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Abstract

In this thesis the heterogeneity of regional real estate prices in United States is in-

vestigated. A high dimensional VAR model with additional exogenous predictors,

originally introduced by Fan, Lv, et al. (2011), is adopted. In this framework, the

common factor in regional house prices dynamics is explained by exogenous pre-

dictors and the spatial dependencies are captured by lagged house prices in other

regions. For the purpose of estimation and variable selection under high-dimensional

setting the concept of Penalized Least Squares (PLS) with different penalty functions

(e.g. LASSO penalty) is studied in detail and implemented. Moreover, clustering

methods are employed to identify subsets of statistical regions with similar house

prices dynamics. It is demonstrated that these clusters are well geographically de-

fined and contribute to a better interpretation of the VAR model. Next, we make use

of the LASSO variable selection property in order to construct the impulse response

functions and to simulate the prices behavior when a shock occurs. And last but

not least, one-period-ahead forecasts from VAR model are compared to those from

the Diffusion Index Factor Model by Stock and Watson (2002), a commonly used

model for forecasts.

Keywords: regional house prices, penalized least squares, LASSO, VAR model,

hierarchical clustering, impulse response analysis

Abstrakt

V této diplomové práci jsou prozkoumány závislosti mezi regionálńımi cenami nemovi-

tost́ı ve Spojených státech amerických. K tomuto účelu je implementován VAR

(Vector Autoregressive) model navržený Fanem a kol. (2011). V tomto konceptu

jsou ceny v daných regionech modelovány pomoćı zpožděných cen v ostatńıch re-

gionech. Protože model obsahuje velké množstv́ı vysvětluj́ıćıch proměnných, nelze

použ́ıt tradičńı metody odhadu (např. MNČ). Odhad a zároveň výběr relevantńıch

proměnných je tedy proveden pomoćı metody penalizovaných nejmenš́ıch čtverc̊u

(PLS) s penalizačńı funkćı LASSO. V teoretické části je představen koncept PLS

a jeho varianty, v praktické části je proveden odhad a interpretace VAR modelu

a odhad DIF modelu (Stock a Watson (2002)), který je jedńım ze zástupc̊u fak-

torových model̊u použ́ıvaných pro předpovědi. Pro lepš́ı uchopeńı výsledk̊u odhadu

jsou pomoćı hierarchického shlukováńı identifikovány shluky region̊u, kde se ceny

pohybuj́ı podobným zp̊usobem. Výsledné shluky lze velmi dobře interpretovat z ge-

ografického hlediska. Protože PLS s penalizačńı funkćı LASSO pokládá nevýznamné

proměnné rovny nule, jsou implementovány i funkce odezvy ke sledováńı pohybu

potenciálńıho šoku systémem. Nakonec je provedeno srovnáńı předpověd́ı z obou

model̊u a vyhodnocena jejich přesnost.

Kĺıčová slova: regionálńı ceny nemovitost́ı, penalizované nejmenš́ı čtverce, LASSO,

VAR model, shluková analýza, funkce odezvy
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1 INTRODUCTION

1 Introduction

Real estate market is widely recognized as a very important one due to its size and impact

on the state of economy. According to US Census, in 2011 the equity in real estates

composed more than 28.3% of all assets owned by an ordinary US household. Moreover,

mortgages represent an important component of the financial intermediaries portfolios

(Tsatsaronis and Zhu (2004)). The overall outstanding mortgage debt in US according

to Board of Governors of the Federal Reserve System, was enormous 13.4 trillion dollars

at the beginning of 2015, which more than anything else documents the size of the real

estate and mortgage market.

It is a well known fact that the recent global economic crisis evolved from the subprime

mortgage crisis in the US house market. New financial instruments, such as mortgage-

backed securities (MBS), experienced a great boom in the years preceding the crisis.

They were sophisticated but highly non-transparent and the credit risk connected to

the mortgage collateral was severely underestimated. Consequently the US market was

flooded by low-quality (subprime) mortgages and the house prices began to grow above

fundamentals. The house price bubble bursted in the mid-2006, which led to massive

defaults and eventually to a global financial distress.

This example demonstrates that even major events in the financial world can be closely

connected to the house market. Understanding the behaviour and dynamics of house

prices and their role in the globalized financial world then seems to be a key challenge the

academic researchers should cope with. In recent years there has been a lot of research

in this field, see section 2.

This paper focuses on the spatial aspect of the house price dynamics in the United

States. In almost 400 statistical regions the house price dynamics is highly heterogeneous.

In some states or metropolitan areas the peak before the bubble burst is extremely high

and other remain stable for the entire observation period. To gain an insight into the

regional characteristics, we make use of hierarchical clustering algorithms to form clusters

of statistical areas with similar house prices dynamics. See section 5.3 for figures.

Besides the heterogeneity we would expect a high spatial dependence among regions.

The capitol of Michigan and a major industrial center, Detroit, recently became infamous

for being the biggest city in US to ever experienced a bankruptcy. The failure of public

services resulted in a massive departure of inhabitants and a substantial drop of house

prices. In the mid 2013 Detroit was auctioning old houses for few hundreds dollars

(Hackman (2013)). It is very rational to expect that such an anomaly in the house

market in particular region is likely to affect (either positively or negatively) house prices

in neighbouring regions or regions with a strong economic connection to this region.

In order to examine the spatial characteristics, the Vector Autoregressive Model (VAR)
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2 HOUSE PRICES LITERATURE REVIEW

with additional exogenous variables, as proposed by Fan, Lv, et al. (2011), is employed.

Lagged house prices in other regions serve as explanatory variables whereas exogenous

variables capture the common factor. The problem is set into the high-dimensional frame-

work because statistical indicators of house prices growth are being assembled for several

hundreds of regions while we can only hope for 100 observations (in case of quarterly data).

For the purpose of estimation and variable selection we adopt the concept of Penalized

Least Squares (PLS). The main task of this paper is to study the results thoroughly and

to uncover possibly interesting patterns.

In terms of predictions in the high-dimensional framework, various types of factor

models are commonly used, e.g. the diffusion index factor model by Stock and Wat-

son (2002). Our final task is thus to compare forecasts from our VAR model with those

from the factor model and determine whether they could be useful to some extent.

2 House prices literature review

The Global Financial Crisis 2007 – 2008 also triggered a boom in the academic field.

A huge amount of papers is produced every year to study different aspects of the crisis.

Due to its unpredictability and complexity it became a true phenomenon. Thus, not

surprisingly, a significant fraction of published papers is dedicated to house prices issues.

Some study the subprime mortgage crisis, others attempt to identify the house price

determinants. There has been a lot of research in the years preceding the crisis, though.

For instance, Leamer (2007) collects a powerful evidence that house prices are strongly

connected to the business cycle. He further stresses that a weakness in housing sector and

in residential investments is very likely to contribute to recessions. Poterba et al. (1991)

study the role of the demographic (age) structure of US population on house price dy-

namics and find out this link does not hold across regions. Iacoviello and Neri (2008)

employ a dynamic stochastic equilibrium model (DSGE) to study the housing market.

Their aim is to study the shocks that hit the residential investments and the house prices.

Afterwards they examine their impact on the wider economy. To determine what drives

the house prices, Tsatsaronis and Zhu (2004) use a structural VAR model on macroe-

conomic variables and mortgage finance indicators such as GDP, income and interest

rates. Gallin (2006) tries to verify the assumption that there exist a long-run relationship

between house prices and fundamentals such as income, population and user cost. He

founds only a little evidence of cointegration. Goetzmann et al. (2012) react to the recent

crisis and argue that expectations based on econometric models tend to underestimate

the probability of a rapid price decrease and could have contribute to the asset prices

bubble.

In the paper by Y. Li and Leatham (2010) the Large-scale Bayesian Vector Autore-
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3 MODELS

gressive (LBVAR) and Dynamic Factor Model (DFM) are applied to obtain regional US

house prices forecasts. Fan, Lv, et al. (2011) demonstrated that when the spatial depen-

dencies between regional house prices are taken into account, predictive accuracy of DFM

or VAR models can be improved significantly. Their VAR model is set into a high dimen-

sional framework estimated by modern variable selection techniques. These and a few

other papers provided a strong incentive for us to study the house prices, in particular in

US where the spatial heterogeneity is present.

3 Models

The basic OLS regression model

y = Xβ + ε, (1)

is based on such generating process that for fixed predictors matrix X, fixed vector of

true parameters β and stochastic error term ε different values of response variable y are

generated. Given that X and β is fixed, y has the same covariance structure as ε. Im-

posing Gauss-Markov assumptions (see for example Davidson and MacKinnon (1999)) on

the error term ensures that the OLS estimator is BLUE (Best Linear Unbiased Estima-

tor) and the observations of y have constant and finite variance and are not mutually

correlated. However, due to the spatial nature of some data (for instance biological or

geographical data) causes significant correlation in realizations of a spatially distributed

random variable. Anselin and Bera (1998) define the spatial autocorrelation as a coinci-

dence of value similarity with locational similarity. In other words, high or low values for

a random variable tend to cluster in space. We can immediately see the problem: if we

draw a sample of locations from a spatially autocorrelated random process and do not

have panel data, then effectively we have a sample size of one for each location.

3.1 Spatial econometrics approach

In order to model the spatial dependence, a wide range of methods has been developed.

The Spatial Autoregressive Model (SAR), studied in detail for instance by Anselin (1980),

is frequently used in econometric analyses. Several possible representations of a gen-

eral SAR model are described by LeSage (1999) or Kissling and Carl (2008). A mixed

regressive-spatial autoregressive model which implies that the levels of response variable

y depend on y in the neighbouring regions, has the following form:

y = ρWy +Xβ + ε, ε ∼ N(0, σ2), (2)
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3 MODELS

where y is a n × 1 vector of cross-sectional dependent variables. X represents a n ×m
matrix of m original predictors. Error term ε usually comes from a normal distribution

with variance σ2. ρ and β are standard 1 × 1 and m × 1 vectors of (auto)regressive

coefficients. SAR model representation in (2) assumes that the autoregressive process

occurs only in the response variable y. For further discussion on different models, e.g.

the model with an autoregressive process in the error term, see Kissling and Carl (2008)

or LeSage (1999).

Another important element, n×n weight matrix W , captures the spatial structure of

the cross-sectionally dependent variable y. Depending on the context, W can be defined

in various ways. Generally, element wij represents a measure of the distance between

locations i and j. The neighbourhood structure can be identified by an adjacency grid

or Euclidean distance. In the geographical context, it might be convenient to take the

Earth surface curvature into account. For this purpose the haversine formula can be used.

Naturally, matrix W has zeros on the main diagonal. The main purpose of ρWY term is

to capture the spatial dependence in the observations of the response variable.

Apart from the cross-sectional dimension, economic data usually vary in time. There-

fore our problem can be set into the panel data framework. According to Viton (2010),

most such models assume balanced panels and adopt a time-invariant unobserved com-

ponent. Thus for the SAR model we have:

yit = ρ

n∑
j=1

wijyjt + αi + βixt + uit, i = 1, . . . , n, (3)

where αi is time-invariant intercept component, xit is an element of T × m matrix X

of predictors which does not contain constant term, wij is an element of weight matrix

W , ρ and βi represent regression coefficients and uit is an idiosyncratic error term. This

model is known as a fixed effects model.

3.2 Vector autoregressive approach

Fan, Lv, et al. (2011) employ a different approach to obtain more precise predictions of

house prices in US. They propose the following simple benchmark model:

yt = βxt + ut (4)

where yt = (y1,t, . . . , yn,t)
′ is the n-dimensional response variable of house prices,

β represents n×m coefficient matrix for corresponding fixed m× 1 vector of exogenous

predictors xt (a t-th column of T × m matrix X of exogenous predictors) and finally

ut = (u1,t, . . . , un,t)
′ is an n-dimensional white noise innovation process. To account for
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3 MODELS

spatial dependencies they employ a high-dimensional VAR(1) with additional exogenous

predictors. Thus (4) becomes a VAR(p) that has the following form:

yi,t =

n∑
j=1

aij1 yj,t−1 + · · ·+
n∑
j=1

aijp yj,t−p + βixt + ui,t, i = 1, . . . , n.

Rewriting in the matrix form (using notation from Lütkepohl (2005) and (4)) we have

yt = A1yt−1 + · · ·+Apyt−p + βxt + ut. (5)

where terms Ak(aijk ), k = 1, . . . , p are fixed structural n×n coefficient matrices and other

terms are as above. Macroeconomic variables with different lags are aggregated in only

one matrix of predictors to distinguish exogenous factors from those that are generated

by the model.

Unlike the spatial econometrics approach, no weight matrix is incorporated and the

term ρW is replaced by coefficient matrix A1 (in the VAR(1) case). Thus the ’weights’

are obtained directly by estimation and do not necessary reflect the spatial structure

represented by W that we assume the observations have. In (3), ρ is a single parameter

assigned to n explanatory variables that represent house prices in other regions. Through

parameter ρ weighted by W the response variable (house price measure in i-th region) is

generated. However, matrices Ak(aijk ), k = 1, . . . , p then contain pn2 parameters to esti-

mate. Since data for hundreds of US statistical areas are available and the dimensionality

of a VAR model increases quadratically, the issue of high dimensionality may arise very

easily. The length of economic time series is usually highly limited and thus the number of

parameters to be estimated can easily exceed the number of observations, i.e. n+m > T

for every singe equation in (5). It can been shown that the simple OLS estimator cannot

be used since the analytical solution does not exist: In β̂ = (XTX)−1XT y the XTX

term becomes a n + m × n + m singular matrix of rank at most equal to T and hence

the inverse (XTX)−1 does not exist. Fortunately there has been a major progress in the

field of high-dimensionality in recent years a many relevant techniques to estimate and

perform the variable selection simultaneously were introduced.

Forecasting house prices locally is important because price dynamics over regions with

different economic or demographic profile behaves quite differently (see section 5.1). Al-

though significant predicting power of many key macroeconomic variables such as income

or GDP has already been proven, (lagged) house prices in regions that are close either in

economic or geographic sense, may play a great role in evaluating levels of house prices in

particular region . For instance national level of disposable income may capture a com-

mon trend in house prices growth in New York but at the same time it makes a good sense

to test whether recent steep growth of real estate prices in Boston, which is in financial

sense strongly connected to New York, is likely to affect the local house market.
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3 MODELS

Here we would like to emphasize that predictors, such as aforementioned GDP or

income are assumed to be exogenous which is rather a strong assumption. To declare

that the GDP or even interest rates should not be generated by a macroeconomic model

along with house prices would be audacious and in contradiction with the discussion

above. Nevertheless we are primarily interested in the spatial aspect and forecasts. For

this purpose, it is convenient to filter the common factor out. Otherwise some kind of

DSGE model could be employed.

Thus, unlike (3), VAR(p) model described by Fan, Lv, et al. (2011) models the cross-

sectional correlation explicitly and does not impose an assumption that the correlation

structure is represented by the distance matrix. This feature allows us to interpret results

or to identify potentially interesting patters. For instance we may expect that suburb

areas are sensitive to price changes in metropolitan areas but not the other way round.

In the previous paragraphs we expressed some reasons why we stick to the VAR(p)

model. We make use of modern techniques of estimation from the Penalized Least Squares

(PLS) family, namely the least absolute shrinkage and selection operator (LASSO) pro-

posed by Tibshirani (1996). See section 4 for details.

3.3 Factor models

Least but not least, a wide variety of factor models was developed exclusively for the

purpose of forecasting.

In the developed economies, thousands of macro-economic time series are accessi-

ble. However, models that are currently used in economical forecasting cannot contain

hundreds of explanatory variables. One possibility is to perform a variable selection,

as described in the previous chapter, but then the out-of-sample performance rests ulti-

mately on the small subset of selected variables (Stock and Watson (2002)). Nevertheless,

macrovariables are usually strongly correlated and can be replaced by a small number of

factors that explain almost all variability within the predictors. Thus, if we are interested

in forecasting, factor models should be considered as a reasonable choice. These factors

can be obtained in various ways. In the paper by Jungbacker and Koopman (2008), the

factors are treated as unobservable. Thus, the resulting model has a state space repre-

sentation and the signal extraction and likelihood evaluation are provided by the Kalman

filter. This model is commonly referred to as the Dynamic Factor Model (DFM). Alterna-

tively, Stock and Watson (2002) propose the Diffusion Index Factor Model (DIF). In this

framework, a two step estimation procedure is employed. First, the factors are obtained

via the principal component analysis. Second, their loadings are estimated by regressing

the response variable on estimated factors and response variable lags. The diffusion index

factor model set into our panel data framework has the following form:

6



4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

yt = φ1yt−1 + · · ·+ φpyt−p + ψ1ft−1 + · · ·+ ψqft−q + ut. (6)

Fixed n×n matrices φ1, . . . , φp are assumed to be diagonal. The n×k matrices ψ1, . . . , ψq,

where k stands for the number of factors, contain factor loadings. And finally, yt and

ft represent the n×1 vector of response variables (house price measures for n regions) and

k× 1 vector of factors respectively. Thus every equation contains only p+ qk parameters.

The estimation can be easily carried out by OLS. Forecasts based on this model are used

as a benchmark to evaluate forecasting performance of (5).

4 Estimation within the high-dimensional setting

High dimensionality poses many challenges for theoretical research as well as for appli-

cations. It arises not exclusively in economics and finance but also in sciences such as

biology or ecology. High dimensional modelling refers to models with p >> n, i.e. where

the number of parameters (p) significantly exceeds the number of observations (n)1. The-

oretical aspects, like different types of asymptotics cannot be neglected2 (see for example

Bühlmann and Van De Geer (2011) or Belloni et al. (2011)).

A large amount of explanatory variables is usually taken into account in the initial

stage of modelling. Econometricians are interested in the variable selection – to point out

the variables with the strongest explanatory power and exclude the rest from the model.

A stepwise procedure, either backward stepwise elimination or forward selection, seems

to be the most natural way; the variable with the lowest absolute t-value is excluded from

the model in each step or included in the model respectively. This approach, however,

suffers from lack of objectivity and exhibits somewhat not ’nice’ theoretical properties

(Fan and R. Li (1999)). Moreover, backward elimination is not applicable when n < p.

The best subset selection has such advantage that it considers every subset of variables

and simply picks the best one in terms of some criteria. However, the number of models

to be estimated grows non-polynomially as more variables are taken into account. Thus

in many cases the complete set description is computationally infeasible. Next, modern

techniques of variable selection such the Penalized Least Squares (PLS) and others were

developed. In this paper, we focus exclusively on the PLS family.

4.1 Penalized Least Squares

If we consider the canonical regression model (1), the PLS optimization problem is defined

as follows:

1Note the change in notation compared to the previous section
2Relatively high dimensionality refers to an asymptotic framework, where the growth of p is of a

smaller order of the sample size n (i.e. p = o(n)). If p grows polynomially with n (i.e. p = O(nα) for

some α > 0) we refer to a ultra high dimensionality.
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4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

min
β∈Rp

(
1

2n
||y −Xβ||22 +

p∑
i=1

pλ(|βi|)

)
(7)

where ||·||2 denotes the L2 norm, i.e. ||y−Xβ||22 =
∑n
i=1(yi−Xiβ)2 is the OLS term and pλ

is a penalty function identified by the regularization parameter λ ≥ 0. The purpose of the

non-decreasing penalty function pλ is to assign a certain penalty to non-zero parameters.

Thus, every increase in the value of a particular estimate βj leads to an increase in value

of the penalty function. An algorithm designed to solve a PLS minimization problem

must seek balance between the goodness of fit and the size of the penalty. An additional

variable included in the model may provide a better solution since the goodness of fit

improvement (OLS term ||y −Xβ̂||22) outweighs the increase of the penalty. Similarly, a

different explanatory variable that explains only a little variance of the response variable,

may not be included in the model since it is simply not worth it. Thus the estimation of

parameters and variable selection is carried out simultaneously. One must bear in mind

that in general PLS does not set non-relevant variables to zero. However penalty function

can be specified in such way that this property holds (see the PLS properties description

in this chapter). For the case of orthogonal design matrix X3 we have XTX = nIp and

the ordinary least squares estimator reduces to β̂ = n−1XT y. Fan and R. Li (2005) argue

that imposing this restriction leads to:

min
β∈Rp

(
1

2n
||y −Xβ̂||22 +

1

2
||β̂ − β||22 +

p∑
i=1

pλ(|βi|)

)
. (8)

Clearly we can drop the first term since it does not contain β and (8) can be reduced to

the following PLS minimization problem:

min
β∈Rp

(
1

2
||z − β||22 + pλ(|β|)

)
(9)

where z = (XTX)−1XT y = n−1XT y is the OLS estimator. Fan and R. Li (1999)

further argue that (9) is equivalent to the following univariate componentwise optimization

problem.

min
βj∈R

(
1

2
(zj − βj)2 + pλj

(|βj |)
)
, for j = 1, . . . , p.

where βj and zj is the j-th component of β and z respectively. This form is very convenient

because one can look at each βj separately. We suppress the subscript j and let

Q(β) =
1

2
(z − β)2 + pλ(|β|).

3Orthogonal matrix is a square matrix whose columns and rows are orthogonal unit vectors. Orthog-

onal vectors are perpendicular to each other.
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4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

The first derivative of Q(β) (see for example Fan and R. Li (2005)) is

Q′(β) = β − z + p′λ(|β|)sgn(β) = sgn(β)(|β|+ p′λ(|β|))− z, (10)

where sgn() represents the signum function and p′λ is the first derivative of pλ. According

to Antoniadis and Fan (2011), the PLS estimator in (9) may yield the following properties

(defined in terms of the derivative (10)):

1. sparsity if minβ 6=0[|β|+ p′λ(|β|)] > 0. In this case estimated coefficients in absolute

value smaller than a certain threshold are set to zero. This is a key feature in

the high dimensional framework because complexity of the original model must be

reduced. If |z| < minβ 6=0[|β|+p′λ(|β|)], the derivative (10) is positive for all positive

βs and negative for all negative βs (see figure 1). Consequently the PLS estimator

β̂ = 0 because argminβ sgn(β)(|β|+ p′λ(|β|))− z = 0. If |z| > minβ 6=0[|β|+ p′λ(|β|)],
two crossings (solutions) exist and the larger one represents the desired non-zero

PLS estimator.

Figure 1: A plot of β+ p′λ(|β|) against β ≥ 0. Source: Fan and

R. Li (2001).

2. approximate unbiasedness if p′λ(|β|) = 0 for large |β|, in which case the resulting

estimator is nearly unbiased, especially when the true coefficient β is large, to reduce

model bias (see for example Zhang and Huang (2008) or Fan and R. Li (2001)). The

above mentioned condition effectively means that the penalty assigned to large βs is

directly proportional to |β|. Consequently, β̂ = z and the estimator is approximately

unbiased.

3. continuity if and only if argminβ [|β| + p′λ(|β|)] = 0, i.e. the penalty function must

be continuous in data. This property helps to maintain prediction stability of the

model. The above mentioned sparsity condition implies the continuity property.

4. oracle property when the estimator asymptotically identifies the true subset of vari-

ables. Let A = {j : βj 6= 0} be the true subset of predictors and assume that

9



4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

|A| = p0 < p. According to Zou (2006) and Huang and Xie (2007), a procedure of

subset selection, that produces β̂, is called an oracle procedure if it asymptotically

satisfies the following conditions:

Identifies the right subset model, i.e. {j : β̂j 6= 0} = A

Has the optimal estimation rate, i.e.
√
n(β̂A − βA)

d−→ N(0,Σ), where 0 is

a null vector and Σ is the true covariance matrix knowing the true subset

model4.

In order to determine whether (9) satisfies the above mentioned conditions, the form

of the penalty function must be explicitly defined. In practice, Lq penalties are commonly

used. Lq norm of a vector x is defined as ||x||q =
∑
i=1(xqi )

1
q . PLS with the L2 penalty

is equivalent to the Tikhonov regularization (commonly known as the ridge regression)

proposed by Tikhonov (1963):

pλ(|β|) = λ||β||2 =

√√√√ p∑
i=1

β2
i .

The Lq penalty with 0 < q ≤ 2, where q is a subject to optimization, was proposed

by Frank and J. H. Friedman (1993) and is called bridge regression. In the case of L0

penalty (pλ = λ2

2 I(|z| > 0), the same penalization is given to all non-zero coefficients and

the minimization problem 9 then results in a combinatorial search through all possible

subsets of variables and thus might consume a huge amount of computational time.

The hard-thresholding rule β̂ = zI(|z| > λ) is represented for instance by a penalty

function of the following form:

pλ(|β|) = |β|I(|β| ≤ λ) + λ/2I(|β| > λ), (11)

where λ is the regularization parameter. Note that-hard thresholding rule is not continu-

ous (see figure 3). Fan and R. Li (1999) show that the hard thresholding rule is equivalent

to the backward stepwise elimination where in each step the variable with the highest t-

value is removed. In particular, for the orthogonal design matrix X, simply the variable

with smallest |β̂| is eliminated. Suppose now that the elimination is carried out k times.

The remaining variables are those with the highest p− k values of |β̂|. This is equivalent

to using the hard-thresholding rule with thresholding parameter γ ∈ (|β̂|(k), |β̂|(k+1)).

Tibshirani (1996) introduced the least absolute shrinkage and selection operator (LASSO)

which is nothing else than L1 penalty:

pλ(β) = λ||β||1 =

p∑
i=1

|βi|

4Meaning that
√
n(β̂A − βA) converges in distribution to a multivariate normal distribution with

particular characteristics.

10



4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

and the optimization problem is defined as follows:

min
β∈Rp

(
1

2n
||y −Xβ||22 + λ

p∑
i=1

|βi)

)
.

LASSO yields some interesting properties. First, unlike the ridge regression (a to-

gether with the hard thresholding rule (11), clipped penalty (12) and SCAD penalty) the

coefficients can be set exactly to zero, i.e. the sparsity condition is fulfilled. Clear expla-

nation is provided for instance in Bühlmann and Van De Geer (2011). Moreover, along

with SCAD, LASSO is continuous (see figure 3 which plots OLS estimator against PLS

estimates). However, LASSO suffers from bias which was studied in detail for instance

by Zhang and Huang (2008). This issue is well documented in figure (2). The dotted line

is straight thus the condition for approximate unbiasedness, p′λ(|β|) = 0, is not fulfilled

for any |β|. LASSO leads to the following solution:

β̂ = sgn(z)(|z| − λ)+ =

{
0, for |z| < λ;

sgn(z)(|z| − λ), for |z| ≥ λ.

This is a soft-thresholding rule which is much finer than the hard-thresholding one.

To address the bias problem, an extension called adaptive LASSO was introduced by

Zou (2006). In this framework certain weights are defined and assigned to the penalty

function. Next the author shows that with a proper choice of regularization parameter

λ the resulting estimator has the oracle property (unlike LASSO). Thus we have:

min
β∈Rp

(
1

2n
||y −Xβ||22 + λ

p∑
i=1

ŵi|βi|

)
.

Zou (2006) further suggests that ŵi = 1/|β̂∗i |γ where β̂∗i is an estimator obtained for

instance by OLS but preferably, when OLS is not available, by ridge regression. Since

ridge regression sets no parameters to zero, ŵi is always positive for i = 1, . . . , n. See figure

(3) for the adaptive LASSO with two different values of threshold parameter γ plotted

against the OLS estimate. Clearly, the bias is eliminated.

Antoniadis and Fan (2011) introduced a clipped L1 function pλ(|β|) = λmin(|β|, λ)

and showed that the solution is a mixture of soft and hard thresholding rule:

β̂ = sgn(z)(|z| − λ)+I(|z| ≤ 1.5λ) + zI(|z| > 1.5λ). (12)

So far the most sophisticated penalty function which is based on (12), was proposed

by Fan and R. Li (1999) and is called the smoothly clipped absolute deviation penalty

(SCAD):

11



4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

pλ(|β|) =


λ|β|, for |β| ≤ λ;

−(β2 − 2aλ|β|+ λ2)/[2(a− 1)], for λ < |β| ≤ aλ;

(a+ 1)λ2/2, for |β| > aλ.

The first derivative of SCAD is defined as follows (Huang and Xie (2007)):

p′λ(|β|) =


sgn(β)λ, for |β| ≤ λ;

sgn(β)(aλ− |β|)/(a− 1), for λ < |β| ≤ aλ;

0, for |β| > aλ.

and has the following solution:

β̂ =


sgn(z)(|z| − λ)+, for |z| ≤ 2λ;

[(a− 1)z − sgn(z)aλ]/(a− 2), for 2λ < |z| ≤ aλ;

z, for |z| > aλ.

The penalty function has two unknown parameters, λ and a and is continuously differen-

tiable outside 0. Its derivative vanishes outside [−aλ, aλ]. Parameter a is usually set to

3.7. In figure 2 the three ’regimes’ of SCAD penalty are clearly observable. For |β| ∈ [0, λ)

the value of the function grows linearly with |β| and for |β| > aλ the penalization assigned

to β grows proportionally as |β| increases. Thus the continuity property holds. Moreover,

Huang and Xie (2007) showed that SCAD penalty has oracle property.

Figure 2: Different penalty functions of β – SCAD, Bridge

L0.5, LASSO L1 and the hard thresholding rule. Source:

Fan and R. Li (2005).
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4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

Apart from the well established theoretical framework, we must discuss possible com-

putational issues that may arise while implementing PLS. PLS with LASSO or adaptive

LASSO leads in fact to a convex minimization problem and effective algorithms based

on the Newton-Raphson method may be used (Bühlmann and Van De Geer (2011)).

In particular, the glmnet package that we make use of, employs the coordinate descent

method (see section (4.3)). Osborne et al. (2000) utilizes the fact that LASSO can be

specified as a quadratic program with convex objective function and a linear constraint.

Efron et al. (2004) established the Least Angle Regression (LARS) which is an another

fast and effective algorithm. Non-convex optimization problems, that arise when SCAD

and similar folded concave penalty functions are employed, are problematic. For instance

Zhang (2010) introduced and extended LARS algorithm called PLUS, which can be used

when the penalty function is a quadratic spline such as the SCAD. In this paper we avoid

usage of SCAD entirely.

The final question is how to determine the tuning parameter λ. For the diverging

number of parameters the traditional model selection instruments such as the information

criteria might not identify the true model consistently. In the PLS framework this issue

is crucial because otherwise some interesting properties of the penalty functions do not

exist. Therefore Wang et al. (2009) proposed the modified Bayesian Information Criterion

(BIC*) a demonstrated that it selects the true model consistently regardless the choice

of penalty function. The modified BIC has the following form:

BICλ = log(σ̂2
λ) + |Sλ|

log n

n
Cn, (13)

where σ̂2
λ = n−1||y − Xβ||2, Sλ represents the subset of predictors that was chosen by

β̂λ and n is number of observations. For Cn = 1 modified BIC reduces to the traditional

BIC. Wang et al. (2009) further argue that theoretically Cn is only required to go to

infinity as d→∞ (d represents the number of non-zero parameters) and that a function

with arbitrary slow rate of convergence can be used, but in numerical experiments they

use Cn = log{log(d)}. The optimal tuning parameter is given by λ̂ = arg minλ(BICλ).
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4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

Figure 3: PLS estimates with various penalty functions (λ = 2) (y-axis)

against OLS estimates (x-axis). (a) the Hard; (b) Bridge L0.5; (c) the Lasso;

(d) the SCAD; (e) the Adaptive Lasso γ = 0.5; and (f) the Adaptive Lasso,

γ = 2. The dotted line represents the OLS estimate plotted against OLS

estimate. Source: Zou (2006).
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4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

4.2 PLS for the VAR model

If we consider the VAR(1) with exogenous variables defined in the previous section (5)

and adopt the notation from (7), the PLS minimization problem with LASSO penalty

has the following form:

min
βi,Ai

1∈Rn,

 1

2T
||yi −Xβi −Ai1yt−1||22 + λi

n∑
j=1

|aij1 |

 ,

where Ai1(aij1 ) is the i-th row of a fixed n× n matrix of autoregressive coefficients. βi is

the i-th column of n ×m matrix of regressive coefficients assigned to X (T ×m matrix

of exogenous predictors). Variable yt = (y1,t, . . . , yn,t)
′ is an n× 1 vector that represents

house price measures in regions 1, . . . , n. And finally the response variable yi represents

a T -dimensional vector of house prices in region i. Clearly, only parameters contained

in Ai1 are subject to penalization. Variables in X are always included in the model.

Generalization to VAR(p) is straightforward.

To obtain all estimates, the PLS optimization procedure must be applied to each

VAR(p) equation (for i = 1, . . . , n). Thus we end up with n PLS problems with different

regularization parameters λi but in case of LASSO, adaptive LASSO and ridge regression

this is not an issue since fast and effective algorithms exist.
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4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

4.3 The glmnet package for Matlab

The glmnet package was originally developed for R-project users by J. Friedman et

al. (2010). The port to Matlab environment is carried out by Qian et al. (2013). The

optimization procedure is a subroutine written in Fortran. It contains extremely effective

procedures for fitting the entire LASSO or elastic-net path for generalized linear regression

models (GLM), including logistic and multinomial regression, Poisson regression or the

Cox model using the cyclical coordinate descent optimization algorithm (CCD). Suppose

we have a multivariate function f(x). CCD iteratively optimizes f(x) along one direction,

i.e. solving a univariate minimization problem in each step of the loop while other vari-

ables remain fixed. According to the official documentation by Hastie and Qian (2012),

the general objective function for the gaussian family has the following form:

min
β0,β∈Rp

1

2n
||y −Xβ||22 + λ[(1− α)||β||22/2 + α||β||1] (14)

where the response y is n-dimensional, X is a n× p matrix of predictors and β represents

a p× 1 vector of parameters. λ is the regularization parameter and α ∈ [0; 1] represents

a compromise between LASSO (α = 1) and the ridge (α = 0) penalty. Thus the penalty

function used here is a linear combination of LASSO and ridge called elastic net which

was introduced by Zou and Hastie (2005). Since (14) is a continuously differentiable

function, the CCD algorithm for our objective function can be summarized as follows:

1. Choose an initial parameter vector β̂(0)

2. Do until the convergence is reached or a termination condition is satisfied. At each

step s:

Denote current estimate as β̂(s)

Choose an index j from 1, . . . , p

Using the gradient at β
(s)
j = β̂

(s)
j compute the update as:

β̂
(s+1)
j =

S( 1
n

∑n
i=1 xij(yi − y

(j)
i ), λα)

1 + λ(1− α)
,

where y
(j)
i =

∑
k 6=j xikβ̂k and S(z, γ) is a soft-thresholding operator

sign(z)(|z| < γ)+. This formula applies when the variables in X are stan-

dardized, i.e. have zero mean and unit variance. For the gaussian family X is

standardized by default.

Index j in the second step can be chosen in different ways. Except the fact that glmnet

uses warm starts and active set of iterations, authors do not provide additional details.
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4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

For more details on effective optimization algorithms see Wu and Lange (2008). The

glmnet function has the following syntax:

fit = glmnet(x, y, family, options)

x is a n× p matrix of input variables

y is the response variable, which is quantitative for the gaussian family, binary for

the binomial family, etc.

family specifies the type of GLM (the full list is mentioned above)

options is a structure set by the glmnetSet function

According to the Qian et al. (2013), the glmnetSet structure contains the following options

(only those relevant for the gaussian family are reported):

options.alpha: The mixing parameter, with 0 < α <= 1 such that α = 1 is the

LASSO and α = 0 is the ridge penalty.

options.nlambda: The number of lambda values, default is 100.

options.lambda: A user supplied lambda sequence.

options.standardize: Logical for x variable standardization, prior to fitting the

model sequence. The coefficients are always returned on the original scale.

options.weights: Observation weights.

options.intr: Should intercept be fitted (default = true) or set to zero (false).

options.lambda min: Smallest value for λ, as a fraction of λmax, the (data de-

rived) entry value (i.e., the smallest value for which all coefficients are zero)?

options.thresh: Convergence threshold for coordinate descent.

options.dfmax: Limit the maximum number of variables in the model.

options.pmax: Limit the maximum number of variables ever (in each iteration)

to be nonzero.

options.exclude: Indices of variables to be excluded from the model.

options.penalty factor: Separate penalty factors can be applied to each coeffi-

cient. Can be 0 for some variables, which implies that these variables are always

included in the model. Default is 1 for all variables.
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4 ESTIMATION WITHIN THE HIGH-DIMENSIONAL SETTING

options.cl: Two-row matrix with the first row being the lower limits for each

coefficient and the second the upper limits.

options.gtype: Two algorithm types are supported (only) for family = ’gaussian’.

The default when p < 500 is options.gtype = ’covariance’. This can be much faster

than options.gtype=’naive’ which can be more efficient for p >> n situations, or

when p > 500.

options.ltype: If ’Newton’ then the exact hessian is used (default), while ’modi-

fied.Newton’ uses an upper-bound on the hessian, and can be faster.

And the most important output arguments are:

fit: A structure.

fit.a0: Intercept sequence of length length(fit.lambda).

fit.beta: p× length(fit.lambda) matrix of coefficients.

fit.lambda: The actual sequence of lambda values used.

fit.dev: The fraction of deviance explained (for ”gaussian” family, this is the

R-square).

fit.df: The number of nonzero coefficients for each value of lambda.

fit.dim: Dimension of coefficient matrix (ices).

fit.call: A cell including the names of all the input variables in the parent environ-

ment.

Effectively, glmnet computes a monotonously increasing sequence of λj values in such

way that maxj(λj) is the smallest value of λj for which no penalized variables are in-

cluded in the model, minj(λj) is given by options.lambda min and j = 1, . . . , op-

tions.nlambda. Then, for every λj a vector of estimates is computed and the selection

must be carried out separately (see section 4.1).
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5 AN APPLICATION TO US HOUSE PRICES

5 An application to US house prices

5.1 Data description

Without a solid data background no analysis would be possible. Our dataset can be

divided into two subsets: house prices data and exogenous predictors data. To measure

the house prices growth, the house price index (HPI) is commonly used. In United States,

in particular, three main indices based on different methodologies are regularly assembled:

Case-Shiller index by Standard & Poor’s is based on the weighted, repeat-sales

(WRS) methodology proposed by Case and Shiller (1989). Weighted, repeat-sales

means that it measures average price changes in repeat sales or refinancings on the

same properties, which are assumed to undergo no significant changes (see Nagaraja

et al. (2014))5. Full methodology is described in Calhoun (1996). It is published

monthly for 20 and 10 most important metropolitan areas (MSAs) in US.

House price index (HPI) by Federal Housing Finance Agency (FHFA) is a weighted,

repeat-sales index for single family detached properties using data on conventional

conforming mortgage transactions obtained from the Federal Home Loan Mortgage

Corporation (Freddie Mac) and the Federal National Mortgage Association (Fannie

Mae) (Calhoun (1996)). It is based on a modified WRS methodology and is pub-

lished quarterly for 384 metropolitan areas and divisions. A wide range of composite

indices is constructed as well.

Residential price index (RPI) by FNC Inc. is based both on public records of

sales transactions and proprietary appraisal data collected by FNC (FNC (2010)).

Individual indices for 30 major metropolitan areas as well as composite indices for

10, 20, 30, 100 metropolitan statistical areas (MSA) are published monthly.

According to Calhoun (1996) there are several differences between the HPI and Case-

Shiller index. Unlike the Case-Shiller, the all-transaction variant of HPI also takes into

account the mortgage refinance appraisals, rather than purchase prices merely. The price

trends of the most expensive properties have a greater influence on Case-Shiller index

since it is value weighted. There is no such issue in case of HPI (see figure 4). FHFA

publishes composite indices for states and census divisions as well as local indices on the

MSA level. The residential price index is largely based on Case-Shiller but takes the

rising quality of the houses into account. In this paper, we make use of FHFA house

5Another commonly used method of constructing a house price index is the hedonic regression. In this

framework the value of a particular estate is decomposed into constituent characteristics that are believed

to contribute to the resulting value. The repeat sales methodology poses a nonnegligible advantage: it

addresses the problem that the hedonic regression does not capture all characteristics (see Nagaraja et

al. (2014)).
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price indices exclusively used since they are constructed for the entire set of MSAs. In

particular three datasets are assembled:

Figure 4: Comparison of composite residential house price index (FNC) for top 20

metropolitan statistical areas (MSA), composite S&P/Case-Shiller house price index

for top 20 MSA and national FHFA house price index (HPI) (; 2000 – 2015, June

2000 = 100, seasonally unadjusted, HPI is quarterly.

384 metropolitan statistical areas and divisions, 1994 Q1 – 2013 Q1, seasonally

unadjusted (regions384 )

Figure 5: 384 metropolitan statistical areas sorted by population (darker color and

bigger dot means bigger population), graphs by Gephi and Google Earth.

100 largest metropolitan areas, 1991 Q1 – 2014 Q4, seasonally adjusted (metro100 )

51 US states, 1986 Q1 – 2014 Q4, seasonally unadjusted (states51 )

Dataset regions384 is key to our analysis. This decision is driven by the fact that it

contains enough entries to observe heterogeneity and spatial dependencies. We also in-
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spect the metro100 dataset since population in larger MSAs is more likely produce enough

house purchases and mortgage refinances to make the resulting price representative (Fan,

Lv, et al. (2011)).

As mentioned in section 4, apart from house prices we also make use of several national

level macroeconomic variables. Our choice is based on the past experience with house

prices forecasting; we incorporate variables whose influence on house prices was proven

in scientific studies. These variables are mostly of macroeconomic nature:

Real gross domestic product (GDP). Low GDP means an overall lack of demand in

the market, which drives the prices down. The real GDP in 2009 dollars is used.

Industrial production index (IPI) is another measure of economic performance.

Consumer price index (CPI) captures the inflation. We are interested in house price

changes driven by change in fundamentals, not by inflation. The aggregate CPI for

all urban consumers (all items) is incorporated.

Interest rate is directly connected to the house prices. Lower interest rates make the

mortgages affordable for a wider range of households. The demand and consequently

the prices increase. According to Tsatsaronis and Zhu (2004), house prices are more

sensitive to the short term interest rates in markets where the mortgage contracts

include floating rate. In United States the mortgage interest rate is fixed. Despite

this fact we make use both of the dollar based 3-month London Interbank Offered

Rate (LIBOR) and 30-year fixed average mortgage rate for United States.

Disposable income is another macroindicator that may positively influence the house

prices. Intuitively, the higher income households have, the higher demand on the

house market they comprise. However, according to Tsatsaronis and Zhu (2004)

and Gallin (2006) income has a surprisingly small explanatory power. Despite these

findings, the real disposable income in 2009 dollars is used.

5.2 Data processing

From all datasets, non-continental states (Alaska and Hawaii) and their statistical areas

are excluded to make the visualisations of the results well arranged. The time span is as

long as possible with respect to the available length of individual time series. MSAs that

would shift the whole dataset due to an extremely short time series were excluded. We

ended up with 377 regions for regions384 dataset, 99 metropolitan areas for metro100

dataset and 49 states for states51 dataset.

Since all house prices data we collected are in the form of base indices, we adjust the

macrovariables in the same manner. Furthermore we performed the seasonal adjustments
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Figure 6: Quarterly time series of indices, 1986 Q1 – 2014 Q4, 1991 Q1 = 100, real

GDP in 2009 dollars, industrial production index (IPI), consumer price index (CPI),

London Interbank Offered Rate (LIBOR), 30-year fixed average mortgage rate and

real disposable income in 2009 dollars.

using the X13arima procedure. To avoid spurious regression, we tested all series for

stationarity by ADF test with intercept (C), trend-intercept (CT) and no intercept (NC)

specification:

(NC): ∆yt = γyt−1 +

k∑
i=1

δi∆yt−k + εt

(C): ∆yt = α+ γyt−1 +

k∑
i=1

δi∆yt−k + εt

(CT): ∆yt = α+ βt+ γyt−1 +

k∑
i=1

δi∆yt−k + εt

The number of lags of response variable to include in the ADF regression was deter-

mined by BIC. We test the null hypothesis H0 : γ = 0 against the one-sided alternative

H1 : γ < 0. The test statistics (t−ratio of γ̂) has tabulated critical values.

Only a fraction of time series in all datasets on 0.05 level is stationary (see table 1)

and hence the VAR(p) and other models are estimated on first differences. Thus we must

bear in mind that such model can capture only the short-term relations among regions.
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states51 metro100 regions384 ex. predictors

ADFNC 0 0 0 1

ADFC 0 1 2 0

ADFCT 13 17 29 1

N of series 49 99 377 6

Table 1: Number of stationary time series according to particular spec-

ification of Augmented Dickey-Fuller regression.

5.3 Heterogeneity in regional house prices

As mentioned in introduction, there is a high level of spatial heterogeneity in house prices.

Some states and metropolitan areas are characterized by a steep growth of house prices,

others experience a moderate growth during the entire observation period. Different series

of house prices may clearly exhibit different dynamics. Thus the first step of our analysis

is, not surprisingly, an attempt to assemble several groups of metropolitan areas or states

with similar dynamics. We further show that the resulting arrangement is not random

but follows a certain geographical pattern. Although conclusions from this chapter are

not fundamental for the VAR(p) model estimation itself, they help us comprehend and

understand the main results.

For this purpose we perform the cluster analysis, which is a statistical technique to

divide a set of n objects into p << n subsets. From a wide range of algorithms we,

after some tests, selected the hierarchical clustering algorithm. In this framework the

objects are iteratively connected to form the user-specified amount of clusters. Whether

certain object is merged with an existing one depends on which cluster linkage method

the algorithm makes use of. For instance, the between-groups linkage method iteratively

forms clusters with respect to the overall longest ’distance’ among the clusters. Similarly,

within-groups linkage method pursues the shortest total distance among the objects in

the same clusters. The distance between two objects can be defined in various ways - we

discussed some in the section (3). However the most natural way to measure the resem-

blance between two time series of quantitative data is the simple (Pearson) correlation

coefficient. The analysis is performed in PASW Statistics (SPSS). For a detailed descrip-

tion of hierarchical clustering algorithms see the documentation of SPSS6. HPI plots were

generated by Matlab and maps with network graphs were created using Gephi, a free

software for network visualizations (Bastian et al. (2009)) and via the ExportToEarth

plugin exported to the Google Earth environment (GoogleEarth (2013)).

For metro100 and states51 dataset three clusters are assembled. We discovered that

smaller clusters do not reflect different kinds of dynamics well and are difficult to inter-

pret. In figures 7 and 9 we observe the HPI for states and metropolitan areas respectively.

6In particular, we make use of PASW Statistics 18.0.0.
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Figure 7: Results from the cluster analysis, states51 dataset: the extreme peak

states are red, moderate peak states are blue and non-peak states are black.

Data are HPI with 1991 Q1 = 100.

Figure 8: Results from the cluster analysis, states51 dataset: the high peak states

are red, moderate peak east coast states are blue and moderate-peak continental

states are black.

According to hierarchical cluster analysis we can divide them into three groups. The red

group consists of states/MSAs where the peak in the mid 2006 was extremely high and the

drop that followed was immensely deep – namely states as California, Arizona, Nevada

and Florida. Taking into account their location, an explanation arises naturally. Afford-

able mortgages convinced many Americans to search for new homes in highly attractive

subtropical locations and seaside resorts and the prices were pushed even more above

their fundamentals. This idea is supported by the fact that Nevada experienced 35 % ,

Arizona 24 %, Florida 18 % and California 10 % growth of population during 2000 – 2010

period. By the end of 2010, house prices were back on the pre-crisis level. As for 100
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largest metropolitan areas (metro100 dataset), the resulting clusters are not distributed

well in the geographic sense, which may indicate that lesser MSAs should not be omitted

in the further analyses.

The moderate peak group, marked by the blue color, consists mainly of states that are

located on the east coast and is driven by the Boston-New York-New Jersey-Philadelphia-

Washington, DC agglomeration. East coast was hit not so hard by the real estate market

collapse.

And finally, the third group, marked by the black color, exhibits only moderate or

even non-peak dynamics. As evident from the figures 8 and 10, these states/MSAs are

located in the mid-west territory and are characterized by a lower level of urbanization,

smaller population and agriculture of a great importance.

Figure 9: Results from the cluster analysis, metro100 dataset, HPI with 1991

Q1 = 100.

Figure 10: Results from the cluster analysis, metro100 dataset.
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The most interesting results were obtained by applying hierarchical cluster analysis

(using within-groups linkage method) on the regions384 dataset (figures 11 and 12). Every

group from the total of four is very clearly defined in the geographic sense. First cluster

(yellow) is concentrated around Detroit agglomeration in Michigan. House prices in these

MSAs experience their peak in the late 2005 which is considerably earlier than in other

bubble MSAs. They also grow almost linearly in the years preceding the burst of the

bubble and decrease slowly in the subsequent period.

Figure 11: Results from the cluster analysis, regions384 dataset, HPI with 1994

Q1 = 100.

Figure 12: Results from the cluster analysis, regions384 dataset.

Red, high peak MSAs, that were already characterized in the previous paragraphs,

are located on the south-western coast and on the Florida peninsula. The blue group

has rather diverse dynamics – it contains both MSAs that experienced the price boom

(Boston-New York-New Jersey-Philadelphia-Washington, DC agglomeration on the east

coast and Seattle on the on the west) and those that did not (MSAs in Rocky Mountains
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or in Texas). And finally the black group, which shows a moderate peak behaviour, is

located mainly in the Great Plains in the midwestern US but includes Boston and Atlanta

agglomerations and affiliated MSAs as well. To sum up, we have:

1. Blue group: the largest one, rather heterogeneous (in terms of house prices dynam-

ics), located on the east coast around New York agglomeration, on the north-western

coast and in the south (Dallas and New Orleans neighbourhood).

2. Yellow group: geographically homogeneous group with a moderate peak dynamics

located around Detroit and Cleveland.

3. Black group: heterogeneous, moderate peak MSAs located in the mid-west, Chicago,

Atlanta and Boston neighbourhoods.

4. Red group: homogeneous group with bubble-like dynamics, seaside resorts such as

Florida and California.

In the figure 13 we present a network graph generated by the Force Atlas algorithm.

Nodes represent individual MSAs and edges a strong positive correlation (threshold is

set to 0.98). Being a force-directed algorithm, Force Atlas positions the nodes so that

the edges have more or less equal length and that there are as few crossing edges as

possible. Since there are relatively few edges between particular groups, i.e. the mutual

within group correlation dominates the between group correlation, the groups have a ’nice’

spatial distribution. This picture also gives an intuition how ’close’ the clusters are to

each other in terms of mutual correlation.

Figure 13: Network graph by Gephi software. The edge between two nodes exists if

correlation between their house prices series exceeds 0.98. Arrangement into groups

is given by cluster analysis. The layout is generated by Force Atlas algorithm.

To give an intuition about the volatility in house prices during the crisis we compare

the maximum value of HPI in particular series with its standard deviation. In table 2 we
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can observe that series from the yellow cluster (2.) have the highest spikes compared to

their standard deviation. On the contrary, the magnitude of spikes in red cluster series

(4.) does not deviate from their volatility to such extent. Almost 100 % of HPI series have

their maximum greater than four standard deviations which may indicate that of more or

less pronounced bubble is present in the entire set of MSAs. In the figure 14 the ranking

of individual MSAs based on their maximum/standard deviation ratio is depicted.

4 × std 5 × std 6 × std 7 × std 8 × std

1. 99.6% 87.9% 59.6% 29.1% 9.4%

2. 100.0% 100.0% 100.0% 96.3% 55.6%

3. 100.0% 84.1% 73.9% 52.2% 26.1%

4. 100.0% 53.4% 3.4% 0.0% 0.0%

Table 2: Fraction of series in regions384 dataset from

particular cluster that have its maximum greater than

x× standard deviation.

Figure 14: Visualisation of maximum to standard deviation ratio for the regional

HPI series. (regions384 dataset). Yellow MSAs have the smallest ratio, dark red

and black MSAs have the highest.
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5.4 Common factor modelling

We have (5):

yt = A1yt−1 + · · ·+Apyt−p + βxt + ut. (15)

The coefficient matrix β in (15) is left unpenalized. Thus the exogenous predictors

collected in X are always included in the model. We hope to capture the common factor

of house prices dynamics while the unexplained spatial patterns are modelled as a VAR

process (terms A1yt−1 + · · ·+ Apyt−p) via the variable selection. We stick to the simple

VAR(1) because further lags contribute with little explaining power and even bring more

autocorrelation to the residuals, i.e. higher fraction of sub-models represented by individ-

ual VAR(p) equations exhibits a significant autocorrelation according to the Ljung-Box

test. Moreover, the interpretation of higher order VAR in the multidimensional setting

would be problematic.

In the next step we try select the best proxy for the common factor. Effectively we

estimate (15) using PLS for different specification and lags of common factor xt. One

possibility is to take the simple arithmetic mean of HPI in all regions or the composite

HPI for United States. Next we consider to include the macrovariables described in the

section 5.1.

In fact, to select the best subset for all 6 variables (GDP, IPI, CPI, short term rate,

mortgage rate and disposable income) and more than 2 lags is computationally impossible.

Suppose that we observed that one LASSO optimization procedure for metro100 takes

0.63 seconds. Thus the best subset selection for 6 variables × 4 lags would take 2936

hours7. However, one may argue that the selection can simply be carried out by PLS,

as the coefficients in A1 matrix (15). In fact, after some experiments, we observed that

these variables are rarely selected, which contradicts our idea to separate the common

factor and the spatial dependencies.

To overcome selection issues and to account for all variables, we computed the first

principal component of all variables and used it as a proxy. Since the macrovariables

may not be capable to capture the common factor satisfactorily, we added the national

level HPI, which is constructed as a composite indicator of house prices in the largest

metropolitan areas. According to the Bartlett’s test of sphericity8, on < 1% level we can

not reject the null hypothesis that the variables are linearly independent a thus the factor/

principal component analysis is applicable. The first and the only principal component

explains satisfying 90,7 % of the total variance. However, in practice the first principal

7Altogether we have 24 predictors. Thus the number of possible subsets of all cardinalities is given by∑24
i=1

(24
n

)
.

8Bartlett’s test of sphericity tests whether the observed correlation matrix is equal to identity matrix,

i.e. H0 : Σ̂ = I against H1 : Σ̂ 6= I. or H0 : |Σ̂| = 1 against H1 : |Σ̂| = 0
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component does not perform very well.

variables AIC BIC modBIC HQ

CPI(3), USHPI (3) 597.947 632.141 574.287 611.612

RGDP (3), USHPI (3) 607.420 640.786 582.824 620.754

RGDP (2), USHPI (4) 608.839 642.757 584.969 622.394

CPI(3), USHPI (4) 608.388 643.257 585.568 622.323

RGDP(3), USHPI (4) 611.113 644.848 586.952 624.595

All Variables (3) 614.259 705.526 659.597 650.734

All Variables (1) 656.052 742.565 694.703 690.626

1st PC (3) 643.016 681.872 639.132 658.545

1st PC (1) 657.388 697.655 656.905 673.481

Table 3: Best subsets according to modified BIC containing up to

2 variables and information criteria for the principal component and

for full set of variables. Estimated by LASSO using regions384

dataset. Numbers in brackets stand for lag order.

For illustration, in the table 3 the best sub-models according to modified BIC contain-

ing up to 2 variables estimated by LASSO for regions384 dataset are reported. Results

for metro100 dataset are to be found in the appendix (table 14). Modified BIC and other

information criteria are computed for each equation separately and then counted up.

The national level HPI and its lags up to 4th order appear to have a non-negligible

explanatory power. In terms of specification issues the Ljung-Box test of residual au-

tocorrelation and ARCH test of heteroskedasticity are employed. If we consider the

regions384 dataset, table 4 documents the number of autocorrelated residual series for

selected specifications of common factor. When the common factor is modelled by 3 lags

of all macrovariables and national level HPI, the number of VAR equations with significant

residual correlation up to 4th order and heteroskedasticity is minimized 9. We further ob-

serve similar results for metro100 dataset (table 15 in appendix) and for states50 dataset

(table 16).

Due to the fact that for each common factor specification different penalized variables

are selected, we do not put an excessive emphasis on these results. We also take into

account the interpretability of patterns that arise in the estimates of A1 coefficients for

different specifications of the common factor. To construct a VAR model with exogenous

predictors for house prices in 377 metropolitan areas (regions384 dataset) we eventually

decided to include 3 lags of real GDP, income, LIBOR, mortgage rate, CPI, IPI and

national level HPI. Similarly, we include two lags of aforementioned variables in the

complementary models (metro100 and states50 dataset respectively).

9It is minimized with respect to all subsets that consist of up to two variables and subsets reported

in table 4
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LASSO Ljung-Box test ARCH

test

sparsity

regions384 1. 2. 3. 4. pen. total

1st PC (1) 21.5% 19.9% 36.9% 34.2% 30.0% 3.3% 3.6%

1st PC (1–2) 18.6% 19.1% 30.5% 30.0% 31.6% 3.5% 4.1%

1st PC (1–3) 22.3% 18.8% 27.9% 26.3% 26.8% 3.2% 4.0%

1st PC (1–4) 20.7% 20.4% 30.5% 27.9% 26.8% 3.3% 4.4%

All variables (1) 21.2% 24.4% 32.4% 29.2% 34.2% 3.2% 5.0%

All variables (1–2) 22.3% 18.3% 28.1% 21.0% 28.9% 3.1% 6.7%

All variables (1–3) 25.7% 22.5% 22.5% 20.2% 18.0% 2.8% 8.1%

All variables (1–4) 23.1% 24.7% 22.5% 21.0% 21.0% 2.6% 9.5%

HPIUS (1) 27.1% 32.1% 46.2% 45.4% 33.4% 3.1% 3.4%

HPIUS (1–2) 27.6% 28.6% 40.3% 41.9% 33.2% 3.3% 3.9%

HPIUS (1–3) 29.2% 24.7% 27.6% 27.3% 25.7% 3.3% 4.1%

HPIUS (1–4) 29.2% 23.3% 24.9% 24.4% 22.0% 3.3% 4.3%

Table 4: Results for different specifications of matrix X using LASSO estimator

and regions384 dataset. The table contains: Ljung-Box test of autoccorelation in

residuals of 1. – 4. order (percentage of total residual series that are correlated on

α = 0.05), ARCH test of heteroskedasticity (percentage of total residual series that

exhibit heteroskedasticity on α = 0.05) and percentage of non-zero coefficients (total

and penalized). PC stands for principal component and HPIUS for the national level

HPI.

5.5 VAR model estimation results

The VAR model for different datasets was estimated by LASSO using the glmnet package

for Matlab (Qian et al. (2013), see section 4.3). We also tested the adaptive LASSO but

we obtained much less sparse matrices of coefficient estimates. This is also the reason why

it provides better in-sample fit according to modified BIC and other information criteria.

In addition, the weighting scheme of adaptive LASSO deteriorates the pattern that exists

within the LASSO estimates. Thus we stick to simple LASSO in the entire section.

In figure 15 the matrix of estimates (A1) from (15) is visualised. If αij1 > 0, a blue dot

is placed at (i, j) and an increase of house prices in region j (x-axis) at time t− 1 causes

(in Granger sense) an increase of contemporaneous house prices in region i (y-axis). And

similarly, a red dot is placed, when αij1 < 0. The rows and columns of A1 matrix are

sorted on the basis of the cluster analysis results (see figure 12) such that their group

membership is respected. Other coefficients are set to zero. The complete allocation

of all 377 MSAs is given in the section C in appendix. Dashed lines represent borders

between individual groups.

Group 1 (blue) (as listed in 5.3) exhibits no clear pattern, which corresponds to het-

erogeneity in terms of dynamics (figure 11). Nevertheless, a potential change in house

prices of MSAs in group 4 (red) seem not to affect prices in group 1 (and groups 2 and

3 as well) at all. Since no other group is so distant from the rest in terms of crisis depth

31



5 AN APPLICATION TO US HOUSE PRICES

Figure 15: Visual representation of the sorted matrix of estimated coef-

ficients (regions384 dataset). Estimates for individual equations are in

rows. Blue dots represent positive coefficients, red negative. Horizontal

and vertical lines represent borders between the clusters.

group R2
adj AIC BIC BIC* HQ

Ljung-Box test, order ARCH

test
n

1. 2. 3. 4.

1. 0.542 0.917 1.725 2.015 1.240 30.5% 24.2% 26.0% 22.9% 16.1% 223

2. 0.784 0.053 1.462 2.375 0.616 11.1% 18.5% 7.4% 7.4% 11.1% 27

3. 0.580 0.718 1.603 1.969 1.072 24.6% 24.6% 29.0% 26.1% 23.2% 69

4. 0.916 1.086 2.675 3.793 1.721 15.5% 15.5% 8.6% 8.6% 22.4% 58

Table 5: Statistics for individual groups. Model with dataset regions384 as the input. According to 5.3,

in figure 12 the first group is marked by blue, second by yellow, third by black and fourth by red color.

that followed after the bubble burst, these results could be anticipated. MSAs in Group

2 (yellow) are closely connected to each other. A positive shock is likely to spread quickly

and cause an increase in house prices in the entire group. Majority of these MSAs is

also affected negatively by the MSAs in the first group and positively by the third group.

Group 3 (black) is in many ways similar to group 1. On the contrary, the submatrix

containing coefficients that explain house price dynamics of the fourth group is much less

sparse. MSAs from groups 1 and 3 have mostly negative influence. Furthermore, the level

of positive interconnection is as high as within the group 2.

Table 5 contains average information criteria and fractions of correlated and het-
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Figure 16: Visual representation of the sorted matrix of estimated co-

efficients (metro100 dataset). Estimates for individual equations are in

rows. Blue dots represent positive coefficients, red negative. Horizontal

and vertical lines represent borders between the clusters.

eroscedastic residual series for individual groups. For MSA with plenty of explanatory

variables (groups 2 and 4) the modified BIC, which penalizes the number of coefficients

most, is the highest but in exchange the fraction of autocorrelated residual series is the

lowest and the adjusted R2 highest. In other words, the fact that the equation is overfitted

is compensated by better residual characteristics.

Sparse matrix of estimates for metro100 dataset (figure 16) can, unlike the previous

model, hardly be interpreted. The non-zero coefficients are randomly distributed, which

documents the importance of lesser MSAs when modelling spatial dependencies. Accord-

ing to our calculations, the average modified BIC for 100 largest MSAs decreases by 35 %

when lesser MSAs, that are usually directly connected to the most important and largest

metropolitan areas, are included in the model. In further analysis we omit this dataset

since the latter two appear to be more suitable.

And finally, in figure 17 the sparse matrix of estimates for VAR(1) model of states51

dataset is depicted. We may observe that states in the second (red) group (California,

Nevada, Arizona and Florida) as well as states from the third group (black) are positively

interconnected. Similarly as in the regions384 case, the high peak cluster has the best

fit but in exchange for a high number of parameters. This finding can be related to an
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Figure 17: Visual representation of sorted estimates matrix (states51

dataset). Blue dots represent positive coefficients, red negative. Hori-

zontal and vertical lines represent borders between the clusters.

increased vulnerability of ’bubble’ MSAs/states to price changes in other regions.

group R2
adj AIC BIC BIC* HQ

Ljung-Box test, order ARCH

test
n

1. 2. 3. 4.

1. 0.470 0.608 1.061 1.093 0.791 53.6% 50,0% 60.7% 60.7% 46.4% 28

2. 0.861 1.800 2.425 2.591 2.052 0% 0% 0% 0% 100% 4

3. 0.708 0.911 1.456 1.559 1.131 23.5% 17.6% 58.8% 47.1% 76.5% 17

Table 6: Statistics for individual groups. Model with dataset states51 as the input. In figure 8 the first

group is marked by blue, second by red and third by black color.

In all applications above the heteroskedasticity in residuals is a major issue. In general,

the larger the spike is, the more likely the variance of residual series is a function of time.

At this place we would like to stress that these results should be interpreted carefully.

Due to the fact that no standard errors10 are computed and no inference is carried out,

we recommend to keep the sense of perspective and inspect these results as a big picture,

possibly with the help of cluster analysis results, rather than in terms of individual MSAs

10Tibshirani (1996) argues that for a non-linear and non-differentiable function (PLS LASSO estimator)

it is difficult to obtain accurate estimates of standard errors. He proposes a closed form formula based on a

transformation of the penalty function or bootstrap but both of these techniques are only approximative.
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or states. To gain even more insight into the spatial pattern of house prices, we further

apply the following approach. We merge the metropolitan areas into 20 clusters according

to their geo-coordinates (figure 18). Using the sorted matrix of estimates (figure 19) we

can point out some interesting results:

Clusters 3–7 (mid-west and Florida) are mostly likely to experience a decrease when

prices on the east coast (clusters 1 & 2) grew in the previous quarter.

Clusters 3–7 form a mutually interconnected block that decrease in prices when

regions located in the Great Plains (11–15) experience an increase.

This relation appears to hold for the north western coast (1) as well.

On the contrary, sub-matrix of estimated coefficients for MSAs located in the Great

Plains, Rocky Mountains and on the north-western coast (13–19) is much more

sparse. Texas (12) is more likely to share features with clusters 3–7.

And finally, MSAs on the south-western coast are divided into two clusters, 17

and 20, that behave as a one homogeneous cluster – are positively interconnected

and mostly negatively connected to the clusters located in the midwest and on the

central eastern coast.

Figure 18: Twenty MSA clusters, average within-group linkage method.
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Figure 19: Visualisation of matrix of estimates (regions384 dataset). Blue

dots represent positive coefficients, red negative. Horizontal and vertical

lines represent the borders between groups according to figure 18. Esti-

mates for individual equations are in rows.

5.6 DIF model estimation results

As for the DIF model (6), several model specifications were tested (tables 7 and 8). For

both datasets, only three factors (principal components) with eigenvalue greater than

1 were computed. These factors explain 98.6 % and 97.9 % respectively of the total

variance in the datasets (see scree plots in figure 26). According to BIC, the best models

contain only first lag of 3-dimensional factor ft and up to six lags of response variable

yt. As benchmark models for the purpose of forecasting we select DIF(3,1) and DIF(5,1)

since they give mostly uncorrelated residual series and moreover provide the most accurate

forecasts (see section 5.8). Slightly less than one third of them is heteroskedastic but other

specifications suffer from this issue as well.
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lags

(yt)

lags

(ft)

Ljung-Box, order ARCH

test
AIC BIC BIC* HQ R2

adj1. 2. 3. 4.

3 1 1 7 18 19 134 472.95 543.92 501.23 488.51 51.17%

1 1 19 111 151 147 180 506.42 553.02 525.03 494.57 47.07%

2 1 7 91 132 128 162 504.61 563.30 528.02 505.83 48.09%

4 1 0 4 8 13 132 476.58 560.03 509.80 507.63 51.41%

5 1 0 0 2 2 114 470.81 566.92 509.03 518.41 52.61%

3 2 1 11 27 33 124 472.74 579.20 515.17 536.77 52.75%

6 1 1 0 0 0 112 472.25 581.24 515.54 537.41 53.20%

Table 7: Statistics for diffusion index factor model (DIF) on regions384 dataset with various lag

specifications. The table contains: Ljung-Box test of autoccorelation in residuals of 1. – 4. order (#

of residual series that are correlated on α = 0.05), ARCH test of heteroskedasticity (# of residual

series that exhibit heteroskedasticity on α = 0.05), information criteria and adjusted R2. BIC*

stands for modified BIC.

lags

(yt)

lags

(ft)

Ljung-Box, order ARCH

test
AIC BIC BIC* HQ R2

adj1. 2. 3. 4.

3 1 0 0 6 4 32 40.04 48.09 43.29 42.07 63.15%

4 1 0 0 1 2 34 40.29 49.75 44.11 44.07 63.65%

3 2 0 1 5 6 28 37.72 49.81 42.60 45.20 65.50%

5 1 0 0 0 0 29 40.06 50.94 44.45 45.69 64.45%

1 1 5 37 41 41 39 47.26 52.56 49.40 46.19 57.89%

6 1 0 0 0 1 26 40.24 52.57 45.21 47.84 65.06%

4 2 0 1 2 2 29 38.35 51.87 43.81 47.84 65.71%

Table 8: Statistics for diffusion index factor model (DIF) on states51 dataset with vari-

ous lag specifications. The table contains: Ljung-Box test of autoccorelation in residuals

of 1. – 4. order (# of residual series that are correlated on α = 0.05), ARCH test of

heteroskedasticity (# of residual series that exhibit heteroskedasticity on α = 0.05), infor-

mation criteria and adjusted R2. BIC* stands for modified BIC.

5.7 The contagion

In a high-dimensional system of equations where various lags off all considered variables

explain the current levels, the impulse-response analysis can be useful. This technique

allows us to trace out the effect of an exogenous shock, that occurs in one of the variables,

through the entire system. It also makes sense in our spatial framework. For instance,

we may consider a rapid and unexpected increase of house prices in a major metropolitan

area, which may be caused by a new law or tax policy, and monitor what happens in

neighbouring or distant MSAs and how the ’contagion’ spreads.

We assume that the mean of yt variable for t < 0 is equal to zero vector and the

unit exogenous shock occurs only in i-th MSA, i.e. ui,0 = 1. Thus we have y0 = u0 =

(0, . . . , 1, . . . , 0)′. In addition, we require the further shocks to be equal to zero (ut =

(0, . . . , 0)′ for t > 0) to distinguish system changes caused by the initial shock from the
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noise. We consider the VAR(1) (15) model without the common factor in xt because it is

not generated by the model. Thus the following results reflect only deviations from the

common trend. We have:

yt = A1yt−1 + ut

and hence

y0 = u0, y1 = A1y0, · · · , yt = At1y0

We suppose that a positive unit exogenous shock occurs in Detroit, Michigan. In figure

20 response vectors yt for t = 0, 1, . . . , 7 are visualised. Black dots represent MSAs that

are not influenced by the shock at time t. Green and red MSAs experience an increase

and decrease respectively. The shock spreads rather quickly through the yellow group

region around Michigan and Ohio; house prices mostly increase.

(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 20: Impulse-response function visualisation, unit positive shock in Detroit, time t = 0, . . . , 3.

In three or four quarters the shock is transmitted to the south-western coast and to the

Florida peninsula, causing growth of house prices as well. Negative relation between the

Detroit region and the densely populated north-eastern coast is evident in the figure 21,

(c) and (d). After seven quarters the shock is completely transmitted to all relevant

metropolitan areas.
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(a) t = 4 (b) t = 5

(c) t = 6 (d) t = 7

Figure 21: Impulse-response function visualisation, unit positive shock in Detroit, time t = 4, . . . , 7.

Now suppose that a unit positive shock occurs on the western coast, say in San Fran-

cisco (figure 22). Within the first two quarters the shock is transmitted to other MSAs

in California, Arizona and Nevada. At the third quarter Florida and the mid-west is hit.

(a) t = 0 (b) t = 1

Figure 22: Impulse-response function visualisation, unit positive shock in San Francicso, time t = 0, . . . , 1.

In the next quarters, the positive shock is transformed into a drop of house prices in

Florida and eventually in California as well. By our VAR model only the short-term

relationship is modelled and thus it makes no sense to look further.
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(a) t = 2 (b) t = 3

(c) t = 4 (d) t = 5

(e) t = 6 (f) t = 7

Figure 23: Impulse-response function visualisation, unit positive shock in San Francicso, time t = 0, . . . , 7.

5.8 Forecasts

In this section we examine the out-of-sample performance of our model. We compare the

forecast accuracy of VAR(1) model (5) estimated by PLS using various penalty functions

with the simple benchmark model (4) and the diffusion index factor model (6). We

compute the Mean Square Error (MSE) and Mean Absolute Error (MAE) and since our

models suffers from heteroskedasticity in residuals, we also report the Mean Square Error
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(HMSE) and Mean Absolute Error (HMAE) corrected for heteroskedasticity:

MSE =
1

nh

n∑
i=1

h∑
j=1

(ŷi,j − yi,j)2,

MAE =
1

nh

n∑
i=1

h∑
j=1

|ŷi,j − yi,j |,

HMSE =
1

nh

n∑
i=1

h∑
j=1

(
1− ŷi,j

yi,j

)2

,

HMAE =
1

nh

n∑
i=1

h∑
j=1

∣∣∣∣1− ŷi,j
yi,j

∣∣∣∣ ,
where ŷi,j is a forecast of house price index at time T + j in region i and similarly, yi,j is

the true value of house price index at time T + j in region i. h is the forecast horizon and

n stands for number of regions in particular dataset. Apart from the average measures

over all equations in VAR model, we also compute the medians over n since the average

is undesirably deviated by a couple of extreme outliers.

First, we divide our datasets into out-of-sample and in-sample subset of size h = 16

and T − 16 respectively and construct the one-quarter ahead forecasts based on rolling

regression with fixed sample window T −16. For both datasets (regions384 and states51 )

the out-of-sample period spans from 2009 Q2 to 2013 Q1. The choice of the forecast

window size is motivated by the fact that we do not expect overly accurate forecasts during

the ambivalent period from 2009 to 2013. In the table 9 the out-of-sample performance

of selected models is reported.

According to MSE, VAR(1) estimated by PLS (LASSO and ridge penalty) clearly

outperforms the simple benchmark model. All average measures are biased upward by

the outliers, especially HMSE. Therefore we consider the median measures to be more

suitable for interpretation. Naturally, the DIF model gives the best results, even better

than the ridge regression. At this point we have to stress that neither VAR nor DIF

model give satisfactory accurate forecasts. The mean absolute error ranges from 2.03 to

3 which indicates that the house price index forecast at time T + 1 given the information

set up to time T is likely to deviate up to 2 units (percentage points) on average from

the true value. For comparison, average quarterly change of the house price index in the

regions384 dataset is 0.95.

Measures of predictive accuracy of individual clusters (according to LASSO) are

reported in the table 10. The mean HMSE is negatively affected by a single outlier

(Lafayette, LA). The fourth group (red) appears to provide the worst forecasts, but when

the median measure corrected for heteroskedasticity (HMSE and HMAE) are taken, fourth

cluster is suddenly the best. Fitted values usually underestimate the large spikes that are

present in the red cluster time series, which results in heteroskedastic residuals.
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dataset: regions384 mean median

2009:Q2 – 2013:Q1 MSE MAE HMSE HMAE MSE MAE HMSE HMAE

VAR (1,3), LASSO 14.58 2.71 37406.8 7.55 9.41 2.42 19.53 2.54

VAR (1,3), ad. LASSO 17.56 3.00 16765.7 8.02 10.78 2.69 30.84 3.19

VAR (1,3), ridge 13.63 2.62 37050.0 7.63 9.26 2.35 18.14 2.51

DIF (3,1) 7.73 2.03 10815.8 4.73 5.32 1.83 7.01 1.68

DIF (5,1) 8.88 2.14 11361.4 5.30 5.80 1.91 9.52 1.91

DIF (3,3) 8.86 2.19 8965.5 4.58 6.35 2.01 10.48 1.99

benchmark (3), no const. 19.18 2.94 42499.5 8.53 9.81 2.45 20.83 2.69

benchmark (3), const. 20.43 3.03 6668.6 6.54 11.55 2.58 24.45 2.77

Table 9: Forecasting performance of selected models, regions384 dataset, mean and median of measures

over regions. VAR model (5): numbers in brackets stand for VAR order and lag order of exogenous

variables. DIF model (6): autoregressive lag order and factor lag order. Benchmark model (4): lag order

of predictors.

mean median

group MSE MAE HMSE HMAE MSE MAE HMSE HMAE n

1. 13.17 2.65 92706.9 10.37 10.58 2.53 17.07 2.49 223

2. 17.29 3.22 229.3 3.63 15.05 3.07 26.28 3.02 27

3. 11.89 2.53 158.6 2.93 8.77 2.42 12.59 2.08 69

4. 54.82 5.63 3279.4 6.22 47.53 5.33 11.91 2.07 58

Table 10: Forecasting performance of LASSO, individual clusters, regions384 dataset. Ac-

cording to 5.3, in figure 12 the first group is marked by blue, second by yellow, third by

black and fourth by red color.

As for the states51 dataset, table 11 contains the results. In general, HPI in states

for the 2009 Q2 – 2013 Q1 period is forecasted more accurate than in metropolitan areas.

We can observe the same pattern as above: VAR(1) outperforms the benchmark model

but DIF model gives the best results.

dataset: states51 mean median

2009:Q2 – 2013:Q1 MSE MAE HMSE HMAE MSE MAE HMSE HMAE

VAR (1,3), LASSO 9.09 2.09 299.0 3.45 5.60 1.85 9.21 1.91

VAR (1,3), ad. LASSO 13.28 2.58 9047.2 8.96 9.03 2.36 34.67 3.17

VAR (1,3), ridge 8.49 2.07 210.8 3.12 5.48 1.79 9.25 1.70

DIF (3,1) 6.65 1.87 721.7 3.87 3.90 1.57 10.20 1.83

DIF (5,1) 7.47 1.95 563.1 3.92 4.26 1.64 16.76 2.09

DIF (3,3) 7.22 1.94 3288.0 5.92 4.16 1.64 11.20 1.97

benchmark (2), no const. 11.12 2.27 367.3 3.51 5.81 1.87 9.80 1.92

benchmark (2), const. 13.89 2.49 171.3 3.26 8.92 2.08 12.08 2.15

Table 11: Forecasting performance of selected models, states51 dataset, mean and median of measures

over regions. VAR model (5): numbers in brackets stand for VAR order and lag order of exogenous

variables. DIF model (6): autoregressive lag order and factor lag order. Benchmark model (4): lag

order of predictors.
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5 AN APPLICATION TO US HOUSE PRICES

The LASSO provides the worst forecast for the states from the most volatile (red)

group. They do not have the highest average HMSE but have the highest median HMSE

(see table 12).

mean median

group MSE MAE HMSE HMAE MSE MAE HMSE HMAE n

1. 3.95 1.44 19.40 1.70 2.14 1.22 5.31 1.42 28

2. 12.12 2.68 115.90 3.14 13.47 2.87 40.42 2.75 4

3. 5.10 1.70 289.26 3.82 4.38 1.59 12.41 2.19 17

Table 12: Forecasting performance of LASSO, individual clusters, regions384 dataset.

According to 5.3, in figure 12 the first group is marked by blue, second by yellow, third

by black and fourth by red color.

We also computed forecasts for the peak period from 2005 Q1 to 2008 Q4 and found out

that the models performance ranking remains the same and the forecasts are generally less

accurate. In most cases, especially when the peak is high, no model is able to capture the

sudden drop in house prices even though the the forecast window is only one quarter wide.

Plots of forecasts along with true values and fitted values for selected MSAs and states

are reported in the section E of appendix (VAR(1) with LASSO penalty and DIF(3,1)

models).

5.9 Model prediction stability

In each step of the rolling regression via PLS, new variables are selected. We may ask

whether during the crisis, when majority of HPI series experience more or less pronounced

spikes, the outcome of the selection remains stable. In other words, we can test the

robustness of our estimation techniques.

2009:Q2–2013:Q1 2005:Q1–2008:Q4

LASSO adaptive LASSO LASSO adaptive LASSO

non-zero → non-zero 8274 17982 7936 13130

non-zero → 0 733 12510 363 9600

0 → non-zero 3612 14205 546 11887

0 → 0 137427 105349 141201 115429

# parameters at t = T 9007 30492 8299 22730

% of stable non-zero coefficients 91.9% 59.0% 95.6% 57.8%

Table 13: Stability of the rolling PLS regression coefficients.

Table 13 measures changes in coefficients for two different forecast periods with the

first being the standard period defined above and the latter including the point where

most of the series reached their peak. In the second quarter of 2009 there were 9007

non-zero LASSO coefficients from which 8274 (91.9 %) remained non-zero also at the end
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5 AN APPLICATION TO US HOUSE PRICES

of the forecast period. On the contrary, a shift of the in-sample subset by h quarters

appears to have a huge impact on the weights calculated for adaptive LASSO because

almost 59 % non-zero coefficients is at the end of the forecast period set to zero. As

for the peak forecast period (2005 Q1 – 2008 Q4), the number of non-zero coefficients

remains even more stable for LASSO and less stable for adaptive LASSO. Graphs 24

and 25 demonstrate that even in volatile periods LASSO estimator is stable. Taking this

evidence into account, we can claim that the relations among house prices in US regions

in our VAR model are rather strong.

Figure 24: Percentage of coefficients that remain non-zero in each step of the

rolling regression estimated by LASSO and adaptive LASSO. Dataset regions384

and forecast period 2009:Q2–2013:Q1.

Figure 25: Percentage of coefficients that remain non-zero in each step of the

rolling regression estimated by LASSO and adaptive LASSO. Dataset regions384

and forecast period 2005:Q1–2008:Q4.
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6 Conclusion

In this paper we try to gain an insight into the spatial dependencies among the regional

house prices in United States. We identify several consistent clusters of MSAs and states

with similar dynamics and study their behaviour in the VAR model proposed by Fan,

Lv, et al. (2011). We discover that house prices in the traditional bubble regions such

as the south western coast (California) and Florida are likely to decrease when prices on

the north eastern coast increase. The opposite relation is substantially weaker. Our VAR

model is able to fit the house prices in ’bubble’ regions very well but gives worse forecasts

compared to the diffusion index factor model (DIF). However, none of the models we

implemented is able to forecast a rapid drop in prices that overwhelming majority of

bubble MSAs experienced at the end of 2007. To be honest, we would not expect any

model to do so. The DIF model provides the best forecasts in all respects and the reader

may ask why to bother with the high-dimensional VAR model when one can obtain more

accurate forecast by OLS. Its true contribution lies in the explicitly modelled dynamic

spatial dependencies. Even though the results are somewhat vague since no statistical

inference is carried out, they give a good intuition about relations that exist in the system.

Findings from this paper might be useful for spatial economists as they may provide

foundations for a serious research. Obviously, we leave many suggestions for the future

research. For instance, different techniques of variable selection can be used. Also, we

made use of LASSO as an computationally undemanding procedure but we disregarded

the SCAD penalty and many others. Next, a higher order VAR model could be con-

sidered since some relations may require further lags to be uncovered. It would also be

interesting to inspect the accuracy of approximative standard errors. And finally, the

last idea that comes into mind is cointegration. Long-term relationships might exist but

their identification in high-dimensional setting poses a great challenge for the theoretical

framework, that has not been developed yet.
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A PLS model selection

Variables AIC BIC modBIC HQ

USHPI (3) 178.062 196.691 188.512 185.589

USHPI (2) 181.309 198.003 189.290 188.055

Income (4) 181.309 198.003 189.290 188.055

Income (3) 176.357 198.267 189.986 185.210

USHPI (3), Income (4) 174.214 197.656 190.272 183.687

All variables (1) 184.212 215.987 211.691 197.051

All variables (4) 183.795 216.269 212.235 196.917

1st PC (4) 177.177 198.710 191.265 185.878

1st PC (1) 179.938 199.643 191.675 187.901

Table 14: Best subsets according to modified BIC containing up to 2

variables and information criteria for the principal component and for

full set of variables. Estimated by LASSO using metro100 dataset.

Numbers in brackets stand for lag order.

LASSO Ljung-Box test ARCH

test

sparsity

metro100 1. 2. 3. 4. pen. total

1st PC (1) 23.2% 23.2% 33.3% 35.4% 34.3% 18.1% 19.1%

1st PC (1–2) 24.2% 27.3% 31.3% 33.3% 38.4% 16.9% 18.9%

1st PC (1–3) 21.2% 25.3% 29.3% 35.4% 37.4% 17.3% 20.2%

1st PC (1–4) 24.2% 25.3% 32.3% 35.4% 40.4% 17.5% 21.4%

All variables (1) 14.1% 18.2% 25.3% 29.3% 30.3% 16.5% 23.1%

All variables (1–2) 24.2% 21.2% 25.3% 24.2% 28.3% 15.3% 27.7%

All variables (1–3) 21.2% 25.3% 24.2% 25.3% 24.2% 13.7% 31.2%

All variables (1–4) 25.3% 26.3% 27.3% 26.3% 16.2% 11.9% 33.9%

HPIUS (1) 23.2% 18.2% 35.4% 37.4% 37.4% 16.4% 17.4%

HPIUS (1–2) 22.2% 22.2% 32.3% 37.4% 28.3% 17.0% 19.0%

HPIUS (1–3) 19.2% 25.3% 33.3% 37.4% 30.3% 16.2% 19.1%

HPIUS (1–4) 18.2% 25.3% 30.3% 39.4% 31.3% 16.5% 20.4%

Table 15: Results for different specifications of matrix X using LASSO estimator and

metro100 dataset. The table contains: Ljung-Box test of autoccorelation in residuals

of 1. – 4. order (percentage of total residual series that are correlated on α = 0.05),

ARCH test of heteroskedasticity (percentage of total residual series that exhibit het-

eroskedasticity on α = 0.05) and percentage of non-zero coefficients (total and penal-

ized). PC stands for principal component and HPIUS for the national level HPI.
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LASSO Ljung-Box test ARCH

test

sparsity

states50 1. 2. 3. 4. pen. total

1st PC (1) 14.3% 34.7% 71.4% 77.6% 81.6% 11.2% 13.2%

1st PC (1–2) 20.4% 49.0% 73.5% 73.5% 81.6% 10.4% 14.3%

1st PC (1–3) 26.5% 34.7% 49.0% 46.9% 67.3% 9.4% 15.1%

1st PC (1–4) 30.6% 36.7% 49.0% 42.9% 71.4% 8.5% 16.1%

All variables (1) 22.4% 28.6% 63.3% 67.3% 69.4% 8.8% 21.3%

All variables (1–2) 38.8% 34.7% 55.1% 51.0% 61.2% 7.3% 29.5%

All variables (1–3) 59.2% 61.2% 75.5% 71.4% 59.2% 5.3% 35.3%

All variables (1–4) 57.1% 59.2% 79.6% 73.5% 61.2% 5.4% 41.8%

HPIUS (1) 16.3% 51.0% 73.5% 77.6% 79.6% 10.6% 12.6%

HPIUS (1–2) 12.2% 44.9% 69.4% 75.5% 75.5% 10.3% 14.2%

HPIUS (1–3) 14.3% 40.8% 71.4% 73.5% 75.5% 11.1% 16.8%

HPIUS (1–4) 28.6% 49.0% 77.6% 79.6% 75.5% 10.2% 17.8%

Table 16: Results for different specifications of matrix X using LASSO estimator and

states50 dataset. The table contains: Ljung-Box test of autoccorelation in residuals

of 1. – 4. order (percentage of total residual series that are correlated on α = 0.05),

ARCH test of heteroskedasticity (percentage of total residual series that exhibit het-

eroskedasticity on α = 0.05) and percentage of non-zero coefficients (total and penal-

ized). PC stands for principal component and HPIUS for the national level HPI.

B Scree plots

(a) regions384 (b) states51

Figure 26: Scree plots, principal component analysis.
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D NETWORK GRAPHS

D Network graphs

Figure 27: Network graph of VAR(1) model by Gephi software, regions384 dataset. Layout of the

particular node corresponds to its geo-coordinates.

Figure 28: Network graph of VAR(1) model by Gephi software, states51 dataset. Layout of the particular

node corresponds to its geo-coordinates.
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E FITTED VALUES AND FORECASTS FOR SELECTED MSAS

E Fitted values and forecasts for selected MSAs

Figure 29: Fitted values and forecasts for selected MSAs, VAR(1) estimated by LASSO.
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E FITTED VALUES AND FORECASTS FOR SELECTED MSAS

Figure 30: Fitted values and forecasts for selected MSAs, DIF(3,1) model.
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E FITTED VALUES AND FORECASTS FOR SELECTED MSAS

Figure 31: Fitted values and forecasts for selected states, VAR(1) estimated by LASSO.
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E FITTED VALUES AND FORECASTS FOR SELECTED MSAS

Figure 32: Fitted values and forecasts for selected states, DIF(3,1) model.
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F MATLAB CODES

F Matlab codes

In the following script (pls lasso2.m) the PLS estimation and some supplementary pro-

cedures are carried out. As an input dataset, VAR order, PLS type, lag order of exogenous

predictors need to be specified. Then the estimation itself is performed, goodness-of-fit

criteria are computed, various heteroskedasticity and autocorrelation tests are performed

both for individual clusters and overall. Data are loaded automatically from a user-defined

path.

1 %% dataset

2 addpath('\codes\glmnet matlab')

3 addpath('\codes')
4 dataset = 3; % 1 for metropolitan areas, 2 for states, 3 for regions ...

base indices

5 switch dataset

6 case 1

7 load('data metro.mat');

8 case 2

9 load('data states.mat');

10 case 3

11 load('data regions.mat');

12 end

13

14 %% parameters

15 predictorsLag = 3;

16 p = 1; %VAR order

17

18 % pred = component;

19 pred = predictors;

20

21 %% differenced data/exogenous predictors

22 nPredictors = size(pred,2)*predictorsLag;

23

24 if dataset > 2

25 beg = 33;

26 else

27 beg = 21;

28 end

29 dataDif = diff(dataAdjusted,1,1);

30 predictorsDif = diff(pred,1,1);

31

32 %% constructing X

33 [n, ¬] = size(dataDif);

34 m1 = size(region,1);
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35 X = [];

36 variables = [];

37

38 % p lags of HPI in other regions

39 for i = 1:p

40 X = [X dataDif(p-i+1:end-i,:) ];

41 variables = [variables; region];

42 end

43 % lags of exogenous predictors

44 for i = 1:predictorsLag

45 X = [X predictorsDif(beg+p-i:end-i,:) ];

46 variables = [variables; transpose(names)];

47 end

48

49 [¬, m] = size(X);

50 results = cell(250,m1);

51 resid = zeros(n-p,m1);

52 fitted = zeros(n-p,m1);

53 significance = zeros(2,m1);

54 dependence = zeros(1,m1);

55 significanceRot = zeros(2,m1);

56 yStored = zeros(n-p,m1);

57 betaStored = zeros(m1,m);

58 penalty = zeros(m1,m);

59 %% equal weighted PLS lasso

60 options = glmnetSet();

61 options.intr = false;

62 options.standardize = true;

63 options.thresh = 1e-8;

64 options.nlambda = 100;

65 type = 1; %1 'LASSO'

66 %2 'adaptiveLASSO'

67 %3 'ridge'

68 switch type

69 case 1 % 'LASSO'

70 options.alpha = 1; % 1 for lasso, 0 for ridge

71 case 2 % 'adaptiveLASSO'

72 options.alpha = 1; % 1 for lasso, 0 for ridge

73 case 3 % 'ridge'

74 options.alpha = 0; % 1 for lasso, 0 for ridge

75 end

76

77 % penalty factor - exogenous variables are not penalized, penalty ...

(weight) = 0

78 % penalty factor - HPI in other regions is penalized, penalty (weight) = 1

79 options.penalty factor = ones(1,p*m1);

80 if nPredictors > 0;

81 options.penalty factor = [options.penalty factor zeros(1,nPredictors)];

82 end

83 tic
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84 % PLS for each region********************************************

85 for i = 1:m1

86 i

87 y = dataDif(1+p:end,i);

88

89 % weights for adaptive lasso*************************

90 % computed from ridge estimator as stated in the paper

91 if type == 2 % 'adaptiveLASSO'

92 options.alpha = 0;

93 ridgeFit = glmnet(X,y,[],options);

94 [¬,minBICindex,¬] = BICselection(ridgeFit,ridgeFit.beta,X,y); ...

%best model wrt lambda according to modified

95 BIC

96 pen = transpose(1./abs(ridgeFit.beta(1:p*m1,minBICindex)));

97 if nPredictors > 0;

98 pen = [pen zeros(1,nPredictors)];

99 end

100 options.penalty factor = pen;

101

102 options.alpha = 1;

103 end

104 % ***************************************************

105 penalty(i,:) = options.penalty factor;

106 fit = glmnet(X,y,[],options); % an instance of glmnet object is ...

created - a structure

107

108 % BIC for tuning parameter selection - from the sequence of results ...

(for each lambda) the one with smallest

109 modified BIC is chosen

110 [¬,minBICindex,¬] = BICselection(fit,fit.beta,X,y);

111 beta = fit.beta(:,minBICindex);

112 k = find(beta);

113 for r = 1:size(k,1)

114 results(r,i) = variables(k(r),1);

115 end

116

117 resid(:,i) = y - X*beta;

118 fitted(:,i) = X*beta;

119 betaStored(i,:) = transpose(beta);

120 yStored(:,i) = y;

121

122 end

123 sparsity = [size(find(betaStored(:,1:m1)),1) size(find(betaStored),1)];

124

125 %% information criteria etc.

126 criteria = zeros(1,4);

127 BICs = zeros(m1,1);

128 modBICs = zeros(m1,1);

129 AICs = zeros(m1,1);

130 HQs = zeros(m1,1);
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131 SSE = zeros(m1,1);

132 ds = zeros(m1,1);

133 SST = zeros(m1,1);

134 R2 = zeros(m1,1);

135 R2adj = zeros(m1,1);

136

137 for i = 1:m1

138 d = size(find(betaStored(i,:)),2);

139 C = log(log(d));

140 if d ≤ 1

141 C = 0;

142 end

143 SSE(i) = sum(resid(:,i).ˆ2); % sum of squares

144 SST(i) = sum((yStored(:,i) - mean(yStored(:,i))).ˆ2);

145 R2(i) = 1 - SSE(i)/SST(i);

146 R2adj(i) = R2(i) - (1 - R2(i))*(d/(n-d-1));

147 BICs(i) = log(SSE(i)/n) + d*(log(n)/n);

148 modBICs(i) = log(SSE(i)/n) + d*(log(n)/n)*C;

149 AICs(i) = log(SSE(i)/n) + d*(2/n);

150 HQs(i) = log(SSE(i)/n) + d*(2*log(log(n))/n);

151 ds(i,1) = d;

152 end

153

154 criteria(1,1) = sum(AICs);

155 criteria(1,2) = sum(BICs);

156 criteria(1,3) = sum(modBICs);

157 criteria(1,4) = sum(HQs);

158 toc

159

160 %% adjacency matrices to construct network graphs

161 A = adjacencyMatrix(betaStored);

162

163 figure (3)

164 gplot(A(:,:,1),[longitude latitude]);

165

166 %% autocorrelation + heteroskedasticity tests

167 % h = 1 indicates rejection of the no residual autocorrelation null

168 % hypothesis in favor of the alternative. (AUTOCORRELATION PRESENT)

169 % h = 0 indicates failure to reject the no residual autocorrelation null

170 % hypothesis. (AUTOCORRELATION NOT PRESENT)

171 lags = 4;

172

173 correl = zeros(m1,lags+1);

174 heterosked = zeros(m1,1);

175 for i = 1:m1

176 [correl(i,1:lags),¬,¬,¬] = lbqtest(resid(:,i),'Lags',1:lags);

177 heterosked(i) = archtest(resid(:,i));

178 end

179 correl(:,lags+1) = sum(correl(:,1:lags),2);

180 LBtestResNW = sum(correl,1);
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181 heteroskedResults = sum(heterosked,1);

182

183 % heterosked = TestHet(residNW(:,1), X, '-BPK');

184 SPEC = [LBtestResNW(:,1:lags) heteroskedResults sparsity];

185

186

187 %% matrix rotation - according the cluster membership of every region (row)

188 rowSort = [3 1];

189

190 adjPlus = adjacencyMatrixPlus(betaStored);

191 adjMinus = adjacencyMatrixMinus(betaStored);

192 groupFrequency = tabulate(group);

193

194 adjPlusRot = [transpose(1:1:m1) population group adjPlus(:,1:m1)];

195 adjPlusRot = sortrows(adjPlusRot,rowSort);

196 index = adjPlusRot(:,1:3);

197 adjPlusRot(:,1:3) = [];

198 adjPlusRot = [(1:1:m1); transpose([population group]); adjPlusRot];

199 adjPlusRot = transpose(adjPlusRot);

200 adjPlusRot = sortrows(adjPlusRot,rowSort);

201 adjPlusRot(:,1:3) = [];

202 adjPlusRot = transpose(adjPlusRot);

203

204 adjMinusRot = [transpose(1:1:m1) population group adjMinus(:,1:m1)];

205 adjMinusRot = sortrows(adjMinusRot,rowSort);

206 adjMinusRot(:,1:3) = [];

207 adjMinusRot = [(1:1:m1); transpose([population group]); adjMinusRot];

208 adjMinusRot = transpose(adjMinusRot);

209 adjMinusRot = sortrows(adjMinusRot,rowSort);

210 adjMinusRot(:,1:3) = [];

211 adjMinusRot = transpose(adjMinusRot);

212

213 spy(adjPlusRot,'-.b',8);

214 hold on

215 spy(adjMinusRot,'-.r',8);

216 hold off

217

218 % lines of boundaries between pair of clusters added

219 color = [54/255 54/255 54/255];

220 cumul = 0;

221 for i= 1:size(groupFrequency,1)-1

222 cumul = cumul + groupFrequency(i,2);

223 line('XData', [cumul cumul], 'YData', [0 m1+1], 'LineStyle', ...

'--','LineWidth', 1.5, 'Color','black');

224

225 line('XData', [0 m1+1], 'YData', [cumul cumul], 'LineStyle', ...

'--','LineWidth', 1.5, 'Color','black');

226 end

227

228 %% correlation matrix
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229 R = corrcoef(dataAdjusted);

230 % rotation

231 Rnew = [transpose(1:1:m1) group R];

232 Rnew = sortrows(Rnew,[2 1]);

233 Rnew(:,1:2) = [];

234 Rnew = [(1:1:m1); transpose(group); Rnew];

235 Rnew = transpose(Rnew);

236 Rnew = sortrows(Rnew,[2 1]);

237 Rnew(:,1:2) = [];

238 Rnew = transpose(Rnew);

239

240 % full network - creates a network assuming every region is connected to ...

all the remaining

241 A = ones(m1,m1);

242 A = A - eye(m1);

243 netwFull = createNetwork(A,region);

244 netWeights = reshape(R,m1*m1,1);

245 for i = 1:size(netWeights,1)

246 if netWeights(i,1) == 1

247 netWeights(i,1) = NaN;

248 end

249 end

250

251 %% network according to model

252

253 networkModel = createNetwork(adjacencyMatrix(betaStored(:,1:m1)),region);

254 networkModelPlus = createNetwork(adjPlus,region);

255 networkModelMinus = createNetwork(adjMinus,region);

256

257 %% group characteristics

258 charsUnsorted = [num2cell(transpose(1:1:m1)) num2cell(group) ...

num2cell(population) region num2cell(AICs) num2cell(BICs) ...

num2cell(modBICs) num2cell(HQs) num2cell(correl(:,1:lags)) ...

num2cell(heterosked) num2cell(R2) num2cell(R2adj)];

259 charsSorted = sortrows(charsUnsorted,[2 1]);

260 charsSorted(:,1:4) = [];

261

262 groupStat = zeros(size(groupFrequency,1),size(charsSorted,2));

263 cumul = 0;

264 for i = 1:size(groupFrequency,1)

265

266 groupStat(i,:) = sum(cell2mat(charsSorted(cumul+1:cumul + ...

groupFrequency(i,2),:)),1);

267 cumul = cumul + groupFrequency(i,2);

268

269 end

270

271 groupStat = [groupStat groupFrequency(:,2)];
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In the next script (IRS.m) the impulse response functions are computed and consequently

transfomed into networks that monitor where the shock came from at time t, who was

affected by the shock and whether the shock was positive or negative. Several .csv files

are generated as an input to Gephi that creates a network graph (see section (5.7)).

1 %% impulse response analysis for p = 1

2 % pls lasso2.m must be executed before

3

4 h = 20;

5 yt = zeros(m1,h+1);

6 % shock in which region/variable

7 shockVarIndex = 308;

8 yt(shockVarIndex,1) = 1; %yo

9

10

11 % IR function for horizon h and p = 1

12 for i = 1:h

13 yt(:,i+1) = betaStored(:,1:m1)*yt(:,i);

14

15 end

16 yCumul = cumsum(yt,2);

17

18 % adjacency matrix

19 betaT = zeros(m1,m1,h);

20 aMatrix = zeros(m1,m1,h);

21 netw = cell(2000,2*h);

22

23 nod = cell(m1+1,9,h);

24

25 nod(1,7,:) = cellstr('state');

26 nod(1,8,:) = cellstr('color');

27 nod(1,9,:) = cellstr('size');

28

29 for j = 1:h

30 nod(:,1:6,j) = regionStat;

31 netw(1,2*j-1) = cellstr('source');

32 netw(1,2*j) = cellstr('target');

33

34 k = find(yt(:,j));

35 for l = 1:size(k)

36 betaT(:,k(l),j) = betaStored(:,k(l),1);

37 end

38

39 aMatrix(:,:,j) = adjacencyMatrix(betaT(:,:,j));

40 q = sum(sum(aMatrix(:,:,j)));

41 netw(2:q+1,2*j-1:2*j) = createNetwork(aMatrix(:,:,j), region);

42

43 for i = 1:m1
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44 if yCumul(i,j) < 0

45 gr = 'negative';

46 cl = '#ff0000';

47 st = 1;

48 elseif yCumul(i,j) == 0

49 gr = 'not affected';

50 cl = '#000000';

51 st = 0;

52 elseif yCumul(i,j) > 0

53 gr = 'positive';

54 cl = '#77e805';

55 st = 1;

56 else

57 gr = '-';

58 end

59 nod(i+1,7,j) = cellstr(gr);

60 nod(i+1,8,j) = cellstr(cl);

61 nod(i+1,9,j) = num2cell(st);

62

63 end

64 % saving results into csv file (using non-standard cell2csv function)

65 switch dataset

66 case 1

67 cell2csv(strcat('C:\Adam\VU\Thesis\codes\gephi data\IRS\metro\net',
68 num2str(j+1),'.csv'), ...

netw(1:1+sum(sum(aMatrix(:,:,j))),2*j-1:2*j), ';', 2013, '.');

69 cell2csv(strcat('C:\Adam\VU\Thesis\codes\gephi data\IRS\metro\nod',
70 num2str(j),'.csv'), nod(:,:,j), ';', 2013, '.');

71 case 2

72 cell2csv(strcat('C:\Adam\VU\Thesis\codes\gephi data\IRS\states\net',
73 num2str(j+1),'.csv'), ...

netw(1:1+sum(sum(aMatrix(:,:,j))),2*j-1:2*j), ';', 2013, '.');

74 cell2csv(strcat('C:\Adam\VU\Thesis\codes\gephi data\IRS\states\nod',
75 num2str(j),'.csv'), nod(:,:,j), ';', 2013, '.');

76 case 3

77 cell2csv(strcat('C:\Adam\VU\Thesis\codes\gephi data\IRS\regions\net',
78 num2str(j+1),'.csv'), ...

netw(1:1+sum(sum(aMatrix(:,:,j))),2*j-1:2*j), ';', 2013, '.');

79 cell2csv(strcat('C:\Adam\VU\Thesis\codes\gephi data\IRS\regions\nod',
80 num2str(j),'.csv'), nod(:,:,j), ';', 2013, '.');

81 end

82

83 end

84

85 initial = cell(1+m1,2);

86 initial(1,1) = cellstr('source');

87 initial(1,2) = cellstr('target');

88

89 switch dataset

90 case 1
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91 cell2csv('C:\Adam\VU\Thesis\codes\gephi data\IRS\metro\net1.csv', ...

initial, ';', 2013, '.');

92 case 2

93 cell2csv('C:\Adam\VU\Thesis\codes\gephi data\IRS\states\net1.csv', ...

initial, ';', 2013, '.');

94 case 3

95 cell2csv('C:\Adam\VU\Thesis\codes\gephi data\IRS\regions\net1.csv', ...

initial, ';', 2013, '.');

96 end

Last but not least, forecasts are carried out by the predictions.m script.

1 %% predictions

2 addpath('C:\Adam\VU\Thesis\codes\glmnet matlab')

3

4 model = 1; % 1 for PLS; run pls lasso2.m first!

5 % 2 for DFM; run dfm2.m first!

6 % 3 for benchmark model run olsX2.m first!

7

8 h = 16; % lenght of the out of sample period

9 % 1 means 1991Q1 for metropolitan areas dataset

10 % 1 means 1994Q1 for regions dataset

11

12 [n, m] = size(X);

13 ind = 0;

14 s = n - h - ind;

15

16 forecast = zeros(h,m1);

17 %% forecasts

18 betaPredict = zeros(m1,m,h-1);

19 sparsity = zeros(1,h);

20

21 switch model

22 case 1 %PLS -----------------------------------------------------------

23 % glmnet options

24 options = glmnetSet();

25 options.intr = false;

26 options.standardize = true;

27 options.thresh = 1e-8;

28 options.nlambda = 100;

29

30 % penalty factor

31 options.penalty factor = ones(1,p*m1);

32 options.penalty factor = [options.penalty factor ...

zeros(1,nPredictors)];

33 switch type

34 case 1 % 'LASSO'

35 options.alpha = 1; % 1 for lasso, 0 for ridge

36
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37 case 2 % 'adaptiveLASSO'

38 options.alpha = 1; % 1 for lasso, 0 for ridge

39

40 case 3 % 'ridge'

41 options.alpha = 0; % 1 for lasso, 0 for ridge

42 end

43

44 for i = 1:h

45 i

46 XPr = X(i:s+i-1,:);

47 for j = 1:m1

48 yPr = yStored(i:s+i-1,j);

49 % weights for adaptive lasso*************************

50 if type == 2

51 options.alpha = 0;

52 ridgeFit = glmnet(XPr,yPr,[],options);

53 [¬,minBICindex,¬] = ...

BICselection(ridgeFit,ridgeFit.beta,XPr,yPr);

54 pen = transpose(1./abs(ridgeFit.beta(1:p*m1,

55 minBICindex)));

56 if nPredictors > 0;

57 pen = [pen zeros(1,nPredictors)];

58 end

59 options.penalty factor = pen;

60 options.alpha = 1;

61 end

62 % ***************************************************

63 fit = glmnet(XPr,yPr,[],options);

64

65 % BIC selection

66 [¬,minBICindex] = BICselection(fit,fit.beta,XPr,yPr);

67 beta = fit.beta(:,minBICindex);

68 betaPredict(j,:,i) = transpose(beta);

69 end

70

71 forecast(i,:) = X(s+i,:)*betaPredict(:,:,i)';

72 sparsity(i) = size(find(betaPredict(:,:,i)),1);

73 end

74

75 case 2 % DFM ...

-------------------------------------------------------------

76 for i = 1:h

77 i

78 for j = 1:m1

79 yPr = yStored(i:s+i-1,j);

80 XPr = XStored(i:s+i-1,:,j);

81

82 fit = fitlm(XPr,yPr,'Intercept',false);

83

84 beta = transpose(fit.Coefficients.Estimate);
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85 betaPredict(j,:,i) = transpose(beta);

86 forecast(i,j) = XStored(s+i,:,j)*betaPredict(j,:,i)';

87 end

88

89 end

90 case 3 % benchmark ...

--------------------------------------------------------

91 for i = 1:h

92 i

93 XPr = X(i:s+i-1,:);

94 for j = 1:m1

95 yPr = yStored(i:s+i-1,j);

96

97 fit = fitlm(XPr,yPr,'Intercept',false);

98

99 beta = transpose(fit.Coefficients.Estimate);

100 betaPredict(j,:,i) = transpose(beta);

101 end

102 forecast(i,:) = X(s+i,:)*betaPredict(:,:,i)';

103 end

104

105 end

The list of codes presented above is not complete at all, many user defined functions are

stored in separated files. In codes themselves, several rows were omitted as well. The full

set of codes and datasets can be found in the multimedia attachment.
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