
University of Economics, Prague

The Faculty of Informatics and Statistics

The Department of Information Technologies

Study program: Applicated informatics

Domain: Information systems and technologies

Improvement of digital support pro-

cess using ITIL best practices, Kan-

ban and TOC in multicultural

environment

MASTER‘S THESIS

 Student : Bc. Miroslav Králik

 Supervisor: Ing. Tomáš Bruckner, Ph.D.

 Opponent : Kaveh Kalantar, MBA

2015

Declaration:

I hereby declare that I am the sole author of the thesis entitled “Improvement of digital

support process using ITIL best practices, Kanban and TOC in multicultural environment” I

duly marked out all quotations.

The used literature and sources are stated in the attached list of references.

In Prague on 29.04.2015 .

 Miroslav Králik

Acknowledgements

I would like to express my gratitude to my supervisor Ing. Tomáš Bruckner, Ph.D. for

the useful comments, remarks and engagement through the learning process of this master

thesis. Furthermore I would like to thank Kaveh Kalantar, MBA for the support on the way.

Abstrakt

Mnoho společností dnes musí čelit vylepšování podnikových procesů, neustálému

odstraňování systémových překážek a identifikaci úzkých míst v systému, které bráni

efektivnímu dosahování stanovených cílů.

V této diplomové práci popíšu, jak jsme se v společnosti s podobnými problémy vypořádali,

v našem případě v oddělení správy a podpory webových aplikací pro jednoho mezinárodního

klienta.

V první kapitole představím základní informace o historii, prostředí, v kterém pracujeme,

dále jednotlivé aktivity, které jsou každodenní součástí zmíněného procesu.

Následně popíšu všechny překážky a úzká místa systému identifikovaná v původním procesu

a návrh řešení a vylepšení pro jejich efektivní odstranění.

V poslední kapitole shrnu dosažené výsledky po průběžné implementaci navržených

vylepšení, zda byla plánovaná očekávání naplněna a jaký pozitivní nebo negativní vliv dané

změny přinesly.

Klíčová slova

Správa a podpora aplikácií, optimalizácia procesov, systémové prekážky, úzke miesta, teória

obmedzení, Kanban, procesné KPI, reporty.

Abstract

Many companies today have to deal with business processes optimization, ongoing removal

of system obstacles and identifying any bottlenecks laying on the way which are preventing

us to reach our goals.

I would like to show how we have dealt with similar problems in our case applied

in the department of web application maintenance.

In the first chapter I will introduce the basic information about the history, environment the

company operate in and maintenance activities which are part of the process.

Following with description all of the system obstacles and bottlenecks identified

in the process and possible solutions or improvements for their elimination.

In the last chapter I will present the achieved results after my executing of the proposed

improvements and if the expectations have been met or not and what positive or negative

influence it has brought.

Keywords

Application maintenance, process improvement, system obstacles, bottlenecks, theory

of constraints, Kanban, process KPIs, reports.

Contents

1 Introduction ... 1

1.1 Topic Definition and Description ... 1

1.2 Motivation for Selecting the Topic .. 1

1.3 Objectives .. 2

1.4 Methods of Achieving the Objectives ... 3

1.5 Assumptions, Limitations and Delimitations ... 4

2 Introduction of the current Application Maintenance Process and
Environment .. 5

2.1 Maintenance Process ... 5

2.2 Technology Platforms and Applications ... 8

2.3 Maintenance Tools .. 11

2.4 Maintenance Activities ... 12

2.5 Resources and Planning .. 14

2.5.1 Human Resources .. 15

2.5.2 Allocated Budget .. 16

3 Identifying Obstacles and Bottlenecks.. 18

3.1 Uncontrollable Work in Progress .. 20

3.1.1 Lack of request ordering and prioritization process 20

3.1.2 My request is more important than anybody else type of culture 20

3.1.3 No Single Point of Contact .. 21

3.1.4 Solution ... 21

3.2 Waiting for client feedback and approval ... 25

3.2.1 Know-how of using support tools and the process 25

3.2.2 No deadline for client on providing feedback or approval 26

3.2.3 Lack of Proper Follow-up Process ... 27

3.2.4 Solution ... 27

3.3 Resource Contention .. 32

3.3.1 Shared Resources between Projects and Maintenance 32

3.3.2 Limited resources and bottlenecks .. 33

3.3.3 Solution ... 33

3.4 Lack of System Access .. 36

3.4.1 Solution ... 37

3.5 Inefficient Deployment Process ... 38

3.5.1 Solution ... 39

3.6 Waste and Duplicated Tasks .. 40

3.6.1 Too many support tools .. 40

3.6.2 No integrated knowledge base ... 41

3.6.3 Solution ... 42

3.7 Definition what is and what is not a maintenance request 43

3.7.1 Solution ... 44

3.8 Lack of Measurements and Reporting .. 45

3.8.1 Solution ... 47

4 Process Evaluation and Achievements ... 51

4.1 Decreasing the Number of not Resolved Requests ... 51

4.2 Retainining Down of not Resolved Requests ... 53

4.3 Reducing Resolution Time of the Requests ... 56

4.4 Improving Clients Satisfaction .. 61

4.5 Evaluation of KPIs .. 63

5 Conclusion .. 69

Bibliography ... 79

List of Figures and Tables .. 81

List of Figures ... 81

List of Tables .. 81

1 Introduction 1

1 Introduction

1.1 Topic Definition and Description

As William Edwards Deming said [3] „If you can’t describe what you are doing

as a process, you don’t know what you’re doing“, can the following question be answered:

Do I follow the same principles or steps when processing a regular task?

There are many companies out there which serve their customers and many processes that

work or are more effective in one environment, but opposite in other one, and we should

continuously evaluate it, identify the obstacles that are preventing to reach the goals, move

forward and not to fall asleep at the switch. The environment (both internal and external) is

always changing, we have different expectations and goals can be different in time and per

party (company employees, business partners, third parties etc.). We work with different key

factors and resources which influence the results, quality and amount of work we can

complete in time.

What is the right balance of these factors, how to be more productive, how to achieve better

results with the same resources (people, money, time and quality) and how to measure it?

What are the obstacles and tool that may boost the efficiency?

And this is the moment, when it comes to ongoing process evaluation and improvement.

According to John Arthur Ricketts [1, page 151]:

“A common pitfall in practice, however, is to attempt to improve anything and everything

that can be improved. That’s disruptive and expensive, so a more targeted approach may

prevail. Specifically, what to change and how to change it are key questions.”

1.2 Motivation for Selecting the Topic

There are several reasons that I took into the account before I had decided for this topic. But

the most important one was to come up with something useful and with a value related to

my professional working experience gained from a big digital agency with several offices

worldwide that I had a chance to become a member. I have been leading a small team of 12

1 Introduction 2

shared technical people (Java, PHP, Ruby, .NET, System Administrators, Database

Architects, Quality Assurance, Interactive Web Developers etc.) for several years, with an

ownership and responsibility for the overall technical maintenance performance, serving and

primary client liaison contact for any incident or request tickets reported by EMEA and

CEEME regions (more than 50 stakeholders, 20 countries and 5 web applications).

Approximately 1200-1500 requests is processed annually and the company has experienced

different types of problems during my time on board causing performance inefficiency, team

overhead or complaints from several stakeholders. I would like to go into more details and

show how we as the company deal with them, what effort has to be allocated to reach our

targets and goals which may be taken as an inspiration or reference guide for a similar case.

1.3 Objectives

The main part of this thesis is dedicated to describing the environment and processes we

work in and with, try to find the obstacles and bottlenecks and find a way how to deal with

them to improve the process efficiency. This includes also a different set of used methods

and practices for gathering the information or applying them to practice.

The last one and not less important is to apply the agreed solutions to the current process,

executing and measuring the progress and results (including evaluations and training all

of the stakeholders).

As an output of the maintenance process improvement, I expect the following positive

effects which I will also summarize for the years 2013 and 2014:

● Decrease the number of open / not resolved client requests under 50 within the three

months period.

● Keep the open / not resolved requests trend around 50-70 maximum as an average.

● Be more efficient in resolving requests within first, second and third weeks.

● Be able to predict a request resolution better.

● Improve the client’s trust and relationship.

1 Introduction 3

1.4 Methods of Achieving the Objectives

The thesis is written based on professional experience supported by theoretical explanations

embedded in the specific (sub) chapters for better understanding the context and terms used

across the sections. Some of the actuals have been interpreted by visual charts and schemes

to provide an easy and comprehensive way to get the message.

At the beginning I will describe the environment and background of the maintenance

department and for that I will use my personal experience since I have led the department

from the beginning and have all necessary details.

In the main part where I will be describing the obstacles and bottlenecks I had gathered the

information from internal documentations, tools and from discussions with internal teams

and clients. In the subchapter 3.1 Uncontrollable Work in Progress, moreover I have used a

Kanban mechanism called „Class of Service“ to differentiate the business value of every

maintenance request. The initial idea for prioritizing maintenance requests was from one of

my colleagues and my role has been to create the formula (SPR Index), build and improve

it over time when needed.

In the subchapter 3.2 Waiting for client feedback and approval, the solutions have been

proposed and agreed based on the trends of not resolved requests in time and discussion with

different stakeholders.

In the subchapter 3.3 Resource Contention, the solutions have been proposed and agreed

based on theory of constraints, Scrum methodology, professional experience and discussion

with different stakeholders.

In the subchapter 3.4 Lack of System Access, the solutions have been proposed and agreed

based on trend and categorization of the requests according to an expertise needed for their

completion and comparison how many of the requests will be needed to be routed to

technical teams before and after the access to specific systems and tools is granted to support

leader.

In the subchapter 3.5 Inefficient Deployment Process, the solutions have been proposed and

agreed based on trend of delayed requests due to long lead time in QA and deployment

department and discussion with different stakeholders.

1 Introduction 4

In the subchapter 3.6 Waste and Duplicated Tasks, the solutions have been proposed and

agreed based on ROI mechanism, where are calculated the cost of recommended tools and

savings made when eliminating the waste when using the current tools.

In the subchapter 3.7 Definition what is and what is not a maintenance request, the solutions

have been proposed and agreed based on internal discussion between different stakeholders

and professional experience.

In the subchapter 3.8 Lack of Measurements and Reporting, the solutions have been

proposed and agreed based on the discussion with different stakeholders and professional

experience.

All the proposed changes and improvements are a result of team work of different

individuals. My main responsibility and a merit was dedicated mainly to SPR Index, KPIs

and reporting, new support tools proposal, proposal for granting more access to different

systems and tools and executing the maintenance by following up the new rules and policy.

1.5 Assumptions, Limitations and Delimitations

My assumptions are that the proposed solutions for eliminating some of the process obstacles

will not be easy to implement due to the complexity of the environment and limited time and

resources. Therefore the results and achievements will be reached step by step from the

beginning of implementing a first change in middle of December 2012, following next one

on the go continuously until the end of 2014.

Some of the proposed KPIs and measures will also be available only for 2014 and not 2013

or 2012.

Due to company’s privacy policy all the names have been removed and changed, so there

shouldn’t be any evident connection to any of the parties.

2 Introduction of the current Application Maintenance Process and Environment 5

2 Introduction of the current Application
Maintenance Process and Environment

Application Maintenance provides the ability to change functions, screen appearance, and

other aspects of your application's performance and capabilities. [9]

2.1 Maintenance Process

Since my application was accepted and I and the company agreed on terms for the job

position of support leader, from the day one (around April 2011) most of the coming duties

were new for me, but I was very excited to take the challenge. Except some technical

knowledge I had to learn everything from scratch as someone would say, and it was not only

about colleagues, company philosophy, policy and internal processes, but also what is more

important, get to know the clients, their expectations and applications my team is going to

support. Not everything was so complex from the beginning, actually everything was very

transparent and quite easy to manage. There has been only one team yet and one web

application under our support. In that time there were still localizations for other countries

being developed, so the scope of work was slightly increasing, but nothing that could be

dealt with any bigger problems. The agreement for delivering the maintenance services

(Service Level Agreement or shorter SLA) between the provider (us as the agency) and

customer had been on place as well.

Definition of Sevice Level Agreement (SLA) according ITILv2:

“A formal, negotiated document that defines (or attempts to define) in quantitative

(and perhaps qualitative) terms the service being offered to a Customer. Confusion must

be avoided over whether the quantitative definitions constitute thresholds for an acceptable

service, targets to which the supplier should aspire or expectations that the supplier would

strive to exceed. Any metrics included in a Service Level Agreement (SLA) should be capable

of being measured on a regular basis and the SLA should record by whom. Typically it will

cover: service hours, service availability. Customer support levels, throughputs

and responsiveness, restrictions, functionality and the service levels to be provided

in a contingency. It may also include information on security, charges and terminology.” [7]

2 Introduction of the current Application Maintenance Process and Environment 6

I will not go in more details, but I see a good point to mention that the response time for every

reported incident or request was maximum of 4 hours. Resolution time was with

no limitation. Mantis had been used as a system for tracking issues and requests and the

amount of work the technical team spent on monthly bases was approximately around 70h

as average.

Definition of Mantis:

“MantisBT is a full-featured bug-tracking system that not only keeps track of bugs,

but includes a user system so that multiple users can interact and multiple projects can

be tracked.” [8]

But the company is not the only one that developes any kind of web applications for this

client. There are other third parties across the globe and after several months a decision came

from the top management that the company is going to be a partner with other big US digital

agency that is the main digital and technical partner for the client on a global scale. What

did that mean? Many things have changed since that day, mainly the complexity of the

environment. Specifically the following areas went through changes:

● The local Mantis system has migrated to global version used by all regions and teams

(both projects and maintenance).

● The scope of the maintenance has changed, from one smaller web application localized

in few of the languages, now supporting 9 web applications for EMEA and CEEME

regions, which is more than 20 countries each.

● Number of not resolved incidents and requests across all the web application reached

100 in that time.

● Technical teams were spread out across different continents (Czech Republic, US and

Bangladesh).

● There was not only one client, but 2-3 representatives from each of the countries

in which the web applications were localized (in total as far as I remember it was more

than 50!)

● There were other service level agreements with different structures and points,

so a consistency was missing, including different agreement on resolution

and response times

2 Introduction of the current Application Maintenance Process and Environment 7

At the end of the 2012 the number of open / not resolved incidents and requests crossed

the border of 300 and it fluctuated between 250 and 290 in the last quarter. The annual

maintenance budget had been spent within 6 months. This was a signal something did not

work properly and the team had to come up with an idea how to get this number down as

soon as possible and improve the overall maintenance service due to very low client

satisfaction. There was also lots of pressure mainly from the client top management side and

it was justified, because country representatives did not know an expected resolution time of

their requests, there was a huge mess, lots of not resolved incidents and requests and annual

budget had been spent within the half of the year. In many cases it took several weeks,

sometimes months to get a request resolved and most importantly there was no prioritization

model and no resource planning in place. The support leader had chosen a request (many

times just randomly) and get it resolved, which was not the best approach. I will go deeply

into every problem in the next chapter one by one, also what actions have been taken.

In the figure below can be seen the trend of not resolved maintenance requests for all EMEA

and CEEME applications. The data showed for the next figures are from September 24, 2012

as a starting point and December 2, 2012 as an ending point.

Figure 1:

Open / Not Resolved Requests Trend (Source: Author)

The following figure shows three mini charts. At the first one, the number of newly reported

requests on weekly bases. In the second one, the number of resolved requests and incidents

2 Introduction of the current Application Maintenance Process and Environment 8

on weekly bases and in the last one, the difference between those two charts, which says

whether the total number of not resolved requests was decreased (negative number)

or increased the total number of not resolved requests (positive number), again on weekly

basis.

Figure 2:

Last Ten Weeks Trend (Source: Author)

2.2 Technology Platforms and Applications

I have led the support for several applications (some of them do not include development

package but only coordination with third party providers) and they are built upon different

platforms and CMSs (Content Management Systems). The purpose of every CMS in general

is to provide an easy way and a user interface for non-technical people to make changes

to a website application (mostly only content changes; usually when a code / application

functionality change is required, the whole application must be re-built into

a new application package and re-deployed to the appropriate application server).

Definition of Content Management System:

“A content management system (CMS) is a system used to manage the content of a Web site.

Typically, a CMS consists of two elements: the content management application (CMA)

2 Introduction of the current Application Maintenance Process and Environment 9

and the content delivery application (CDA). The CMA element allows the content manager

or author, who may not know Hypertext Markup Language (HTML), to manage the creation,

modification, and removal of content from a Web site without needing the expertise

of a Webmaster. The CDA element uses and compiles that information to update the Web

site. The features of a CMS system vary, but most include Web-based publishing, format

management, revision control, and indexing, search, and retrieval.” [10]

Below can be seen the applications structure according to programming languages they are

built upon using a different technology. Every technology is supported by different technical

teams and requires different knowledge.

In terms of CMSs used for easier content management as I have outlined briefly above, the

company uses the following:

● Perseus - in-house solution built internally to support smaller projects built on PHP.

● OpenText - leading Microsoft solution enabling organizations to streamline

the content publishing process and used for more complex web applications with more

and advanced customization options. [4]

● YardStick LMS L2 - this one is not really a system for content management but rather

learning management system LMS to maintain training kind of web applications.

Definition of Learning Management System (LMS):

“A learning management system (LMS) is a software application or Web-based technology

sused to plan, implement, and assess a specific learning process.” [11]

On the other hand, some of the web applications were built several years ago with old-

fashioned (with an approach that is very difficult to adapt to the current environment and

changes) programming ways and with no content management systems. The difference

between using a CMS and changing the content in the application code directly is simple:

where no CMS is present, the change needs to be done in the application code and the whole

application has to be re-built and re-deployed again, which makes the process (even by doing

a very simple content change) a time consuming process involving more people, resources

and of course, money.

Definition of the term build:

2 Introduction of the current Application Maintenance Process and Environment 10

“The term build may refer to the process by which source code is converted into a stand-

alone form that can be run on a computer or to the form itself. One of the most important

steps of a software build is the compilation process, where source code files are converted

into executable code. The process of building software is usually managed by a build tool.

Builds are created when a certain point in development has been reached or the code has

been deemed ready for implementation, either for testing or outright release.” [12]

Figure 3:

List of maintained Applications (Source: Author)

To be familiar with the web applications which are part of the maintenance, I put together at

least basics to understand their purpose:

● Application A - supports a group of users by providing resources and practice

management services.

● Application B – supports a group of users with study materials and research including

loyalty programs.

● Application C – a product database for searching information based on product code.

● Application D – a single place of training materials for a group of users, containing

international researches and articles, live events and video archive.

● Application E – a central database where user data is stored.

● Application F – a tool for a group of users where they can create quick products

recommendations for their customers.

PHP

Application
A

Application
C

Java

Application
B

Application
D

Ruby

Application
E

Application
F

.NET

Application
G

Application
H

ColdFusion

Application
I

2 Introduction of the current Application Maintenance Process and Environment 11

● Application G – a web application presenting all products available in specific market

for use by a group of users. It covers basic products information.

● Application H – an eCommerce website available in Germany where customers can

order normal or prescripted products and employees are able to place orders for their

customers.

● Application I – is a unique, on-line, educational experience, available at no cost

to every member of the team. Through the application the customer will enhance his

or her ability to understand, communicate and benefit from advocating proper

products.

2.3 Maintenance Tools

Tools are not the most important key parts of a process however they can help significantly

to increase a process efficiency. They support a process and team to make their work faster

and usually with better results and higher quality.

Mantis Bug Tracker (Mantis) – used for reporting issues or requests; very simple and easy

tool with a few customization options, not very advanced in comparison to other similar

systems like Atlassian JIRA, however for many cases highly sufficient. It is used for both

new projects and maintenance by all digital and client marketing, management teams across

the whole region. Mantis is mostly used for development and quality assurance teams and

does not cover the whole request lifecycle for all of the maintained applications but I will

afterwards analyse this topic deeper. More information about Mantis can be found at:

www.mantisbt.org.

Test Track Pro (TTP) – has similar purpose as Mantis - provides a way to track issues

and requests. Few of the web applications have different deployment process and there TTP

comes in. In general when a change is made on development environment and tested

for these applications, a TTP deployment request is created and routed to an appropriate

team in US who pushes the changes to stage and production environments. This happens

only when all tests passed and are approved by responsible person (either client

or management team). The process is described in more details in the next sub-chapter. More

information about TTP can be found at http://www.seapine.com/testtrack/overview.

http://www.mantisbt.org/
http://www.seapine.com/testtrack/overview

2 Introduction of the current Application Maintenance Process and Environment 12

Zendesk – similar to previous systems, it is used for tracking issues and requests related

to one of the web application maintained by a third party partner. More information about

Zendesk can be found at www.zendesk.com.

Atlassian JIRA – used for tracking issues and requests for one of a Bangladesh team.

The Jira is a very powerful system with many advanced customization options. More

information about Jira can be found at www.atlassian.com/jira.

2.4 Maintenance Activities

As every process consists of more than one activity, in the maintenance process I have listed

and highlighted the following main activities:

Monitoring and measuring the services

To ensure the applications are running properly and a warning system is set up in cases, any

of the web application servers or databases go offline, which results to web application

outage or its functionalities. The goal is to get a warning message and restore the services

as soon as humanly possible.

Routing requests to team members

Who should work on a specific request? Is it the team A, B or C? Should it go to Java or PHP

developer? Is it an application server issue or a database data manipulation is needed?

To be able to determine the person, it is very important to know the applications and be able

to identify the issue or request and which systems and platforms will it affect. The goal here

is to assign the request to the right team member.

Communication to all involved parties

Communication with the internal teams, third-parties, internal and client management teams

for the whole request lifecycle from reporting to resolving a request. When a new request

is submitted, someone needs to go back to the client who reported it and say when they can

expect the request to be completed or go back to him when more information is required

to get the request done etc.

Evaluation of submitted requests

2.12.2012 2.12.2012

http://www.zendesk.com/
http://www.atlassian.com/jira

2 Introduction of the current Application Maintenance Process and Environment 13

A new request comes in to the Mantis system and is assigned to support leader who needs

to decide if all relevant information has been provided. Is it an issue, content change or user

data problem? What is the impact on the system and priority in comparison to other work

items in the queue? What is the budget the time spent on resolving the request will be paid

from? Is the issue reproducible and what are the steps? Etc.

Development and Quality Assurance

This is the process of finding a resolution and putting in on the right place. It covers analysis

and investigation, fixing a code or changing a content and testing of the changes made

to the application to ensure no other parts of the web application were broken by that new

change.

Deployment

Publishing the content changes or deploying code changes to specific web application

environments. In general and as a best-practice there are used more than one web application

environments. The following web application environments are used for this client [5]:

● Development

● for internal purposes, most of the QA work should be done here before deploying

anything to other environments,

● usually there is no guarantee for the client it will work properly and it can contain

issues (remember it’s called “development”), however in general no change

should be presented to any client in this environment.

● Stage

● on the other hand this is the release candidate (pre-production) and usually

a mirror of the production environment,

● it contains changes ready to be deployed or published to production environment

after they are approved by the client or appropriate management team,

● there are performed final testing scenarios mainly from the client side.

● Production

● currently released version of the application, that usually contains only

the approved content and functionality,

2 Introduction of the current Application Maintenance Process and Environment 14

● it is live version available and to be used by public audience (clients or end

users).

Figure 4:

Environment Architecture (Source: Author)

The deployment process is more complex than it seems to be from the first look, actually

there are like four different deployment processes across the platforms (PHP, Java, .NET,

Ruby on Rails). For application group A (Java, .NET, Ruby on Rails web applications), the

Mantis request is routed to a specific application developer and he copies the changes to all

environments as needed, either manually or by an automated process (testing the changes

made to the application and passing a testing scenario is a pre-requisite). For application

group B, (Java web applications) a new deployment request needs to be created in the system

TTP. The TTP request goes to a deployment team and copies the changes to appropriate

environments if it has passed through the testing process.

2.5 Resources and Planning

There is perhaps nothing more important than to have the best talented and loyal individuals

on board who act on behalf of the company with full confidence, shared and common goal:

be the best and be proud of what you are doing, and increase economic value of the company.

For our purposes it should be enough to define the resources into two categories: People

(Human Resources) and Money (Allocated Budget).

2 Introduction of the current Application Maintenance Process and Environment 15

2.5.1 Human Resources

The team consists of different groups of technical and management individuals who are part

of various companies in different offices and continents worldwide however they feature as

one team under one global company.

Development team is divided between US, Czech Republic, Poland and Bangladesh offices

and all the tasks are usually managed and assigned through several maintenance tools like

Mantis, TTP, Jira or ZenDesk (described more in the sub-chapter 2.3 Maintenance Tools).

When tasks are assigned, users get a notification via email and also they can view their

current assignment list after logging into the tool. There is no integrated planning at all and

that is also one of the reasons why sometimes a conflict happens, because there is no

guarantee the individual will be available when necessary or needed due to other higher

prioritized work items or projects which are running hot (by hot I mean, they are close to

their deadline or already delayed). But the service level agreement (SLA) between the

vendor and the client is given and signed up and should be strictly followed. Even if there

are lots of other responsibilities or duties. Someone from the correspondent and qualified

team has to find a gap in fully overloaded calendar even at the expense of his or her own free

time and get the work done. This may be frustrating. In smaller amount it should not be a

huge problem if there is kind of a compensation, but what developers hate is lack of

organization in longer term and indecision, meaning too many changes in a short time. This

may cause inefficiency at the team productivity or reduce the team performance rapidly.

From the management point of view there is no single client liaison contact and the requests

go to different people from the Project, Support and Account Management team either

through any of the maintenance tools or by email (in worse scenario via telephone call

or Skype). Clients are mostly disoriented because they actually do not know who to contact

primarily to help them with their request or issue. As a usual way they contact all from

the management team. Not only clients have a mess within the system, but also internal team,

because everyone has their own piece of information and it is very difficult to put it together

in an easy way and timely manner.

2 Introduction of the current Application Maintenance Process and Environment 16

Figure 5:

Communication Matrix (Source: Author)

2.5.2 Allocated Budget

Maintenance budget is planned annually usually at the end or at the beginning of the year.

It used to be separated for each of the regions EMEA, CEEME and most of the resources

go to EMEA bucket due to larger amount of maintained applications available at the moment

in that market area.

The estimation (the budget is calculated from) is done based on previous experience

and the trend of used budget from previous year and from an increasing or decreasing part.

This part depends on the situation whether there is an expectation the maintained

applications will consume more hours and therefore more money (this can be due to other

new projects in progress or planned to be completed in that year and thus the maintenance

will need to take place for them) or less. On the other hand some of the applications may be

turned off or cut off from the maintenance package, which will reduce the hours needed to

keep them up-to-date and running smoothly.

One of the practices to control the budget is to divide it between the whole year per month

and keep monitoring whether it is running hot or cold (over or below the average budget

calculated per month). What may cause troubles is when it goes out of the control due to less

or lack of continuous monitoring for any of the following reasons:

● Non-transparent or missing team timesheets (if a responsible person is not able to see

the actual time spent per task, individual or team, he is not able to control the budget

at all as some pieces will miss).

2 Introduction of the current Application Maintenance Process and Environment 17

● Out of scope tasks (when tasks from different projects are being paired into the

Maintenance, even if they should be officially covered from a different budget).

Then suddenly the whole budget that was planned for the year had been spent in few months

as it happened to the company in 2012. What will follow? There are two options: First, to

go to the client and ask for more money. The other one, it needs to be covered from a different

source, mostly from the internal budget or from the one where some savings have been made.

In the company’s situation there is no actual budget monitoring performed continuously,

only once per a longer period (half a year approximately) and it also usually causes problems

I mentioned in the previous paragraphs.

3 Identifying Obstacles and Bottlenecks 18

3 Identifying Obstacles and Bottlenecks
Theory of Constraints (TOC) gets its name from the fact that all enterprises are constrained

by something. If they weren’t, they could grow as large and as fast as they wanted. But one

has to monitor Wall Street or Main Street for only a moment to know that for the vast

majority of enterprises growth is really hard. Constraints are why. [1, page 8]

The first thing we need to do before making any decision about changes, is identifying

of the obstacles and bottlenecks. For this purpose I will use the process of ongoing

improvement (POOGI) that is based on theory of constraint. In POOGI, the constraint

is a reality of the system, it is not good or bad. Sometimes there can be a benefit in having

a constraint in the system and sometimes not. In other cases it also depends on the goals

what we want to get from the system. [6]

In this case continually check the process on X bases (X - can be weeks, months or years as

example), try to find new constraints and check the already identified constrains. For each

of the system constraint there is a 4 step process – the result of this process will define how

we handle the constraint.

Figure 6:

POOGI Process (Source: Author)

3 Identifying Obstacles and Bottlenecks 19

Because of the constraints in the system, we have the following undesirable effects (UDEs):

● Long lead time.

● Unpredictable support and maintenance process.

● Inability to balance resource requirements between project and maintenance requests.

● Inability to monitor maintenance performance, no KPIs.

● Inability to control and monitor budget (budget ran out, then we found out).

Figure 7:

Undesirable Effects (Source: Author)

As the result client satisfaction on maintenance was dramatically low in 2012. The number

of requests were going up and down between 250 and 290 in the last quarter of 2012.

● 49% of requests were getting resolved in less than 3 weeks.

● 51% of requests were getting resolved in more than 3 weeks.

● 21% of the requests were getting resolved between 3-8 weeks.

● 30% of the requests were getting resolved in more than 2 months.

Additional goals to the ones I noted in the primary goals of this thesis:

● Shorter lead time – time from reporting a request to its resolution.

Undesirable
Effects
(UDEs)

Unpredictable
support and
maintenance

process

Long Lead
Time

Inability to
monitor

maintenance
performance

Inability to
balance

resources

3 Identifying Obstacles and Bottlenecks 20

● Higher predictability – mainly the expectation when a request can be resolved.

● Better resource utilization.

● Budget monitoring.

● Reduce coordination and transaction costs.

3.1 Uncontrollable Work in Progress

3.1.1 Lack of request ordering and prioritization process

With the number of 250+ not resolved incidents and requests in the queue it is almost

impossible to order or prioritize the work and as resources are limited there needs to be

a control on top of them. There are two kinds of methods for prioritizing the requests. Most

of the time the prioritization is made based on escalation process. In reality it means, that

the country representative who escalated his or her request to top management, the request

is prioritized and added immediately into work in progress. Based on continual escalating,

client relationship cannot be built or improved and it is often very frustrating for both sides.

Another model for prioritization is based on the impact on target web application. If the issue

is critical or major (database or application server outage; user registration or login

functionalities etc.) affecting a bigger number of end users who are target audience of the

web applications and used it regularly, it is being worked on usually immediately.

3.1.2 My request is more important than anybody else type of culture

Sometimes I hear someone saying “I am more important than anybody else in the world”.

Some country representatives feel they are the most important in the world and therefore we

are supposed to focus primarily on their requests and get them resolved faster and as soon

as possible. If I imagine to hear this from more representatives for the same client at the

same time, all of them want to push their requests, what should I do? Put other client’s

requests aside? This is not the right and fair way.

3 Identifying Obstacles and Bottlenecks 21

3.1.3 No Single Point of Contact

Everybody who is in communication with the client regularly from account management

team, through project management and top management gives promises to follow up

on specific requests and most of the time they follow it up on their behalf. I can say, it is

essential to have more people engaged. Partially I am right, but sometimes it causes more

mess and undesirable effects than I would normally wanted to accept. It is on daily basis that

technical team is overhelmed, not able to determine what is more important, whose request

has bigger priority, because it is coming from different people from low to top management.

And what about the transparency? Many requests are coming through all communication

channels (emails, Mantis system, phone calls, and personal meetings) to different people.

From that point, me as a person who is supposed to be in charge of the maintenance is losing

the control over all the work that is supposed to be part of the maintenance. To be able to

find out the latest status of a request I have to contact all these people and ask them if

someone is already working on the request, what has been explained and agreed with the

client, was there a promise the request will be resolved in a certain date? These and many

other questions and problems usually show up.

3.1.4 Solution

a) Not everything has the same level of value or time pressure. Some items should be

moved faster than the other either because they are needed to meet client expectations

or because they have a major impact on the business side. Some have to be completed

on an exact date, because they are tightly connected to marketing campaigns and they

start on an exact day. Some of them if they are related to end users, users who use

the application should be resolved as soon as possible if we do not want to lose the

users and so client’s customers. Others can be completed in the normal course of flow.

It means that not everything should be treated as a same item. The goal is to create

an easy and transparent way of prioritizing the work to address any inherent variability.

And for this purpose a Kanban mechanism called “Class of Service” looks to be as

an ideal solution. [13]

Every Class of Service has different target resolution time, which is the maximum

period of time the request should be resolved. In the following table there are more

details about each of the Class of Service:

3 Identifying Obstacles and Bottlenecks 22

Table 1: List of Class of Service

Class of Service Target Resolution Description

Expedite 2 days

Any request evaluated as Expedite class of ser-

vice must be resolved immediately.

It can interrupt any other assigned tasks across

maintenance or any projects for the client.

Example:

Web application server or database outage

Issues affecting more than one user (registra-

tion or login issues etc.)

Legal issues

Fixed Date Delivery Fixed

Needs to be done on certain date. The support

manager needs to be notified 3 weeks in ad-

vance.

Example:

Code or content change related to a marketing

campaign with precise starting date. It cannot

be launched neither sooner, nor later.

End User Request 14 days

Reported requests by end user who use the

web applications.

Example:

Issues with registration or login

Changing the personal data

Resetting the password

Standard 21 days

All other incidents / requests that do not fit to

Expedite, Fixed Deliver Date, End User Requ-

est or Intangible classes

Example:

Content updates

Styling or minor functionality issues

Generating reports

Intangible 3-6 months

Fixing of problem root causes, system upgra-

des or anything that can be done later and will

not impact business at the present time.

3 Identifying Obstacles and Bottlenecks 23

b) Creation of a new prioritization model called SPR Index, which determines a final

importance and value of requests and incidents in queue. It consists of the combination

of several factors:

● Severity (impact on the web application = determined by the support leader).

● Priority (priority in comparison to other country representative requests =

determined by the country representative).

● Country (every country has a different value and importance and it needs to be

taken into the account when calculating the final priority).

● Lead Time (calculated as Due Date – Today in days; due date is set based on

the Class of Service).

Formula of the SPR Index is as follows:

SPR Index = Part 1 + Part 2

Part 1 = if (Expedite; +1000), if (Fixed Date Delivery; +500), if (End User

Request; +250), if (Lead Time < 0; +300 + ((-5) * Lead Time)

Part 2 = Priority Value * Severity Value * Country Value * Lead Time Value

(if not <0)

Table 2: List of Priorities

Priority Value Description

Urgent 5 High business value request.

High 4
Defect, legal related or cam-

paign based.

Medium 3 Normal request.

Low 2 Can be done at any time.

Table 3: List of Severities

Severity Value Description

Critical 5 All systems impacted.

Major 4
System impacts major number

of users impacted.

3 Identifying Obstacles and Bottlenecks 24

Severity Value Description

Minor 3

A defect in the system, eve-

rything functional, minimum

number of users impacted).

Cosmetic 2 Normal request or incident.

Table 4: List of Country Values

Value of importance Country or division

5
Central Division, Agency, Ireland, United Kin-

gdom, France, Germany, Italy, Spain

4 Netherlands, Belgium, Luxemburg

3
South Africa, Sweden, Noway, Finland, Den-

mark, Russia, Switzerland

2 Other

Table 5: List of Lead Time Values

Lead Time (Due Date – Today) in days Value

< 0 300 + (5 * Lead Time)

>=0 and <=7 4

>7 and <=14 3

>14 2

c) Introducing a single point of contact for any maintenance related request. There will

be no one else who can promise, decide or lead maintenance incidents and requests

except the support leader who will take the full responsibility for the whole process

and results and will be the primary person for any communication with all the parties.

He will own the process and know all the statuses for all the maintenance requests and

will be also the only one who can communicate and prioritize any work for internal

technical teams. Those are the starting points.

3 Identifying Obstacles and Bottlenecks 25

Figure 8:

Communication Matrix (Source: Author)

3.2 Waiting for client feedback and approval

3.2.1 Know-how of using support tools and the process

Usually when a new client / country representative join the team, they need an access

to support tools like Mantis, so we grant the access and let them discover the insides with

just basic instructions how to create incidents or requests. The problem is that some

of the clients are not new generation, meaning they are not so IT experienced people and are

a kind of afraid of using any new tools. They rather choose and use standard ways as emails

and phone calls are. But as I already mentioned in the previous chapters, this makes the

process and environment messier and the requests are untraceable and not transparent to all

parties.

On the other hand, we actually do not have a proper process in place and there are no strict

guidelines what can be done, what cannot be done, how it can be done and when some

3 Identifying Obstacles and Bottlenecks 26

outputs can be expected. Not to mention there are no intro trainings for them. One person

(either client or internal person) follows a way he or she thinks is appropriate, another one

differently based on his expectations. Some of the requests are just sitting there and waiting

for their owner to provide required information that is important to get it completed or just

a confirmation and approval the request is resolved and resolution is accepted.

As the result there is an inconsistency in the way of receiving the requests and many of them

are sitting like in a black hole with no reaction from their owners. Some of them are even

reported in a wrong project bucket and lost in the Mantis universe from an action for a long

time until they are escalated by their owners.

3.2.2 No deadline for client on providing feedback or approval

It is a common trend that the number of open (not closed) requests have an increasing

tendency. We can resolve a request from development perspective, but a final confirmation

and approval has to be made by its owner, the client. Therefore the resolved requests have

been sitting there still opened for days, weeks or even months. This situation has several

undesirable effects:

a) Inability to track the final resolution performance, so answers to the following type of

question: what is the final resolution time as an average? The current options which

are available do not take into the account the long period requests are waiting for a

resolution confirmation.

b) Resolved (but not closed) and not resolved requests are mixed together. When I

imagine 250–290 requests, it is very difficult to see what has been completed, and what

has not been even started.

c) A pre-requisity to resolve a request is to have all needed information from the reporter.

If any piece of information is missing, it can block the other phases of the request

lifecycle and with no responding on the comments from clients, the resolution is

delayed.

3 Identifying Obstacles and Bottlenecks 27

3.2.3 Lack of Proper Follow-up Process

With the high number of not resolved and not closed incidents and requests, it is quite

impossible to have control over all of them. A usual daily activity is to go through as many

of them as possible and update their status if something has changed, the clients are eager

for any update and a movement forward. A common situation is that the clients ask

for a status in specific requests, but nobody get back to them and answer their question.

Simple there are lots of them and limited time and resources to open every single request

and keep it updated regularly.

3.2.4 Solution

As David J. Anderson cites Dr. Eliyahu M. Goldratt who put it in the following way [2, page

103]: “often reducing batch size is all it takes to bring a system back into control.”

In this case the batch size represents the number of work items (incidents or requests)

planned for a specific week. Rather to pick few and complete them in high quality and with

focus than let the system go out of the control, which I will explain in more details below.

We intuitively know that things are easier to control when they move slow rather than fast

and this fits to this case as well.

After analyzing the situation and given problems, the following solutions should help to deal

with it:

a) Set up proper trainings through conference calls for all the existing and new clients

including internal employees (majority of the clients had been interviewed and they

see a lack of training on the process and support tools). The main focus of the training

will be dedicated to support tools like Mantis and other web application

administrations which clients can get into a contact. During the calls process

improvements and changes will be covered as well.

b) Preparation of offline training materials to explain all the systems, tools and process

itself (this was actually one of the demands from the clients and they will really

appreciate it and I can understand the point).

c) If no feedback or confirmation will be provided within the two weeks from the last

client reaction into the request, it will be suspended and closed. It will be possible

to reopen it again when needed and the required information is available. In case of

3 Identifying Obstacles and Bottlenecks 28

final confirmation / approval of the resolution, the full responsibility will go to QA

department or support leader and only occasionally to the client if the type of a request

requires it.

d) To prepare and send a maintenance weekly work plan with list of incidents or requests.

To be able to imagine how it would work, the support leader will have a backlog of all

not resolved requests and choose the first top 40-50 requests sorted / prioritized based

on the SPR Index. If the SPR Index is bigger, it has higher priority. This list will be

shared with internal teams and also with all clients every week. The support leader will

prepare the list every Thursday and share it with technical teams and they will be

responsible for having a quick look at the requests they will be supposed to work on.

On Friday each of internal support team members will have a conference call to go

mainly through complicated requests and discuss either a possible solution or making

an estimation how much time they will need for completion of those requests.

The meeting should take 30 minutes as a maximum and a benefit in having everyone

on the call will be, that each of the team members can discuss how and if a change

they will do, affect other web applications which other teams maintain to prevent from

causing other issues or complications in delaying a resolution of a request. And finally

there will be a commitment the planned requests will be completed in the upcoming

week. In case a longer discussion will be needed among only few of the members, they

will do it after this conference call separately. After the meeting the support leader will

make a final update of the weekly plan and share it with all of the teams and this time

also with all clients. An inspiration has been taken from the Scrum, agile project

management methodology where all team members are supposed to have a daily stand

up meetings. In such meetings they discuss what they worked on the day before, what

is their working plan for current day and what obstacles they are experiencing with the

tasks if any.

Definition of Scrum [14]:

“Scrum is an agile methodology that can be applied to nearly any project; however,

the Scrum methodology is most commonly used in software development. The Scrum process

is suited for projects with rapidly changing or highly emergent requirements. Scrum

software development progresses via a series of iterations called sprints, which last from

3 Identifying Obstacles and Bottlenecks 29

one to four weeks. The Scrum model suggests each sprint begins with a brief planning

meeting and concludes with a review. These are the basics of Scrum project management.”

The expected benefits:

● Technical teams – they will know exactly what they are supposed to work on every

week.

● Clients – they will know when they can approximately expect to have their requests

being resolved.

● Support leader – focusing only on a short list of requests instead of all requests in the

queue.

3 Identifying Obstacles and Bottlenecks 30

Example of a weekly plan to be shared with clients.

Table 6: Example of the client weekly plan (Source: Author)

Ticket

No.
Application Summary Reporter Date Submitted

Planned

Lead Time

(days)

INDEX

19997 Application C
Learning Center - access not possible due to automatic

redirect to application
Radomil 21.8.2014 -184 1375

21025 Application D Clinic cannot prolong prescription Martina 26.1.2015 -33 1275

20891 Application D Address update in shop does not work properly Martina 29.12.2014 -61 1200

20859 Application F Reco print outs need units of weight adding Tim 6.2.2015 -15 1200

20899 Application D Shop codes not working Martina 28.1.2015 -24 1100

21160 Application E Products - info in French Stefan 11.2.2015 -10 980

21126 Application F New product A is not available in the list product Cristiana 10.2.2015 -11 950

21225 Application B nl-nl/app/dkl deventer Eliza 19.2.2015 -2 860

20990 Application E Products - Transmit Dutch translation BEN --> NL Stefan 16.1.2015 -36 860

20919 Application G CRM data Greece Anna 6.1.2015 -46 850

21106 Application E EST translation update Anna 5.2.2015 -16 710

21247 Application E Change language causes crash Michal 24.2.2015 3 480

21292 Application E Extract for eCommerce Q1 Cesar 2.3.2015 9 270

21326 Application A CRO Where to buy section data Anna 9.3.2015 16 112

3 Identifying Obstacles and Bottlenecks 31

Example of a weekly plan to be shared with technical teams.

Table 7: Example of the team weekly plan (Source: Author)

Ticket

No.
Application Summary Solver INDEX Development Testing Deployment Verifying

19997 Application C

Learning Center - access not possible

due to automatic redirect to applica-

tion

Jiri 1375

Done done in in

21025 Application D User cannot prolong prescription Lonnie 1275 In

20891 Application D
Address update in shop does not work

properly
Lonnie 1200

In

20859 Application F
Reco print outs need units of weight

adding
Marcin 1200

In

20899 Application D Shop codes not working Lonnie 1100 In

20657 Application F
QR - FR No mix ration available

1_12_14
Nicolas 1100

In

20990 Application E
Products - Transmit Dutch translation

BEN --> NL
Lonnie 860

20919 Application G CRM data Greece Miroslav 850 In

21106 Application E EST translation update Lonnie 710

17074 Application F

choosable conditions wrong in appli-

cation when language is french in

switzerland

Nicolas 710

In

20212 Application E DELETE DOUBLED PRODUCTS Lucas 650 In in in in

3 Identifying Obstacles and Bottlenecks 32

Table 8: Action steps (Source: Author)

Undesirable effects Solutions

Lack of know-how of using support tools

and the process

Conference call trainings.

Offline training materials.

No deadline for client on providing a fee-

dback or approval

QA or support manager can make a final reso-

lution approval.

If no feedback is provided within the two

weeks from the last reaction, the request is clo-

sed.

Lack of proper follow-up process

Weekly Maintenance Meetings

Weekly Work Plans

Limitation of Work in progress to 40-50 requ-

ests per week maximum

3.3 Resource Contention

3.3.1 Shared Resources between Projects and Maintenance

All the resources have been shared between projects and maintenance for all the teams

in different locations, but usually the main focus and priority are put on new projects where

deadlines are tight and connected to marketing campaigns scheduled to be launched

on a precise date. With all of this pressure the maintenance focus is put aside as a second

priority which is also one of the reasons the number of not resolved requests have started

growing so fast and suddenly is so high at the end of 2012. But the resources are not shared

only between projects and maintenance for the same client, they are being actually shared

across multiple clients and even among various digital partner agencies. Due to no integrated

planning and visibility for other teams there is no guarantee that a specific resource will be

available in a certain day by a certain time.

Having this way of mind set and process in place, the maintenance cannot be successful at

all and of course the client happy.

3 Identifying Obstacles and Bottlenecks 33

3.3.2 Limited resources and bottlenecks

Me as a support leader I am not only overseeing the maintenance process and work, but also

participating in several projects as needed and it usually consumes a lot of my working time

(around 20%) at the expense of less focus on my primary role which is maintenance

of the projects. This have usually resulted in lack of communication with the clients about

status of their requests, proper evaluation of new requests which are coming every day

and lots of back and forth with the clients and technical teams as proper requests analysis

has not been done before having passed it to technical teams. I can consider myself as a

bottleneck of the process who has limited working hours and has to cover all the maintenance

requests and also take care of some projects activities which is not manageable based on the

current situation and trend of open / not resolved client requests.

Another bottleneck identified in the team is a ruby developer who has maintained

and developed new projects for critical business website applications. There are two

problems. On one side this person has being contacted every day by different managers from

account management, through project management and top management people and all of

them want to complete their request the same day and communicate it as an urgent case. As

a result this person is unable to identify the priority of the requests and almost nothing is

done as planned and on time. On the other side most of the focus is on new projects instead

of maintaining the existed ones and resolving incidents or requests that are being reported.

Same situation is with QA lead. There is only one QA lead in US covering all the regions

EMEA and US. He is under pressure by both of the teams in US and Prague and often

the requests have been completed and ready for testing, but it takes days the QA lead is able

to look at them which is slowing the process down rapidly and delaying the fixes and changes

to be published to production environment.

3.3.3 Solution

Resources Planning - As the environment is so complex, the resource planning has to be

improved, integrated and visible for competent team members. The following points need

to be implemented and accepted both internally and globally (again the inspiration has been

taken from Scrum methodology):

3 Identifying Obstacles and Bottlenecks 34

a) Resources shared with US and Prague offices (global resources) – creation of a shared

document with list of projects and resources to be shared between the projects

and maintenance in US and Prague. Every Friday there will be an integrated planning

conference call with all the project managers who manage any of the projects in the list.

Before the call starts each of the project managers will be supposed to put the specific

resource allocations into the spread sheet for any resource they will need for upcoming

2-3 weeks in advance for their projects. During the call, each of the project managers

will provide a basic overview and status of his or her projects and highlight critical

milestones or resource needs for the upcoming week. The same day the project director

who manages the projects portfolio and resource allocations will send a meeting

minutes including hot project items to be prioritized over other items in the queue

in the next week.

The global resource planning spreadsheet will be used and shared across various digital

agencies and offices worldwide.

Figure 9:

Resources Planning Sheet (Source: Author)

b) Resources shared with other clients (internal resources in Prague only) – Creation

of an internal planning spreadsheet similar to the one above and discussed only

internally with project managers and delivery manager who will own and manage the

document on one side and coordinate the resources and needs on the other side.

The internal resource planning spreadsheet will be used and shared only internally

for Prague team.

3 Identifying Obstacles and Bottlenecks 35

c) Resources shared between projects and maintenance in Prague (both internally and

globally shared resources) – To be able to prevent from the situations like “only

projects are important”, there needs to be an agreement between Prague project

managers and support leader that there will be always a precise time dedicated

to maintenance for any of the resources used on weekly basis. The amount of hours

each of them may spend on maintenance will be 8h which is twenty percent of their

working week.

Example: Franta is a Java developer who may spend 32h on projects and 8h on maintenance

every week with an assumption there is 40 working hours per week.

In situations there is no work item in maintenance to be worked on, the person will not just

sit on a chair and be looking out of a window, but will again continue with project items.

And why 8 hours? The estimation of all the maintenance requests in queue and with the

objective to decrease the number of open incidents and requests under 50 within the next

three months, will require that each of the team members who will participate on resolving

the requests, will need to spend around 8h on maintenance every week. Of course there is

not the same number of requests per each of the technology and there is not same number of

team members programming in a language, so some of them may reach the target sooner,

other later. However to keep a long term standard the team have decided to keep it same

across all technical team members.

Addressing the Bottlenecks

For the support leader is the primary key to have the maintenance under control and proper

communication in place by limiting the work from projects and maintenance to only

maintenance, so the full focus will be dedicated only on maintaining the current projects.

To be able to react faster when a request is resolved in development and to not hold

the resolution to be pushed in production environment, the company will hire a second QA

lead dedicated only for Prague team.

The case with Ruby developer will need more attention and some of the solutions I have

already outlined in the previous sections like only project and support management can plan

the work for technical teams and the plan cannot be interrupted by adding any other items

3 Identifying Obstacles and Bottlenecks 36

before agreeing by responsible project / support leader. Also as most of the open / not

resolved requests need to be resolved by this Ruby developer, to reach the goals of

decreasing not resolved requests will require to hire at least an additional external Ruby

developer for one month dedicated to work on maintenance requests only. As these team

members are bottlenecks, it is important to increase the visibility over the work what is

currently in progress and planned for every week and manage their tasks closely.

Figure 10:

Kanban Board Planning (Source: Author)

3.4 Lack of System Access

Within the maintenance, there are processed annually around 1200 incidents and requests

and around 50 % of these requests can be completed by a less technical experienced person

(at the moment it is only around 20%). If the support leader is capable of doing such stuff,

the capacity of the team can be increased effectively instead of passing it to developers or

other technical teams who should focus rather on more complex issues and requests. Here is

an example of such requests:

● User data management (changing password to access a user account, changing other

personal information).

● Login, registration and other user related issues troubleshooting.

● End user database management and administration.

● Generate ad-hoc reports from database and prepare segments for emailing.

3 Identifying Obstacles and Bottlenecks 37

● Manual user data imports / exports.

● More accurate issue analysis from the log files before passing an issue to technical

teams.

● Grant access and permission to different applications.

● Act as a backup for content management when needed.

3.4.1 Solution

When we open few more “doors” to allow the support team lead to access different

application administrations, database and servers and I will assume this knowledge

is adequate to be able to work with them with a minimum of training, 50 % of the requests

which represent around 600 requests per year can be resolved by this role. And more

technical people will have more capacity to focus on bigger and more complex tasks. This

would bring a significant team and process effectivity with no or minimum cost.

It would have also other side benefits. When having an opportunity to work with different

tools and be able to see the applications from different sides, it should provide a deeper

knowledge of supported applications. This would be something very helpful when

communicating with the clients and internal teams or recommending improvements

and solutions.

3 Identifying Obstacles and Bottlenecks 38

3.5 Inefficient Deployment Process

At the moment one of the supported web applications for which we receive majority

of the client requests is built on Java and shares the code base between Europe and US

regions. The projects are separate in each of the regions and there is no visibility for Europe

team to see what US projects are in the plan or progress and vice-versa. However both of the

teams maintain, develop and improve the application separately and it makes the deployment

process more complicated.

There have to be done detailed code reviews for any code change (excluding content changes

done via CMS) before deploying them among any of the environments (dev, stage

or production). The reason of these code reviews is to ensure that the change will not break

the application in other region and vice-versa and are completed by a developer who was not

involved in the code change. As such reviews are time consuming and take from minutes

to hours (each case is individual), they cannot be performed often. They are usually planned

80% of requests

passed to

technical teams

Task
3

Task
2

Task
1

50% of requests

passed to

technical teams

Task
3

Task
2

Task
1

Before After

Figure 11:

Reducing the number of requests passed to Tech-

nical team after granting more access to Support

Leader

3 Identifying Obstacles and Bottlenecks 39

once a week, which is also one of the reasons why many client requests are delayed and

in queue due to the deployment process complexity.

But the team also has to ensure that all the changes are ready to be deployed to specific

environment, which means they are fully tested by QA department and hence do not contain

any bugs and all the changes are approved (either by project/support manager or client).

In urgent cases an ad-hoc deployment is done also out of this scheduled window, but this

happens rarely.

Figure 12:

Shared code base (Source: Author)

3.5.1 Solution

The ideal solution would be to separate the code base to allow US and Europe to manage

their application code separately with no connection to each other. This would eliminate

the existence of code reviews as the primary purpose of them will no longer be valid. By

simplifying the deployment process and reducing the effort needed to deploy changes among

the environments, there can be two or three deployments every week instead of only one as

it is right now. In case any issues are discovered after deploying the changes it will not take

another week to fix them and re-deploy again, but the team should be able to do it the same

week.

US

Europe

Shared
code base

3 Identifying Obstacles and Bottlenecks 40

This should reduce the overall request lifecycle significantly.

Figure 13:

Separate code bases [Source: Author]

3.6 Waste and Duplicated Tasks

3.6.1 Too many support tools

As noted across the previous chapters, there are used several tools for maintenance. It is

JIRA, Mantis, Zendesk, TTP and other standard Microsoft Office applications like Excel,

Word for planning and sharing reports and information.

This leads to a complex and messy environment as most of these tools have been build to aim

the same or similar goal, which is to track issues and bugs within an organization or for

project management purposes. It is not unusual, that we re-create some requests from one

tool to another one and thus waste our internal time and client’s money for no additional

value. As example, when a new request is submitted in Mantis and is related to specific web

application, the deployment process is going to take place in TTP tool that is used

by deployment and QA team in US. It means most of the information from Mantis needs

US

Europe

Separate
code
bases

3 Identifying Obstacles and Bottlenecks 41

to be just copied into a new TTP request. And there are many similar cases where such

wasting is obvious.

Also most of the tools do not support separate workflows for different projects or there is

no way or very difficult to report on important metrics.

When I will make regularly weekly plans and reports as suggested in the subchapter

3.2.3 Lack of Proper Follow-up Process, there is currently no way to automatize some parts

of the process and it will have to be done manually. To reduce the time spent on such

activities may be reduced by a proper tool with needed setup in place.

I have identified and summarized a list of problems:

● No integration with other systems or tools (project management tools, web application

tracking tools, documentation systems, git source storage, release and build

management etc.).

● Difficult or unable to report on various metrics.

● Difficult or unable to customize project workflows.

● Difficult to prepare weekly work plans or make updates.

● Difficult or unable to plan maintenance items based on agile methodologies (scrum,

kanban).

● Planning and updating plans manually using excel (weekly planning and reporting).

● Difficult or unable to see/export reports in a minute.

3.6.2 No integrated knowledge base

There was already a situation that someone from the team had decided to accept a new

professional challenge and leave the team. Yes, there is usually a plan to train and transfer

as much knowledge and practises as possible to a new replacement, but it is not enough

or possible to cover all cases. And therefore the learning curve starts almost like from scratch

because there is no single up-to-date documentation or knowledge base where the

application parts are described also from technical perspective. It causes very slow progress

when resolving either application issues or developing new functionalities in the next weeks

or even months.

3 Identifying Obstacles and Bottlenecks 42

There are few documentations but spread out in various tools and local files in different

locations which makes it very difficult to go through and find relevant information.

A knowledge base is also important for documenting known errors that had been resolved

and can be reused in the future again. Or for clients to learn how the systems works and how

to work with some of the web application where an administration exists and is supposed

to be used.

3.6.3 Solution

To reduce the number of support tools which as described in most cases just duplicate

the work, we will keep only one that will be used across all the partners and regions. I have

prepared some rough calculations how much money only the team in Prague inefficiently or

absolutely unnecessarily consumes. These are also client’s money that may be used far more

effective.

There are around 50 team members in our team who use the current tools and have the same

experience of inefficient wasting. When each of them spends 5 minutes of their work on

duplicating the requests from one to another system every day, it is 21 hours per person

yearly. The blended rate is approximately 60 USD per hour of work as average. On the other

side, all the licenses and trainings are estimated to around 40,000 USD (primary licenses =

32,000 USD, other licenses = 3,000 USD, trainings = 5,000 USD) as total per year. There

are included also licenses and trainings for an integrated knowledge base.

When deducting the cost for the licenses and trainings from the savings I expect to achieve,

I should even recognize a positive balance of 23,000 USD every year after implementation

of the tools.

I am not taking into the account the licenses for the current support tools as they are being

owned and used by different agencies and partners in the pool for their other clients.

3 Identifying Obstacles and Bottlenecks 43

Figure 14:

Expected savings after reducing the number of support tools (Source: Author)

3.7 Definition what is and what is not a maintenance
request

Every single project or a task should have a definition of the scope, even it is small or big.

It may be defined as maximum amount of something per unit. The unit can represent in this

context a single project or maintenance request. To replace the term “something”, I can use

as example amount of hours needed for completion of a request limited only for specific web

application, or only group of web pages and functionalities etc.

Within the maintenance process there is a limitation what kind of requests can be processed

and which web applications are under the support, however one of the important piece is

missing and it is time. It represents how many hours the team can spend on a request during

its lifecycle from initiation until deploying or publishing to production environment. In case

I see a request is going to take more than 100 hours, the team does not continue and stop

working on the request and rather discuss with the client to consider it as out of scope request

and include it into a separate, incremental project. What does an incremental project mean?

It has clear scope definition, work estimation for all roles who will participate on the request

and a separate approved budget out of the maintenance budget.

Often there are processed simultaneously few requests which take tens of hours and as there

are limited resources and time they can spend on maintenance, it is slowing down the

progress on decreasing the open requests and react promptly on newly reported issues or

changes. As a result, the trend of open requests looks as follows:

63,000
USD

40,000
USD

+23,000
USD

3 Identifying Obstacles and Bottlenecks 44

Figure 15:

Open / Not Resolved Requests Trend Jul-Sep 2012 (Source: Author)

But the issue is not only with the fact that there is a very slow progress in decreasing the

number of not resolved requests. The bigger problem is that the actual budget spent on

maintenance at the end of 2012 is almost 50% over the plan. This cannot be acceptable in

the next year, not with the results like in the Figure 11 above.

3.7.1 Solution

I have agreed internally and with the client that a request to be considered as a maintenance

request may take up to 8h for its completion. These 8 hours represent time for all team

members who will participate on its resolution including the management team.

I have categorized and identified that around 30 % of the current not yet resolved requests

will consume more than 8h of work for its completion. So 30 % of them which is

approximately 85 requests will be routed as a separate incremental project and will be

excluded from maintenance as it is supposed to be so far (categorization as out of scope

requests).

3 Identifying Obstacles and Bottlenecks 45

For better budget monitoring and controlling, there will be performed an internal review

on the actuals on monthly bases. This should provide the needed visibility on the spending

regularly and take necessary actions when needed in advance.

This should bring several positive outputs:

● The number of maintenance requests will decrease down to around 200 (when

throwing out 30 % of the incremental requests).

● Team will not spend days on focusing on one or two requests, but they will be able

to process more requests with less effort needed.

● Better and transparent budget monitoring and control.

3.8 Lack of Measurements and Reporting

Some of the metrics and reporting are shared with management and clients on weekly bases

however it does not cover all metrics useful and needed to be tracked and measured. Also a

consolidation, revision and a pattern of the reports is needed to be created.

At the moment are measured:

● Total number of reported requests (weekly bases).

● Total number of resolved and closed requests (weekly bases).

● Total number of not resolved requests (weekly bases).

● Total number of reported requests (weekly bases).

● Total number of not resolved requests per status (weekly bases).

● Total number of not resolved requests per project (weekly bases).

Moreover there have not been done any proper evaluation of the maintenance process

and its achievements yet at the end of any year. This is very important to identify and review

the results for every year and make necessary decision when and where needed. Example

of the reports we do at the moment is as follows:

3 Identifying Obstacles and Bottlenecks 46

Not resolved requests trend (number of requests vs. number of weeks in 2012):

Figure 16:

Trend of open incidents and requests in 2012

272
257

277
267

251

281 287

319 325
335

349
335 332

315
331

317

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18

NOT RESOLVED & NOT NEW

3 Identifying Obstacles and Bottlenecks 47

Total number of reported and resolved requests (number of requests vs. number of weeks

in 2012):

Figure 17

Trend of open and total reported incidents and requests in 2012

3.8.1 Solution

I have put together a list and overview of the measures that should be tracked and will need

to be set up. They have been agreed together with internal teams and clients to provide

requested overview on the performance of the maintenance as a whole and teams on weekly

bases. They are separated between weekly measures and annual measures:

● Weekly measures – measure weekly performance and provide an overview of the work

completed in the previous week and work in queue.

● Quarter and annual KPIs – provide an overview on the KPIs.

12291267
13111334

1385
14421479

15301562
1609

1657
17111740177217951829

957
101010341067

1134116111921211123712741308
13761408

14571464
1512

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16 18

TOTAL ISSUES RESOLVED

3 Identifying Obstacles and Bottlenecks 48

Weekly Measures1

● Measure A12: Number of not resolved requests per country and number of requests

where more information is needed from the client (country will be calculated based

on the request reporter).

Goals:

● To see which countries are more active in terms of submitting new requests

and/or which countries are identified with high number of issues.

● To see which country representatives are supposed to provide a feedback and see

a trend in comparison to previous week(s).

● Measure A2: Number of not resolved requests per class of service (total vs. in queue

vs. waiting for client).

Goals:

● To see the number of requests in each of the class of service categories as each

of them represents different importance that needs a separate focus.

● To see the number of requests in queue, so we can identify and track a lack

of resources and take necessary actions if needed.

● To see the number of requests where a client feedback is needed.

● Measure A3: Number of not resolved requests per application and type.

Goals:

● To see and identify the defectiveness of the particular applications.

● To see the proportion of the submitted requests based on the nature of requests

(issue vs. change request vs. end user request).

1 The visual of the reports can be found in the appendix.

2 A1-5 is related to not resolved requests.

3 Identifying Obstacles and Bottlenecks 49

● Measure A4: Number of not resolved requests per application and lead time.

Goals:

● To see how many of not resolved requests already exceeded the planned lead

time and how many of them are still within the planned range per application.

● Measure A5: Number of submitted requests on weekly bases.

Goals:

● To see and track the trend of requests submission.

● To see the trend of request types being submitted.

● Measure B13: Number of work in progress (WIP) per lead time and status.

Goals:

● To see how many of requests have been planned for the current week in each

of the class of service categories.

● To see how many of requests planned for the current week have been already

resolved and the planned lead time has been met or exceeded.

● Measure B2: Number of work in progress (WIP) per status in each of the request

lifecycle.

Goals:

● To see the status in each of the request lifecycle and measure the performance

of the teams (development, QA and deployment).

● Measure B3: Number of work in progress (WIP) per team members.

Goals:

● To see how many of requests are planned for specific team members.

● To see and measure the performance of specific team members.

3 B1-3 is related to work in progress.

3 Identifying Obstacles and Bottlenecks 50

Quarter and annual KPIs

● KPI 1: How many of the requests had met or exceeded the planned lead time per class

of service (in %).

● KPI 2: What is the minimum, maximum and average resolution of the requests

per class of service (in days).

● KPI 3: How many of the requests had met or exceeded the planned lead time

per standard class of service and specific technical teams (in %).

● KPI 4: How many of the requests had been resolved by specific technical teams

(count).

● KPI 5: How many of the requests had been resolved per country (count).

● KPI 6: How many of the requests had been resolved per application (count).

● KPI 7: What is the average of not resolved requests at the end of each month (count).

● KPI 8: What is the proportion of the resolved requests between “change request”,

“issue” and “end user request” (count + %).

4 Process Evaluation and Achievements 51

4 Process Evaluation and Achievements

4.1 Decreasing the Number of not Resolved Requests

Goal: To reduce not resolved requests under 50 within the first three months.

The implementation of the process improvements had started as suggested sometime around

December 2 in 2012 and within the first four months of my execution, the number of not

resolved requests went rapidly down from 285 to 54 in April 1 in 2013.

The initial goal was to get not resolved requests down under 50 within the three months

which was not met as planned, however this result was far more beyond the expectations of

both internal management and the client. It was a great achievement as it took only few

months in comparison to previous years where the number had just been growing.

The critical parts to this result were to categorize the requests based on the scope

of maintenance (in scope vs. out of scope), have the team members available every week

as agreed for 20% of their working time as minimum and of course following the rules

and process policy and be strict with a minimum of exceptions.

To sum it up, the results were classified as successful and bringing satisfaction to everybody.

In July 2013 the number of not resolved requests went historically down to 29 only!

Currently (April 2015) the number increased slightly to an amount of around 60 due to other

obstacles that will be analysed and addressed in a next round of improvements. The process

of ongoing improvements as I can see never ends, and it requires continual process

evaluation and addressing new root causes.

4 Process Evaluation and Achievements 52

Figure 18:

Number of not resolved requests three months after implementing the process improvements (Source: Author)

285

233 228
222 224

202

172

113 109

86 85 82 81 78

64 59 56 54

0

50

100

150

200

250

300

Week
49

Week
50

Week
51

Week
52

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week
10

Week
11

Week
12

Week
13

Week
14

N
u

m
b

er
 o

f
n

o
t

re
so

lv
ed

 r
eq

u
es

ts

Weeks (2.12.2012 - 1.4.2013)

Number of not resolved requests three months after
implementing the process improvements

4 Process Evaluation and Achievements 53

4.2 Retainining Down of not Resolved Requests

Goal: To retain the number of not resolved requests around up to 70 at the end of every

month.

I have put together an overview for the last two years (2013 and 2014) after the process

improvements and the trends can be found on the following slides. In 2013, the average

number of not resolved requests was 63 and in 2014 the number slightly increased to 71.

50 % of these requests are in queue, 25 % are waiting for a client feedback and the last 25 %

are in development, testing or deployment phase.

There is still a scope around 75 % where these numbers can still go even down, but it requires

dealing with another problems which have occurred, but I will not go in more details as it is

not part of this thesis.

In 2013, there was an upward trend which had been caused due to an unexpected staffing

changes within the team and there was not enough capacity to cover the amount of work

as used to in timely manner.

It had been continuing also till 2014 and in March, not resolved requests increased up to 97

as a new critical project went live and many issues occurred.

Based on the initial goal, it had not been met in this case either, however at least the average

is very close to the goal.

Also in this case, new obstacles occurred which affected and slowed down the progress in

reaching the initial target goals.

4 Process Evaluation and Achievements 54

Figure 19:

Not resolved requests at the end of specific month (2013) (Source: Author)

56

52

58
61

55

66
69

76

72

0

10

20

30

40

50

60

70

80

Apr May Jun Jul Aug Sep Oct Nov Dec

N
m

b
er

 o
f

R
eq

u
es

ts
 O

p
en

End of the Month

Not Resolved (Open) Requests at the end of specific month
(2013)

63 is number of an average open
requests trend at the end of each month
in 2013.

50% of these tickets are in RUBY Queue.
25% are waiting for a feedback and other
25% are in development, QA or
deployment phase.

4 Process Evaluation and Achievements 55

Figure 20:

Not resolved requests at the end of specific month (2014) (Source: Author)

75
71

97

79

64

74

58 58

66 65

76

66

0

20

40

60

80

100

120

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

N
m

b
er

 o
f

R
eq

u
es

ts
 O

p
en

End of the Month

Not Resolved (Open) Requests at the end of specific month
(2014)

71 is number of an average open requests trend
at the end of each month in 2014.

50% of these tickets are in RUBY Queue.
25% are waiting for a feedback and other 25%
are in development, QA or deployment phase.

4 Process Evaluation and Achievements 56

4.3 Reducing Resolution Time of the Requests

Goal: To reduce the resolution time.

I have noted in one of the chapters that 49% of the requests were getting resolved in less

than 3 weeks and 51 % in more than 3 weeks. As I have introduced the new classification

based on class of service, I will interpret the results separately for the two most common

classes (99% of the requests) and these are standard and end user request.

In the table below there is a huge resolution time reduction in every measured time frame

every year from 2012. When I take into account the planned lead time for Standard (3 weeks)

and End User Request (2 weeks) and rate the years 2013 and 2014 (in 2012 this classification

had not been measured, therefore I will take the maximum of 3 weeks) according university

grading system it would end up as follows:

2012 – 49% => 4

2013 – Standard (67% => 3), End User Request (77% => 2)

2014 - Standard (78% => 2), End User Request (94% => 1)

Table 9: Percentage of resolved incidents and requests in time

Class of

Service

Less than

24 hours

Less than

1 week

Less than

2 weeks

Less than 3

weeks

More than 3

weeks

More than

8 weeks

2012

All 4% 23% 31% 49% 51% 30%

2013

Standard 22% 45% 59% 67% 33% 17%

End User

Request
31% 64% 77% 81% 19% 6%

2014

Standard 28% 56% 70% 78% 22% 6%

End User

Request
61% 90% 94% 95% 5% 2%

4 Process Evaluation and Achievements 57

This goal was very successful even if there is still a need of improvements to reach at least

90–95% in both of the classes of services at their planned lead time (for End User Request

class of service I can consider also this goal as accomplished).

I have also evaluated how the specific technical teams had been doing while resolving

the client requests in 2014 (I have chosen only Standard class of service as there are still

needed improvements based on the data interpretation in the table above). I will use again

the university grading system and three weeks planned lead time:

● System Administrators (100%) and Interactive Web Developers (97%) = 1

● Java Developers (84%) and Support Leader (86%) = 2

● PHP Developers (71%), .NET Developers (67%) and Database Architects (68%) = 3

● Ruby Developers (41%) = 4

Based on these results, I can clearly see there are some significant obstacles in the Ruby

technical team as they were able to resolve only 41% of the requests as planned. This

is caused due to lack of resources in the team on one side and high workload on the other

side.

System administrators and IW developers were doing very well and there is not much to deal

with. Java developers and support leader were doing also well, but there seems to be some

obstacles and after taking a closer look, the main problems were with complicated

deployment process which takes long time and it caused this slight inefficiency (the

improvement of the deployment process has been however already addressed in April 2014).

PHP, .NET developers and database architects were also not so effective in resolving

the maintenance requests, it was caused due to several factors: lack of resources and

inefficient planning. Some of these have been already addressed, some are still being

working on.

4 Process Evaluation and Achievements 58

Figure 21:

Lead Time per Class of Service (2013) (Source: Author)

77,41%

66,80%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
1

6
6

7
0

7
4

7
8

8
3

8
8

9
7

1
0

1

1
0

9

1
1

3

1
1

9

1
3

7

1
4

6

1
6

3

1
7

1

1
9

8

2
3

9

3
7

2

4
5

7

%
 o

f
R

eq
u

es
ts

 R
es

o
lv

ed

Number of Days

Lead Time per Class of Service (2013)

End User Request

Standard

78% of End User Requests are resolved within the 2 week delivery period.
67% of Standard Class requests are resolved within 3 week delivery period.

31% of End User Request and 22% of Standard Class
requests are resolved within 1 day; 64% and 45%
respectively is solved within the first week.

4 Process Evaluation and Achievements 59

Figure 22:

Lead Time per Class of Service (2014) (Source: Author)

94,40%

77,58%

0%

20%

40%

60%

80%

100%

120%

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 62 65 69 75 80 94 100 107 119 135

%
 o

f
R

eq
u

es
ts

 r
es

o
lv

ed

Number of days

Lead time per Class of Service 2014

End User Request

Standard61% of End User Request and 29% of Standard
Class requests are resolved within 1 day; 90%
and 57% respectively is solved within the first
week.

94% of End User Requests are resolved within the 2 week delivery period.
78% of Standard Class requests are resolved within 3 week delivery period.

4 Process Evaluation and Achievements 60

Figure 23:

Lead Time per Platform & Standard Class of Service (Source: Author)

68,42%

96,55%

84,30%

66,67%

70,59%

41,33%

85,88%

100,00%

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
3

6
5

6
8

7
0

7
5

8
0

8
4

9
6

1
0

5

1
1

4

1
1

9

1
3

2

1
5

5

%
 o

f
R

eq
u

es
ts

 r
es

o
lv

ed

Number of days

Lead Time per Platform & Standard Class of Service

DB

IWD

JAVA

NET

PHP

RUBY

SM

SYS_ADMIN

1. very effective = SYS_ADMIN and IWD
2. effective = SM and JAVA
3. less effective = PHP, DB and NET

4 Process Evaluation and Achievements 61

4.4 Improving Clients Satisfaction

Goals:

● The requests resolution will be more predictable.

● The requests resolution will be faster.

● The new process will improve the maintenance service.

I have collected a feedback from some of the country representatives after three months

of implementing the new process in 2013 and 75% of respondents indicated they agree or

strongly agree that the requests resolution is now more predictable. 67% of respondents

agree that the new process changes improved the maintenance service as a whole and 57%

of respondents agree that the requests resolution is now faster.

When I look closely at these numbers, they do not really look so good than I would expect.

After contacting few of the respondents, they indicated that the maintenance service had

been improved, however they still feel it is not enough. I had tried to get as much details as

possible and had identified the following areas that will require an improvement or change:

● Mantis – the problem with Mantis itself is, that when submitting a new request,

it is being submitted under the project I am currently viewing. It means that if I submit

a new request in a wrong project, it is lost within all the projects and most of the time

only by escalating and providing the specific request ID, the support leader is able to

find it. This leads to disappointing of the client. At the moment a new JIRA tool is

being implementing that should eliminate such cases.

● High workload for Ruby developers – in that time the problem with high workload

for ruby technology had not been addressed yet and the requests resolution for this

particular area was not efficient enough. This was also one of the reasons why

the respondents did not respond as positively as I was expecting. Today, I can say this

obstacle has been addressed and the ruby team performance is high.

However when I look at the trends and results from previous sub-chapters, it is obvious the

overall maintenance service has been significantly increased and generates better results

every year.

4 Process Evaluation and Achievements 62

To the occasion of reaching the historical number of not resolved requests in July 2013

(29 not resolved requests), the team was given the delicious cake as a gift below, which can

be considered as a kind of the client satisfaction with the current maintenance service.

Figure 24:

A gift for the achievements in July 2013

(Source: Author)

4 Process Evaluation and Achievements 63

4.5 Evaluation of KPIs

Table 10: Evaluation of KPIs

ID KPI 2013 2014

#1 How many of the requests had met or exce-

eded the planned lead time per class of ser-

vice (in %).

 End User Requests

 Met (77%)

 Exceeded (23%)

 Standard

 Met (67%)

 Exceeded (33%)

 Expedite

 Met (76%)

 Exceeded (24%)

 Fixed Date Delivery

 Met (91%)

 Exceeded (9%)

 End User Requests

 Met (94%)

 Exceeded (6%)

 Standard

 Met (78%)

 Exceeded (22%)

 Expedite

 Met (96%)

 Exceeded (4%)

 Fixed Date Delivery

 Met (100%)

 Exceeded (0%)

#2 What is the minimum, maximum and

average resolution of the requests per class

of service (in days).

 End User Requests

 Min (1 day)

 End User Requests

 Min (1 day)

4 Process Evaluation and Achievements 64

ID KPI 2013 2014

 Max (190 days)

 Average (14 days)

 Standard

 Min (1 day)

 Max (588 days)

 Average (31 days)

 Expedite

 Min (1 day)

 Max (69 days)

 Average (8 day)

 Max (108 days)

 Average (5 days)

 Standard

 Min (1 day)

 Max (155 days)

 Average (21 days)

 Expedite

 Min (1 day)

 Max (14 days)

 Average (1 day)

#3 How many of the requests had met or exce-

eded the planned lead time per standard

class of service and specific technical teams

(in %).

This measure has been tracked since 2014. Database Architects

 Met (68%)

 Exceeded (32%)

 Interactive Developers

 Met (97%)

 Exceeded (3%)

 Java Developers

 Met (84%)

 Exceeded (16%)

4 Process Evaluation and Achievements 65

ID KPI 2013 2014

 .NET Developers

 Met (68%)

 Exceeded (32%)

 Ruby Developers

 Met (41%)

 Exceeded (59%)

 Support Leader

 Met (86%)

 Exceeded (14%)

 System Administrators

 Met (100%)

 Exceeded (0%)

#4 How many of the requests had been resol-

ved by specific technical teams (count).

This measure has been tracked since 2014. Database Architects (152)

 Interactive Developers (67)

 Java Developers (253)

 .NET Developers (21)

 Ruby Developers (91)

 Support Leader (579)

4 Process Evaluation and Achievements 66

ID KPI 2013 2014

 System Administrators (17)

#5 How many of the requests had been resol-

ved per country (count).

 Benelux (124)

 Czech Republic (38)

 England (117)

 France (164)

 Germany (79)

 Italy (53)

 Nordics (73)

 Poland (13)

 Russia (3)

 South Africa (23)

 Spain (34)

 Switzerland (42)

 Other (219)

 Benelux (127)

 Czech Republic (21)

 England (171)

 France (157)

 Germany (121)

 Italy (34)

 Nordics (120)

 Poland (20)

 Russia (64)

 South Africa (37)

 Spain (44)

 Switzerland (21)

 Other (216)

#6 How many of the requests had been resol-

ved per application (count).

 Application C (0)

 Application A (531)

 Application B (123)

 Application D (0)

 Application C (38)

 Application A (413)

 Application B (62)

 Application D (57)

4 Process Evaluation and Achievements 67

ID KPI 2013 2014

 Application G (56)

 Application F (164)

 Application E (204)

 Application H (40)

 Application I (32)

 Application G (128)

 Application F (116)

 Application E (329)

 Application H (27)

 Application I (50)

#7 What is the average of not resolved requ-

ests at the end of each month (count).

This measure has been tracked since 2014. January (75)

 February (71)

 March (97)

 April (79)

 May (64)

 June (74)

 July (58)

 August (58)

 September (66)

 October (65)

 November (76)

 December (66)

4 Process Evaluation and Achievements 68

ID KPI 2013 2014

#8 What is the proportion of the resolved requ-

ests between “change request”, “issue” and

“end user request” (count + %).

This measure has been tracked since 2014. Change Requests (593 = 49%)

 Issues (218 = 18%)

 End User Requests (407 = 33%)

5 Conclusion 69

5 Conclusion
To summarize the research and gained achievements from implementing the suggested

maintenance process improvements, the expected results and goals have not been reached

in that range as initially expected. One of the reason was that some of the key factors had

not been considered:

● The changes will take some time until they are implemented globally and accepted

by all the parties.

● Newly formed and unexpected system constraints and bottlenecks during the process

of implementation and executing.

However when taking into account the mentioned constraints above, I can say, there have

been a lot of improvements and step ahead from the old process to the new version

and I evaluate the results as very successful.

I was able to reduce not resolved client requests with the team by more than 80% from

285 to 54 within three and half of a month and at the end of July 2013, even to 29 which was

a historical number. Next months till the end of 2014 the number fluctuated and an average

of open requests was 63 in 2013 and 71 in 2014. Upon closer examination, around 50% of

these requests had been in queue due to other system bottlenecks that occurred in the

meantime, 25% had been waiting for a client feedback (still within the agreed two weeks

period) and 25% had been in progress (either development, testing or deployment phase).

Very interesting results have been achieved with reducing the lead time of the client requests.

Before the process changes only 4% of the requests were resolved within 24 hours, 49%

within three weeks and 30% in more than 2 months. After process improvements

and introducing the Kanban mechanism “Class of Service”, in 2013, 22% of the Standard

and 31% End User requests were resolved within 24 hours, 67% of the Standard and 81% of

the End User requests were resolved within three weeks and 17% of Standard and 6% of

End User requests in more than 2 months. Following by 2014, 28% of the Standard and 61%

End User requests were resolved within 24 hours, 78% of the Standard and 95% of the End

User requests were resolved within three weeks and 6% of Standard and 2% of End User

requests in more than 2 months. There is a significant annual lead time reduction in all the

periods and a great potential it will continue the following months and years.

5 Conclusion 70

I analyzed all the requests with lead time more than three weeks for Standard Class of Service

and have discovered that 41% of the requests had been exceeded due to another system

constraint and bottleneck within the team which has been addressed already a couple

of months.

From the clients´ perspective, the overall satisfaction has been very positive and over the

expectations from the headquarters. Though only 75% of the country representatives had

agreed that the prediction of requests resolution is now more accurate, 67% had agreed the

process changes improved the overall maintenance service and 57% agreed that the requests

are getting resolved faster, which is mainly due to new bottleneck and constraint within the

system which needs to be evaluated and addressed again.

 Here I can see that the POOGI is a never ending process that requires ongoing evaluation

of the process and addressing new obstacles present within the system.

5 Conclusion 71

Appendix

Weekly Reports

Figure 15 – Represents number of not resolved requests per country (total vs. requests where

more details are needed from the client).

Figure 16 – Represents number of not resolved requests per class of service (total vs. requests

where more details are needed from the client vs. requests in queue).

Figure 17 – Represents number of not resolved requests per application and type (issue

vs. change request vs. end user request).

Figure 18 – Represents number of not resolved requests per application and lead time (total

vs. agreed lead time has been met vs. exceeded).

Figure 19 – Represents number of work in progress per class of service and lead time

(resolved vs. in progress).

Figure 20 – Represents number of work in progress per status (in progress vs. not started

vs. completed).

Figure 21 – Represents number of requests reported on weekly bases (total vs. issues

vs. change requests vs. end users requests)

5 Conclusion 72

Figure 25:

Weekly Reports - Number of Open Requests per Country (Measure A1) (Source: Author)

5 Conclusion 73

Figure 26:

Weekly Reports - Number of Open Requests per Class of Service (Measure A2) (Source: Author)

5 Conclusion 74

Figure 27:

Weekly Reports - Number of Open Requests per Application and Type (Measure A3) (Source: Author)

5 Conclusion 75

Figure 28:

Weekly Reports - Number of Open Requests per Application and Lead Time (Measure A4) (Source: Author)

5 Conclusion 76

Figure 29:

 Weekly Reports - New Requests Trend (Measure A5) (Source: Author)

5 Conclusion 77

Figure 30:

Weekly Reports - Work in Progress per Class of Service and Lead Time (Measure B1) (Source: Author)

5 Conclusion 78

Figure 31:

Weekly Reports - Work in Progress per Status (Measure B2) (Source: Author

 79

Bibliography
[1] Ricketts, John Arthur. Reaching the Goal: How Managers Improve a Servicesbusiness

Using Goldratt’s Theory of Constraints. [S.l.]: Ibm Press, 2007.

[2] Anderson, David J. Lessons in Agile Management: On the Road to Kanban. Sequim,

WA: Blue Hole Pr., 2012.

[3] The Quotations Page: Quote from W. Edwards Deming. The Quotations Page.

[online]. 2015 [cit. 2015-02-09]. Available at:

http://www.quotationspage.com/quote/5154.html.

[4] RedDot CMS (now OpenText Web Site Management). CMS MATRIX. CMS Matrix

[online]. 2015 [cit. 2015-04-06]. Available at: http://www.cmsmatrix.org/matrix/cms-

matrix/reddot-cms-now-opentext-web-site-management-

[5] Planning the Development, Testing, Staging, and Production Environments.

MICROSOFT. MSDN [online]. 2015 [cit. 2015-04-06]. Available at:

https://msdn.microsoft.com/en-us/library/cc296714%28v=bts.10%29.aspx

[6] The Five Focusing Steps (POOGI). THEORY OF CONSTRAINTS INSTITUTE.

Theory of Constraints [online]. 2014 [cit. 2015-04-06]. Available at:

http://www.tocinstitute.org/five-focusing-steps.html

[7] Service Level Agreement. KNOWLEDGE TRANSFER. Knowledge Transfer

[online]. 2008 [cit. 2015-04-20]. Available at:

http://www.knowledgetransfer.net/dictionary/ITIL/en/Service_Level_Agreement.htm

[8] WALLEN, Jack. Review: Mantis Bug Tracker (MantisBT). CBS INTERACTIVE.

Tech Republic [online]. 2009-08-20 [cit. 2015-04-20]. Available at:

http://www.techrepublic.com/blog/product-spotlight/review-mantis-bug-tracker-

mantisbt/

[9] Web Application Maintenance. ITISL TECHNOLOGIES. ITISL [online]. 2010 [cit.

2015-04-20]. Available at: http://www.itisl.com/maingroup/servwebappmnt.aspx

[10] Content management system (CMS). ROUSE, Margaret a Klaus SVARRE.

TECHTARGET. TechTarget [online]. 2011-01-01 [cit. 2015-04-20]. Available at:

http://searchsoa.techtarget.com/definition/content-management-system

https://msdn.microsoft.com/en-us/library/cc296714%28v=bts.10%29.aspx
http://www.tocinstitute.org/five-focusing-steps.html
http://www.knowledgetransfer.net/dictionary/ITIL/en/Service_Level_Agreement.htm
http://www.itisl.com/maingroup/servwebappmnt.aspx

 80

[11] Learning management system (LMS). ROUSE, Margaret. TECHTARGET.

TechTarget [online]. 2005-09-01 [cit. 2015-04-20]. Available at:

http://searchcio.techtarget.com/definition/learning-management-system

[12] Build. JANALTA INTERACTIVE INC. TechoPedia [online]. 2015 [cit. 2015-04-20].

Available at: http://www.techopedia.com/definition/3759/build

[13] STEVENS, DENNIS. KANBAN: WHAT ARE CLASSES OF SERVICE AND WHY

SHOULD YOU CARE?. DENNIS STEVENS [online]. 2009 [cit. 2015-04-20].

Available at: http://www.dennisstevens.com/2010/06/14/kanban-what-are-classes-of-

service-and-why-should-you-care/

[14] Scrum. MOUNTAIN GOAT SOFTWARE. Mountain Goat Software [online]. 2015

[cit. 2015-04-20]. Available at: http://www.mountaingoatsoftware.com/agile/scrum

http://searchcio.techtarget.com/definition/learning-management-system
http://www.techopedia.com/definition/3759/build
http://www.dennisstevens.com/2010/06/14/kanban-what-are-classes-of-service-and-why-should-you-care/
http://www.dennisstevens.com/2010/06/14/kanban-what-are-classes-of-service-and-why-should-you-care/
http://www.mountaingoatsoftware.com/agile/scrum

 81

List of Figures and Tables

List of Figures

Figure 1: ... 7
Figure 2: ... 8
Figure 3: ... 10
Figure 4: ... 14
Figure 5: ... 16
Figure 6: ... 18
Figure 7: ... 19
Figure 8: ... 25
Figure 9: ... 34
Figure 10: ... 36
Figure 11: ... 38
Figure 12: ... 39
Figure 13: ... 40
Figure 14: ... 43
Figure 15: ... 44
Figure 16: ... 46
Figure 17 .. 47
Figure 18: ... 52
Figure 19: ... 54
Figure 20: ... 55
Figure 21: ... 58
Figure 22: ... 59
Figure 23: ... 60
Figure 24: ... 62
Figure 25: ... 72
Figure 26: ... 73
Figure 27: ... 74
Figure 28: ... 75
Figure 29: ... 76
Figure 30: ... 77
Figure 31: ... 78

List of Tables

Table 1: List of Class of Service .. 22
Table 2: List of Priorities .. 23
Table 3: List of Severities ... 23
Table 4: List of Country Values .. 24
Table 5: List of Lead Time Values ... 24
Table 6: Example of the client weekly plan (Source: Author) ... 30
Table 7: Example of the team weekly plan (Source: Author) ... 31
Table 8: Action steps (Source: Author) .. 32

 82

Table 9: Percentage of resolved incidents and requests in time 56
Table 10: Evaluation of KPIs ... 63

