual. Betting odds on exact match scores are 

available only for selected competitions (due to lower interest of bettors). An inspection of bookmakers’ websites 

reveals that betting odds on typical league matches are available only about two weeks and/or one round into the 

future. It could be argued that for research on historical data, future betting odds are not necessary (since everything 

is already in the past), but this would negate a key advantage of the proposed method – not relying on ex post 

information that could not be available before the analyzed match to anyone.  

8
 To make sure there are always at least 19 previous home/away matches available, the first season in the dataset is 

used only to provide match history and the match importance values are computed from the second season onwards. 

However, this does not help in case of freshly promoted teams who have no match history at all. Match histories of 

such teams are initialized with 19 home matches with the score 1.266:1.378 and 19 away matches with the score 
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home team and the number of goals scored by the away team in the analyzed match are assumed 

to be two independent
9
 Poisson-distributed variables with the following expected values: 

        
                                                                       

 
 

        
                                                                       

 
 

Based on the expected values, it is possible to construct corresponding probability distributions of 

goals scored by each team, compute joint probabilities of all possible match scores, and 

subsequently also the probabilities of a home win, draw, and away win. For example, to estimate 

probabilities for Manchester City – Manchester United match (round 36, season 2011/12), the 

average scores of Manchester City in their previous 19 home matches and of Manchester United 

in their previous 19 away matches are calculated. These scores are 2.895:0.526 and 1.947:0.789 

respectively, so Manchester City are expected on average to score (2.895 + 0.789)/2 = 1.842 

goals and Manchester United are expected to score (0.526 + 1.947)/2 = 1.237 goals. Using 

Poisson distributions, the probability of Manchester City scoring 1 goal is 0.292 and the 

probability of Manchester United scoring 0 goals is 0.290, so the probability of a 1:0 final score 

(the actual match result) is simply the probability that Manchester City score 1 goal times the 

probability that Manchester United score 0 goals and equals 0.292 * 0.290 = 0.085. The 

probability of Manchester City winning the match can be estimated by aggregating probabilities 

of all winning final scores as 0.516 (similarly, the draw probability is 0.228 and the Manchester 

United win probability is 0.256).     

                                                                                                                                                              

 

0.923:1.856 (these scores are based on the average scores in their home/away matches of all freshly promoted teams 

in the dataset; the exact values are not that important, since towards the end of the season, when most important 

matches take place, most of these artificial scores are already replaced by real results). A similar solution could be 

used for freshly relegated teams in lower competitions or if the extra season is not available.  

9
 In the Premier League dataset, the independence assumption seems close to the reality; the correlation between 

goals scored by home and away teams is close to zero (-0.050 for the whole dataset and +0.048 for the dataset 

restricted to matches where no team scored more than one goal). 
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Assuming that team strengths do not change much over the course of the season, it is also 

possible to use the match histories of all teams available before the analyzed match to estimate 

probabilities for all the other matches remaining until the end of the season (necessary for the 

next step).
10

 

1.4.2 Step 2: Estimating probabilities of final ranks 

In the second step, the actual match results up to the analyzed match are combined with estimated 

probabilities for all the matches remaining until the end of the season to find out the probabilities 

of final team ranks conditional on the analyzed match result.
11

 For the round 36 Manchester City 

– Manchester United match mentioned above, it means combining actual results of rounds 1-35 

with estimated probabilities for all matches played in rounds 36-38 and calculating probabilities 

that Manchester City or Manchester United ultimately finish first, second etc. given any specific 

result of their mutual match. In most cases, the final rank probabilities cannot be found 

analytically – the number of all possible scenarios is simply too high.
12

 However, it is possible to 

                                                 
10

 There are several possible modifications of the algorithm used in this section, such as changing the length of the 

period used to calculate average scores, giving more weight to recent results, or using a bivariate Poisson 

distribution; these and other changes are discussed in Dixon and Coles (1997) or Goddard (2005). The period of one 

year used in this article was chosen based on Goddard (2005), who showed that English soccer results at most 12 

months old are several times more important than results 12-24 months old. However, modifying the length of this 

period has a negligible impact on match importance values calculated in the third step – for example, the Spearman 

rank correlation between match importance values using a one-year period vs. two-year period is 0.98-0.99.  

11
 In this article, matches played on the same day as the match whose importance is being calculated are considered 

to take place in the future (so their results are not known). This lag can be modified depending on the intended use of 

the model – for example, when studying sports attendance demand, people could decide to attend a match several 

days in advance, so even match results several days in the past might be considered unknown. 

12
 For the Manchester City – Manchester United match, it would be necessary to go through all possible 

combinations of results of 25 matches (3 remaining rounds x 10 matches per round, but 5 round 36 matches were 

already played in the previous two days). Even when taking into account only the win/draw/loss and not the exact 

score, this gives 3
25

 ≈ 8.5 * 10
11

 scenarios. The number of scenarios gets intractable for any match not in the last 

several rounds of the season. 
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choose a random sample of all scenarios (the Monte Carlo method) to estimate these probabilities 

with any desired level of precision.
13

 

For any analyzed match, the Monte Carlo simulation starts with a league table based on all 

matches played so far (in the Manchester City – Manchester united example, it is the league table 

just before the match). In each simulation, the estimated probabilities derived in the first step are 

used to randomly choose results (exact scores) of all the remaining matches (including the match 

whose importance is being calculated). For example, the 1:0 score in the Manchester City – 

Manchester United match has an estimated probability of 0.085, so it has exactly this probability 

to be chosen.
14

 After that, the final league table is calculated (using any ranking criteria 

applicable). The important outputs of each simulation are the analyzed match result and the final 

ranks of both teams. The simulation is run as many times as necessary to reach the desired 

precision. 

After all the simulations are complete, the analyzed match results are categorized into a win, a 

draw, and a loss,
15

 and a contingency table is constructed for each team where one variable is the 

match result and the other variable is the final team rank. 

 

 

 

  

                                                 
13

 A similar Monte-Carlo-based approach is already used by, among others, the website SportsClubStats.com to 

predict season outcomes. However, this website does not provide much documentation and no verification of 

accuracy of their predictions (as of January 6th, 2013). 

14
This can be done by generating two random numbers (goals scored by home and away teams) for each match – the 

first number from a Poisson distribution with expected value λhome and the second number from a Poisson 

distribution with expected value λaway. Of course, these numbers (and thus match results) are likely to be different in 

each simulation. Another option would be to precalculate probabilities of all possible scores in each match and 

randomly choose among them.       

15
 This step transforms the result into an ordinal variable and simplifies the following computation. Another 

alternative would be a score difference. 



[Using Monte Carlo simulation to calculate match importance: The case of English Premier League] 

[11] 

 

 
Final rank  

1
st
 2

nd
 Sum 

Match result 

Win 3,304,376 1,854,511 5,158,887 

Draw 427,562 1,850,343 2,277,905 

Loss 36,049 2,527,159 2,563,208 

 Sum 3,767,987 6,232,013 10,000,000 

Table 1: Example contingency table for Manchester City 

Table 1 shows the contingency table for Manchester City before the Manchester City – 

Manchester United match. The table is based on 10,000,000 simulations and is restricted to only 

non-zero values (before the match, Manchester City was in the second place, trailing three points 

behind Manchester United, but having a better score, and there was no chance of Manchester City 

finishing worse than second). From the contingency table, it is possible to calculate relative 

frequencies of various match results, final ranks, and their combinations and use them to estimate 

the true probabilities that could (theoretically) be found out analytically by going through all 

possible scenarios.
16

 For example, Manchester City had 51.6% probability of winning the match, 

but just 37.7% probability of winning the league. The probability of winning the league was 

heavily dependent on the match result – it was 3,304,376/5,158,887 ≈ 64.1% in case of winning 

the match, but just 36,049/2,563,208 ≈ 1.4% in case of losing (after winning the match, 

Manchester City later became a new champion). This match should be identified as highly 

important for Manchester City in terms of winning the championship; however, it had no impact 

on the probability of relegation, which was zero in any case. 

It could be argued that the information in the contingency table might be derived from betting 

odds on the specific match and on the season outcome. However, even when these betting odds 

are available, they provide only match and season outcome probabilities (row and column sums 

in the contingency table – for example, Manchester City defeating Manchester United, or 

Manchester City winning the championship), not how the season outcome probabilities depend 

                                                 
16

 The standard error of a probability estimate equals √[π(1-π)/n], where π is the actual probability and n is the 

number of simulations, so by increasing the number of simulations the estimate precision increases as well. The 

maximum practical value of n is limited by available computing power and time. Using an optimized 

MATLAB/Octave implementation, 1,000,000 simulations for each match in one season take one to two hours 

running in a single thread on a desktop Intel i5/i7 Sandy/Ivy Bridge CPU. 
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on the match result (individual cells in the contingency table – for example, the probability 

Manchester City wins the championship if it defeats Manchester United), so there would be not 

enough information to calculate match importance in the next step.
17

 

1.4.3 Step 3: Calculating result-outcome association 

In the third step, the contingency table is used to calculate the importance of a particular match 

from the point of view of a specific team using a specific desired season outcome. As defined 

above, the importance is expressed as a measure of association between the match result and the 

final season outcome (i.e. how strongly is the season outcome influenced by the match result). 

 If the analyzed outcome is anything else than the final rank, the contingency table must first be 

transformed by aggregating appropriate columns – for example, if the analyzed outcome is 

relegation, final ranks 1 to 17 are aggregated into the first column (not being relegated) and final 

ranks 18 to 20 are aggregated into the second column (being relegated). Consequently, the 

transformed contingency table has 3 rows (win/draw/loss) and 2 columns (no 

relegation/relegation). Similarly, to analyze match impact on winning the championship, final 

rank 1 becomes the first column and final ranks 2 to 20 are aggregated into the second column.  

To get a positive association value, rows and columns should be ordered so that the best result – 

best outcome combination is in the top left corner. 

To make the results comparable to other methods, the chosen measure of association should be 

on the scale from zero (no importance) to one (maximum possible importance). There are two 

obvious extreme cases – first, the outcome probability is already zero or one and therefore does 

not depend on the match result at all; second, the outcome hangs exactly in the balance (e.g. the 

probability of being relegated is 1/2) and is solely determined by the match result. The chosen 

measure of association should be equal to zero in the first case and one in the second case. The 

measure should also take into account that both variables (result and outcome) are ordinal. 

                                                 
17

 Betting odds on season outcomes are not universally available even for major competitions – going through 

websites of major bookmakers William Hill, BetFair and Bwin on January 6
th

, 2013, betting odds on the following 

outcomes were not offered by any of them: relegation in French Ligue 1 (soccer), qualifying for a European 

competition in the German Bundesliga (soccer), or qualifying for the play-off stage in KHL (ice hockey). 
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Kendall-Stuart tau-c is a measure of association between two ordinal variables that fulfills all 

these conditions and is therefore used throughout this article.
18

 

 
Relegation 

 

 
Relegation 

 

 
Relegation 

No Yes No Yes No Yes 

Match 

result 

Win 0.5 0 
Match 

result 

Win 0.5 0 
Match 

result 

Win 0.5 0 

Draw 0.4 0 Draw 0.4 0 Draw 0 0.4 

Loss 0.1 0 Loss 0 0.1 Loss 0 0.1 

   

tau-c = 0 tau-c = 0.36 tau-c = 1 

Table 2: Examples of tau-c values 

Table 2 shows tau-c values for three example contingency tables for a relegation outcome (the 

numbers already represent probabilities of each result-outcome combination). In the left panel, 

the outcome (no relegation) is already determined before the match and the match importance 

correspondingly equals the lowest possible value of zero. In the middle panel, the outcome is 

completely determined by the match result, however, the before-the-match probability of 

relegation is just 0.1. Therefore, the match importance indicated by the tau-c value of 0.36 is 

quite high, but far from the maximum possible.
19

 Finally, the right panel represents the ideal case 

of maximum match importance; the outcome is completely determined by the match result, the 

before-the-match probability of relegation is exactly 0.5, and tau-c reaches its maximum possible 

value of one. For the Manchester City – Manchester United example (Table 1), the tau-c value is 

                                                 
18

 Tau-c is computed in the following way: first, create all possible pairs of observations (if the contingency table 

contains n simulations, there are n(n-1)/2 possible pairs); second, divide the pairs of observations into three groups: 

C (concordant pairs, where both the match result and the season outcome are better in one of the observations and 

worse in the other), D (discordant pairs, where the match result is better and the season outcome is worse in one of 

the observations and the other way round in the other), and others (either the match result or the outcome  is the same 

in both observations); the higher the number of concordant pairs and the lower the number of discordant pairs, the 

higher the match importance. Tau-c is the difference between the numbers of concordant and discordant pairs 

divided by the highest possible number of concordant (or discordant) pairs given the table size and is given by the 

following equation, where n is the number of observations and m is the smaller table dimension: tau-c = (C-

D)/[n
2
(m-1)/2m]. 

19
 This example illustrates one of the problems with Schilling’s method of calculating match importance as a 

difference between outcome probabilities in case of a win and in case of a loss. This difference is the same (equal to 

1) in both the middle and right panels of Table 2, while the situation before the match is clearly very different. 
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0.585, correctly indicating a very high importance of this specific match for Manchester City’s 

championship chances.
20

 More example contingency tables with their corresponding match 

importance values can be found in Appendix A: Further example contingency tables. 

1.5 Verification 

Since the match importance value is based on individual match and season outcome predictions, 

this section verifies that both types of predictions are realistic. These verifications, as well as the 

rest of this article, are based on 10,000,000 simulations for each of 4,180 matches of 11 seasons 

of English Premier League.
21

 The number of simulations is high enough so that any potential 

biases in estimated probabilities would be due to imperfect assumptions and not to the Monte 

Carlo method itself.
22

 

1.5.1 Verifying match predictions 

To show that the presented method is based on realistic individual match predictions, this 

subsection analyzes probability estimates of a home win, draw, and away win based on match 

histories of both teams available just before each match. 

The first test looks at all 4,180 matches and simply compares average estimated probabilities with 

actual relative frequencies of each type of result. The average estimated probability of a home 

win is 0.467, which is almost identical to the actual relative frequency of 0.468 (the home team 

                                                 
20

 Match importance values obtained from the Monte Carlo simulation are just estimates of their true values, since 

they are based on estimated probabilities of various result-outcome combinations. Computing standard errors of tau-c 

estimates is not simple; however, the worst-case match importance standard error for a 3x2 contingency table can be 

roughly approximated by 1/√n, where n is the number of simulation runs. This estimate is based on a simple Monte 

Carlo simulation for a 3x2 contingency table with all outcome-result probabilities equal to 1/6. The simulated 

standard error was about 10% higher than 1/√n for n between 1,000 and 10,000,000 and decreased slowly when 

deviating from the original contingency table probabilities. 

21
 The first season in the dataset (2000/01) provides match history to estimate match result probabilities. 

22
 The worst-case standard error of various outcome probability estimates is 1.58 * 10

-4
 and the worst-case standard 

error of match importance estimates can be approximated by 3.16 * 10
-4

. 
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won in 1,958 out of 4,180 matches). Similarly, the average estimated draw probability is 0.250, 

which is very close to the actual relative frequency of 0.259, and the average estimated away win 

probability of 0.283 is very close to the actual relative frequency of 0.273.
23

 Therefore, it can be 

concluded that the estimates seem to be unbiased, i.e. no type of result is predicted more often 

than it should be. 

The second test compares the Poisson-based probability estimates based on the up-date-histories 

(Up-to-date Poisson) with two benchmarks – home win, draw, and away win probabilities 

implied by the latest available betting odds (Up-to-date betting odds) and a naïve algorithm 

always predicting 0.468 probability of a home win, 0.259 probability of a draw, and 0.273 

probability of an away win (Naïve; the probabilities equal actual relative frequencies in the 

dataset). Despite its name, the naïve algorithm is still more realistic than typical assumptions used 

by other methods of calculating match importance, such as (modified) mathematical certainty. To 

analyze the quality of predictions of matches further in the future (which are necessary to arrive 

at season outcome predictions), the test also includes Poisson-based probability estimates using 

only historical matches that are at least 180 days old (Lagged Poisson). 

To compare predictive power of these four methods, this article uses a pseudo-likelihood statistic 

employed by Rue and Salvesen (2000) and later by Goddard (2005). The statistic is equal to the 

geometric mean of predicted probabilities of actually observed results and can range from 0 to 1, 

where a higher value corresponds to a higher predictive power.
24

 The test is restricted to the 

subset of 2,477 matches with available betting odds. 

 

 

 

 

                                                 
23

 None of the differences is statistically significant at α = 0.05. 

24
 The statistic is equal to 0 if at least one actually observed result is predicted impossible and equal to 1 if every 

observed result is predicted with certainty. However, if sports results are assumed to be stochastic (not predictable 

with certainty), the maximum value is much lower than 1 (depending on the proportion of one-sided matches).  
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 Pseudo-likelihood 

Season 

Number 

of 

matches 

Up-to-date 

betting odds 

Up-to-date 

Poisson 

Lagged 

Poisson 
Naïve 

2005/06 213 0.3952 0.3823 0.3773 0.3584 

2006/07 378 0.3786 0.3672 0.3680 0.3490 

2007/08 380 0.3990 0.3733 0.3757 0.3454 

2008/09 370 0.3851 0.3749 0.3765 0.3445 

2009/10 379 0.3906 0.3847 0.3763 0.3548 

2010/11 378 0.3643 0.3589 0.3626 0.3475 

2011/12 379 0.3760 0.3635 0.3620 0.3421 

All 2477 0.3832 0.3713 0.3707 0.3481 

Table 3: Comparison of match predictions 

Table 3 summarizes the test results for individual seasons and for all matches together. There are 

two key conclusions – first, even the very simple Poisson-based algorithm clearly outperforms 

the naïve predictions and actually provides estimates not substantially worse than betting odds;
25

 

second, predictions of matches half a year in the future have practically the same quality as 

predictions based on the latest available information. The second conclusion validates the 

assumption that team strengths do not change much over the course of the season. 

1.5.2 Verifying season predictions 

Even though the Monte Carlo simulation relies on realistic individual match predictions, any 

imperfections in these predictions could potentially accumulate (or cancel) when estimating 

probabilities of season outcomes. Therefore, this subsection compares the season outcome 

probabilities with the outcomes that actually happened. 

Again, data about 11 seasons and 4,180 matches are used. Before each match, there are two sets 

(one for each team) of estimated probabilities of 20 possible final ranks (altogether 4,180 * 2 * 20 

                                                 
25

 It should not be surprising that betting odds (when available) are still a little better, since they include much more 

information; even a significantly more complex algorithm in Rue and Salvesen (2000) provided predictions only on 

par with betting odds for one season of English Premier League. Similarly, Goddard (2005) found only very small 

differences in prediction quality among algorithms of varying complexity based on historical results. 
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= 167,200 individual rank probabilities). Adding together the individual probabilities for ranks 1-

10 in each set provides the probability that the team finishes in the top half of the table; there are 

4,180 * 2 = 8,360 such predictions. These probabilities are very suitable for testing since they 

fully cover all values from 0 (impossible outcome) to 1 (certain outcome) and exactly one half of 

these predictions come true. 

First, it is interesting to look at outcomes predicted to be practically impossible or certain. Out of 

8,360 estimates, there are 345 outcomes predicted to be practically impossible (not occurring in 

any of 10,000,000 simulations) and none of these outcomes happened in reality. Similarly, there 

are 704 outcomes predicted to be practically certain (occurring in all of 10,000,000 simulations), 

all of them later actually happening.
26

 Analyzing championship, relegation, or individual rank 

probabilities leads to analogical results. Therefore, it can be concluded that if the Monte Carlo 

simulation estimates an outcome to be practically impossible or certain, it must be at least very 

unlikely or very likely to happen. Of course, the same could be said about the mathematical 

certainty method; however, the Monte Carlo simulation identifies impossible or certain outcomes 

much earlier in the season. For example, if a team is ultimately not relegated, it is mathematically 

certain not to be relegated on average 6 rounds before the end of the season. Based on the Monte 

Carlo simulation, the relegation is practically impossible (p = 0) on average 10 rounds before the 

end of the season and very unlikely (p < 0.001) on average 18 rounds before the end of the 

season. 

Another important property to check is the unbiasedness of predictions, i.e. that outcomes with an 

estimated probability of X% actually happen in about X% of all cases. For this test, the original 

8,360 estimated probabilities of a team finishing in the top half of the table are ordered from the 

lowest to the highest. The already analyzed and correct 345 impossible and 704 certain 

predictions are removed and the remaining 7,311 estimates are split into 6 equal-sized bins with 

the first bin containing the lowest 1/6 of the estimated probabilities. In each bin, the average 

estimated probability should be close to the relative frequency of actual outcomes. 
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 The lowest estimated probability for the outcome that actually happened was 2.1%. The highest estimated 

probability for the outcome that actually did not happen was 97.3%. 
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 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

Number of predictions 1,219 1,218 1,219 1,218 1,219 1,218 

Average estimated probability 0.0146 0.1300 0.3052 0.5560 0.8590 0.9951 

Actual relative frequency 0.0066 0.1552 0.2847 0.5246 0.8819 1.0000 

Difference (estimated – actual) +0.0080 -0.0252 +0.0206 +0.0313 -0.0229 -0.0049 

Table 4: Binned predicted vs. actual frequencies of outcome  

Table 4 shows that the estimated probabilities for each bin are within two to three percentage 

points of the actual relative frequencies, so there is no substantial bias associated with a particular 

probability range.
27

 The same comparison, but with 50 bins instead of 6, can be found in 

Appendix B: Further verifying season predictions. 

1.6 Comparison with other methods 

As shown in the previous section, the presented method provides match importance values that 

are derived from realistic predictions of both match results and season outcomes. Unlike other 

methods, it also takes into account factors such as strengths of the remaining opponents and final 

table ranking criteria. This section looks more closely at the computed match importance values 

using championship and relegation criteria and compares them against numbers provided by 

other common approaches. 

Again, data about 11 seasons and 4,180 matches are used. For each match, there are four 

associated match importance values – one championship and one relegation importance value for 

each team. Altogether, there are 8,360 championship importance values and 8,360 relegation 

importance values. 

 

  

                                                 
27

 No difference between the estimated probability and the actual relative frequency is statistically significant at α = 

0.05. When calculating standard errors, it is necessary to take into account that there are only 220 independent 

random trials (20 teams achieving some final rank in each of 11 seasons), so each bin can contain predictions related 

to at most this number of trials. 
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 Average 
Standard 

deviation 
Skewness Min 

Percentiles 
Max 

90
th

 99
th

 99.9
th

 

Championship 0.0164 0.0452 4.8001 0.0000 0.0693 0.1851 0.4742 0.8253 

Relegation 0.0539 0.0747 2.4199 0.0000 0.1509 0.3008 0.6353 0.8761 

Table 5: Descriptive statistics of championship and relegation importance, N = 8,360  

Table 5 provides basic descriptive statistics. Both championship and relegation importance 

distributions are extremely skewed towards low values; there are simply not that many important 

matches. On average, relegation importance is higher, since there are more relegation than 

championship spots and typically more teams in contention for avoiding relegation than for 

winning championship. Maximum observed values are close to one in both cases, indicating 

matches deciding the outcome hanging in the balance. 

To simplify the following analysis, all match importance values are classified into the five 

following groups: zero importance (importance ≤ 10
-6

; this value indicates that the season 

outcome probability was extremely close to zero or one), very low importance (10
-6

 < importance 

≤ 0.01), low importance (0.01 < importance ≤ 0.1), medium importance (0.1 < importance ≤ 0.2), 

and high importance (importance > 0.2). 

 



[Using Monte Carlo simulation to calculate match importance: The case of English Premier League] 

[20] 

 

 

Figure 1: Relative frequencies of relegation importance values in different competition rounds  

Figure 1, which shows relative frequencies of grouped relegation importance values in different 

competition rounds, immediately demonstrates problems of the simplest match importance 

method of assuming that all matches in the last X rounds are important; first, there is no obvious 

cutoff round where important matches start to appear; second, most matches even in the last 

several rounds are simply not that important for any team.
28

 Therefore, just using a dummy 

variable for all matches in the last X rounds severely underestimates any impact of match 

importance on any other variable. 

Another match importance method (mathematical certainty) assumes that a match is important 

for a given team if a specific outcome is not yet mathematically certain or impossible. A modified 

approach (used, for example, in Goddard and Asimakopoulos 2004) assumes that in the worst-

case scenario, a team will get only X points in each remaining match with all the other teams 

getting full three points (and placing better if having the same number of points), while in the 

                                                 
28

 Even when including the European qualification criterion, only about one half of all matches in the last four rounds 

have at least medium importance on at least one season outcome criterion for at least one team.  
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best-case scenario, a team will get full three points in each remaining match with all the other 

teams getting X points (and placing worse if having the same number of points). A team is sure to 

be relegated if it finishes no better than 18
th

 in the best-case scenario; similarly, it cannot be 

relegated if it finishes no worse than 17
th

 in the worst-case scenario. For X = 0, this method is 

exactly the same as mathematical certainty, while higher values of X eliminate low-importance 

matches more aggressively. 

 
Number 

of matches 

Percentage of matches classified as important 

(modified mathematical certainty) 

X=0 X=0.5 X=1 X=1.5 X=2 X=2.5 

Relegation 

importance 

(Monte Carlo) 

zero 1,945 47.7 39.3 30.6 19.6 8.7 1.0 

very low 1,898 100 98.6 96.4 88.6 73.4 39.6 

low 2,583 100 99.9 99.7 99.7 95.7 82.7 

medium 1,612 100 99.8 99.8 99.8 99.2 94.8 

high 322 100 99.4 99.4 98.8 97.5 82.6 

 Sum 8,360  

Table 6: Classification of relegation importance values by Monte Carlo vs. modified certainty 

Table 6 shows how both the Monte Carlo method and the modified mathematical certainty 

method with different values of X classify 8,360 relegation importance values. It is evident that 

the traditional mathematical certainty method (X = 0) is not nearly aggressive enough; 48% of 

zero-importance and full 100% of very-low-importance matches are still classified as important.  

The best setting for the English Premier League dataset seems to be X = 2,
29

 which is higher than 

commonly used in the literature; for example, Goddard and Asimakopoulos (2004) used X = 1. 

For X = 2, just several percent of medium- and high-importance matches are misclassified as not 

important, while only 9% of zero importance matches are misclassified as important. This could 

be considered a good result given the computational simplicity of the modified mathematical 

certainty method; however, importance is still treated as a binary variable, so a lot of information 

is necessarily lost. 

Similarly to the Monte Carlo method, Jennett’s method treats match importance as a variable 

with many possible values between zero and one. To better compare both methods, match 

                                                 
29

 This is also true for championship importance values. 
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importance values generated by Jennett’s method are also classified into the five following 

groups matching the distribution of the Monte Carlo values as closely as possible: zero 

importance (importance = 0), very low importance (0 < importance ≤ 1/25), low importance (1/25 

< importance ≤ 1/18), medium importance (1/18 < importance ≤ 1/5), and high importance 

(importance > 1/5). 

 

Championship importance 

(Jennett) 
 

zero very low low medium high Sum 

Championship 

importance 

(Monte Carlo) 

zero 3,361 85 25 0 12 3,483 

very low 830 1770 695 64 3 3,362 

low 78 375 300 193 10 956 

medium 25 74 140 243 13 495 

high 6 0 3 26 29 64 

 Sum 4,300 2,304 1,163 526 67 8,360 

Table 7: Classification of championship importance values by Monte Carlo vs. Jennett 

Table 7 shows that both methods classify the championship importance values into the 

corresponding categories quite similarly – 52 of 67 values classified as highly important by 

Jennett’s method have at least low importance assigned by the Monte Carlo method, 58 of 64 

values classified as highly important by the Monte Carlo method are considered to have at least 

low importance by Jennett’s method, and only 3.6% of value pairs are more than one category 

apart. The Spearman rank correlation between uncategorized values of championship importance 

is 0.781. 

A manual inspection of matches where these two methods disagree reveals that there are three 

reasons Jennett’s method occasionally fails: first, it uses ex-post information unknowable before 

the match (this leads to mistakenly assigning zero importance to ex-ante important matches);
30

 

                                                 
30

 A typical example is Sunderland – Manchester United match played on May 2
nd

, 2010, in the second-to-last round 

of the 2009/10 season. Before this match, Manchester United was in the second place trailing one point behind 

Chelsea. The championship importance of this match for Manchester United computed by the Monte Carlo algorithm 

is as high as 0.475 (quite reasonable given the situation as known at that point in time and considering that Chelsea 

had to play a difficult away match at Liverpool in the same round). However, Jennett’s method sets the 
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second, it does not take into account who the opponent is (and therefore does not assign higher 

importance to matches against teams competing for the same outcome); third, it ignores any table 

ranking criteria besides total points.  

Based on the data, Jennett’s method is obviously the best alternative to the more computationally 

complex Monte Carlo method for championship importance if the season is already over and an 

occasional misclassification is not a big problem. However, Jennett’s approach does not work as 

well for other criteria, such as relegation or qualifying for European competitions,
31

 and cannot 

be used for prediction. 

1.7 Conclusion 

As shown throughout the article, the proposed method of calculating match importance relies on 

realistic match and season outcome predictions, allows for multiple match result types (unlike 

Schilling’s approach), can be used to derive match importance values expressed as continuous 

variables for any team in any match given any desired outcome (such as championship, 

promotion, or avoiding relegation), and does not need any information unknowable before the 

match. 

The presented method can be also used as a benchmark for other, less complex approaches. Using 

the Premier League dataset, Jennett’s method of estimating championship importance is found to 

produce results that are quite close to the Monte Carlo simulation. However, Jennett’s method 

requires ex-post information and does not work as well for other criteria besides championship. If 

ex-post information is not available and a simple dummy variable for match importance for each 

team is considered sufficient, the modified mathematical certainty approach provides a 

                                                                                                                                                              

 

championship importance to zero using ex-post information that Chelsea won the last two matches and Manchester 

United could not have caught up. Obviously, this could not have been known in advance. 

31
 The Spearman correlation is 0.584 for relegation and 0.534 for qualifying for Europe. 
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reasonable approximation when using the best-case/worst-case scenarios of obtaining one 

more/less point than the other teams in each remaining match. 

1.8 Appendix A: Further example contingency tables 

This appendix provides two more example contingency tables for two different values of 

relegation importance (similar to Table 1 in the main article illustrating championship 

importance). 

 
Newcastle relegated?  

No Yes Sum 

Newcastle’s 

result 

Win 2,526,228 89,756 2,615,984 

Draw 1,473,503 1,089,800 2,563,303 

Loss 0 4,820,713 4,820,713 

 Sum 3,999,731 6,000,269 10,000,000 

     

Relegation importance for Newcastle: tau-c = 0.876 

Table 8: Contingency table for Newcastle before Aston Villa – Newcastle match (2008/09, round 38) 

Table 8 shows the contingency table for Newcastle before their last-round away match against 

Aston Villa in 2008/09 season. Before that match, Newcastle had a 60% probability of being 

relegated, but this probability was 100% in case of losing the match, 42.5% in case of drawing 

the match, and just 3.4% in case of winning the match. The final season outcome hung in the 

balance and was almost completely determined by the match result, so the relegation importance 

of this match for Newcastle is 0.876; the highest value in the data set.  
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Portsmouth relegated?  

No Yes Sum 

Portsmouth’s 

result 

Win 3,810,914 153,241 3,964,155 

Draw 2,235,547 322,909 2,558,456 

Loss 2,781,657 695,732 3,477,389 

 Sum 8,828,118 1,171,882 10,000,000 

     

Relegation importance for Portsmouth: tau-c = 0.151 

Table 9: Contingency table for Portsmouth before Portsmouth – Bolton match (2008/09, round 32) 

Table 9 presents a much less dramatic situation before Portsmouth’s home match against Bolton 

in the 32
nd

 round of the same season. Portsmouth had a relatively low probability of 11.7% of 

being relegated, but winning the next match against their neighbors in the league table would 

reduce this probability to 3.9%. On the other hand, losing the match would almost double their 

probability of relegation to 20%. The match was clearly important for Portsmouth, but far from 

critical, so the corresponding relegation importance value is 0.151. This is much lower than in the 

previous example, but still higher than 90% of all relegation importance values in the data set. 

1.9 Appendix B: Further verifying season predictions 

This appendix expands on the analysis of the unbiasedness of season outcome predictions from 

section Verifying season predictions. Again, the original 8,360 estimated probabilities of a team 

finishing in the top half of the table are ordered from the lowest to the highest and all the 

impossible and certain predictions are removed. This time, the remaining 7,311 estimates are split 

into 50 equal-sized bins instead of just 6. The results are summarized in Figure 2, where each 

point represents one bin and the diagonal line represents no bias. Again, there is no systematic 

and substantial deviation from the diagonal line, so the season outcome predictions do not seem 

to be substantially biased. 
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Figure 2: Predicted vs. actual frequencies of outcome, 50 bins 
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2 The impact of playoffs on seasonal 

uncertainty in the Czech ice hockey 

Extraliga
32

 

In the top Czech ice hockey competition “Extraliga”, 14 geographically close teams 

compete during a regular season in a pure round-robin tournament. However, the 

eventual champion is determined in the additional playoff stage and the regular season 

just decides which teams qualify for the playoffs and how these teams are seeded. This 

article uses a Monte Carlo simulation to show that although the additional playoff stage 

heavily favors higher-seeded teams and consists of a lot of games, it lowers the average 

probability of the strongest team becoming a champion from 48 to 39 percent and thus 

increases seasonal uncertainty. 

2.1 Introduction 

One of the most important results of sports economics is the observation that a tighter 

competition with a more uncertain outcome will attract more spectators. This so-called 

uncertainty of outcome hypothesis was first formulated by Rottenberg (1956), who noted that a 

baseball team winning too many games would attract fewer spectators, and later expanded on by 

Neale (1964), who claimed that a sports league will attract higher attendances if league standings 

are close and change often. 

The sports economics literature distinguishes three different types of uncertainty of outcome 

(Szymanski 2003, García and Rodríguez 2009); match uncertainty (how uncertain the result of 

                                                 
32

 A shorter version of this article (without appendices) was published online ahead of print on October 23, 2013, in 

Journal of Sports Economics, doi: 10.1177/1527002513509109. 
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one specific match is), seasonal uncertainty (how uncertain the competition winner and other 

similar outcomes are), and championship uncertainty (whether there is a long-run domination by 

one team). Instead of seasonal or championship uncertainty, some authors use the term 

competitive balance; however, Scarf et al. (2009) make a useful distinction between competitive 

balance, which is defined as relative strengths of competing teams, and uncertainty of outcome, 

which also depends on tournament design. 

The hypothesis that higher seasonal uncertainty increases attendance has a substantial empirical 

support (see Szymanski (2001) for English Premier League, Humphreys (2002) for the American 

MLB, Pawlowski (2013) for German Bundesliga, Pawlowski and Budzinski (2013) for three 

major European soccer leagues, or Szymanski (2003) for an overview of multiple studies) and 

also seems to be accepted by many competition organizers. The organizers have two obvious 

ways of increasing uncertainty of outcome; first, increase competitive balance by redistributing 

resources using mechanisms such as TV and gate revenue sharing, payroll caps, or giving weaker 

teams earlier draft picks;
33

 second, increase the seasonal uncertainty by modifying the tournament 

design. A major choice in team sports is between using only a round-robin tournament (e.g. 

English Premier League) and combining the round-robin tournament with an additional playoff 

stage (e.g. US Major League Soccer).  

The impact off the additional playoff stage on seasonal uncertainty has come into focus only 

recently. Fort and Quirk (1995) noted that if playoffs are added to the regular season, the regular 

season winner is far from certain to also win the playoff stage. Szemberg et al. (2012) analyzed 

36 seasons of eight top ice hockey competitions and confirmed that the regular season winner 

won the playoff stage in just 43percent of the cases. Longley and Lacey (2012) used the NHL and 

NBA results to estimate probabilities that various seeds win the conference playoffs. However, 

these approaches do not analyze the probability that the strongest team actually wins the regular 

season and therefore cannot be used to tell whether the additional playoff stage increases or 

decreases seasonal uncertainty. Longley and Lacey (2012) also used a clever alternative method 

and showed that team payroll in the NHL (but not the NBA) better predicts results in the regular 

                                                 
33

 Sports economists have extensively analyzed these mechanisms and are generally quite skeptical about their 

efficiency and true goals (Vrooman 1995, Szymanski 2001, Szymanski 2003, Szymanski and Késenne 2004). 
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season than in the playoffs, indicating that the additional playoff stage increases seasonal 

uncertainty. However, this approach is limited by a small dataset and cannot be used to find out 

how exactly the additional playoff stage impacts the championship chances of specific teams or 

to analyze various alternative tournament designs. 

Another approach that has been used to compare various tournament designs is the Monte Carlo 

simulation method. In this method, real competition results are used to estimate team strengths, 

these strengths (assumed to be constant over the season) are then employed to repeatedly 

simulate all individual matches in a specific tournament design, and the completed simulations 

are used to estimate probabilities of various outcomes. Scarf et al. (2009) used the Monte Carlo 

simulation to compare various designs for the UEFA Champions League. The round-robin design 

(which would be extremely impractical in reality due to a large number of matches) maximized 

the probability of the strongest team winning the tournament, while the unseeded 2 leg knock-out 

design maximized the uncertainty of outcome.  A similar approach was used in Scarf and Yusof 

(2011) to show that seeding favors stronger teams and thus reduces uncertainty of outcome in 

FIFA World Cup finals. 

This article is the first to use the Monte Carlo simulation method to analyze the impact of the 

additional playoff stage on seasonal uncertainty. The competition chosen for this analysis is the 

top Czech ice-hockey competition “Extraliga”. In the Extraliga, there are currently 14 

geographically close teams that compete during the regular season in a one-group round-robin 

tournament. However, the eventual competition champion is determined in the additional playoff 

stage and the regular season is just used to decide which teams qualify for the playoffs and how 

these teams are seeded. Since the regular season design is balanced and does not favor any team 

(unlike in the NHL or KHL), the additional playoff stage is not really necessary to determine the 

competition winner; in fact, before the 1985/86 season, the regular season winner was declared 

the champion and the season ended without any playoffs.  

There are four main reasons why ice hockey in general and the Extraliga in particular are good 

choices for this analysis. First, ice hockey teams typically rotate 15 to 20 players in each game, so 

injuries and form fluctuations of individual players change team strengths less than in sports such 

as basketball and soccer, making the simulation results more reliable. Second, the one-group 
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competition design of the Extraliga simplifies the analysis and means that the playoff stage must 

be employed by the organizers with the intent to manipulate seasonal uncertainty and not simply 

to determine the champion (the major reason for using playoffs is unlikely to be to directly 

increase attendance and revenues, because the total attendance per week during the regular 

season is actually slightly higher than during the postseason).
34

 Third, there are only few player 

transfers after the season starts, again supporting the assumption that team strengths during the 

season do not change much.
35

 Fourth, the threat of relegation and the absence of draft mean that 

there are very limited incentives for teams to deliberately lose games.
36

 

The Extraliga tournament design raises two related questions. First, does the strongest team have 

a higher probability of winning the regular season, or the additional playoff stage? Second, how 

does adding the playoff stage impact the probabilities of all the other teams that they become a 

new champion? To analyze these questions, this article employs a Monte Carlo simulation based 

on six different sets of realistic team strengths derived from the actual results of six Extraliga 

seasons (2006/07-2011/12). The simulation results show that although the additional playoff 

stage heavily favors teams that placed better in the regular season and consists of quite a lot of 

games, it lowers the probability that the strongest team becomes the champion (especially if this 

                                                 
34

 During the 2011/12 regular season, the total attendance was 75,881 spectators per week; during the postseason, the 

total attendance was just 63,006 spectators per week.  This is not surprising; while the average attendance per game 

is higher during the postseason, many teams get eliminated early and have zero attendance. Although the lower 

postseason attendance is compensated by higher ticket prices, the playoff stage does not seem to be a much better 

revenue generator than simply making the regular season longer. 

35
 Transfers are allowed up to January 31

st
, i.e. about 8 rounds before the end of the regular season. At this point, the 

final ranking is still very unpredictable, so teams do not have much reason to, for example, sell or loan top players; 

even the teams that are unlikely to qualify for playoffs still need to be ready for playout games where they have to 

fight against relegation. Indeed, the transfer activity during the season is mostly limited to lower-quality players 

often going to lower-level competitions to even get to play; for example, only 4 out of 50 top players (based on the 

sum of goals and assists) changed their club after the start of 2011/12 season and3 out of these 4 transferred well 

before the transfer deadline (source: prestupy.onlajny.cz, accessed on September 6
th

, 2013). This pattern is different 

only during the NHL lockouts, which bring many high-quality players for a part of the regular season, but no 

lockouts happened during the six seasons in the dataset. 

36
 See Taylor and Trogdon (2002) for evidence of such strategic behavior (losing to obtain better draft selections) in 

the NBA. 
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team is very dominant) and raises this probability for weaker teams (especially if they are 

significantly weaker than the strongest team, but still above average). This is also true for some 

obvious modifications of the playoffs. Therefore, the addition of the playoffs to the regular 

Extraliga season increases seasonal uncertainty. 

The rest of the article is organized as follows: Section 2 overviews the Extraliga tournament 

design and compares it to other competitions; Section 3 describes the individual game model, 

how team strengths are estimated from actual results, and how the whole season is simulated; 

Section 4 presents the simulation results; and Section 5 concludes.  

2.2 Extraliga overview 

The Czech ice hockey Extraliga was established in season 1993/94 (after Czechoslovakia split 

into the Czech Republic and the Slovak Republic) and is currently the most popular team sports 

competition in the Czech Republic.
37

 Although the specific rules changed several times, the basic 

tournament design has stayed the same. First, all teams compete in a round-robin tournament that 

decides which teams qualify for the playoff stage and how they are seeded; second, the playoffs 

are used to determine the champion and all other final rankings. The same two-part tournament 

design was also regularly used in former Czechoslovakia since the 1985/86 season and 

experimented with in the 1970s. Under the current design, the Extraliga enjoys a very high degree 

of both seasonal and championship uncertainty – in the six seasons (2006/07-2011/12), there 

were six different regular season winners and five different playoffs winners with the same team 

winning both in only one season. This section describes the competition rules that were first 

                                                 
37

 In the 2011/12 season, the total Extraliga attendance was about 2.2 million spectators, while the regular season 

alone attracted almost 1.8 million spectators. In the same season, the top soccer competition “Gambrinus liga” 

attracted only a bit over 1.1 million spectators. The average regular season game attendance was 4,824 for the 

Extraliga and 4,710 for the Gambrinus liga. Sources: hokej.cz, fotbal.idnes.cz (both accessed on February 23
rd

, 

2013). 
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implemented in season 2006/07, were in place during all six seasons analyzed in this article 

(2006/07-2011/12), and are still practically the same as of September 2013.
38

 

The Extraliga consists of 14 teams. In the regular season, which typically runs from September to 

March, each team plays two home and two away games against all the other teams (4 x 13 = 52 

games in total). Each ice hockey game consists of three 20-minute thirds (so-called regulation 

time). The team scoring more goals is the winner and receives 3 points, while the losing team 

gets 0 points. A draw is not possible – if a game is undecided in the regulation time, it goes into 

extra time, which lasts either 5 minutes or until a goal is scored. If the game is not decided in the 

extra time, a penalty shootout determines which team is considered to have scored the decisive 

goal. The extra time/penalty shootout winner receives 2 points, while the losing team gets 1 

point. In the final regular season league table, teams are ranked according to the following criteria 

(in that order): total points, points from head-on games against teams with the same number of 

total points, score difference in these head-on games, total score difference, and total number of 

goals scored. Since the 2009/10 season, the regular season winner has actually received a minor 

trophy (the President’s Cup); before, there was no trophy at all. After the regular season, all 

teams play at least several additional games – the top 10 teams qualify for the playoffs, while the 

bottom 4 teams proceed to the play-out (this additional round-robin stage, whose results are 

added to the regular season points, determines which team has to defend its Extraliga spot against 

a lower competition winner). 

The playoff stage, which usually takes place in March and April, consists of four rounds – the 

preliminary round, the quarterfinals, the semifinals, and the final. In the preliminary round, teams 

that finished 7
th

 – 10
th

 in the regular season compete for two spots in the quarterfinals, where they 

are joined by the top 6 teams. In each round, teams are seeded according to their regular season 

final rank and paired so that the highest surviving seed plays against the lowest surviving seed, 

the second-highest seed plays against the second-lowest seed, and so on. Each pair of teams plays 

a best-of-five (preliminary round) or best-of-seven (all the other rounds) series of games, so the 

first team to defeat their opponent three (preliminary round) or four times (all the other rounds) 

                                                 
38

 The rules were compiled from the following websites: cslh.cz (Czech Ice Hockey Association), hokej.cz, and 

avlh.sweb.cz (Archive of Ice Hockey Results); all websites were accessed on February 15
th

, 2013. 
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proceeds to the next round. In each series of games, the higher-ranked team plays the first, 

second, fifth, and seventh game on its home ice. If a game is tied, the extra time lasts 10 minutes 

instead of 5. In the fifth (preliminary round), or seventh game (all the other rounds), penalty 

shootouts are not possible and any extra time lasts until a goal is scored. 

The Extraliga playoff stage is quite similar to the system used in the top two ice hockey club 

competitions in the world – the NHL (USA and Canada) and KHL (Russia and other countries). 

However, the regular season in these two competitions is different; the participating teams are 

split into groups according to their geographical location and play more games against 

geographically close teams. Since teams are not grouped according to their strengths, groups are 

not designed to be balanced and the regular season winner is not clear (though it can be 

determined based on the overall record). Therefore, the playoff stage used in the NHL and KHL 

is somewhat of a necessity due to large distances between teams, but seems completely optional 

in a small country such as the Czech Republic. It is also interesting that the additional playoff 

stage is practically nonexistent in European soccer competitions, but used in the Major League 

Soccer (USA and Canada). On the other hand, other top European ice hockey competitions (e.g. 

in Sweden, Finland, Germany or the Slovak Republic) are organized very similarly to the Czech 

Extraliga and do use playoffs. It can be concluded that for small countries, adding a playoff stage 

to a pure round-robin tournament is simply a design choice, not a necessity. The question is – 

what is the impact of this design choice on seasonal uncertainty in general and on chances of the 

strongest team in particular? 

At first sight, the Extraliga playoff stage should be quite good at identifying the strongest team. 

First, each pair of teams plays up to seven games to determine which team moves to the next 

round; this is much more than one or two matches typically used in soccer. Second, teams are 

reseeded for each round; this type of seeding was shown to help the strongest teams the most by 

Scarf and Yusof (2011). Third, higher-seeded teams play any decisive game in the series on their 

home ice. However, the regular-season round-robin tournament consists of a high number of 

games as well, so it also seems to be suitable for determining which team is the strongest. 

Clearly, a more detailed analysis is needed to decide which type of tournament design favors 

which teams. 
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2.3 Model 

To analyze the impact of the additional playoff stage on seasonal uncertainty, this article uses a 

three-step Monte Carlo simulation method similar to Scarf et al. (2009). First, actual results of six 

different regular Extraliga seasons are used to estimate six sets of team strengths. Second, these 

six sets of team strengths are used to simulate 1,000,000 times each of the six corresponding 

seasons including the playoff stage down to the level of an individual game score (the actual 

season results are then used to verify that these simulations are realistic). Third, the resulting 

dataset consisting of 6,000,000 completed simulations is used to investigate the impact of the 

playoffs on seasonal uncertainty. 

To generate an individual game score between any two teams, this article employs one of several 

methods introduced by Maher (1982), but modified for ice hockey. The unmodified method 

assumes that each team’s strength can be described by four parameters – attack strength in home 

games (HomeAttack), attack strength in away games (AwayAttack), defense strength in home 

games (HomeDefense), and defense strength in away games (AwayDefense). For attack strengths, 

a higher number is better, while for defense strengths, a lower number is better. If a team i plays 

at home against team j, the score is composed of two random numbers drawn from two 

independent Poisson distributions with expected values of HomeAttacki * AwayDefensej (goals 

scored by the home team) and HomeDefensei * AwayAttackj (goals scored by the away team). 

To be able to simulate any possible game in a season, it is necessary to somehow set 56 

parameter values (14 teams x 4 strength parameters per team). It would be possible to randomly 

generate one or more sets of these parameters, but they would not necessarily correspond to a 

typical team strength distribution in a season. A better solution is to estimate the parameters 

based on actual results (Maher 1982, Scarf and Yusof 2011). In this article, the actual results of 

six Extraliga seasons (2006/07-2011/12) are used to estimate six realistic sets of parameters. For 

each season, this is done by setting the total expected numbers of regulation-time goals scored 

and conceded by each team in its home and away games equal to the corresponding actual values 
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in a given season
39

 and solving the resulting system of equations (for details, see Appendix A: 

Estimating team strengths). 

The simple model described above does not take into account two factors specific to ice hockey – 

first, a team trailing by one goal towards the end of the game usually plays much more 

aggressively and eventually replaces their goaltender with another attacking player, thus 

dramatically increasing chances of both teams to score; second, a tied game does not end, but 

goes into extra time (possibly followed by a penalty shootout).  

To take into account the option of pulling the goaltender, the model is modified in the following 

way: First, the home team i scores a random number of goals drawn from a Poisson distribution 

with an expected value of 7/8 * HomeAttacki * AwayDefensej and the away team scores a random 

number of goals drawn from a Poisson distribution with an expected value of 7/8 * 

HomeDefensei * AwayAttackj (this represents the score several minutes before the end of the 

game). If neither team is trailing by one goal, the regulation time score stays unchanged. If the 

home team i trails by one goal, it scores an additional Poisson-distributed number of goals with 

an expected value of 3/10 * HomeAttacki * AwayDefensej and the away team j scores an 

additional Poisson-distributed number of goals with an expected value of 5/10 * HomeDefensei * 

AwayAttackj. Similarly, if the home team i leads by one goal, it scores an additional Poisson 

distributed number of goals with an expected value of 5/10 * HomeAttacki * AwayDefensej and 

the away team j scores an additional Poisson-distributed number of goals with an expected value 

of 3/10 * HomeDefensei * AwayAttackj. These expected values for last-minute goals are quite 

high and strongly favor the leading team, but they reflect two observations about ice hockey 

games made by Thomas (2007); first, the average number of goals per minute sharply increases 

in the last two minutes; second, if a goal is scored when one goaltender is pulled, it is about twice 

as likely to be scored by the leading team. This modification is also calibrated so that it does not 

change the expected number of goals scored by each team compared to the unmodified model – 

this means that the estimated strength parameters are still valid. 

                                                 
39

 All actual season data were gathered from the websites hokej.cz and avlh.sweb.cz (Archive of Ice Hockey 

Results); both websites were accessed on January 18
th

, 2013. 
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To model the extra time, it is simply assumed that if a game is tied after regulation time, an extra 

time/penalty shootout winning goal will be scored by the home team i with the probability of 

(HomeAttacki * AwayDefensej)/(HomeAttacki * AwayDefensej + HomeDefensei * AwayAttackj) 

and by the away team j with the probability of (HomeDefensei * AwayAttackj)/(HomeAttacki * 

AwayDefensej + HomeDefensei * AwayAttackj). 

In the next step, the estimated strength parameters of all teams in a given season and the 

individual game model are used to estimate probabilities of a given team winning the regular 

season or the playoffs. The Monte Carlo approach is the only feasible option due to the high 

number of games and the complicated tournament design. First, results of all regular season 

games are randomly generated and points are assigned. Second, these results are used to put 

together the final table (using all applicable ranking criteria) and decide which teams qualify for 

the playoff stage. Third, the teams are seeded and paired and all corresponding playoff games are 

played until there is a competition champion. This process is repeated 1,000,000 times for each 

set of strength parameters. In the end, there are 6,000,000 completed simulations corresponding 

to six actual seasons. An ex ante probability of any scenario in any season is then approximated 

by the relative frequency of this scenario in corresponding simulations. Because the number of 

simulations is very high, the estimated probabilities are very close to the exact probabilities that 

could (in theory) be obtained by solving the model analytically.
40

 

Although there are some possible improvements to predicting individual game results (Maher 

1982, Dixon and Coles 1997, Rue and Salvesen 2000, Goddard 2005), the model as a whole is 

already quite realistic. This can be shown by comparing the aggregate simulation statistics 

against the corresponding actual results. Specifically, there are no significant differences between 

the simulated and actual total number of regular season goals (including extra time); the 

simulated and actual relative frequencies of home/away regulation/extra time wins; the simulated 

and actual minimum and maximum points in a given regular season; and the simulated and actual 

relative frequencies of playoff series results (all descriptive statistics and statistical tests are 

provided in Appendix B: Model verification). 

                                                 
40

 For example, the probability that a given team in a given season wins the regular season or the playoffs is 

estimated with a standard error less than 0.0005. 
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Of course, this basic model also has some limitations. First, it assumes that team strengths are 

constant over the whole season and do not fluctuate much (for example, because of injuries of 

key players). This assumption was confirmed for English Premier League by Koopman and Lit 

(2012), who found very small changes of attack and defense strengths over a course of a season, 

and by the first article in this dissertation called “Using Monte Carlo simulation to calculate 

match importance: The case of English Premier League,” which found that predictions of English 

Premier League matches based on up-to-date historical results are only negligibly better than 

predictions based on results that were at least 180 days old (i.e. mostly previous season results). 

Also, as already said in the Introduction, this assumption should be even more valid for ice 

hockey than for soccer due to a higher number of players rotated in each game. Nevertheless, the 

impact of relaxing the constant-strengths assumption is investigated at the end of the next section. 

The second assumption is that teams always play as well as they can and do not lose games on 

purpose. As said in the Introduction, the incentives for underperforming are much weaker in the 

Extraliga than in other competitions due to the absence of draft and the threat of relegation, but 

there are still two potentially viable strategies analyzed at the end of the next section; first, the 

strategy mentioned in Szemberg et al. (2012) of expending less effort during the regular season to 

have more energy for the playoff stage; second, the strategy of deliberately losing some games at 

the end of the regular season to avoid a specific opponent in the first round of the playoffs.  

2.4 Results 

To investigate the impact of the additional playoff stage on seasonal uncertainty, the dataset of 

completed simulations of six seasons is used to estimate two probabilities for each team in each 

season – the probability of winning the regular season and the probability of winning the 

playoffs. Since there are 14 teams per season, there are 6 * 14 = 84 pairs of probabilities. Based 

on these probabilities, it is possible to determine the strongest team in each season – it is simply 

the team with the highest probability of winning the regular season (and also the playoffs).
41

 The 

                                                 
41

 It does not really matter if the teams are ordered by the probability of winning the regular season or by the 

probability of winning the playoffs; the ordering is identical for top 4 and bottom 4 teams in every season and very 
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84 pairs of probabilities (one pair for each team in each season) are represented by points in 

Figure 3. The strongest team in each season is marked by a bigger and darker point. On the 

diagonal line, the probability of winning the regular season equals the probability of winning the 

playoffs. 

 

Figure 3: Probability of winning regular season vs. playoffs; the strongest team in each season is 

marked by a bigger point 

The first important observation is that that all six points representing the strongest teams in each 

season are below the diagonal line, so the additional playoff stage decreased their probability of 

becoming the champion. This is also confirmed by computing average probabilities across all six 

seasons; on average, the strongest team had a 48 percent chance of winning the regular season, 

but just 39 percent chance of winning the playoffs, so the additional playoff stage decreased their 

                                                                                                                                                              

 

similar otherwise. Theoretically, an average team that would become stronger in away games and weaker in home 

games could keep their regular season chances constant, while increasing their chances in the playoffs; however, this 

seems to have a negligible impact in the dataset. 
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probability of winning the competition by 9 percentage points. This result is in line with the 

finding of Longley and Lacey (2012) for the NHL, but also shows that it would be inaccurate to 

assume that the strongest team is the same as the regular season winner. 

The difference between the two probabilities is especially large for very dominant teams – Sparta 

Praha in the 2011/12 season (represented by the rightmost point) had a 69 percent chance of 

winning the regular season (and did actually win), but just a 53 percent chance of winning the 

playoffs (and did not actually win), so the additional playoff stage decreased their probability of 

becoming a champion by 16 percentage points. On the other hand, all points representing weaker 

teams (less than a 15 percent probability of winning the regular season) are above the 45-degree 

line, so such teams’ chances of becoming a champion are helped by the additional playoff stage. 

To analyze the change in championship probability from adding the playoff stage in more detail, 

it is useful to look at these changes for the strongest team in each season (i.e. with the highest 

probability of winning the regular season), the second-strongest team (i.e. with the second-

highest probability of winning the regular season), the third-strongest team, and so on. The 

maximum (bar top), average (black line), and minimum (bar bottom) changes for each level of 

team strength are presented in Figure 4. 
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Figure 4: Relative team strength vs. change in championship probability from adding playoffs  

The graph shows that the additional playoff stage always decreased the championship probability 

of the strongest team in the analyzed dataset, sometimes helped and sometimes hurt the second-

strongest team,
42

 and always helped all the other, weaker teams. The teams that benefited the 

most were the third-strongest to sixth-strongest teams (much weaker than the strongest team, but 

still above average). On the other hand, the weakest teams were only negligibly affected, since 

both their probabilities – winning the regular season and winning the playoffs – were close to 

zero. 

 To summarize, the additional playoff stage decreases the championship chances of the strongest 

team (especially if it is very dominant), increases the championship chances for the other teams 

(especially if they are significantly weaker than the strongest team, but still above average), and 

thus increases the seasonal uncertainty. A very similar pattern emerges for different individual 
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 The second-strongest team was helped when being much weaker than the strongest team and hurt when being just 

a little weaker than the strongest team.  
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game models, different team strength distributions,
43

 or when comparing the probabilities of 

finishing in the top 2 in the regular season against the probabilities of reaching the playoff final. 

The additional playoff stage also increases seasonal uncertainty measured by Herfindahl–

Hirschman Index or Gini coefficient.
44

 

A natural question is why the playoffs increase seasonal uncertainty, especially considering that 

the combination of reseeding before each round and home ice advantage should strongly favor 

teams that do better in the regular season and are therefore seeded higher. First, let’s investigate 

how big this advantage for stronger teams actually is. 

Szemberg et al. (2012) observed that higher-seeded teams tend to win the playoffs much more 

often. However, this would happen even if the playoff stage design did not favor higher-seeded 

teams at all, since higher-seeded teams also tend to be stronger. To determine how the regular 

season final rank influences the probability of winning the playoffs, it is therefore necessary to 

keep the team strength constant. This is impossible based on just observational data, but easy 

using the simulation approach; for each team in each season, the probability of winning the 

playoffs given a particular regular season final rank can be estimated as the relative frequency of 

winning the playoffs in a subset of simulations where the team reached that rank. Figure 5 shows 

how attaining a specific seed influences the probability of winning the playoffs for four selected 

teams of various strengths (dotted lines) and averaged across all teams and seasons (solid line), 

while bars represent simulated probabilities of a given seed winning the playoffs in the whole 

dataset (no matter which specific team it is).
45

 

                                                 
43

 A simplified individual game model without the modification for pulling the goaltender and giving each team 50 

percent probability of winning any extra time underestimates the number of games decided in regulation time, but 

leads to almost identical championship probabilities. Further increasing the strength of the strongest team in each 

season (by multiplying both attack strength parameters and dividing both defense strength parameters by a number 

greater than one) confirms that as a team becomes more dominant, the playoff stage decreases its championship 

chances by more percentage points. 

44
 See Humphreys (2002) for an overview of these measures as applied to uncertainty of outcome. 

45
 The standard errors for probability estimates averaged across all seasons (solid line and bars) are negligible 

because they are calculated from all 6,000,000 simulations. For individual team/season combinations, the standard 

errors range from a fraction of a percentage point for team/seed combinations that happen often (e.g. a strong team 
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Figure 5: Probability of winning playoffs given a specific seed  

It is obvious that as the seed gets worse, the championship probability goes down much more 

slowly when controlling for team strength, so the observed pattern of higher-seeded teams 

winning much more often can be mostly explained by these teams simply being stronger. 

Nevertheless, a better regular season result still provides a significant advantage when keeping 

                                                                                                                                                              

 

winning the best seed) to one to two percentage points for team/seed combinations that happen rarely (e.g. a strong 

team obtaining seed 9 or 10). 
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the team strength constant; on average, obtaining the best seed roughly triples the championship 

probability compared to the worst seed. 

Based on the analysis above, it is clear that the playoff stage design actually does heavily favor 

higher-seeded teams. To understand why it still decreases the probability that the strongest team 

wins, let’s go back to the example of Sparta Praha in season 2011/12. As mentioned above, 

Sparta Praha had a 69 percent probability of winning the regular season and a 53 percent 

probability of winning the playoffs. The probability of Sparta Praha winning the playoffs can be 

expressed as a product of four different numbers – they had a 99.97 percent probability of 

qualifying for the quarterfinals (either directly or from the preliminary round); if they qualified, 

they had an 88 percent probability of advancing to the semifinals; if they did, they had an 82 

percent probability of progressing to the final; and if they did, they had a 74 percent probability 

of winning the whole competition. Therefore, the lower probability of winning the playoffs is not 

caused by Sparta Praha not being a clear favorite in each round, but rather by even small 

probabilities of elimination accumulating over multiple rounds. 

The additional playoff stage also decreases the probability of the strongest team winning the 

competition for some reasonable alternative designs. For example, the quarterfinals, semifinals, 

and final would have to use a best-of-fifteen instead of best-of-seven system (i.e. eight instead of 

four wins to eliminate the other team) to approximately neutralize the impact of the playoffs on 

seasonal uncertainty. This would make the playoff stage much longer, decrease the importance of 

a single game, and likely lower the interest of spectators. Similarly, if only top four teams 

qualified for the playoffs, the regular season finish would be less interesting and the strongest 

team would still have a lower probability of winning the playoffs (42 percent) than winning the 

regular season (48 percent).
46

 

The Monte Carlo simulation approach also allows directly investigating the impact of alternative 

seeding mechanisms. For example, if teams were seeded randomly in each round instead of the 

current system of highest-ranked teams in the regular season facing lowest-ranked teams, the 

probability of the strongest team winning the playoffs would go down from 39 to 35 percent. This 

                                                 
46

 These and all the subsequent results are based on additional sets of 100,000 simulations using the same team 

strengths and seasons, but different tournament designs and/or assumptions. 
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again confirms that the current seeding system favors the stronger (and usually higher-seeded) 

teams. A similar decrease in probability of winning the playoffs would result from using the 

seeding system where the highest surviving seed would play the second-highest surviving seed, 

the third-highest surviving seed would play the fourth-highest surviving seed, and so on.
47

 

As stated in the previous section, all the results so far are based on two assumptions; first, team 

strengths are constant over the whole season; second, teams always play as well as possible and 

do not lose regular-season games on purpose to improve their chances in the playoffs. The rest of 

this section analyzes how relaxing these assumptions influences the results. 

To simulate the impact of possible strength fluctuations, the whole season is split into three 

roughly equal parts – the first half of the regular season, the second half of the regular season, 

and the playoff stage.
48

 Each simulation starts with the original home and away attack and 

defense strengths for all teams; however, these are not kept constant, but are modified by 

applying different independent random shocks in each part of the season. Specifically, both home 

and away attack parameters of team i in season part j of simulation k are multiplied by 

exp(ShockSize * AttackShockijk), where AttackShockijk is a random number drawn from the 

standard normal distribution and the ShockSize parameter determines the magnitude of strength 

fluctuations. Similarly, both home and away defense parameters are multiplied by exp(ShockSize 

* DefenseShockijk), where DefenseShockijk is again a random number drawn from the standard 

normal distribution.  

In the original model with constant team strengths (equivalent to ShockSize = 0), the strongest 

team had a 48 percent probability of winning the regular season and 39 percent probability of 

winning the playoffs. Increasing the ShockSize parameter introduces additional noise into the 

simulation, so both probabilities must go down; they are 46 and 37 percent for ShockSize = 0.05 

and 41 and 33 percent for ShockSize = 0.1. The key conclusion is that even when allowing for 

strength fluctuations, the probability that the strongest team wins the regular season is still 

                                                 
47

 Such a seeding system is unlikely to be used (unlike random seeding) because it would actively discourage teams 

from playing as well as possible during the regular season (e.g. seed number 3 is clearly better than seed number 2; it 

offers the home ice advantage and likely a weaker first-round opponent). 

48
 All teams play 52 games in the regular season and at most 26 games in the playoff stage (including the preliminary 

round). 
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substantially larger than the probability of winning the playoffs; in fact, the ratio between these 

two probabilities stays almost exactly the same.
49

 Also, the impact of this modification on 

absolute probabilities should be rather small, because even the lower ShockSize value produces 

fluctuations that are more typical of those estimated by Koopman and Lit (2012) for multiple 

seasons rather than for just one season. 

The second assumption that needs to be analyzed is that teams do not behave strategically by 

deliberately losing regular season games to increase their probability of winning the playoffs. The 

first option – expending less effort during the regular season to have more energy for the playoffs 

– does not seem rational in the Extraliga, because teams finishing in top 6 in the regular season 

avoid the preliminary round and enjoy about one and a half weeks of rest before the quarterfinals 

(quite a long period considering that teams usually play three games per week during the regular 

season). Consequently, any additional benefit from expending less effort at the end of the regular 

season would be negligible, while the cost of getting a worse seed would be substantial (as was 

shown in Figure 5).
50

   

A more promising strategy could be to deliberately lose some games at the end of the regular 

season to avoid a strong opponent in the first (or preliminary) round of the playoffs. To simulate 

the impact of such a strategy, the strongest team in each season moves down one seed at the end 

of the regular season if it means getting a significantly weaker opponent (using the strength 

ranking based on the probability of winning the regular season) in the first (or preliminary) round 

of the playoffs. The strategy is not used if it would mean losing the home ice advantage (moving 

from seed 4 to 5 or from 8 to 9; in such cases, the opponent would actually stay the same) or 

having to enter the preliminary round (moving from seed 6 to 7). If the strongest team is 

supposed to face a preliminary-round winner, it is assumed that a stronger team always advances 

from this preliminary round. This strategic option is more powerful than anything available in 

reality; it assumes that the strongest team can perfectly predict the final table and that the other 

                                                 
49

 As ShockSize increases to infinity, the original team strengths are completely overshadowed by random shocks and 

all probabilities converge to 1/14 (i.e. all teams have the same chance of winning both the regular season and the 

playoffs). However, such a scenario is clearly unrealistic. 

50
 Also, if this strategy worked, most teams would use it, thus effectively neutralizing it. 
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teams cannot use any similar strategy,
51

 so it represents an upper bound on how much the 

strongest team could increase its probability of winning the playoffs. 

There are multiple versions of the strategy depending on how much weaker the new opponent has 

to be for the strongest team to move down one seed – a logical expectation is that as the required 

minimum strength difference increases, the strategy is employed less frequently, but becomes 

more efficient if actually used. This is confirmed by simulation results; if any difference in 

strengths is enough (e.g. moving down one seed if it means facing at most the 10
th

 strongest 

instead of the 9
th

 strongest team), the strategy is utilized in 43 percent of all simulated seasons, 

but the probability that the strongest team wins the playoffs actually decreases from 39.0 to 38.3 

percent, indicating the strategy is counterproductive. If the minimum strength difference is raised 

to 5 (e.g. moving down one seed if it means facing at most the 7
th

 strongest instead of the 2
nd

 

strongest team), the strategy starts having a slightly positive effect, but is utilized in only 11 

percent of all simulated seasons, so the probability that the strongest team wins the playoffs 

increases by less than 0.1 percentage points.
52

 The reason why this type of strategic behavior 

leads to a negligible improvement at best is simple; moving down a seed might mean a weaker 

first-round opponent, but the later-round opponents will tend to be stronger and also more likely 

to have the home ice advantage. 

2.5 Conclusion 

As shown in the previous section, the additional playoff stage in the Extraliga lowers the average 

probability that the strongest team becomes a champion from 48 to 39 percent and thus increases 

                                                 
51

 The first-round opponent of any team is very hard to predict before the end of the regular season, because the point 

differences between teams tend to be small; for example, the average difference in the data set between the 5
th

 place 

and the 10
th

 place at the end of the regular season is less than 12 points. If other teams actively tried to avoid playing 

against the strongest team, using the strategy would become even more complicated. 

52
 Even higher minimum strength differences again decrease the probability of winning the playoffs because the 

strategy is practically never used (e.g. in less than 1 percent of all seasons if the minimum difference is 9). Allowing 

the strongest team to move down multiple seeds (instead of one seed) also provides only a negligible improvement to 

the chance of winning the playoffs.  
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seasonal uncertainty. A similar result was obtained by Longley and Lacey (2012) for the NHL, 

but the Monte Carlo simulation approach used in this article enables a deeper analysis; first, it 

shows that the more dominant the strongest team is, the more their probability of winning the 

competition is decreased by the additional playoff stage; second, it demonstrates that the third-

strongest to the sixth-strongest teams profit most from adding the playoffs; third, it shows that 

obtaining the best seed (compared to the worst seed) roughly triples the championship 

probability; fourth, it indicates that the additional playoff stage would also increase seasonal 

uncertainty for reasonable alternative designs; fifth, it shows that the results hold even if the 

assumptions of constant team strengths and no strategic behavior are relaxed. 

The higher seasonal uncertainty makes the Extraliga competition more attractive – the supporters 

of the strongest team cannot be so sure about the final outcome and the fans of weaker teams 

have a stronger hope of celebrating the championship title. The fact that securing a higher seed 

significantly increases championship chances makes the regular season finish interesting for fans 

of almost all teams. The higher seasonal uncertainty is also likely to translate into a more even 

distribution of all types of revenues and thus a higher competitive balance. In a positive feedback 

loop, this should further increase seasonal uncertainty. Therefore, the current Extraliga 

tournament design promotes uncertainty of outcome, which seems to be preferred by both 

spectators and competition organizers. 

The Monte Carlo simulation approach could also be applied to other team competitions, 

including those with unbalanced schedules and teams split into conferences/divisions;
53

 however, 

for those similar to the Extraliga, such as other top European ice hockey competitions, the results 

                                                 
53

 Of course, applying the framework presented in this article to a competition with unbalanced schedule would be 

more complicated. Considering the example of the Major League Soccer (top US and Canadian soccer league), 

estimating team strengths would be more difficult, because the number of teams changes every several years and the 

playing schedule (the number of home versus away matches against each team) changes every season. This means 

that the necessary set of equations would be more complex and different every season. Also, the probability of 

winning the regular season (Supporters’ Shield) or the playoffs (MLS Cup) would not only depend on the relative 

team strength, but also on the conference the team is in; even if there were no difference between team strengths 

between Eastern and Western Conferences, the Western Conference currently (2012/13) consists of fewer teams (9 

compared to 10), so should ceteris paribus offer a better chance of getting into the MLS Cup final. On the other 

hand, the individual match model would not need to include the modification for pulling the goaltender. 
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are likely to be similar as well. Another promising avenue of research would be to analyze 

tournament designs in terms of whether strategic behavior during the regular season (i.e. losing 

on purpose) can meaningfully increase the probability of winning the playoffs; while this does 

not seem to be the case in the Extraliga, the situation could be different in competitions with 

different seeding mechanisms or fewer playoff rounds. 

2.6 Appendix A: Estimating team strengths 

This section describes how team strengths are estimated from the actual regular season results. 

This is done by setting the total expected numbers of regulation-time goals scored and conceded 

by each team in its home and away games equal to the corresponding actual values in a given 

season. For example, team 1 is expected to score 2 * HomeAttack1 * AwayDefense2 goals in its 

two home games against team 2, 2 * HomeAttack1 * AwayDefense3 goals in its two home games 

against team 3 … 2 * HomeAttack1 * AwayDefense14 goals in its two home games against team 

14. The sum of these expressions is set equal to the total number of goals that team 1 actually 

scored in all its home games. Eventually, this leads to the following set of 14 equations (one 

equation for each team i, where i = 1 … 14): 

               ∑             
           

                                   

Similar sets of equations are also put together for goals conceded in home games and goals 

scored and conceded in away games: 

   

                ∑            
           

                                     

               ∑             
           

                                   

                ∑            
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In the resulting system, there are 56 equations and 56 variables; however, the equations are not 

independent, since the total number of home goals scored by all teams equals the total number of 

away goals conceded by all teams and the total number of home goals conceded by all teams 

equals the total number of away goals scored by all teams. Therefore, there are infinitely many 

solutions; these can be obtained from each other by multiplying all attack parameters by a 

positive number and dividing all defense parameters by the same number. Because all these 

solutions provide exactly the same predictions, this is not a problem and any solution will do.
54

 

As an example, Table 10 shows the regulation-time total scores in home and away matches for all 

teams in the 2011/12 season and also the corresponding set of estimated team strengths. 

Team 

Total score 

(regulation time) 

Estimated team strengths 

Home Away 

Home Away Attack Defense Attack Defense 

Sparta Praha 76:46 79:53 1.148 0.994 2.274 1.778 

Plzeň 102:64 72:75 1.580 1.373 2.119 2.591 

Pardubice 93:60 77:69 1.430 1.295 2.255 2.360 

Liberec 72:58 62:77 1.115 1.228 1.809 2.578 

České Budějovice 66:59 58:64 1.008 1.243 1.694 2.127 

Vítkovice 81:67 55:80 1.259 1.408 1.622 2.704 

Zlín 60:55 41:60 0.912 1.135 1.190 1.982 

Brno 71:45 65:86 1.110 0.955 1.867 2.878 

Kladno 73:58 51:75 1.128 1.212 1.487 2.513 

Třinec 65:68 77:67 0.996 1.469 2.279 2.225 

Karlovy Vary 75:67 57:81 1.166 1.411 1.681 2.721 

Slavia Praha 62:78 71:73 0.955 1.674 2.127 2.418 

Litvínov 73:71 56:96 1.153 1.494 1.660 3.222 

Mladá Boleslav 70:71 46:83 1.090 1.475 1.362 2.774 

Table 10: Regulation-time total scores and estimated team strengths, 2011/12 season  

Given the estimated strengths, it is possible to calculate the expected number of regulation-time 

goals scored by each team in any match-up. For instance, if Sparta Praha plays at home against 

Mladá Boleslav, Sparta Praha is expected to score Sparta’s HomeAttack * Mladá Boleslav’s 

AwayDefense = 1.148 * 2.774 = 3.185 goals, while Mladá Boleslav is expected to score Sparta’s 
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 Another option, used in Maher (1982), would be to impose additional constraints on parameter values. 
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HomeDefense * Mladá Boleslav’s AwayAttack = 0.994 * 1.362 = 1.354 goals.
55

 The total number 

of goals Sparta Praha is expected to score if they play two home matches against each opponent 

equals 76, i.e. the actual number of regulation-time goals scored in home matches in the 2011/12 

season.  

2.7 Appendix B: Model verification 

This section shows that the model produces realistic results by comparing the aggregate 

simulation statistics against the corresponding actual results for each season or all seasons 

together.  First, the total number of regular season goals scored in each season (including extra 

time) is compared against the total number of goals in the corresponding set of 1,000,000 

simulations based on that season. Since team strengths are actually estimated from total goals, the 

median (50
th

 percentile) number of goals in a simulated season should be very close to the actual 

total number of goals (the only reason for these two numbers being different is a random number 

of games going into extra time in the actual season). This comparison is presented in Table 11. 

Season 

Total goals (including extra time) 

Simulation percentiles Actual 

value 5
th

 50
th

 95
th

 

2006/07 2051 2126 2202 2123 

2007/08 1966 2039 2113 2057 

2008/09 2024 2099 2175 2096 

2009/10 1986 2060 2135 2057 

2010/11 1950 2023 2096 2012 

2011/12 1924 1996 2070 1995 

Table 11: Simulated vs. actual total number of goals (including extra time)  

In each season, the difference between the simulated median and the actual number of total goals 

is less than 1 percent; the average difference across all seasons is 0.02 percent. Therefore, the 

individual game model does not seem to be biased in terms of the total number of goals 

(including extra time). 
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 The correction for pulling the goaltender is calibrated to not change the expected numbers of goals. 
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In the second test, the simulated relative frequency of each type of game result (home team 

regulation/extra time win/loss) in a regular season is compared against the actual relative 

frequency. Because there are only 364 games in one season, all seasons are pooled together for 

the total number of 2,184 games to increase the test power. The relative frequencies across all 

seasons are shown in Table 12. 

 
Home team win Home team loss 

Regulation Extra time Extra time Regulation 

Simulated relative frequency 0.4915 0.1231 0.0988 0.2866 

Actual relative frequency 0.5023 0.1200 0.1058 0.2720 

Table 12: Simulated vs. actual relative frequencies of game result types, N = 2,184  

For each type of result, the difference between the simulated and the actual relative frequency is 

within 2 percentage points and the distribution of actual result types is not statistically 

significantly different  from the simulated distribution at α = 0.05 (chi-square goodness-of-fit test, 

p-value = 0.334). Consequently, the model does not seem to be biased in terms of the result type. 

Third, the total minimum and maximum numbers of points in each regular season (i.e. the points 

obtained by the team that finished last and the winner)
56

 are compared against the total maximum 

and minimum numbers of points in the corresponding set of 1,000,000 simulations. Table 13 

presents simulated point percentiles and the corresponding actual values. 
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 In the 2010/11 season, three teams were deducted points due to invalid player registration forms. These deductions 

are not taken into account in this test. 
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Season 

Minimum points Maximum points 

Simulation percentiles Actual 

value 

Simulation percentiles Actual 

value 5
th

 50
th

 95
th

 5
th

 50
th

 95
th

 

2006/07 20 31 44 34 97 105 116 100 

2007/08 25 38 51 40 99 109 120 106 

2008/09 48 58 66 59 90 97 107 93 

2009/10 44 54 62 58 96 105 116 106 

2010/11 33 46 56 41 96 103 114 96 

2011/12 43 53 61 61 99 109 121 107 

Table 13: Simulated vs. actual minimum/maximum points  

The average difference between the simulated median number of points and the actual number is 

3.75 points (a little more than the difference between winning and losing a single game). Each 

interval between the 5
th

 and 95
th

 point percentiles can be thought of as a 90-percent confidence 

interval on the prediction of the actual number of points; there are 12 such intervals and the actual 

value lies on the interval boundary in two cases and never outside. Therefore, the simulation also 

seems to produce realistic regular season point distributions.  

 The last test compares the simulated relative frequencies of best-of-seven playoff series results 

(i.e. the quarterfinals + the semifinals + the finals) from the point of view of the higher-seeded 

team against the actual relative frequencies. Because there are only seven such results per season, 

all seasons are again pooled together for the total number of 42 series results. The simulated and 

actual relative frequencies across all seasons are shown in Table 14 (the first number in the result 

represents the number of games won by the higher-seeded team and the second number 

represents the number of games won by the lower-seeded team). 

 
Quarter/semi/final playoff series result 

4-0 4-1 4-2 4-3 3-4 2-4 1-4 0-4 

Simulated relative 

frequency 
0.1004 0.2116 0.1512 0.1950 0.0963 0.1393 0.0679 0.0383 

Actual relative 

frequency 
0.0714 0.2857 0.1190 0.2143 0.0714 0.1429 0.0476 0.0476 

Table 14: Simulated vs. actual relative frequencies of playoff series results, N = 42  
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The highest difference between the simulated and actual relative frequency is 7 percentage points 

(4-1 result); this result was predicted to happen about 9 times, but it actually happened 12 times. 

However, this is completely natural given the small sample size; the actual result type distribution 

is not statistically significantly different from the simulated distribution at α = 0.05 (chi-square 

goodness-of-fit exact test, p-value = 0.937). It is also possible to look at the simulated versus the 

actual relative frequency of the higher-seeded team eliminating the lower-seeded team (4-0 + 4-1 

+ 4-2 + 4-3 results); again, the actual relative frequency of 0.6905 is not statistically significantly 

different from the simulated relative frequency of 0.6582 at α = 0.05 (two-tailed t-test, p-value = 

0.661). 
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3 Does match uncertainty increase 

attendance? A non-regression approach   

The uncertainty of outcome hypothesis predicts that more balanced sports matches 

should attract higher attendances, but the empirical evidence is mixed at best. First, this 

article shows that some inconsistent findings in the literature could be explained by 

wrongly specified regressions. Second, a new approach to analyzing the effect of match 

uncertainty is proposed. Using data about nine seasons of the English Championship, 

the article shows that in a pair of matches where both home teams are slight favorites, a 

switch of the corresponding away teams would decrease the total attendance by several 

percent, while the opposite is true if both home teams are underdogs or strong favorites. 

These results suggest that attendance demand is a bell-shaped function of match 

balance that is maximized if teams of the same quality play against each other.  

3.1 Introduction 

Do more balanced sports matches attract higher attendances? The uncertainty of outcome 

hypothesis (Rottenberg, 1956; Neale, 1964) certainly predicts so, but the empirical evidence is 

mixed at best. So far, the link between match uncertainty and attendance has been examined by 

regressing individual match attendance (or its logarithm) on variables representing qualities of 

both teams, other variables influencing attendance (ticket price, team rivalry, distance between 

teams, weather…), and a variable measuring how the match is balanced. 18 such studies 

reviewed in Borland and McDonald (2003) investigated different sports (mostly soccer and 

baseball), used different ways of measuring team quality (team ranks or points/goals per game) 

and match uncertainty (difference in team ranks or points per game; absolute value of betting 

spread; quadratic specification of home win probability derived from betting odds), and arrived at 
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different results; some studies found that higher match uncertainty increases attendance, some 

found the opposite, some found that attendance increases with home win probability (and 

possibly starts decreasing if home win probability is higher than 0.6-0.7), some found no 

significant effect.  

Similarly contradictory results can also be found in more recent research. Buraimo and Simmons 

(2008) modeled English Premier League attendance and concluded that attendance is minimized 

if home win probability derived from betting odds equals about 0.35. Buraimo and Simmons 

(2009) obtained a similar result for Spanish soccer. However, Benz et al. (2009) found that for 

one model specification, German Bundesliga attendance (excluding season tickets) was 

maximized for home team win probability equal to 0.53. Contradictory results for German 

Bundesliga were obtained by Pawlowski and Anders (2012); in one regression specification, 

attendance decreased if home team was a favorite rather than outsider; in another specification; 

higher match uncertainty decreased attendance. Coates and Humphreys (2011) claimed that the 

previous inconsistent results were due to linear or quadratic specifications of match uncertainty; 

their results for the NHL indicate that the attendance increases if the home team is a strong 

favorite or a slight underdog. 

This article makes two contributions. First, three simple simulated data sets with no impact of 

match uncertainty on attendance are used to show that many commonly used regression 

specifications produce different (and wrong) results about the link between match uncertainty and 

attendance. This could explain the inconsistent findings in the literature, especially if the actual 

impact of match uncertainty is weak or nonexistent. Second, a new approach to analyzing the 

effect of match uncertainty on attendance is proposed. Using data about nine seasons of the 

English Championship, the article shows that in a pair of matches where both home teams are 

slight favorites, a switch of the corresponding away teams would decrease the total attendance. 

On the other hand, if both home teams are underdogs or strong favorites, switching the away 

teams would increase the total attendance. However, the magnitude of such attendance changes is 

quite small (several percent). These results are consistent with the uncertainty of outcome 

hypothesis and suggest that attendance demand is a bell-shaped function of match balance that is 

maximized if teams of the same quality play against each other. 
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3.2 Data 

The proposed method of measuring the impact of match uncertainty on attendance is 

demonstrated on the data set consisting of nine regular seasons (2004/05-2012/13) of the second-

highest English soccer league; English Championship. This competition still attracts a lot of 

spectators, but attendances only rarely come close to the stadium capacity, so the attendance 

demand for each match is directly observable. 

In each season of the Championship, 24 teams play one home and one away match against each 

other, so there are 552 matches in each season and 4,968 matches in the whole Championship 

data set. The relevant data for each match are its attendance, which was downloaded from the 

website worldfootball.net, and the corresponding betting odds, which were obtained from the 

website football-data.co.uk.
57

 The betting odds were converted in a standard way to home win, 

draw and away win probabilities and these probabilities were averaged across different 

bookmakers.
58

 

For each match, match balance was calculated as the home win probability plus one half of the 

draw probability; this variable is similar to home win probability used in many previous articles, 

but has the advantage of being exactly 0.5 for perfectly balanced matches with each team having 

the same probability of winning. The descriptive statistics for variables Attendance and 

MatchBalance are provided in Table 15.  
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 The attendance data were downloaded on July 7
th

, 2013. One missing attendance figure was obtained from the 

website www.11v11.com. The betting odds on home win, draw, and away win were downloaded on June 10
th

, 2013, 

and provided by major bookmakers William Hill, Bet&Win, and Interwetten. Although some betting odds were 

missing, there was at least one set of betting odds for each match. 

58
 To convert betting odds into probabilities, they are first inverted. The sum of these inverted numbers is more than 

one to allow for bookmaker’s profit, so the inverted numbers are divided by this sum to obtain the home win, draw, 

and away win probabilities. 
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 Average Min 
Percentiles 

Max 
0.1 0.25 0.5 0.75 0.9 

Attendance 17,632 1,211 9,492 12,822 17,219 22,267 25,652 52,181 

MatchBalance 0.5743 0.2641 0.4758 0.5182 0.5699 0.6340 0.6806 0.8083 

Table 15: Descriptive statistics of the Championship data set, N = 4,968  

Both the average and the median match balance values are close to 0.57; this number is higher 

than 0.5 because of the home team advantage. Most match balance values (80%) are concentrated 

in the 0.48-0.68 interval, which means that it is hard to say much about what happens to match 

attendance outside this interval. 

3.3 The pitfalls of using the regression approach 

This section shows that many commonly used regression specifications produce misleading 

results about the relationship between match uncertainty and attendance. This is demonstrated on 

three simple simulated data sets with no impact of match uncertainty on attendance. 

To construct each data set, let’s assume there are 24 teams in a competition (the same as in the 

Championship data set) and team qualities are uniformly distributed on the interval [0; 1]. This 

means that team i’s quality Qualityi = (i – 1)/23; the Quality variable corresponds to the 

normalized rank or points per game used in other studies. All teams play one home and one away 

match against each other, generating one complete season of 552 matches. Let’s further assume 

that each team attracts a fixed number of spectators to its home matches and that there is a 

different (smaller) fixed number of spectators that travel with the team to its away matches. Both 

numbers are increasing functions of team quality.
59

 

There is no special reason why the relationship between team quality and the number of 

spectators should be linear; in fact, an obvious non-linear relationship between team rank and 

points per game guarantees that it is not the case in at least some previous studies. The data sets 
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 A similar assumption was made in Peel and Thomas (1992). Their estimation results also show that match 

attendance increases with qualities of both teams (measured by team ranks) with the home team’s quality having a 

stronger influence.  
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cover the three simplest cases: attendance is an exactly linear function of quality (Data set 1), 

attendance is a concave function of quality (Data set 2), and attendance is a convex function of 

quality (Data set 3). Therefore, the first data set satisfies the linearity assumption, while the other 

two data sets represent two simplest deviations from this assumption. 

To produce plausible total attendance numbers (similar to the Championship data set), the home 

and away spectator numbers Homei and Awayi attracted by team i are set equal to the following 

expressions: 

Data set 1 (linear): Homei = 5,000 + 25,000 * Qualityi, Awayi = 5,000 * Qualityi 

Data set 2 (concave): Homei = 5,000 + 25,000 * Qualityi
0.8

, Awayi = 5,000 * Qualityi
0.8

 

Data set 1 (convex): Homei = 5,000 + 25,000 * Qualityi
1.25

, Awayi = 5,000 * Qualityi
1.25

 

The attendance of a match between teams i and j (Attendanceij) is simply the sum of spectators 

attracted by the home team (Homei) and spectators travelling with the away team (Awayj): 

Data set 1 (linear): Attendanceij = 5,000 + 25,000 * Qualityi + 5,000 * Qualityj 

Data set 2 (concave): Attendanceij = 5,000 + 25,000 * Qualityi
0.8

 + 5,000 * Qualityj
0.8

 

Data set 1 (convex): Attendanceij = 5,000 + 25,000 * Qualityi
1.25

 + 5,000 * Qualityj
1.25

 

As stated above, fans care only about the quality of their own team, so there is no causal 

relationship between match uncertainty and attendance. This is also clear from the attendance 

formulas – they are additively separable (there is no interaction between qualities of both teams). 

Therefore, any valid method of measuring the impact of match uncertainty on attendance should 

conclude that the impact is zero. To test whether this is true for common regression 

specifications, a variable MatchBalanceij is defined in the following way for each match using the 

logistic function: 

MatchBalanceij = 1/(1 + exp(Qualityj – Qualityi – 0.25)) 

The match balance variable is an increasing function of home team’s quality and a decreasing 

function of away team’s quality, so a higher value indicates that the home team is more likely to 
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win (the number 0.25 provides the home advantage). The match balance values in each simulated 

data set range from 0.32 to 0.78 with the average of 0.56, closely mimicking the match balance 

values in the Championship data set that were calculated as the home win probability plus one 

half of the draw probability. The logistic form guarantees that the match balance variable is 

always between 0 and 1 for any possible difference in team qualities. 

An additional variable MatchUncertaintyij measures how close a specific match is to the balance 

of 0.5 (i.e. both teams being equally likely to win): 

MatchUncertaintyij = 1 – 2 * |MatchBalanceij – 0.5| 

If a match is perfectly balanced, MatchUncertaintyij equals 1; on the other hand, if one team is 

sure to win, MatchUncertaintyij goes down to 0. This variable is analogical to variables such as 

the difference in team ranks, difference in points per game (possibly adjusted for home team 

advantage), or the absolute value of betting spread used in other studies. 

Researchers using a regression approach to measure the impact of match uncertainty on 

attendance choose from various regression specifications. Probably the simplest one copies the 

attendance-generating formula of Data set 1 and adds the MatchUncertainty variable: 

Attendanceij = β0 +β1 * Qualityi +β2 * Qualityj + β3 * MatchUncertaintyij + ε 

This simple regression specification can be modified by replacing attendance with its logarithm 

(since many variables are expected to influence attendance by a given percentage instead of by a 

given number of spectators); by replacing home team quality with a set of dummies for each 

home team (home fixed effects); by also replacing away team quality with a set of dummies (all 

fixed effects); or by replacing the MatchUncertainty variable with a quadratic specification of the 

MatchBalance variable (i.e. β3 * MatchBalanceij + β4 * MatchBalanceij
2
). The estimated effects 

of match uncertainty on attendance for all three simulated data sets using twelve possible 

regression specifications are summarized in Table 16.
60
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 All models were estimated with heteroskedasticity-consistent standard errors. Results are reported as significant if 

p-value < 0.05. 
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Data set 1 

(linear) 

Data set 2 

(concave) 

Data set 3 

(convex) 

Attendance 

No fixed effects 

Uncertainty 

Zero effect 
Higher uncertainty 

increases attendance 

Higher uncertainty 

decreases attendance 

Log of attendance 

No fixed effects 

Uncertainty 

Insignificant 
Higher uncertainty 

increases attendance 

Higher uncertainty 

decreases attendance 

Attendance 

Home fixed effects 

Uncertainty 

Zero effect 
Higher uncertainty 

increases attendance 

Higher uncertainty 

decreases attendance 

Log of attendance 

Home fixed effects 

Uncertainty 

Higher uncertainty 

decreases attendance 

Higher uncertainty 

decreases attendance 

Higher uncertainty 

decreases attendance 

Attendance 

All fixed effects 

Uncertainty 

Zero effect Zero effect Zero effect 

Log of attendance 

All fixed effects 

Uncertainty 

Higher uncertainty 

decreases attendance 

Higher uncertainty 

decreases attendance 

Higher uncertainty 

decreases attendance 

Attendance 

No fixed effects 

Quadratic balance 

Zero effect 
Attendance maximized 

if balance = 0.41 

Attendance minimized 

if balance = 0.54 

Log of attendance 

No fixed effects 

Quadratic balance 

Insignificant Insignificant 
Attendance minimized 

if balance = 0.15 

Attendance 

Home fixed effects 

Quadratic balance 

Zero effect 
Attendance maximized 

if balance = 1.30 

Attendance minimized 

if balance = 1.01 

Log of attendance 

Home fixed effects 

Quadratic balance 

Attendance minimized 

if balance = 0.18 

Attendance minimized 

if balance = 0.11 

Attendance minimized 

if balance = 0.23 

Attendance 

All fixed effects 

Quadratic balance 

Zero effect Zero effect Zero effect 

Log of attendance 

All fixed effects 

Quadratic balance 

Attendance minimized 

if balance = 0.25 

Attendance minimized 

if balance = 0.25 

Attendance minimized 

if balance = 0.25 

Table 16: Estimated effect of match uncertainty on attendance for simulated data sets 
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Since there is no actual relationship between match uncertainty and attendance in the simulated 

data sets, most regression results are incorrect. This is caused by a not exactly linear relationship 

between attendance (or its logarithm) and team quality variables; fitting a linear model leads to a 

specific pattern of residuals that is then captured by match uncertainty or balance variables 

(which are themselves determined by team qualities). The only specification that produces correct 

results for all three data sets includes fixed effects for both home and away teams and a non-

logarithmic attendance. On the other hand, the logarithmic form of attendance mostly leads to the 

conclusion that higher uncertainty decreases attendance or that attendance is a convex function of 

balance (minimized for some specific balance value). This could explain similar surprising results 

in the literature, such as Pawlowski and Anders (2012), Buraimo and Simmons (2008), or 

Buraimo and Simmons (2009), especially if the actual impact of match uncertainty on attendance 

is weak or nonexistent.
61

 

Although the specification with fixed effects for both home and away teams and a non-

logarithmic attendance provides correct results for all three simulated data sets, it is still 

problematic, because it imposes a specific functional form on the relationship between match 

balance and attendance. There is no theoretical reason why this relationship should be linear or 

quadratic – Coates and Humphreys (2011) hypothesized an asymmetric relationship (fans 

preferring matches where home teams are strong favorites or slight underdogs), but it could easily 

be S-shaped (most fans do not care about match uncertainty, but some fans will attend a match 

only if the home team is sufficiently favored) or bell-shaped (most fans do not care about match 

uncertainty, but some fans will attend a match only if it is balanced enough). This could be fixed 

by using a nonparametric estimation, ranging from dummy variables for various match balance 

intervals to LOESS (local regression). However, these approaches generally require much bigger 

data sets to get sufficiently precise estimates. 
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 Of course, no result reported in the literature can be exactly the same as the corresponding cell in Table 16. First, 

there is no causal relationship between match uncertainty and attendance in the simulated data sets, but there is likely 

to be some relationship in reality. Second, the nonlinear relationship between team quality and attendance is likely to 

be more complex than just a simple convex or concave exponential function. Third, attendance is completely 

deterministic in the simulated data sets, but stochastic in reality.   
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Even when using a correct regression specification, results are hard to interpret; they do not say 

how attendance would change if match uncertainty changed and all the other variables stayed 

constant, since match uncertainty cannot change without also changing team qualities. Some 

authors address this by taking the estimated attendance demand function and asking what would 

happen if the league structure changed (Dobson et al., 2001) or if teams were more evenly 

balanced (Forrest and Simmons, 2002; Buraimo and Simmons, 2009). Such simulations can be 

very complicated, because researchers cannot simply change a value of one variable (e.g. team 

quality or match balance), but have to generate different values for all other related variables.  

As shown above, commonly used simple regression specifications lead to different (and mostly 

incorrect) conclusions about the relationship between match uncertainty and attendance. The 

variety of results reported in Table 16  is in fact similar to the variety found in the literature for 

real data. Therefore, the inconsistent findings in the literature could easily be caused by 

misspecified regressions, especially if the actual impact of match uncertainty on attendance is 

weak or nonexistent. 

Clearly, a different approach could be useful. Such an approach should fulfill three criteria; first, 

it should not find any effect of match uncertainty on attendance in any of the simulated data sets; 

second, it should not assume any specific functional form of the match uncertainty-attendance 

relationship; third, its results should be easy to interpret. Exactly such an approach is described in 

the next section. 

3.4 A non-regression approach 

This section presents an approach to examining the link between match uncertainty and 

attendance that does not use a regression and whose results are easy to interpret. The proposed 

method is demonstrated on the Championship data set described above. The main idea is that 

although it is not possible to change uncertainty of a match between two fixed teams, it is 

possible to change uncertainties of matches between two fixed sets of teams by pairing them in 

different ways and then analyze what happens to the total attendance of such match 

combinations. 
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The approach (as applied to the Championship data set) starts with all combinations of two home 

teams (H1, H2) and two away teams (A1, A2) in a given season. Since there are 24 teams in a 

season, there are 24 * 23/2 possible home team pairs and 22 * 21/2 possible away team pairs, 

giving 24 * 23 * 22 * 21/4 = 63,756 combinations per season and 63,756 * 9 = 573,804 

combinations for the whole nine-season data set. Each combination of two home teams and two 

away teams can be matched in two different ways: H1-A1 + H2-A2 or H1-A2 + H2-A1. Those two 

possible pairs of matches will be different in terms of both match balance and total attendance. 

If H1 and A1 are similarly strong teams and H2 and A2 are similarly weak teams, it is interesting 

to ask whether a pair of matches where similar teams play against each other (H1-A1 + H2-A2) 

tends to have a higher total attendance than a pair of matches where teams of opposite strengths 

play against each other (H1-A2 + H2-A1). To answer this question, only those combinations of 

home and away teams are selected where balances of both matches in one pair (called the 

balanced pair) are close to 0.57 (both the average and the median value of match balance in the 

data set), while the one match balance in the second pair (called the unbalanced pair) is much 

higher than 0.57 and the other is much lower than 0.57. More formally, the conditions for 

selecting a combination of match pairs are the following (α and β are parameters, β ≥ α > 0): 

 

Balanced pair: 0.57 – α ≤ Both match balances ≤ 0.57 + α 

Unbalanced pair: One match balance < 0.57 – β < 0.57 + β < The other match balance 

Decreasing α and increasing β creates a bigger contrast between the pairs of matches, but 

decreases the number of combinations of match pairs that are selected, so the exact values should 

be chosen depending on the size of the data set. The specific values of α and β chosen for the 

Championship data set are α = 0.03 and β = 0.09, leading to 4,075 combinations of match pairs 

selected for further analysis with one such combination from the 2012/13 season provided as an 

example in Table 17. 
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 Match Match balance Attendance Total attendance 

Balanced pair 
Leicester – Watford 0.5958 25,091 

46,802 
Wolves – Bristol 0.5574 21,711 

Unbalanced pair 
Leicester – Bristol 0.7184 22,529 

41,100 
Wolves – Watford 0.4455 18,571 

Table 17: An example of match balances and attendances in two possible match pairs  

In this example, Leicester (ultimately finished 6
th

) and Watford (finished 3
rd

) are relatively strong 

teams, while Wolves (finished 23
rd

) and Bristol (finished 24
th

) represent relatively weak teams. In 

the balanced pair, similarly-strong teams play against each other and both match balances are 

between 0.54 (0.57 – 0.03) and 0.60 (0.57 + 0.03), while in the unbalanced pair, the away teams 

are switched, one match balance is above 0.66 (0.57 + 0.09), and the other match balance is 

below 0.48 (0.57 – 0.09). In the example, the actual total attendance of the balanced pair was 

higher than the total attendance of the unbalanced pair, indicating that if teams of the same 

strength play against each other, the total attendance is higher. 

Looking at all 4,075 similar combinations, the total attendance of the balanced pair was higher in 

2,349 cases (57.64%) and lower in 1,726 cases (42.36%).
62

 However, the total attendance of all 

balanced pairs was just 1.5% higher than the total attendance of unbalanced pairs.  

How to interpret these findings? For all three completely deterministic data sets introduced in the 

previous section, switching away teams would keep the total attendance exactly the same. In 

reality, attendance also depends on many other factors, but without a causal link between match 

uncertainty and attendance, switching away teams would still have no systematic impact on total 

attendance and the probability that the balanced pair is more attended would be 50%. Because the 

57.64% result for the balanced pair is statistically significantly different from 50% (p = 0.002),
63
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 There was no case of both total attendances being exactly the same; such a case could be dropped when calculating 

the percentages. 

63
 To obtain the p-value, the whole test described above was applied to 50,000 versions of the original data set. In 

each version, actual attendances were replaced with different random values drawn from the standard normal 

distribution (representing other factors influencing attendance besides match uncertainty). In only 118 cases (0.2%), 

the total attendance of one pair type (balanced or unbalanced) was higher in at least 57.64% of all cases.  
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it can be concluded that match uncertainty indeed influences attendance; however, the magnitude 

of the effect seems to be quite small. 

The findings above also tell us something about the shape of the relationship between match 

balance and attendance;
64

 if the balanced pair tends to have a higher attendance than the 

unbalanced pair and the average match balance in both pairs is about the same (true in the data), 

attendance should be a concave function of match balance for match balance values around 0.57. 

To infer the shape of the relationship in other regions, the whole test above can be repeated for 

any match balance value (denoted TestedBalance) different from 0.57. Only the combinations of 

match pairs are selected that fulfil the following conditions: 

Balanced pair: TestedBalance – α ≤ Both match balances ≤ TestedBalance + α 

Unbalanced pair: One match balance < TestedBalance – β < TestedBalance + β < The other 

match balance 

Again, it is possible to calculate the proportion of combinations where the total attendance of the 

balanced pair was higher. The results for TestedBalance values between 0.48 and 0.68 are 

provided in Figure 6.
65
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 In the three simulated data sets, a relationship between match balance and attendance would be represented by 

adding a function of MatchBalanceij variable into the attendance equation, for example Attendanceij = 5,000 + 

25,000 * Qualityi + 5,000 * Qualityj + f(MatchBalanceij). 

65
 The 0.48 – 0.68 interval ranges from the 10

th
 to the 90

th
 percentile of match balance values in the Championship 

data set. The test was done for all TestedBalance values that are multiples of 0.001, i.e. 0.480, 0.481, 0.482 … 0.679, 

0.680. The number of usable team combinations for each IdealBalance value is always more than 500 (more than 

3,000 on average). The α and β parameters were kept the same as in the previous test, i.e. α = 0.03, β = 0.09. 
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Figure 6: Proportion of balanced pairs with higher attendance for various TestedBalance values  

The graph shows that if the match balance in the balanced pair is between 0.53 and 0.61 (i.e. 

teams of the same quality play against each other), switching the away teams that would 

unbalance both matches would tend to decrease the total attendance. Therefore, the relationship 

between match balance and attendance should be concave in this range. On the other hand, if 

both matches in a pair have approximately the same balance that lies outside the 0.53 – 0.61 

interval (i.e. both home teams are underdogs or strong favorites), an away-team switch that would 

unbalance both matches would increase the total attendance. The relationship between match 

balance and attendance should be concave in these regions. In all cases, the average attendance 

change would be several percent at most. The probability that the balanced pair of matches is 

more attended is highest for match balance values close to 0.57, i.e. when teams of similar 

strengths play against each other. Therefore, a plausible relationship between match balance and 
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attendance consistent with these results would be approximately bell-shaped, maximized at match 

balance around 0.57, and having inflection points close to 0.53 and 0.61.
66

 

3.5 Discussion 

This article has showed that many regression specifications commonly used in the literature can 

produce misleading results about the link between match uncertainty and attendance. Even if the 

regression equation is correctly specified, the results are hard to interpret, because it is not 

possible to change match balance without also changing team qualities. 

After that, the article has proposed a new approach to examining the link between match 

uncertainty and attendance that does not rely on regression. Unlike commonly used regression 

specifications, the proposed method correctly does not find any link between match uncertainty 

and attendance if the attendance demand is an additively separable function of team qualities 

(such as in the three simulated data sets). The non-regression approach also does not assume any 

specific functional form of the match uncertainty-attendance relationship. 

Using data about nine seasons of the English Championship, the proposed method shows that in a 

pair of matches where both home teams are slight favorites, switching the away teams would 

decrease the total attendance, while the opposite is true if both home teams are underdogs or 

strong favorites. However, the impact of such team switches on attendance is just several percent 

at most. The results are consistent with the uncertainty of outcome hypothesis and suggest that 

attendance demand is a bell-shaped function of match balance that is maximized if teams of the 

same quality play against each other (in such matches, home teams are slightly favored due to 

home advantage). One possible explanation of such a shape could be that there are two groups of 

potential spectators with different preferences; fans in the first group (seasonal ticket holders, 

hardcore fans) do not care about match uncertainty and attend all matches if they have free time 
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 The results are robust to changing α and β (e. g. α = 0.04, β = 0.06), discarding team combinations where the 

change in total attendance between match pairs is too low (e.g. less than 10%), discarding team combinations where 

the difference between attendances of balanced pair matches is too high (e.g. more than 10 or 20%), or restricting the 

analysis to a subset of seasons. 
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and no better opportunities, while fans in the second group (occasional spectators) choose to 

attend only the most interesting matches with one criterion being a proper match balance. 

The above results can be directly applied to tournament design; to increase the total attendance of 

a competition while keeping the number of home and away matches of each team constant, a 

higher proportion of matches should be played between evenly matched teams. This could be 

achieved by splitting teams into groups based on team quality instead of on region
67

 or by making 

the tournament design more similar to the Swiss system commonly used in chess. However, the 

potential attendance increase would likely be small. 

Both the small effect size and the bell shape of the attendance demand function further support 

the claim that some inconsistent results in the previous research could have been caused by 

misspecified regressions. However, the proposed non-regression approach also has two 

limitations that result from using historical attendance figures to estimate attendance demand. 

First, the approach assumes that attendance demand is actually observable and not right-censored 

(i.e. the stadium is not close to capacity). This is not a problem in the Championship data set, but 

would be a problem in the Premier League or other top European soccer competitions. A possible 

solution would be to discard such team combinations where any attendance is close to the 

corresponding stadium capacity. Second, the non-regression method assumes that other factors 

influencing match attendance besides team qualities (e.g. day of the week, TV broadcast, distance 

between teams, weather, or match importance) are not strongly correlated with match balance. If 

this assumption does not hold, the results will be biased. 

The variable most likely to be correlated with match balance is match importance, i.e. how much 

a given match result influences the probability of a given season outcome, such as promotion or 

relegation. If matches between equal-quality teams tend to be more important and higher 

importance increases attendance, the higher attendance of matches between equal-quality teams 

would be partly explained by match importance, not by match uncertainty, and the actual effect 

size would be even lower (the regression approach suffers from the same omitted variable bias 
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 On the other hand, splitting teams into regional groups would lead to a higher proportion of matches between 

regional rivals and lower travelling distance between teams. Both of these factors tend to increase attendance (García 

and Rodríguez, 2009). 
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problem if match importance is not properly controlled for). Again, a possible solution would be 

to throw away such team combinations where any match is above some importance threshold.
68

 

For competition organizers, the distinction between match importance and match uncertainty 

might not even be relevant; if more matches between equal-quality teams increase attendance, the 

exact mechanism does not matter. 

There are several possible avenues of further research. First, the results presented in this article 

are for one specific competition, so the proposed non-regression approach should be applied to 

soccer competitions in different countries and to different sports to see whether the results stay 

the same. Second, more attention should be paid to preference-revealing fan behavior during the 

match. Anecdotally, fans start leaving the stadium prematurely if the score difference is big, 

especially if the home team is badly losing. The article by Tainsky et al. (2013) is a nice example 

of this approach applied to TV ratings of NCAA football. Third, fan preferences could be 

revealed in short series of matches that are essentially one longer match, such as those in the 

NHL playoffs or European soccer cups; a lower attendance when one team is practically sure to 

advance to the next round would confirm the uncertainty of outcome hypothesis. Fourth, fans 

could simply be asked about their preferences related to individual match uncertainty similarly to 

the stated preferences approach applied to the overall competitive balance by Pawlowski and 

Budzinski (2013) and Pawlowski (2013).   
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 An overview and comparison of methods for calculating match importance can be found in the first article in this 

dissertation called “Using Monte Carlo simulation to calculate match importance: The case of English Premier 

League.” Relatively simple solutions for dealing with match importance would be to throw away the second half of 

each season or all team combinations where at least one team was ultimately promoted or relegated. The latter 

modification applied to the Championship data set does not substantially change the original results. 
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4 What causes the favorite-longshot bias? 

Further evidence from tennis
69

  

In sports betting markets, bets on favorites tend to have a higher expected value than 

bets on longshots. This article uses a data set of almost 45,000 professional single 

tennis matches to show that the favorite-longshot bias is much stronger in matches 

between lower-ranked players, in later-round matches, and in high-profile tournaments. 

These results cannot be solely explained by bettors being locally risk -loving or 

overestimating chances of longshots, but are consistent with bookmakers protecting 

themselves against both better informed insiders and the general public exploiting new 

information. 

4.1 Introduction 

In sports betting markets, bets on favorites usually have a higher expected value (lose less 

money) than bets on longshots (Sauer, 1998; Cain et al., 2003; Direr 2013). There are three types 

of explanations for this so-called favorite-longshot bias (Snowberg and Wolfers, 2010; 

Makropoulou and Markellos, 2011; Rossi, 2011). The first explanation claims that bettors are 

local risk-lovers and bookmakers take advantage by lowering the odds on longshots. According 

to the second explanation, bettors overestimate winning probabilities of longshots and 

bookmakers again take advantage of this psychological bias. The third explanation is based on 

information asymmetry; bookmakers could potentially lose a lot of money if they underestimate 

longshots and this mispricing is exploited by either better informed insiders or by the general 
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 A shorter version of this article (without the appendix)  was published in Applied Economics Letters, 2014, 

Volume 21, Issue 2, pp. 90-92, doi: 10.1080/13504851.2013.842628. 
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public reacting faster than bookmakers to new information. Therefore, bookmakers offer lower 

odds on longshots to protect themselves against this type of loss. 

To distinguish between these competing explanations, this article uses a data set of almost 45,000 

professional single tennis matches to show that the favorite-longshot bias is much more 

pronounced in matches between lower-ranked players, in later-round matches, and in high-profile 

tournaments. These results, as discussed later, are consistent with the information asymmetry 

explanation. The favorite-longshot bias in tennis was already analyzed by Forrest and McHale 

(2007), but they had a much smaller data set, did not test the effect of players’ ranks or 

tournament round, and did not find any difference for high-profile tournaments. 

4.2 Data 

The data set consists of results of 44,871 professional men’s and women’s single tennis matches 

with valid betting odds.
70

 The decimal betting odds on each player’s win were converted to 

implied probabilities of winning in the standard way by calculating their inverse values. Since the 

two resulting numbers for each match add up to more than one to allow the bookmaker to have 

profit, they have to be both divided by their sum. Because the two possible bets on each match 

are not independent (implied probabilities add up to one, exactly one bet pays off), only one 

(chosen randomly) is included in the final data set. Therefore, there are 44,871 observed bets with 

an implied probability of the player winning (the variable ImpliedProbability) and a 

corresponding match result (the variable Result that equals one if the player won and zero if the 

player lost). 

To test how the favorite-longshot bias differs across various types of matches, the following 

dummy variables are defined: LowerRank equals one in 12,878 matches where both players were 

outside of top 50 in ATP/WTA rankings, zero otherwise; LaterRound equals one in 24,189 
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 The data set was downloaded from the website tennis-data.co.uk on June 22
nd

, 2013. The men’s tennis matches 

start in 2002; the women’s matches start in 2007. The betting odds are the latest available odds by the bookmaker 

Bet365. Originally, there were 48,042 matches, but 3,171 matches (6.6%) were discarded due to missing odds or a 

withdrawal of one player before the match started. 
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matches that were not in the first round (lowest round in the data set), zero otherwise; and 

HighProfile equals one in 8,962 matches in a high-profile tournament (Grand Slam, ATP World 

Tour Finals, or WTA Tour Championships), zero otherwise. 

4.3 Model and results 

To test whether the favorite-longshot bias exists in the market as a whole, the following standard 

linear probability model is employed: 

Result = β0 + β1 * ImpliedProbability + ε 

In the absence of bias (null hypothesis), the coefficient values would be β0 = 0 and β1 = 1, while 

the standard favorite-longshot bias would be indicated by β0 < 0 and β1 > 1. The estimation 

results
71

 in Table 18 show that the favorite-longshot bias is indeed present in the investigated data 

set; the winning probability implied by the betting odds is higher than the actual probability in 

case of longshots and lower than the actual probability in case of favorites. 

 Coefficient Standard error 

Constant -0.0293*** 0.0044 

ImpliedProbability 1.0594*** 0.0077 

Table 18: The Favorite-Longshot Bias in the Whole Market, N = 44,871 

To investigate whether the favorite-longshot bias differs across various types of matches, the 

model is expanded in the following way: 

 Result = β0 + β1 * ImpliedProbability + β2 * LowerRank + β3 * LowerRank * 

ImpliedProbability + β4 * LaterRound + β5 * LaterRound * ImpliedProbability + β6 * 

HighProfile + β7 * HighProfile * ImpliedProbability + ε 
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 The estimation method in the whole article is OLS with heteroskedasticity-robust standard errors. One star 

indicates p-value < 0.1, two stars p-value < 0.05, three stars p-value < 0.01. 
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In case of no difference among various types of matches (the null hypothesis), β2 … β7 = 0, while 

the overall bias would still be captured by β0 < 0 and β1 > 1. The estimation results for the 

expanded model are presented in Table 19. 

 Coefficient Standard error 

Constant 0.0032 0.0085 

ImpliedProbability 1.0051 0.0148 

LowerRank -0.0539*** 0.0132 

LowerRank * ImpliedProbability  0.0918*** 0.0244 

LaterRound -0.0233** 0.0092 

LaterRound * ImpliedProbability 0.0358** 0.0162 

HighProfile -0.0361*** 0.0094 

HighProfile * ImpliedProbability 0.0704*** 0.0160 

Table 19: The Favorite-Longshot Bias across Various Types of Matches, N = 44,871 

The coefficients show the favorite-longshot bias is much stronger in matches between lower-

ranked players, in later-round matches, and in matches in high-profile tournaments, while it is 

practically nonexistent in the other matches. These results are robust across different model 

specifications and data subsamples (see Appendix). They have also been confirmed by comparing 

average implied probabilities with relative frequencies of winning over different probability 

ranges for different types of matches (similarly to Forrest and McHale 2007). A graphical 

analysis also confirms that the relationship between the implied and actual probability of a win is 

approximately linear. 

4.4 Discussion 

The results seem to be contradictory; on the one hand, the favorite-longshot bias is stronger in 

later-round matches and in matches in high-profile tournaments, i.e. in matches that are likely to 

attract high betting volumes; on the other hand, the favorite-longshot bias is also more 

pronounced in matches between lower-ranked players, which are likely to exhibit low betting 

volumes. This pattern cannot be explained solely by people being local risk-lovers or 

overestimating chances of longshots; if all bettors had the same preferences or biases, the type of 

match should not matter at all. Even if the risk-loving preferences (or the corresponding bias) 
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were exhibited only by occasional bettors, thus causing the stronger favorite-longshot bias in 

matches that are likely to attract high betting volumes, it would not explain why the bias is also 

more pronounced in matches between lower-ranked players. Therefore, at least one part of the 

explanation must lie in the information asymmetry. 

Forrest and McHale (2007) argued that in Grand Slam tournaments, players are more motivated 

and less likely to underperform, so the role of private information should be much smaller. 

Consequently, if the favorite-longshot bias was a defense of bookmakers against better informed 

insiders, it should be smaller in high-profile tournaments. However, according to the results in 

this article, the bias is actually larger. This is hard to explain as a defense against insider trading; 

besides players being more motivated, the proportion of insiders among all bettors is also likely 

to be smaller, not larger, in high-profile tournaments. 

The most plausible explanation of the results seems to be a combination of two information 

asymmetry approaches: Matches between lower-ranked players are harder to predict, since public 

information is limited and private information about players’ motivation or health problems could 

play a large role; therefore, it makes sense for the bookmaker to set lower odds on the longshot to 

minimize possible losses. On the other hand, private information should not play such a big role 

in later tournament rounds and high-profile tournaments, but in such matches the bookmaker 

faces a different kind of risk; the general public could react faster than the bookmaker to newly 

available information. Combined with a high volume of bets, this could mean a considerable loss, 

so the bookmaker again protects itself by setting lower odds on the longshot.  

Of course, the information asymmetry explanation does not rule out that the other alternatives, 

i.e. risk-loving preferences or overestimating small probabilities of winning, also play a role. 

Clearly, more research is needed. One possible direction would be to test more thoroughly 

whether the stronger favorite-longshot bias in high-profile tournaments also exists in other 

individual or team sports (or even in tennis doubles); if the above explanation is correct, the 

effect in team sports should be smaller, since the impact of new information (e.g. a minor 

sickness of a player) is likely to have less influence on the expected result. 
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4.5 Appendix  

This appendix compares the estimation results for the expanded model on the whole data set 

(already presented in Table 19 above) with estimation results for three specific subsamples. The 

first subsample consists of only men’s matches, the second subsample includes only women’s 

matches, and the third subsample is the full data set without ATP World Tour Finals and WTA 

Tour Championships. The estimation results are summarized in Table 20. 

 All data Men only Women Only No tour finals 

Constant 
0.0032 

(0.0085) 

0.0029 

(0.0108) 

-0.0104 

(0.0135) 

-0.0029 

(0.0083) 

ImpliedProbability 
1.0051 

(0.0148) 

1.0045 

(0.0190) 

1.0057 

(0.0237) 

1.0048 

(0.0149) 

LowerRank 
-0.0539*** 

(0.0132) 

-0.0544*** 

(0.0166) 

-0.0376* 

(0.0216) 

-0.0469*** 

(0.0132) 

LowerRank 

* ImpliedProbability  

0.0918*** 

(0.0244) 

0.0988*** 

(0.0309) 

0.0799** 

(0.0398) 

0.0919*** 

(0.0244) 

LaterRound 
-0.0233** 

(0.0092) 

-0.0307*** 

(0.0116) 

-0.0019 

(0.0149) 

-0.0136 

(0.0091) 

LaterRound 

* ImpliedProbability 

0.0358** 

(0.0162) 

0.0500** 

(0.0206) 

0.0101 

(0.0263) 

0.0365** 

(0.0162) 

HighProfile 
-0.0361*** 

(0.0094) 

-0.0425*** 

(0.0117) 

-0.0192 

(0.0156) 

-0.0388*** 

(0.0093) 

HighProfile 

* ImpliedProbability 

0.0704*** 

(0.0160) 

0.0784*** 

(0.0200) 

0.0589** 

(0.0267) 

0.0712*** 

(0.0161) 

Number of observations 44,871 29,136 15,735 44,624 

Table 20: The Favorite-Longshot Bias across Different Subsamples 

In all cases, the coefficients of LowerRank, LaterRound, and HighProfile variables are negative, 

while the coefficients of these variables interacted with ImpliedProbability are positive. Although 

the coefficients for only women’s matches seem a bit closer to zero than those for only men’s 

matches, there is no statistically significant difference (p < 0.05) in the values of any specific 

coefficient between these two subsamples. Therefore, the results reported in the article are not 

specific to just one type of tennis matches.   
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5 The Fibonacci strategy revisited: Can 

you really make money by betting on 

soccer draws?
72

   

This article investigates the strategy of betting on soccer draws using the Fibonacci 

sequence. In the previous literature, this strategy has been found to be both simple and 

profitable, indicating that the soccer betting market is not efficient. The strategy is 

tested both in a simulated market and on a real data set of almost 60,000 European 

soccer matches. Contrary to the previous findings, all tested versions of the Fibonacci 

betting strategy are found to lose money. 

5.1 Introduction 

When investigating market efficiency, economists often turn to sports betting markets, since each 

asset (placed bet) has a certain value at a specific  time (after the match). There are two types of 

efficiency typically studied in sports betting markets – strong and weak efficiency (Thaler and 

Ziemba, 1988). In a strongly efficient market, each bet has the same negative expected value – 

for example, a $1 bet on any match result can be expected to pay back just 90 cents. In a weakly 

efficient market, bets might have different expected values, but these are still always negative. 

There is ample evidence that sports betting markets are not strongly efficient – for example, bets 

on favorites and home teams lose less money than bets on longshots and away teams (Sauer, 

1998). Some authors also claim to have found profitable strategies, mostly for betting on 

European soccer (e.g. Kuypers, 2000; Goddard and Asimakopoulos, 2004; Vlastakis et al., 2009), 
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but these strategies usually rely on hard-to-implement models and identify only a small number 

of profitable betting opportunities. One notable exception is the Fibonacci betting strategy, first 

proposed by Archontakis and Osborne (2007), which is claimed to be both simple and profitable, 

although risky. 

The Fibonacci betting strategy is designed for betting on soccer results. It is based on the 

Fibonacci sequence (1, 1, 2, 3, 5, 8, 13…), where the first two numbers equal one and each 

successive number is the sum of the two previous numbers. The strategy works as follows: bet $1 

(the first number in the sequence) on a draw, if losing, bet $1 (the second number) on a draw in 

the next match, if losing again, bet $2 (the third number) on a draw in the next match, and so on 

until a draw actually occurs; after that, start the whole sequence from beginning. Archontakis and 

Osborne (2007) proved that each sequence of bets ending in a draw is profitable if draw odds are 

always at least 2.618 (usually true). The authors also tested the Fibonacci strategy on 32 games in 

2002 FIFA World Cup and found that it would have generated a profit. 

The Fibonacci betting strategy was later tested by Demir et al. (2012) on a sample of 32 seasons 

of top European soccer competitions and found profitable in all 32 cases. The strategy was also 

found to be profitable in a simple simulated strongly efficient market using 1,000 simulations. 

The authors characterize the Fibonacci betting strategy as “simple and profitable” (p. 30), but 

requiring a lot of capital if draws fail to occur for a long time. 

This article first investigates the behavior of the proposed strategy in a simulated strongly 

efficient market and shows that it actually is not and cannot be profitable in such a market. 

However, under certain conditions the strategy could still be profitable in a real market, so it is 

tested on a data set of almost 60,000 European soccer matches and also found to be losing 

money.  

5.2 Simulated strongly efficient market 

This section replicates one version of a simulated strongly efficient market used in Demir et al. 

(2012). In this market, draws are independent events, the probability of each draw is 0.3, and the 
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betting odds offered on each draw are 3. In such a market, each $1 bet has the expected payout of 

0.3 * 3 = $0.9, so the expected value of such a bet is -10 cents. 

To evaluate the Fibonacci betting strategy, the betting must actually stop at some point in time. 

One option, used in both Archontakis and Osborne (2007) and Demir et al. (2012), is to stop 

betting after X matches. However, this could generate huge losses if X is high and no draws 

occur. A second, more realistic option is to stop betting if the total profit is at least $X or less 

than or equal to -$X. This corresponds to the gambler willing to risk $X and wanting to earn at 

least this amount – something that a profitable strategy should be able to do more often than half 

the time. Table 21 shows the results for three different settings for each option; each set of results 

is based on 10,000,000 computer simulations. 

 

Stop betting 

after X matches 

Stop betting 

if profit ≥ $X or ≤ -$X 

X = 10 X = 20 X = 40 X = 10 X = 100 X = 1,000 

Maximum number of 

bets 
10 20 40 24 166 1,208 

Average number of bets 10 20 40 11.2373 75.4538 451.5707 

Maximum single bet 55 6,765 102,334,155 8 89 987 

Maximum profit 22 2,585 39,088,170 13 134 1,377 

Minimum profit -143 -17,710 -267,914,295 -17 -188 -1,986 

Relative frequency  of 

positive profit 
0.7386 0.8628 0.9316 0.4476 0.4273 0.4071 

Relative frequency of 

negative profit 
0.2340 0.1299 0.0675 0.5524 0.5727 0.5929 

Average sum of bets 28.3961 165.6527 2366.8091 22.1124 342.2596 4,267.2651 

Average sum of 

winnings 
25.5603 148.9913 2139.7781 19.9050 308.0609 3,840.0997 

Average profit -2.8358 -16.6614 -227.0310 -2.2074 -34.1986 -427.1654 

Profit margin -0.0999 -0.1006 -0.0959 -0.0998 -0.0999 -0.1001 

Table 21: Fibonacci strategy in a strongly efficient market, 10,000,000 simulations for each setting  

The first option of stopping after X matches produces highly asymmetrical returns; it has a high 

probability of generating a small profit and a low probability of generating a large loss. The 

second option provides more symmetrical results, but the strategy brings a positive profit in less 

than 50 percent of the cases. The key result is that for each setting, the average sum of bets is 
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higher than the average sum of winnings, so the average profit is negative. This is also easy to 

prove theoretically: If a gambler bets X1 on match number 1, X2 on match number 2 … Xn on 

match number n, the expected winnings are 0.3 * 3 * X1, 0.3 * 3 * X2 … 0.3 * 3 * Xn, so the 

expected sum of winnings = 0.9 * sum of bets and the expected profit margin = (expected sum of 

winnings – sum of bets)/sum of bets = -0.1 (close to the simulated value for all settings). Both the 

simulation results and the theoretical proof contradict the findings in Demir et al. (2012); 

however, they stopped betting after 150 matches and used only 1,000 simulations – not enough to 

properly explore the whole range of possible outcomes.
73

 

5.3 Real market 

Although the Fibonacci strategy is not and cannot be profitable in a strongly efficient market, it 

could still be profitable in a real market under the following two conditions: first, some bets on 

draws have positive expected values; second, the amounts bet on such matches are high enough 

to more than compensate for expected losses from the other bets. This could happen if 

bookmakers underestimated the probability of a draw after a long string of non-drawn matches. 

To test whether the Fibonacci strategy is profitable in a real betting market, this article uses data 

from 171 completed seasons of 19 top European soccer competitions that took place from 

2004/05 to 2012/13. The data set contains 59,725 match results with valid betting odds.
74

  

The Fibonacci strategy is simulated in the following way: for each match in the data set, there are 

1,000 bettors that start their betting on this match. Each bettor then continues betting on draws in 

                                                 
73

 The highly asymmetrical returns for stopping after X matches are the complicating factor; for the profit margin to 

converge, the simulated sample should contain a sufficient number of even the worst-case outcomes of no draws at 

all. For stopping after 40 matches, the probability of such an outcome is (1 – 0.3)
40

 ≈ 6.4 * 10
-7

, so even 10,000,000 

simulations used in this article are barely enough for this specific setting. 

74
 The 19 competitions are the top Belgian, top 2 German, top 4 English, top 2 French, top Greek, top 2 Italian, top 

Dutch, top Portuguese, top 2 Scottish, top 2 Spanish, and top Turkish league. The data set was downloaded from the 

website football-data.co.uk on June 10
th

, 2013, and contained 61,646 match results; 1,921 matches (3 %) did not 

have associated valid betting odds, so they were discarded. The betting odds were quoted by a major British 

bookmaker William Hill. 
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the closest available match in the same competition, but only on one match on the same day. If 

there are more matches played on the same day, there are two alternative settings: first, the bettor 

chooses randomly from all matches on that day; second, the bettor chooses randomly from all 

matches with the highest betting odds on a draw on that day (used in Demir et al., 2012). After 

the end of the season, the bettor continues betting on the next season of the same competition. At 

the end of the last season, the bettor goes back in time to the first season of the same competition. 

The betting ends after 20 matches (one setting) or if the total profit is at least $100 or less than or 

equal to -$100 (another setting). Therefore, there are 4 combinations of settings and 59,725 * 

1,000 = 59,725,000 simulations for each setting. The simulation results are summarized in Table 

22. 

 

Choose randomly from same-day 

matches 

Choose randomly from same-day 

matches with highest draw odds 

Stop betting 

after 20 matches 

Stop betting if 

profit ≥ $100 

or ≤ -$100 

Stop betting 

after 20 matches 

Stop betting if 

profit ≥ $100 

or ≤ -$100 

Maximum number 

of bets 
20 375 20 168 

Average number of 

bets 
20 57.8339 20 44.8804 

Maximum single 

bet 
6,765 89 6,765 89 

Maximum profit 43,175 668.95 29,645 666.95 

Minimum profit -17,710 -189 -17,710 -189 

Relative frequency  

of positive profit 
0.8560 0.4314 0.8417 0.4170 

Relative frequency 

of negative profit 
0.1438 0.5686 0.1581 0.5830 

Average sum of 

bets 
270.0189 289.6924 397.3635 257.7025 

Average sum of 

winnings 
232.6497 259.6695 341.4649 227.3980 

Average profit -37.3692 -30.0230 -55.8986 -30.3044 

Profit margin -0.1384 -0.1036 -0.1407 -0.1176 

Table 22: Fibonacci strategy in a real market, 59,725,000 simulations for each setting 
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For all four combinations of settings, the Fibonacci strategy has a negative average profit and 

therefore loses money. In fact, the estimated profit margins do not really outperform the profit 

margin of the simplest possible strategy of betting $1 on a draw in each match in the data set (-

0.1130). Again, this result contradicts the findings in Archontakis and Osborne (2007) and Demir 

et al. (2012); however, their results were based on extremely limited numbers of trials (1 and 32, 

respectively). 

5.4 Conclusion 

In this article, the Fibonacci strategy for betting on soccer has been tested both in a simulated 

strongly efficient market and on a data set of almost 60,000 European soccer matches. All tested 

versions of the strategy lose money in both simulated and real markets. The previous positive 

results were likely caused by a very low number of trials. In conclusion, the Fibonacci betting 

strategy, previously presented as both simple and profitable, is indeed simple, but not profitable. 
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Afterword 

The first three articles in this dissertation deal with various types of outcome uncertainty and how 

they relate to match attendance demand. The main contribution of the first article is the new 

method of calculating match importance based on Monte Carlo simulation approach. Unlike the 

previous approaches, this method does not require ex-post information and can be used for any 

type of season outcome. The presented method is also useful for calibrating less complex 

algorithms, such as modified mathematical certainty, leading to better estimates of the impact of 

match importance on attendance. 

The second article is the first to apply the Monte Carlo simulation framework to the question how 

an additional playoff stage impacts seasonal uncertainty. Using the Czech ice hockey Extraliga as 

an example, the article shows that the additional playoff stage decreases the probability that the 

strongest team becomes the champion and thus increases seasonal uncertainty. Compared to the 

previous approaches, the Monte Carlo simulation allows for deeper analysis of various what-if 

scenarios, alternative tournament designs, and strategic team behavior. 

The third article analyzes the link between match uncertainty and attendance and makes two 

contributions; first, it shows that the inconsistent findings in the literature could be explained by 

wrongly specified regressions; second, it proposes a new, non-regression approach to analyzing 

the effect of match uncertainty. The results show that attendance demand is maximized if teams 

of the same quality play against each other. Based on this finding, the total attendance could be 

moderately increased if teams were split into groups based on team quality instead of on region 

or by making the tournament design more similar to the Swiss system commonly used in chess. 

The last two articles in this dissertation investigate efficiency of sports betting markets. The 

fourth article uses tennis betting data to distinguish between competing explanations for the so-

called favorite-longshot bias. Unlike the previous articles, it focuses on how the bias changes in 

different types of matches. The results show that the favorite-longshot bias is much stronger in 

matches between lower-ranked players, in later-round matches, and in high-profile tournaments. 
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These results cannot be solely explained by bettors being locally risk-loving or overestimating 

chances of longshots, but are consistent with bookmakers protecting themselves against both 

better informed insiders and the general public exploiting new information. 

The last article tests the strategy of betting on soccer draws using the Fibonacci sequence that has 

been previously found to be both simple and profitable, thus refuting even weak market 

efficiency. Using a bigger data set, many more simulations, and a better criterion of profitability, 

the article finds that all tested versions of the strategy actually lose money.  
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