Vysoká škola ekonomická v Praze

Národohospodářská fakulta

Hlavní specializace: Ekonomická analýza

ESTIMATING THE IMPACT OF THE 2012 LIQUOR PROHIBITION ON CRIME IN THE CZECH REPUBLIC

diplomová práce

Autor: Bc. Jiří Krejsa Vedoucí práce: doc. Mgr. Libor Dušek, Ph.D. Rok: 2017 This page intentionally left blank

Prohlašuji na svou čest, že jsem diplomovou práci vypracoval samostatně a s použitím uvedené literatury.

Bc. Jiří Krejsa V Praze, dne 2.1. 2017

Poděkování

Rád bych poděkoval vedoucímu své práce doc. Mgr. Liboru Duškovi, Ph.D. za poskytnutá data, rady o postupu analýzy i vstřícnost a trpělivost při četných konzultacích.

Abstrakt:

Tato diplomová práce se soustřeďuje na zachyceni kauzálního vztahu mezi alkoholem a jeho externalitou, zločinem. Kvazi-přirozený experiment, jakým byl český zákaz prodeje tvrdého alkoholu po sérii otrav metanolem v roce 2012, je cennou výzkumnou příležitostí pro tento vztah. Během této částečné prohibice poklesla násilná trestná činnost o zhruba 10 %, stejně jako agregát trestných činů ublížení na zdraví, nebezpečné vyhrožování, výtržnictví a poškozování cizí věci. Navíc se tento propad nejvíce projevil na víkendové zločinnosti. Počet pachatelů trestných činů pod vlivem alkoholu poklesl o přibližně 18 % u dopravních trestných činů a o 28 % u nedopravních. Pozornost je věnována i možnosti, že pokles nahlášené zločinnosti byl způsoben nižší mírou detekce policie. Zatímco v modelovém příkladu demonstruji, že značná část poklesu v zaznamenané míře ohrožování pod vlivem alkoholu mohla být způsobena nižší detekcí, pouze míry zločinů bez obětí by tímto mohly být ovlivněny. Závěrem zkoumám možný efekt na míry majetkové kriminality, který je ale nesignifikantní s výjimkou vloupání do barů a restaurací.

Klíčová slova: ekonomie zločinu, alkohol, externalita, přirozený experiment

JEL Klasifikace: H23, I18, K42

Abstract:

This thesis focuses on capturing causal link between alcohol consumption and one of its externalities, crime. The quasi-natural experiment of the Czech temporary ban on hard liquor following an outbreak of methanol poisonings in September 2012 provides a valuable setting for evaluation of the alcohol-crime relationship. Over the course of the prohibition, violent crime rates fell by approximately 10 %, just like the aggregate of aggravated assault, criminal threatening, vandalism and property damage. In addition, the biggest share of reduction in crime falls on weekend criminality. The number of offenders under the influence of alcohol dropped by approximately 18 % for traffic-related offences and by 28 % in non-traffic offenses. The possibility of the reduction in crime being caused by lower detection capabilities of the law enforcement was examined. The reduction in reported cases of e.g. driving under the influence might be to a large extend explained by lower detection, but it could have reduced only rates of victimless crimes. Finally, the property crime rate was not significantly affected by the intervention, except for burglaries into bars and restaurants.

Keywords: Economics of crime, Alcohol, Externality, Natural experiment JEL Classification: H23, I18, K42

Content

Introduction							
1	1 Alcohol consumption and its externalities						
1.	1.1 Alcohol consumption in Czech Republic – a comparison			8			
1.	.2	Eco	nomics of alcohol consumption	11			
	1.2	.1	Social costs of drinking alcohol	11			
1.2.2		.2	Regulating alcohol: From Prohibition to Pigouvian tax	13			
1.	.3	Info	ormal market for alcohol in Czech Republic				
1.	.4	The	e case of 2012 methanol poisonings and ban on spirits	20			
1.	.5	Em	pirical analysis of crime	24			
	1.5	.1	Economics of crime	24			
	1.5	.2	Determinants of crime	24			
	1.5	.3	Link between alcohol and crime	25			
	1.5	.4	Previous empirical studies	27			
1.	.6	Hyp	potheses	29			
2	The	e effe	ect of 2012 ban on spirits on crime rates				
2.1 Data and identification strategy							
2.	.2	Fun	ctional form and estimation methods				
2.3 Effect on viol		Effe	ect on violent crime				
2.4 Effe		Effe	ect on the most alcohol-involving crimes	45			
2.	.5	Effe	ect on police detection activity and driving under influence	55			
2.6 Effect on property c		Effe	ect on property crime rates	61			
2.	.7	Mo	del diagnostics	67			
2.	.8	Lin	nitations	70			
3	Cor	nclus	sions	71			
References							
List	List of Abbreviations						
List of Figures							
List of Tables							
Appendices							

Introduction

Consumption of alcohol is associated with many externalities, i.e. costs that are borne by society as a consequence of individuals' actions. Many previous studies have demonstrated how the culture of drinking alcohol leads to poorer public health, loss of productivity or increased criminality, which is the focus of my thesis.

First sections will characterize the alcohol consumption in the Czech Republic, which is one of the most heavily drinking countries in the world. In fact, globally it is the tenth country with the highest average alcohol consumption per year by the World Health Organization database. Moreover, some authors characterized large share of the population as heavy drinkers. Studies attempting to quantify the costs of alcohol imposed on Czech Republic or other countries are also included. The externalities are the rationale for alcohol market being subject to regulation by the governments. So, a review of the history of regulating alcohol and its externalities, mostly from American experience, which finally led to the current system where the costs are internalized by a selective tax on alcohol in a Pigouvian fashion.

There is a substantial body of research in the fields of economics, criminology and addictology that links alcohol consumption to crime, which I will go through in Section 1.5. Some correlate reported crime rates with spatial availability of alcohol or other type of restrictions such as regulation of sale times to demonstrate the link. However, the research design that is most likely to reflect causality of alcohol on crime is a large and abrupt intervention that cuts the alcohol consumption, i.e. it makes alcohol either less available or more expensive. (Carpenter, et al., 2010)

Such a design is employed in this thesis as well, using the 2012 Czech ban on hard liquor as the treatment period. The ban was an emergency measure by the Czech government after an outbreak of methanol poisonings and lasted only two weeks. The epidemic of the poisonings killed 41 people and its subsequent investigation is till now the biggest criminal case in Czech history. The details about the ban and the poisonings are presented in Section 1.4.

The effect of this quasi-natural experiment is studied on multiple crime categories using the data from police information system, which were made available for this thesis. The data include all the reported crimes by date between years 2010 and 2015 which allows me to study the effect on weekly crime rates. The first stage of the analysis studies if violent crimes were affected by the absence of hard liquor. Next, the analysis is refined to include the most-alcohol involving crimes and the total number of criminal offenders under the influence of alcohol. Since alcohol-related criminality, just like alcohol consumption, is peaking during the weekend, the crime rates were also split into weekday and weekend observations to see which of the two was the more affected. The study of reported crime rates, which are just a subset of the crime actually committed, raises the question whether the displaced police activity also affected the reporting rates. This problem will be addressed in a separate section on a model case of two traffic-related offenses. Finally, a potential effect on rates of property criminality will be investigated.

The parameters of the regression equations were estimated both by ordinary least squares and by the Poisson regression model, which is more suitable to count data such as crime.

1 Alcohol consumption and its externalities

1.1 Alcohol consumption in Czech Republic – a comparison

According to WHO's 2014 *Global status report on alcohol and health*, the Czech Republic falls into the category of the heaviest drinkers in the world. Average adult Czech (15+ years) drinks around 13 liters of pure alcohol annually, which puts the Czech Republic along with neighboring Slovakia tied for the tenth place globally in total per capita alcohol consumption. This figure, which is a yearly average of the three-year period between 2008-2010, when the survey took place, is more than double of the global average of 6.2 liters per capita (WHO, 2010a). It is only exceeded by Andorra and other Eastern European countries, with Belorussia being the world's heaviest drinking country with 17.5 liters per capita (WHO, 2010a).

The consumption of alcohol in the Czech Republic is characterized by very high prevalence of heavy episodic drinking¹ (HED), where approximately 36.5 % of the population consumes alcohol heavily at least once a month. HED is a better metric for risk of experiencing alcohol-related acute harm or developing chronic health complications. Among the countries included in this survey (WHO, 2010d), the Czech Republic has the third highest share of HED in the world. The share however varies among genders, 53.5 for male population and 24.9 for females, which is also the world's highest and fifth highest, respectively (global average per person is only 7.5 %).

Even more alarming data have been presented in Oxford's journal *Alcohol and Alcoholism* (Popova, et al., 2007), where the authors of this comparative study estimate the Czech Republic's share of heavy drinkers (40+ grams of alcohol daily) to reach almost 60 % of male population and is the highest of all the countries included in the study. Share of heavy female drinkers is estimated to be approximately 7 %. On the other hand, the Czech share of abstainers or very light drinkers was the lowest from all the countries in the sample. The conclusions of the study are that the countries of Central Eastern Europe are the second biggest alcohol consumers, only surpassed by Eastern European

¹ For the use in its report, WHO defined HED as "60 or more grams of pure alcohol on at least one single occasion at least monthly" (WHO, 2014 p. 4), which is the alcohol content of at least 6 standard drinks in most countries. They set this metric because "volume of alcohol consumed on a single occasion is important for many acute consequences of drinking such as alcohol poisoning, injury and violence, and is also important wherever intoxication is socially disapproved of. HED is associated with detrimental consequences even if the average level of alcohol consumption of the person concerned is relatively low." (WHO, 2014)

Moldova Republic, Russia, or Ukraine. Also, the pattern of drinking within the CEE region is mostly irregular binges, but in the Czech Republic less so as it is rather consumed more frequently and in lesser quantities at a time. In another comparison with Russia, Russian men self-reported attending on average 67 drinking sessions per year compared to 179 sessions among Czech men. Yet, Czech men reported 46 grams of alcohol as the mean dose per session, compared to 71 grams by Russian men who report almost no session with less than 40 g and occasionally consumed up to 160 g. (Bobak, et al., 2004) In terms of detrimentality to health, the Czech pattern is nevertheless seen only as moderately harmful - 2 on the scale from 1 to 4. Russian pattern was given 4 out of 4, the most detrimental. (Popova, et al., 2007) This 4-level ranking is based on data from medical study focusing on relationship between pattern and level of alcohol consumption and alcohol attributable fraction (AAF) of injuries and chronic diseases. Results of AAF are not country specific in this study, Rehm et al. only present cluster averages. Czech Republic fell into Western European cluster, where the average AAF of all diseases and injuries for males is 11.1 %. In the Eastern European cluster, the total AAF was almost double, 21.5 %. (Rehm, et al., 2003). The difference in patterns also led to conclusion that HED measured using 60g as a benchmark overestimates the prevalence of binge drinking in Czech Republic and Poland because their consumption is frequently just few grams over the benchmark, but given the local drinking culture does not equal a hazardous alcohol binge. (Bobak, et al., 2004)

The low detrimental score for the Czech pattern is caused by other important factors. In addition to the total consumption and the drinking pattern, the preferred type of beverage and its origin also plays a role. Czechs get more than half of their alcohol intake from drinking beer, 53.5 %, and then 20.5 % from wine while spirits account for only 26 %. In Russian Federation, the distribution is 37.6, 11.4 and 51, respectively. By the drinking pattern, Czech Republic is more alike with its Central European neighbors, like Germany with distribution 53.6, 27.8 and 18.6 or Austria with 50.4, 35.5 and 14, respectively. (WHO, 2010c)

Most importantly, the total consumption of alcohol also comprises the unrecorded consumption of alcohol which is naturally only approximated and then added to the known recorded one. While the records of governmental agencies about production, import or sale of alcohol on legal market make a reliable source of information, there is a wide range of estimates of the extent of unrecorded consumption. It includes all alcohol that was home-made, smuggled, informally produced or any industrial and medical alcohol that was in the end consumed as surrogate. According to WHO's GISAH database, Czech Republic's unrecorded consumption should amount to around 1.2 liters per capita and year, but, as it remains rather a guesstimate, the 95 % confidence interval ranges from 0.7 to 1.7 of liters of unrecorded alcohol consumed every year (WHO, 2010b).² Dominant part of the Czech unrecorded consumption falls on home-made fruit brandies, while e.g. in Russia or the Baltics the unrecorded consumption is mainly comprised of low quality samogon or surrogates, both with elevated toxicity. (Popova, et al., 2007)

² The WHO methodology of determining such value include a multiple of steps: first, there are many national surveys about home production, then specific empirical investigations and finally an expert opinion. Statistics of confiscated illicit alcohol or alcohol poisonings are also considered. (WHO, 2010b)

1.2 Economics of alcohol consumption

1.2.1 Social costs of drinking alcohol

The drinkers may derive their personal utility from consuming alcohol, serving them either as a stimulant or a lubricant of social interaction, although drinking it also affects the individual and economy on various levels. The most obvious ways are the costs of lost health, healthcare spending and premature deaths. Individual drinker may bear some of the direct costs in forgone income, by paying higher insurance premiums or after being denied payment of insurance claim for alcohol-related harm. (Goodliffe, 2007) Healthcare costs in the Czech Republic are, nevertheless, mainly covered by revenue from mandatory employment-related insurance plans, i.e. by both drinkers and abstainers regardless.

The leading harmful consequences are unintentional injuries, hypertensive and other cardiovascular disease, hemorrhagic stroke, liver cirrhosis and liver cancer, mouth and oropharyngeal cancer, breast cancer or psychiatric disorders such as depression. (Rehm, et al., 2009) Probability of these complications increase with average consumption, but even more so by a detrimental drinking pattern in case of coronary diseases and injuries. On the other hand, alcohol can also contribute with some health benefits, affecting positively e.g. chance of stroke or diabetes mellitus by drinking moderately. (Rehm, et al., 2003) AAF of all deaths in the Czech Republic is 5.8 %, but for Czech men it is 9.8 %, but Czech AAF of liver cirrhosis deaths is almost three quarters. Alcohol is also responsible for 15 % of female traffic accident deaths and 36.3 % for males. In conclusion, WHO gave the Czech Republic the worst score of alcohol attributable years of life lost -5 out of 5. The metric represents (in quintiles) how much of the difference between life expectancy and potential life expectancy could be mitigated in the absence of alcohol-related complications, i.e. over 80 % in case of the Czech Republic. (WHO, 2012)

Although being disputed by recent authors (Dave, et al., 2002), one of the main arguments for regulating alcohol market is its impact on productivity and work absenteeism. The real reason behind alcohol-related employee absenteeism may be another omitted variable and alcohol abuse just another symptom of the same. (Bacharach, et al., 2010)

Costs to the justice system are also partly attributed to alcohol, as it may lead drinkers to higher propensity to crime, therefore generate additional costs in law enforcing, judiciary and jailing. Damage done by alcohol-intoxicated offenders is also included, most commonly accident costs of driving under influence or lost productivity of homicide victims. (Bouchery, et al., 2011) And it is this externality, crime, that lies in the focus of this thesis. The research of causality between alcohol and crime will be discussed in section 1.5.3.

Many authors have tried to assess all these social costs of alcohol, especially in the United States. In one of the recent ones, from 2006, the estimated costs total to \$223.5 billion. (Bouchery, et al., 2011) Majority of the costs, \$161.3 billion, is the loss of productivity – either completely lost because of premature mortality or the impaired productivity of alcohol abusers. Only 11 % of that amount, \$24.5 billion, are healthcare costs, with almost half being spent on special alcohol abuse or dependence care. Additional costs to justice system are almost \$21 billion; \$4.4 billion on police, \$3.7 billion on adjudication and \$12.6 billion on corrections. Key contribution of this study is determining the bearers of these costs. Authors state that only 41.5 % of the costs is borne by the drinkers and 16.3 % by the rest of the society, typically insurers, employers or crime victims. The rest, 42.1 % of the costs is paid for by the government sector. That enabled them to quantify that given the total consumption of 550,761,000 gallons of pure ethanol in 2006, one standard drink (14 g of ethanol) accounts for \$0.80 in government expenses. Total cost of one drink is \$1.90.

In a report for European Commission, P. Anderson from Institute of Alcohol Studies claims that the tangible costs of alcohol to member countries of European Union (15 at the time) was \notin 125bn in 2003, equivalent to 1.3 % of that year's GDP. Unemployment and absenteeism amounted for \notin 23bn, increased mortality \notin 36bn, \notin 22bn in spending on healthcare and prevention, \notin 10bn in alcohol-attributable traffic accidents damage and more than \notin 30bn in costs of alcohol related crime. That includes property damage, spending on law enforcement, judicial system etc. (Anderson, et al., 2006)

Czech costs of alcohol were estimated to be 16.4 billion CZK in 2007 (Zábranský, et al., 2011), i.e. around 0.45 % of GDP. These studies are not well comparable as the methodology and discount rates used vary. Zábranský and his colleagues calculated that Czech economy forgoes 6.1 billion CZK annually in income because of mortality,

and spends almost 2 billion in treating alcohol-attributable diseases and injuries and about 675 million in costs of treating alcohol dependence. Alcohol-induced crime accounts for 5.45 billion CZK.

1.2.2 Regulating alcohol: From Prohibition to Pigouvian tax

Industrial Revolution in the 19th century made massive amount of alcohol cheaper and more available than ever and, at the same time, made the costs of excessive alcohol abuse more apparent. The temperance movements started to appear in many countries (USA, Canada, United Kingdom, Nordic Countries etc.) first promoted by physicians, clerics and employers as a response to growing general drunkenness. Throughout the 19th century it became the biggest middle-class mass movement of the era, rejecting alcohol consumption and demanding its regulation or total prohibition, either from religious, economic or moral standpoint. The per adult consumption in 1830s was up to 7 gallons (\approx 26.5 liters) of pure alcohol a year, but fell beneath 2 gallons by 1870s. (Rorabaugh, 1979 as cited in Levine, et al., 1991) I.e., throughout the 19th century, the counterforce to the rise in alcohol consumption and the externalities that it imposed on society was individual abstinence. The alcohol consumption in the United States was again peaking before World War I. at around 2.5 gallons (≈9.5 liters) in 1910s which was disrupted by a temporary war-time prohibition on alcohol to preserve more grain as food, valid since 1917. After the war, the temperance movements used their political force to extend it permanently, as of January 1920, by the 18th Constitutional Amendment. The Prohibition under 18th Amendment lasted for 13 years, making the general ban in the United States another distinctive era in the history of regulation of alcohol consumption. However, after those 13 years it became the first Amendment ever to be repealed. The rationale for lifting the ban was not only the surge in criminal activity, lawlessness, inefficiency of prohibition enforcement and its costs (Levine, et al., 1991), but also the argument that the forgone revenue from taxes on alcohol may be used to alleviate suffering during the Great Depression. (Blocker, 2006)

The effect of the Prohibition on alcohol consumption or its externalities vary. The official data on alcohol consumption were not collected during the Prohibition era between 1920 and 1933, but were proxied using indirect methods. Miron and Zweibel estimate, based on data about liver cirrhosis, alcohol-related mortality etc., that following the ban consumption fell by 70 % but has subsequently been growing, till it reached approximately 60-70 % of the initial value within 10 years. The consumption stayed

at this level for years, even after the ban was lifted. As stated by the authors, their results should counter the common misbeliefs that Prohibition encouraged more people to drink than before or the opposite claim, that it effectively reduced consumption to a small fraction. The abrupt drop after 1920 was mainly due to lack of supply, but alcohol was consumed again as soon as it became available on the black market. The composition of beverage types consumed, however, changed profoundly, shifting towards drinks with high alcohol content to facilitate logistics of illegal supply chains. (Miron, et al., 1991) In their later article, they conclude that Prohibition was a weak deterrent from drinking alcohol, many negative externalities of alcohol market were caused by the Prohibition itself and the externalities only rose with more Prohibition enforcement effort and spending. All the criminalization of alcohol was from consumer's perspective a form of tax, but demand for alcohol proved to be inelastic. Prohibition brought uncertainty about alcohol quality, financed criminals and incentivized them to use violence since they could not use the judicial system to settle disputes. This experience from the alcohol Prohibition should serve as an argument for ending the ban on many other currently illegal substances. (Miron, et al., 1995)

After the end of Prohibition in 1933, US alcohol market was still subject to some restrictions on where and when it can be gotten, but overall it became widely available. Black market was replaced by oligopolistic producers and competing distributors, allowing sale of alcohol in more places than before the Prohibition, when sale was restricted to saloons only. (Levine, et al., 1991) Alcohol consumption began to grow again slowly after World War II., returning to the pre-prohibition per capita level in 1970s (Blocker, 2006). The new system of collection of excise taxes on alcohol was a major success and black market disappeared. (Levine, et al., 1991)

The post-Prohibition regime of regulating alcohol respected the inelasticity of alcohol demand, proven by the failed Prohibition experiment, and rather shifted towards evaluation of efficiency of taxing. The excise tax on alcohol represented more than half of price of alcoholic beverages in 1950s, but, despite two increases, was gradually declining in real terms due to inflation. By 1980s, the tax represented only slightly over 20 % of price. (Kenkel, 1996) Kenkel estimates that optimal tax rate, which would minimize deadweight loss of moderate drinkers and maximize gains from cutting heavy drinking, is somewhere over 100 % of net-of-the-tax price. That is, the optimal policy in 1996 would have been more than doubling the real tax rate, i.e. returning to

1950s levels; other authors present similar results (Pogue, et al., 1989). The excise taxes on alcohol were raised for the last time in 1990, effective since 1991, raising the tax on spirits by a dollar from \$12.50 to \$13.50 per proof gallon³. Between 1951 and 1985, the tax rate was \$10.50. The tax on beer was doubled as of 1991, from \$9 to \$18 per barrel (=31 gallons =117.35 liters). (TTB, 2012) These are only federal taxes, state and local governments can collect their own excise taxes, therefore alcohol is not taxed uniformly in the US.

The externalities produced by alcohol consumption are, in a Pigouvian fashion, internalized by a selective tax in most countries including the Czech Republic. Over 90 % of reporting countries use an excise tax. Other forms include minimum pricing policies or a flexible tax that is periodically adjusted for dynamics of inflation or income levels, but globally they are not very common. There are still countries with permanent prohibition on alcohol, especially countries with Muslim-majority and parts of India. (WHO, 2014)

The Czech Republic never saw a Prohibition, but has had a selective tax on alcohol since the era of the Habsburg monarchy. In the Czech Republic, excise tax is collected by the Customs Administration on all produced or imported alcohol and is currently set at: 28,500 Czech korunas (CZK) per hectoliter of pure alcohol for spirits; 32 CZK per degree Plato⁴ and hectoliter for beer⁵; and 2 340 CZK/hl for wines⁶. The tax is paid by the producers and the burden is then shifted on the consumer. In their 2015 annual report, Customs Administration states that the excise tax on spirits brought 7.1bn CZK to Czech national budget. They also collected 4.7bn in tax on beer and 300mil in tax on wine. (MF ČR, 2016) All of them combined constituted approximately 1 % of total tax revenue in 2015. Combined with VAT, the taxes are a substantial part of retail price of any given alcoholic beverage. As the excise tax is flat, the proportion of taxes is the highest for the cheapest drinks. Especially for cheap spirits⁷, which opens a gap for black

 $^{^{3}}$ A gallon (=3.785 liters) with 50 % of alcohol, actual rate is adjusted to the actual alcohol content.

⁴ The relative density of wort to water, i.e. percentage of original gravity, in Czech commonly known as "degree".

⁵ Moreover, this tax rate is progressive with annual production; starting at 16 CZK for breweries producing less than 10,000 hl and stopping at 32 CZK for producers of over 200,000 hl of beer annually.

⁶ Non-sparkling (so called "silent") wines are, however, excluded from this tax.

⁷ In sample case of a small bottle of 0.5 liter of liquor with 40 % ABV costing 100 CZK, the excise tax for this amount of alcohol is 28500/100/2*0.4=57 CZK and 21% VAT is 100*(21/121) = 17.35 CZK. Tax in this case represents almost 75 % of the retail price.

market. How much is the total revenue from taxing alcohol market is not published, but other major sources are VAT, customs on imported alcohol or income taxes from market agents.⁸

The excise tax is harmonized within European Union by a mandatory minimum tax set at \in 550 per hectoliter of pure alcohol in spirits and \in 0,748 per hectoliter and degree Plato. The actual rates are set by national governments and, as seen in Table 1, are usually much higher.

The complexity of taxing makes alcohol susceptible to tax evasion. The internal differences in taxing among member countries of the European Single Market create an incentive for cross-border shopping, where the low-tax country gains tax revenue at the expense of high-tax country. Such a practice is legal and is very common between Finland and Estonia or Denmark and Sweden. (Anderson, et al., 2006) In fact, a quarter of all alcohol consumed in Sweden in 2004 was purchased abroad. (SoRAD, 2005 as cited in Anderson, et al., 2006) However, more revenue is lost because of excise duty frauds when exported alcohol is taxed by the rate of the destination country, but is then illegally diverted to a different country with a higher rate. (Wells, et al., 2005 as cited in Anderson, et al., 2006) Informally produced alcohol is another consequence of high taxes in Europe, although it is most present in the Baltics, Slovenia, Poland and Bulgaria, i.e. countries with comparatively low taxes. The report concludes that the extent of the illicit market in these countries is likely due to their ineffective tax collection system. (Anderson, et al., 2006)

⁸ Reduced pension payments due to premature mortality may be considered another fiscal benefit.

Country	Year ⁹	Beer	Wine	Spirit	
Austria	2013	24	0	1,000	
Belgium	2013	20.53	52.75	1,962	
Bulgaria	2009	9.20	0	562.43	
Croatia	2012	25.86	0	706	
Cyprus	2012	22.94	0	956.82	
Czech Republic	2012	15.44	0	1,136.36	
Denmark	2009	32.80	82.50	2,014.80	
Estonia	2012	13.68	80.64	1,491	
Finland	2012	143.52	312	4,340	
France	2013	13.20	3.66	1,689.05	
Germany	2013	9.40	0	1,303	
Greece	2013	31.20	0	2,450	
Hungary	2012	24.75	0	984	
Ireland	2013	75.41	454.23	3,685	
Italy	2012	28.20	0	800.01	
Latvia	2012	15.03	64.64	1,325	
Lithuania	2012	11.82	57.34	1,278.96	
Luxembourg	2012	9.52	0	1,041.15	
Malta	2012	9	0	1,250	
Netherlands	2013	32.64	83.56	1,594	
Poland	2012	22.52	38.48	1,132	
Portugal	2012	18.43	0	1,109	
Romania	2013	8.98	0	750	
Slovakia	2012	17.22	0	1,080	
Slovenia	2012	52.80	0	1,200	
Spain	2013	9.96	0	830.25	
Sweden	2013	94.04	254.69	5,474.39	
United Kingdom	2013	23.95	334.11	3,535.01	
Source: (WHO, 2016)					

Table 1: Average excise duties in member countries of the EU in euros/hl

⁹ The most recent year with available data in GISAH.

1.3 Informal market for alcohol in Czech Republic

In the countries of Eastern Europe, a thriving black market has been present at the latest since 1980s. In 1985, Mikhail Gorbachev, then General Secretary of the Communist Party of the Soviet Union, started an anti-alcohol campaign in Soviet Union, cutting state production of alcohol and raising prices. The alcohol consumption first declined, but the supply was soon after replaced by home production of samogon and an illegal distribution network. In the aftermath, tax revenue plummeted, drinking became uncontrollable, quality of alcohol declined, number of poisonings increased and there was an acute lack of sugar on the market as it was diverted to samogon production. The inefficiency of the anti-alcohol campaign led to its abandoning in 1988, but by then the informal market was already established and the relatively high prices of alcohol set by the state kept the industry profitable ever since. Since 1985, the official statistics on alcohol consumption in Russia are meaningless. (Treml, 1997)

The informal market in the Czech Republic, just like the rest of the Eastern bloc, was well established even before the fall of communism, at a time when black-market activities alleviated shortages of basic goods within centrally planned economy. Omnipresent bribery and reliance on the informal market created a culture of public acceptance towards the informal market. (Hignett, 2004) Since the transition to market economy, Czech Republic with other countries of Central Eastern Europe have seen a surge in illicit market activity, especially white collar crimes. The opportunities sprung from many loopholes in legislature and excise duties, e.g. the difference in excise tax on diesel fuels and light heating oils that were chemically identical. Countries in the region have also become an important part of smuggling routes to West, attracting many foreign criminal gangs. In 1990s, Czech Republic, Poland and Hungary were the key entrance points of heroin and cocaine into Europe and important logistic hub of arms and human trafficking. (Šelih, et al., 2012) Alcohol was a frequently smuggled commodity in Central Eastern Europe, but the domestic informal alcohol market in Czech Republic never grew into proportions as within former Soviet Union. That is mainly because of local beer-drinking culture as bootlegging beer was costlier and taxes on beer were much lower. (Lehto, 1995) Nevertheless, informal production of spirits has also established itself in the country.

First reports of the extent of the Czech black market in spirits were published in 2010. As one of the reports said, after years of stagnation, the black market had grown

into such dimensions that it was threatening the legal producers, which started to complain about the inactivity of the state and hired private investigators to uncover its scope. Parts of the investigators' findings were published by the newspapers. Their findings included an estimate of market share of bootlegged spirits of an unlikely 50 %. They also suggested huge tax avoidance, up to 10 billion CZK annually, and potential health risks. (Slonková, 2010a) (Slonková, 2010b) The black market was supposed to comprise of three tiers of production. The top one, measured by forgone tax revenue, was alcohol produced in formal facilities but untaxed due to weak enforcement of excise duties. The lower two were producing spirits out of denatured alcohol,¹⁰ which, thanks to a legal loophole, could be purchased by almost anyone without any special permit. Moreover, the new penal code valid as of 2010 controversially omitted illicit alcohol production which downgraded it to a petty crime. In this lowest tier, bootleggers cleaned the denaturing agents, allegedly by sodium hypochlorite, used commonly as a disinfectant or a water pool cleaner, then mixed the spirits (usually simplest spirits such as vodka or rum) and distributed it to cheap pubs and convenience stores under made-up brands without paperwork or excise stamps. Production tended to be placed in abandoned agricultural facilities. (Slonková, 2010c) The cleaning process, however, must have left some residuals of the denaturing agents and the final product was much more detrimental than ethanol itself. In this tier, the roles were strictly divided and no one acted as both a producer and a distributor, making it safer in case of police intervention. (Slonková, 2010a) Finally, the middle tier was using the cleared denatured alcohol to counterfeit known brands of spirits with higher profit margins. They could get original bottles and fake excise stamps and, according to the investigators, were able to do so by bribing the authorities and the law enforcement. (Slonková, 2010c) The Distilleries Union of Czech Republic, which by market shares unites about 90 % of alcohol suppliers, estimated that the share of informal market on spirits was around 20 %. The Distilleries Union also deem the raise in excise tax (effective since 2010) counter-productive, as it was not followed by a raise in collected taxes. It rather shifted the consumption to the informal market, which then grew to historically highest proportion. In their official statement following the first poisonings, the members of the Union demand stricter

¹⁰ Denatured ethanol is a form of ethanol that is exempt from excise duty but is made undrinkable by adding poisonous, foul smelling, bad tasting and coloring agents and is meant for industrial uses.

regulations (e.g. constant presence of customs officers at the production lines) and improved enforcement. (UVDL, 2012)

1.4 The case of 2012 methanol poisonings and ban on spirits

The Czech Republic experienced a temporary ban on spirits in September 2012 that lasted two weeks following a series of methanol poisonings. Unlike the previously mentioned cases of Prohibitions in USA in 1920's and Gorbachev's anti-alcohol campaign, the objective was not to lower the consumption or reduce the externalities of alcohol, but rather it was an emergency measure. The partial prohibition should have prevented more poisonings until the source of the poison was found and quality of the spirits could be guaranteed. Nevertheless, 121 people suffered from methanol poisoning between September and December 2012, out of whom 41 people died. During these two weeks when the ban was effective, sale of any beverage with over 20 % of alcohol by volume (ABV) was prohibited, meaning that beer, wine, etc., remained legal.

The events of September 2012, the epidemic of poisonings, ban on hard liquor and police raids on black market in alcohol, were caused by a production mistake of a group of bootleggers that fall into the lowest production tier from last section. Bootlegged spirits with varying contents of highly toxic methanol caused an epidemic of poisonings in 11 out of 14 Czech regions. (Zakharov, et al., 2014) The spirits were informally prepared by several independent bootleggers using toxic alcohol originating from a single source. That source were two entrepreneurs who were running a car cosmetics company. These two men prepared a batch of 10,000 liters of a mixture that contained 50 % of methanol and sold it onward through an intermediary. According to the original testimony given by one of them and read during his trial, they prepared such a mixture because they were seeking higher profits, as methanol at their disposal was much cheaper, and because of incompetence, i.e. they thought that keeping methanol in the mixture at the same proportion with ethanol would neutralize its toxicity. (CTK, 2014) Both methanol and ethanol were legally purchased to produce windshield cleaners. The mixture was then turned into spirits of approximately 40 % of ABV by different bootleggers in northeastern Moravia. Majority of the toxic spirits was distributed in these regions, but smaller part was also taken to Bohemia and abroad to Slovakia.

Methanol has been the cause of many previous mass poisonings, recently it was in Estonia in 2001 or Norway 2002-2004. (Paasma, et al., 2007) (Hovda, et al., 2005) The toxicity is caused by methanol metabolizing to formaldehyde and then to formic acid, leading to dangerously high acidosis of blood. The mortality remains high especially because of late hospitalization and treatment because there is a delay between intoxication and first symptoms. (Hovda, et al., 2005) Those symptoms are visual disturbances and respiratory and cardiovascular failure. In Estonian Pärnu region, 111 patients were hospitalized in September 2001 with verified methanol exposure. 25 hospitalized patients died while another 43 victims died outside of hospitals, leaving the death toll at 68. Source of poisonings was bootlegged vodka prepared from stolen methanol mistaken for ethanol. (Paasma, et al., 2007) The outbreak in Norway was caused by alcohol smuggled from South Europe and sold in 10-liter plastic bottles. The poisonings occurred between 2002-2004 and were caused by the same batch of spirits, whose alcohol content was 80 % ethanol and 20 % methanol. Out of 51 hospitalized patients with methanol poisoning, 9 died. Other 8 died outside of hospitals. (Hovda, et al., 2005)

In the Czech Republic, the first three cases of poisoning occurred in northeastern Moravian-Silesian region on September 2nd and were hospitalized on September 3rd. All three resulted in death as no blood methanol was found upon admission and methanol poisoning was found to be the cause of death only after autopsies. Prior to these cases, methanol poisonings in the Czech Republic were scarce for the past 60 years. (Zakharov, et al., 2014) Since then, more patients were hospitalized on September 6th which is when Czech police in Moravian-Silesian region started investigating the outbreak and warned the public for the first time to refrain from drinking suspicious alcohol within the region. (PČR, 2012a) On September 10th, Ministry of Health started a general audit of all the alcoholic beverages and the next day warned all the Czech population to beware of alcohol of doubtful origin. (MZ ČR, 2012)

On September 12th, the severity of the situation led to the first restriction on sale of beverages with more than 30 % of ABV, but targeting only food stands and other mobile market places. Only two days later, on September 14th, the serving Czech Minister of Health Leoš Heger toughened the restriction by a nationwide ban on any alcoholic beverages with more than 20 % of ABV including all the bars and retail. Nevertheless, the week between September 10th and 16th had the highest number of cases of poisonings, 41 hospitalized out of whom 15 died. The effect of prohibition with media coverage led to a widespread awareness and a decreasing number of new poisonings in the next week when 15 people got poisoned and 4 died. (MZ ČR, 2012) As of September 20th, the legal restrictions were further extended to include ban on any export of spirits.

Figure 1: Daily number of cases of methanol poisonings by date; vertical lines delimit the beginning and the end of ban on sale of spirits; September-December 2012 (Source: MZ ČR, 2012)

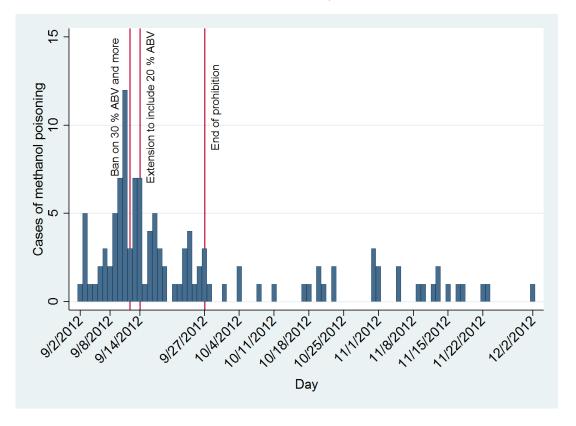
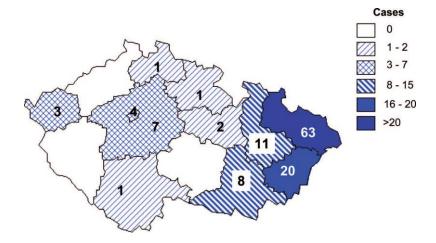



Figure 2: Regional distribution of the methanol poisonings; September-December 2012 (Source: Zakharov, et al., 2014)

Between September and December of 2012, there were 121 cases of methanol poisonings in the Czech Republic. The death toll by December 2012 was 41, out of which 20 died outside of hospital. Another 20 victims survived with sequelae. The evolution of the poisonings over time is in Figure 1 and their localization is in Figure 2. The prompt action of the police helped reduce the number of victims. By the end of September, the network of illegal production and distribution of toxic spirits had been exposed and about 80% of bottles with adulterated alcohol had been seized before being sold to customers. As in the case of Norwegian methanol poisoning in 2002 – 2004, sporadic cases of poisonings occurred even after the main bulk of the outbreak. (Zakharov, et al., 2014) Police report in November announced that since the end of prohibition on September 27th, another 11 people died after drinking alcohol with no excise stamp and that potentially up to 5,000 liters of toxic spirits might still be held in stock by households. (MZ ČR, 2012)

Since the beginning of the prohibition, government was working with the stakeholders on a new system to guarantee quality and regain the trust in the system. The result was a new type of excise stamp and "birth certificate" for any sold liquor. The ban on sale of spirits was lifted on September 27th, but the only spirits allowed to be sold were the ones currently in stock and produced prior to 2012. In the next days, also newly produced spirits were available on the market after verifying the compliance with the new regulations.

Between September 10th and November 29th there were in total 25,017 quality inspections of alcohol bottles within the country, supervised by some of the public health protection authorities belonging under Ministry of Health. (MZ ČR, 2012) However, even more human resources had to be displaced in the law enforcement. Not only did many police units accompany the quality controls, but they were also given the task of enforcing the partial prohibition on alcohol sale. In just the first two weeks following the ban, between September 12th and September 27th, there were almost 25,000 inspections of bars, gaming houses, supermarkets etc. in just the Moravian Silesian region alone. (PČR, 2012b)

The absolute ban on hard liquor was effective for two weeks only. The following section will summarize the theories behind alcohol-crime relationship and what effect the ban might have on crime rates.

1.5 Empirical analysis of crime

1.5.1 Economics of crime

The phenomenon of crime was first analyzed with economic method by Gary Becker in his article *Crime and Punishment: An Economic Approach*. Crime is seen as any other working activity that costs time and effort in exchange for economic benefits. Criminals are therefore also utility maximizers who allocate resources based on expected utility and reallocate them as either costs or benefits change. The main factors in determining the supply of crime, i.e. the number of people willing to engage in a crime, are the parameters of penal policy such as length of sentence, probability of conviction and alternative income in non-criminal activities. These factors vary for every individual so every individual is differently prone to crime, but on average the effects of either a booming economy, harsher punishments or any innovation leading to higher rates of discovering, unraveling crime or convicting of it at trial will lead to lower supply of crime. Moreover, the risk aversion of potential criminals determines whether value(=length) of the punishment or the probability of conviction will cut more crime. For a risk-averse individual, increase in the value would be a stronger deterrent, while a risk-preferers would react more on the chance of being convicted. (Becker, 1968)

While Becker's theory fits the best on white-collar and property crimes, the implications can also be extended to violent crimes. While there is usually no material gain and such crimes are rather motivated by spite or passion, it is also responsive to changes in costs of such actions. (Ehrlich, 1973) The implications of Becker's model were confirmed by multiple studies regarding the effect of increased police presence or deterrent effect of prison sentence, both of which help reduce crime. (Kessler, et al., 1999) (Levitt, 1997) Study by Grogger concludes that based on empirical evidence, criminals are likelier to respond to a higher chance of getting caught than to an increased severity of punishment. (Grogger, 1991) This may be either because of insufficient information or risk preference of criminals.

1.5.2 Determinants of crime

The long-term determinants of crime lay in socio-economic variables such as economic welfare and penal policy. Stricter policy will over time cut the crime rates either by deterring potential criminals from engaging in a crime or will incapacitate the criminal from committing other crimes by jailing. The economic prosperity tends to lower the crime rates.

But apart from the long-term trends, crime oscillates considerably around it. Most crimes have a seasonally repeated pattern. The studies of these short-term variations in crime are linking them to changing opportunities for crime over time. For instance, the opportunity can be correlated with weather. Property crime rates tend to peak during the summer as more can be stolen on the streets or in the unguarded houses when the house owners are out. Heat is also correlated with violence, as rates of assaults or collective violence in the United States were in the studied period rising with the temperature. (Cohn, 1990) Another hypothesis is that crime is almost constant over time, but seasons are correlated with probability of crimes being detected and then reported. E.g. assaults may not happen more frequently during the summer, but the reason why they seem more frequent is that even the less grave assaults get recorded. That is because they happen outside in the public and get noticed by witnesses. (Block, 1984)

One of the leading sociological theories of crime is the routine activities theory. This simple theory says that for the direct-contact predatory crime to happen, a potential offender, suitable victim and absence of guardianship all need to occur at the same time and place. In the article where such theory was proposed, Cohen and Felson concluded that the crime rates have been steadily growing in the United States after World War II because of the changing activities of American households. More everyday travelling and preference for activities outside of home led to a surge of opportunities for crime. (Cohen, et al., 1979) The main characteristic of crime is that its spatial and timely distribution is non-random, but is centered around hotspots. The hotspots are either times or places where the three factors of the routine activity theory concentrate.

1.5.3 Link between alcohol and crime

A possible neurological explanation of link between alcohol and propensity to crime may be provided by the hormone serotonin, which regulates many chemical processes in the brain. The depletion of serotonin makes a person more prone to depression, impulsive and aggressive reactions and increases one's probability of suicide or developing alcohol abuse habit. Drinking alcohol increases serotonin levels in the brain temporarily, but as soon as the drinking stops, serotonin levels also begin to drop. Eventually the serotonin rebounds below baseline levels and such a reduction leads to increased feelings of aggression and worsened impulse control. Low serotonin levels also change the perception of threat of punishment, making one less likely to self-inhibit any action even if one was aware that it has severe consequences. (Peterson, et al., 1993)

Especially in case of assaults and homicides, alcohol is preceded in between 50 to 80 % of the cases. (Pernanen, 1991 as cited in Pernanen, 1998) The key factors in alcohol-violence relationship were studied in programs aiming at preventing the alcohol-related violence. The risk of alcohol leading to violence is again not random but is rather clustered around subgroups, drinking patterns and settings that led to higher risks of ending up in violence. The pattern is usually an alcohol binge, because both violent crime offenders and victims tend to have either high level of blood alcohol concentration (BAC), averaging 1.5 % if present, or none. Young men are the subgroup most prone to violence and public drinking venues is the most high-risk setting. The type of beverage most associated with violence varies between cultures and is non-conclusive. It is usually the beverage that happens to be preferred by young men in that given locality. (Pernanen, 1998) The hotspots of alcohol-related crime were studied by British Home Office in 2003. They concluded that around half of alcohol-related assaults happened in or around bars and clubs and up to 70 % of them on weekend evenings. The weekends are a hotspot of alcohol-related crime. (Budd, 2003) Moreover, around university campuses the hotspot of alcohol-related crime appears to be also Wednesday. (Cho, 2012)

The leading socio-cultural factor in alcohol-crime relationship appears to be a widely-held belief that drunkenness serves as an excuse for violent action. If not an excuse at the court of law leading to milder sentence, which is misguided, it serves for the offender at least as an excuse to make the violent act less socially inacceptable. (Pernanen, 1998)

Unlike many other psychoactive substances, alcohol is legal and widely available in most of the world. That is why the alcohol's relationship to crime is different than those of illegal substances where the crimes are committed in its distribution and the elevated price also leads to increased criminality driven by abusers' desire to obtain the substance. (Miron, et al., 1995) The alcohol-related crime is mainly just the result of the psychopharmacological effect it induces, i.e. it provokes higher rates of aggression. On the other hand, the causal link is likely to be overestimated. The spurious relationship may be driven by circumstances. The motivated offenders and suitable targets might be selectively brought together to locations where alcohol is served. The link between alcohol and crime is not straightforward and is likely interdependent as one's criminal deviance and substance abuse may be both caused by another unobserved variable of the environment. Also, the prevalence of alcohol among arrested suspects may arise from higher chance of drunk offenders to be caught. (Ensor, et al., 1993)

Alcohol-related crimes may be divided into two main groups. The primary alcohol crimes are those where alcohol is part of its definition. In Czech penal code, § 274 ("endangerment under influence") or § 360 ("drunkenness") are such crimes when the offender loses responsibility for his actions because of intoxication, but is prosecuted for allowing to get oneself to such state. The secondary alcohol-related criminality comprises all crimes committed under influence where alcohol intoxication was the primary cause. (Štefunková, 2012)

1.5.4 Previous empirical studies

Cross-sectional studies tend to find differences in levels of crime in places with diverse alcohol policies. Such setting can be applied for example in India where some states follow either restrictions or complete ban of alcohol sale. Comparing local availability of alcohol with surveys on domestic violence around India led to estimates of positive link. Higher availability generally produced higher overall consumption and women reported higher rates of domestic abuse. As it is routinely underreported by women, rates reported in anonymous surveys were used and not the police records. (Luca, et al., 2015) Another country with very diverse regulations of alcohol is the USA. In the city of Detroit, parts of the city with higher availability of alcohol measured by number of licenses to sell alcohol also experienced more of all crime categories. (Gyimah-Brempong, 2001) Studies based on spatial differences in alcohol availability of alcohol and its effect on crime do not necessarily provide a causal link between alcohol and crime. Such correlation can be driven mostly by selection bias as residential areas often have restrictions on alcohol sales and crime tends to happen around city centers where people interact the most. In addition, any alcohol outlets may attract crime that would otherwise happen elsewhere, but none of the studies showed that more alcohol outlets in any given area increased the overall crime rates. Regulating the hours when alcohol may be purchased also does not appear to reduce crime. (Carpenter, et al., 2010)

E. Bye, a Norwegian author, studied the correlation between alcohol consumption and homicide rates in Eastern European countries over several decades. Just as the previous authors, she concluded that alcohol is linked positively to homicides; however, the strength of the effect varies among countries. The key factor, she says, is the pattern of drinking which is stronger within countries with a more hazardous drinking culture, i.e. high-alcoholic beverages consumed in binges. The countries where binges are not the dominant way of drinking share a weaker or insignificant link, while on the other hand the link is the strongest in Belorussia or Russia. Bye estimates that with every extra liter of pure alcohol consumed per capita, the homicide rate in former Czechoslovakia should increase by 0.16 homicides per 100,000 habitants. That is, given the current Czech population, approximately 17 homicides per year. For Russia, however, every extra liter of alcohol consumed is correlated with 1 extra homicide per 100,000 habitants. Her implication is that adopting anti-alcohol policies could potentially lower the homicide rate quite substantially in the countries with hazardous drinking pattern. On the other hand, in Western Europe or CEE, the effect wouldn't be that sizable. (Bye, 2008)

Unlike the spatial studies correlating crime with available alcohol, the observed correlations between crime and alcohol reflect the causality in studies of interventions that largely and starkly change the price or availability of alcohol. The lower availability of alcohol or higher price for it are increasing the full price of alcohol which by law of demand lowers the consumption and its externalities. E.g., when the employees of the Swedish state monopoly on alcohol sale entered a three-month long strike in 1972, the average alcohol consumption fell by 30 % and rates of assault, public drunkenness and resisting arrest all fell as well. (Lenke, 1982 as cited in Carpenter, et al., 2010) Similarly, other longitudinal studies link reduction in crime rates with higher excise duties on alcohol. (Carpenter, et al., 2010)

1.6 Hypotheses

The two-week long ban on spirits in the Czech Republic that followed the epidemic of methanol poisonings was a stark change in Czech alcohol market and large as well, although only selective. The intervention only forbade the sale of hard liquors, but left beverages with lower ABV widely available. The main hypothesis of this thesis is the negative effect of the ban on violent crimes that are often induced by the pharmacological effect of alcohol. Especially since high-alcoholic beverages were linked stronger to violence. (Bye, 2008) Fall in other alcohol-related crime categories may also be expected. The parameter estimates are likely to reflect the causal effect of the unavailable hard liquor, but may have also been driven by low detection capabilities of the law enforcement at the time where they were overwhelmed with the consequences of the poisonings. So, a separate chapter will be addressing this issue. Finally, the displacement of police forces might have also affected the rates of crimes which are susceptible to their presence, like property crimes.

2 The effect of 2012 ban on spirits on crime rates

2.1 Data and identification strategy

The dataset at my disposal is a complete database of the Czech police information system ESSK. I.e. for every crime reported, there is an entry into this system with specified details and another entry for every suspect. The records from the database are collapsed by the crime date to create time series of criminality known to police. The distinct categories of crime are not coded by the police exactly as they are in the penal code. The coding known as TSK which stands for "tactical and statistical classification" distinguishes certain crimes with more granularity by motivation or object while some categories within TSK would correspond to several distinct crimes in the penal code. The hypotheses of this thesis will be first tested on crime aggregates, violent crime aggregate comprising all the violent offences against a person and sexual or vice offences (TSK category 1 and 2) and property crime aggregate for both burglaries and larcenies (TSK category 3 and 4). Effects on relevant special types of crimes will also be studied more thoroughly.

The dataset allows me to study localization and evolution over time of not only different kinds of crime, but they also include certain details about the suspect victim, motivations or positive blood tests on substance presence. For the purpose of this thesis, I will only use the records from the 6-year period between 2010 and 2015, when the available records end. As of 2000, administrative division in Czech Republic changed from 8 regions to 14. The division of the police force followed accordingly 10 years later which is reflected in different police coding, i.e. making previous records inconsistent. Also, as of 2010 there is a new penal code which changed many legal definitions. The 6 years of data will work as controls of the affected year 2012.

Crime is conventionally expressed as crime rate per 100,000 habitants for regional comparison. The data about populations in Czech regions in given years was taken from the Czech Statistical Office. ($\check{C}S\acute{U}$, 2016a) The overall criminality has a decreasing trend in the Czech Republic. The total yearly counts of all the crimes in the Czech Republic, as they are recorded in the ESSK database, is in Table 2.

Year	Total offences recorded
2010	339,045
2011	339,620
2012	319,552
2013	337,087
2014	286,905
2015	216,390

Table 2: Total offences recorded in ESSK by year

Source: ESSK

The most important part of the response to methanol poisonings was that it forbade selling or serving spirits for 2 weeks in the whole country. At the same time, it meant a change in police presence which was rather local. While other cases of prohibitions of any good with inelastic demand proved to be ineffective and led to replacement of the legal market with the illicit one (Miron, et al., 1995), this case of prohibition is arguably different. The duration was short and only sale of beverages with more than 20 % of alcohol content were forbidden. This had to affect the drinking pattern within the country as substitution with spirits sold illegally despite the prohibition doesn't seem likely because of fear of its quality. However, only the sale of spirits was banned so people could keep their stocked spirits if they trusted its content. Also, substitution with higher doses of beer or wine might be expected for people with inelastic demand for alcohol which remained widely available and safe. To see the effect of these two weeks of exogenous shock to the alcohol-crime link, I will use standard linear regression. For the duration of the prohibition I will include a dummy prohibition which will equal one for the treatment period.

Crime rate levels differ among the regions of the Czech Republic and exhibits seasonal variation throughout seasons and even weeks. The estimates will control for seasonality by adding set of dummies for calendar weeks, i.e. to assume that every year there are cyclical factors influencing the crime rates. Crime rates have also evolved over time and to capture the trend, a yearly effect was added to all the equations. The effect will be captured either on a single nationwide crime rate time series or on a balanced panel consisting of 14 regional crime rates (13 regions and Prague) over time. The main regression equations will have a following form:

$$\ln(Crime_rate_t) = \beta_0 + \beta_1 * Prohibition_t + \alpha_w + \alpha_v + \epsilon_t \quad (1)$$

for the time series and for the regional panels:

$$\ln(Crime_rate_{rt}) = \beta_0 + \beta_1 * Prohibition_t + \alpha_r + \alpha_w + \alpha_v + \epsilon_{rt} \quad (2)$$

The crime rates are expressed as per 100,000 habitants. The independent variables are the dummy for treatment period and other 3 vectors of control dummies for regional, calendar week and year additive fixed effect on the crime rates. The dataset spans from week 1 of 2010 till week 52 of 2015.

The ban on spirits was nationwide so there is no proper counterfactual to it. However, I will split the regions of the Czech Republic into regions by number of cases of methanol poisonings, as regions in the epicenter could see a more imminent threat of risky alcohol consumption than those where methanol poisonings did not occur. The point is not to see them as unaffected counterfactual, but rather to see if any additional effect didn't take place in the regions that saw both prohibition and numerous poisonings in September 2012. As seen in the Figure 2, there were only 3 regions with 0 cases of methanol poisonings. However, for these estimates I will consider only the regions that were hit the hardest (11 cases of poisonings and more) as "treated" group. This group consists of following regions: Moravskoslezský with 63 cases, Zlínský with 20 and Olomoucký with 11.

$$\ln(Crime_rate_{rt}) = \beta_0 + \beta_1 * Prohibition_t + \beta_2 * Prohibition_t * Treated_r + \alpha_r + \alpha_w + \alpha_y + \epsilon_{rt} \quad (3)$$

The regional differences in average consumption or drinking pattern within the Czech Republic are not available, but can be proxied by household expenditure on alcohol which is recorded by Czech Statistical Office in their Household Budget Survey. The statistic is only available at level of NUTS 2 regions, but e.g. Moravskoslezský region is a NUTS 2 region as well. The yearly expenditure on spirits of an average Czech household was 413 CZK per household member in 2015. In Moravskoslezský region it was 695 CZK per member and in standardized CZ 07 region (corresponding to Zlínský and Olomoucký regions) it was 432 CZK per member. In 2011 the average expenditures

per member were 629 CZK in Moravskoslezský region, 356 CZK in CZ 07 and 406 CZK as national average. In the next year, affected by the prohibition, it was only 533 CZK, 310 CZK and 355 CZK, respectively. These are self-reported surveys and do not include any information about price, but suggest that in the treated regions the consumption of spirits is above average and the effect might be greater. (ČSÚ, 2016b)

A secondary effect to include in this thesis is the increased police activity following the methanol poisonings outbreak and the announcement of the ban. A similar research by the setup, although different in circumstances, was the *Panic on the streets of London* by Mirko Draca et al. Just like the raid on black market and prohibition enforcement, the police operation Theseus that followed the London subway bombings of July 7th 2005 meant a massive temporary discontinuity in police presence. They correlate weekly time series of reported crime and police redeployment measured by number of hours the policemen spent on duty throughout London to show negative effect of police presence on crime rates in affected neighborhoods. Their findings are therefore consistent with the predictions of Becker's model of rational criminal as higher chance of getting caught makes crime costlier. (Draca, et al., 2011)

That is, for crimes that are susceptible to police presence, the effect of quasinatural experiment of September 2012 may be illustrated on different trends between regions. The raids targeting illegal alcohol production and distribution network displaced police mostly in Moravskoslezský and Zlínský region that will be compared to the rest of the country. Draca et al. avoided complications of modelling the levels of crime and its seasonality by estimating the effect on yearly differences in weekly crime rates affecting only the regions treated with the increased guardianship of police. The equation adjusted for my thesis is as follows:

$$\Delta_{52}Crime \ rate_{rt} = \beta_0 + \beta_1 * Prohibition_t * Treated_r + \beta_2 * Prohibition_t + \Delta_{52}x_{rt} + \Delta_{52}\epsilon_{rt} \quad (4)$$

Parameter β_3 is what Draca et al. call the seasonally adjusted difference-indifferences. The downside of this approach is that it only looks back one year for comparison.

2.2 Functional form and estimation methods

Recorded crime rates are, by definition, non-negative counts for which Poisson distribution is assumed to be more appropriate than normal distribution. Poisson even derived this distribution when he studied crime convictions in 1820s. (Maltz, 1994 as cited in Osgood, 2000) Poisson distribution expresses the probability of some discrete events in certain population over given time period. I.e., given the mean event rate parameter λ , k events have a probability of occurring within a defined period equal to:

$$P(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!} \quad (5)$$

Poisson distribution it is characteristic for its positive skewness and it is especially useful in case of variables that are counts of discrete events in small populations, i.e. can often be zero. Poisson regression is therefore preferable to OLS for cases where the dependent variable follows the Poisson distribution and where possibility of zero values for some observations complicates the use of logarithms in the regression equation. That has wide range of uses in studying crimes that are relatively scarce or crime rates aggregated for small populations only. (Osgood, 2000) The Poisson regression model is also a linear regression model based on maximum likelihood estimation. It assumes exponential relationship of independent variables to the dependent count variable. I.e., the model links the natural logarithms of the dependent variable to a linear combination of the independent variables:

$$E(Y|x) = e^{\beta_0 \beta x'} \quad (6)$$
$$\ln(E(Y|x)) = \beta_0 + \beta x' \quad (7)$$

The underlying assumption of the Poisson regression model is equidispersion of the dependent variable, i.e.:

$$E(Y) = Var(Y) = \lambda \quad (8)$$

This assumption is often violated and it is called overdispersion when the variance exceeds the mean. In opposite case, the model suffers from underdispersion. For these cases, other Poisson-based approaches were developed that explicitly model the overdispersion, such as negative-binomial regression. In case of my dataset, the dependent variables are mostly underdispersed, for which the estimates of standard errors might be biased. Alternative method could be Generalized Poisson regression model which again relieves the assumption of equidispersion. However, as recommended by Cameron and Trivedi, the simple Poisson regression model remains consistent in estimating mean of parameters even without equidispersion. Then, the robust estimation of variance–covariance matrices prevents either overdispersion or underdispersed from biasing standard errors and therefore the significance levels of the estimate. For instance, the Huber/White/sandwich estimator integrated into Stata is not affected by violation of the assumption of equidispersion, homoscedasticity or serial independence. (Cameron, et al., 2009)

The count data rates can also be computed within the model from the count data if exposure is defined. I.e. crime rates can either be computed outside the model (as in this thesis), which is sometimes called the Poisson rate model, or alternatively exposure (in this case it would be population/100,000) can be logarithmically transformed and included as a dependent variable to model explaining total count number. Both approaches are appropriate alternatives and the results are identical, since this formula holds:

$$\ln(E(Y|x)) = \ln(exposure) + \beta_0 + \beta x' \quad (9)$$
$$\ln(E(Y|x)) - \ln(exposure) = \ln(\frac{(E(Y|x))}{exposure}) = \beta_0 + \beta x' \quad (10)$$

However, standardizing crime counts into crime rates either way affects also the standard deviations. In Poisson distribution, $SD_{\lambda} = \sqrt{\lambda}$. When the mean count λ is normed by population size n, the standard deviation of the crime rate C decreases by the square root of the population size.

$$SD_C = \frac{\sqrt{\lambda}}{n} = \frac{\sqrt{C*n}}{n} = \frac{\sqrt{C}}{\sqrt{n}}$$
 (11)

The difference between the two estimation methods is that OLS fits the data with regression line that minimizes the residual sum of squares, i.e. sum of squared vertical differences between the regression line and the observed data:

RSS(
$$\beta$$
) = $\sum_{i=1}^{n} (Y_i - \hat{Y}_i) = \sum_{i=1}^{n} (Y_i - \beta x'_i)$ (12)

while Poisson regression model as a maximum likelihood estimation model fits the data in the way that maximizes the likelihood that the observed data were generated by a process with these parameters. The likelihood function can be gotten by substituting equation (6) into (5) and noting that $\lambda = E(Y|x)$:

$$L((Y|x)|\beta) = \frac{(e^{\beta x'_i})^{Y_i} * e^{-e^{\beta x'_i}}}{Y_i!}$$
(13)

Where L is the likelihood of obtaining the observed data Y given the parameters of the linear regression β . Assuming independence between data units, the likelihood of all n units is the joint probability given by multiplying all probabilities together:

$$L((Y|x)|\beta) = \prod_{i=1}^{n} \frac{(e^{\beta x'_i})^{Y_i} * e^{-e^{\beta x'_i}}}{Y_i!} \quad (14)$$

The estimates are then based on log-likelihood because of easier calculation. So, the likelihood function is transformed into:

$$\log\left(L((Y|x)|\beta)\right) = l((Y|x)|\beta) = \sum_{i=1}^{n} (Y_i * (\beta x'_i) - e^{\beta x'_i}) \quad (15)$$

The log-likelihood function of the Poisson model is then maximized by iteration until:

$$\frac{\partial l((Y|x)|\beta)}{\partial \beta} = 0 \quad (16)$$

The value of maximized log-likelihood also serves to determine overall model significance.

The parameters of the regression equations with crime levels were estimated by both ordinary least squares and by Poisson regression model, both with robust standard errors. The methods make different assumptions about the distribution of the dependent variable, so while OLS assumes normal distribution of the residuals, Poisson regression assumes that the error term will follow Poisson distribution. OLS can be used to model count data if the sample size and mean are large enough, because the Poisson distribution can be to a certain degree approximated by the normal distribution, moreover without the equidispersion assumption. The positive skewness of the count data distribution can be improved by logarithmic transformation. The OLS estimates are all taken on the natural logarithms of crime rates that were, in case of 0 crime committed in the given time-region unit, replaced by 0.001 before the transformation.

The parameter β_1 of the variable "Prohibition", which is the core of my thesis, has the following interpretation:

%Δ Crime rate =
$$100 * (e^{\beta_1} - 1)$$
 (17)

All the binary variables in the log-level models have such interpretation. For small values of β_1 it tends to be approximated to:

%
$$\Delta$$
 Crime rate = 100 * β_1 (18)

In Poisson regression model, the interpretation can be made similarly, i.e. the change of $100 * (e^{\beta_1} - 1)$ % in probability of an event occurring during the defined time period of implies that the expected event count will also change by $100 * (e^{\beta_1} - 1)$ %. Parameter of a binary variable, such as β_1 , is often referred to as relative risk ratio.

2.3 Effect on violent crime

The first effect to be studied is the main hypothesis of the thesis. Did the 2-week long liquor prohibition reduce the number of violent offences in the Czech Republic? The explanation for it might be that spirits are more powerful in inducing aggression and crime than beverages with lower alcohol content, which remained availabel. The drinking pattern including high-alcoholic beverages and binges are linked stronger to violence than others. (Bye, 2008) Also, the scandal, the uncertainty and the threat of poisoning might have led temporarily to a higher general avoidance of alcohol. O r the ban on spirits might simply cause lower attendance of bars and taverns, i.e. causing people to stay out of the hotspots, thus leading to a lower number of crimes committed.

In order to examine this hypothesis, I will regress the violent crime rates in various settings. Again, by violent crime I mean all of category 1 – violent crimes, i.e. crimes against a person – and category 2 – sexual and vice crimes. In the studied 6-year long period, there were in total 137,088 recorded offences falling to either one of these two categories. That includes 1086 cases of homicide, 35,117 cases of aggravated physical assault and other 5,714 assaults of law enforcement officers, 21,634 violent robberies, 15,960 cases of criminal threatening, 18,294 home invasions, 5,012 rapes and others.¹¹ That means that in Czech Republic, there are on average 22,848 such offences annually or

on an average month.

Table 3: Summary of descriptive statistics for weekly violent crime rates in the Czech Republic

Mean	4.139
Standard deviation	1.088
Minimum	1.765
Maximum	11.719
Observations	312
Time period	2010w1-2015w52
	Source: E

¹¹ In Czech penal code, the terminology for these crimes is "Vražda" (§140, TSK 101-106), "Úmyslné ublížení na zdraví" (§145 and §146, TSK 151), "Násilí proti orgánu veřejné moci " and "Násilí proti úřední osobě" (§323 and §325, TSK 141-143), "Loupež" (§173, TSK 131), "Nebezpečné vyhrožování" (§353, TSK 173), "Porušování domovní svobody" (§178, TSK 183) and "Znásilnění" (§241, TSK 201), respectively.

The evolution of violent crime rates between 2011 and 2014 is shown in the Figure 3. As an illustration of the presumed effect of the Prohibition, weekly overlaid time series of crime rates for years 2011 and 2012 are shown in Figure 4. What can be noted is the apparent seasonality, especially on the last week of the year. Crime rates on the last or the first week of any year are influenced by the New Year's Eve celebration, arguably the biggest alcohol binge and hotspot of the year. For that reason, observations from the first and last week of the year will be omitted from further analysis as outliers.

First, I will estimate the effect on aggregate violent crime rate of the whole Czech Republic. As the periodicity of the data is weekly, it raises a problem of defining the time frame of the ban being in effect within the dataset. The partial ban on sale of spirits over 30 % alcohol was effective since September 12th, i.e. Wednesday of the 37th week of 2012. That was extended to the final form on September 14th, i.e. on Friday. Ban was canceled on September 27th, i.e. on Thursday of 39th week. Despite the imperfect overlap, in this part of the analysis I will consider the whole 3-week period between weeks 37 and 39 as the treatment period of the intervention (=1). To capture any possible effect of early poisonings since before the ban and to see if any effect is persisting in the following weeks after it was lifted, I also include dummy variables for two week periods between weeks 35-36, 40-41, 42-43 and 44-45. As control variables, the model includes seasonal effects for calendar weeks and yearly effects to absorb any trends. The equation to test the hypotheses will look like:

$$\ln(Crime_rate_t) = \beta_0 + \beta_1 * Prohibition_t + \beta' * X_t + \alpha_w + \alpha_v + \epsilon_t$$
(19)

The first estimates try to capture overall effect on nationwide crime so there is only one aggregated time series. X_t are pre- and post-ban effect dummy variables. The resulting parameter estimates are in Table 4.

Figure 3: Weekly violent crime rates between 2011 and 2014; with vertical lines delimiting first weeks of the year (Source: ESSK)

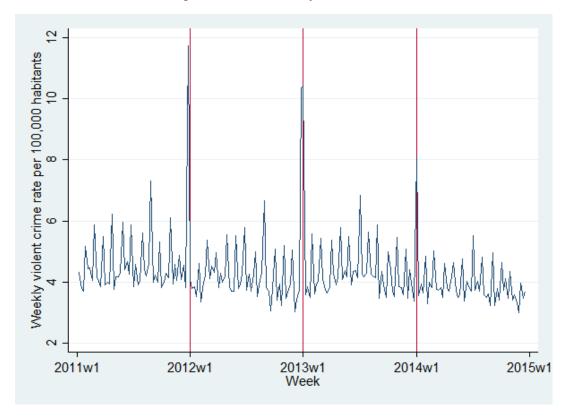
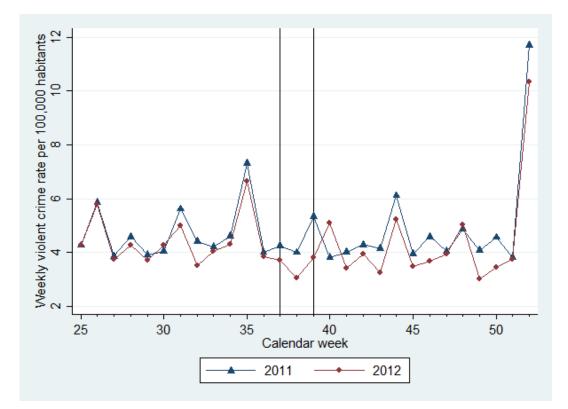



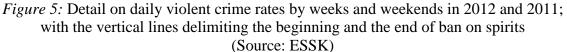
Figure 4: Violent crime rates by calendar weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of ban on spirits (Source: ESSK)

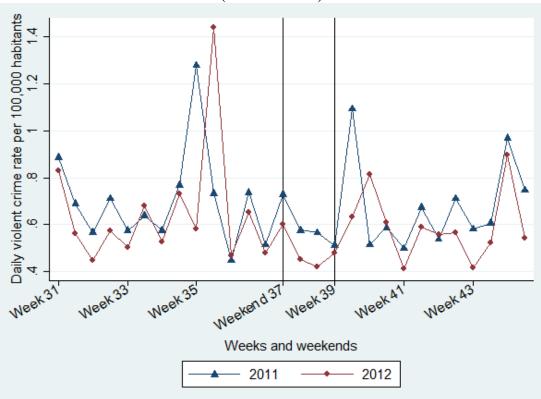
	(1)	(2)
Method	OLS	Poisson
Equation	(19)	(19)
Prohibition	-0.123*	-0.131**
	(0.0638)	(0.0588)
Pre-prohibition	0.0875	0.0853
-	(0.123)	(0.0992)
Post-prohibition Week 1&2	0.0201	0.0320
-	(0.126)	(0.111)
Post-prohibition Week 3&4	-0.0373	-0.0408
-	(0.0604)	(0.0576)
Post-prohibition Week 5&6	-0.00391	-0.0169
	(0.0522)	(0.0477)
Weekly effects	Yes	Yes
Yearly effects	Yes	Yes
Observations	300	300
R-squared	0.531	
Pseudo R-squared		0.0368
Robust standard erro	rs in narenthese	26

Table 4 Regression results for time series of natural logarithms of weekly aggregate violent crime rate

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 Full table in Appendix A and B

Both methods are estimating the average effect to be a decrease of 11.5 % below the predicted value given by cyclic weekly effects and yearly trend. Unlike the 3-week period with banned sale of spirits, crime rates in the periods after it or prior to it saw no statistically significant change in crime rates, i.e. the partial prohibition did not have a persistent effect. The full regression tables with all individual coefficients and significance tests are attached in the Appendices.


In the next step, to control for the effect of prohibition on alcohol binges that are more likely on weekends, I will separate the observations into weekdays (Monday-Thursday) and weekends (Friday-Sunday). Then, to insure mutual comparability, divide them by 4 and 3, respectively. That way, they become average daily crime rates and every week will have 2 observations, one for the average daily crime rate on workdays except for Friday and one for Friday and weekend. This separation also enables me to redefine the time frame of the prohibition. Hence, the beginning of the prohibition is the weekend of the 37th week and ends on weekdays' observation of the 39th week, a 2-week period. The graph of the transformed time series is in Figure 5. The distribution of the dependent variable before and after logarithmic transformation are in Appendix G and H.


$$\ln(Crime_rate_t) = \beta_0 + \beta_1 * Prohibition_t + \beta_2 * Prohibition_t * Weekend_t + \beta_3 * Weekend_t + +\alpha_w + \alpha_y + \epsilon_t \quad (20)$$

Then, to test whether there was an additional effect in the regions within the epicenter of the methanol poisonings, I will use a panel of crime rates aggregated on regional level. I will add variable "Treated" to the equation to intercept whether the crime patterns changed for the 3 regions where the most victims suffered from methanol poisonings and have above average expenditure on spirits. The third equation will therefore have a following form:

$$\ln(Crime_rate_{rt}) = \beta_0 + \beta_1 * Prohibition_t + \beta_2 * Prohibition_t * Treated_r$$
$$+\beta_3 * Prohibition_t * Weekend_t + \beta_4 * Prohibition_t * Weekend_t * Treated_r$$
$$+\beta_5 * Weekend_t + \beta_6 * Weekend_t * Treated_r + \beta' * X_t + \alpha_r + \alpha_w + \alpha_y + \epsilon_{rt}$$
(21)

_

	(1)	(2)	(3)	(4)
Method	OLS	Poisson	OLS	Poisson
Equation	(20)	(20)	(21)	(21)
Prohibition	-0.0747	-0.130**	-0.0941	-0.139**
	(0.0697)	(0.0610)	(0.0809)	(0.0706)
Prohibition*Treated	()	(,	0.0903	0.0446
			(0.117)	(0.112)
Prohibition*Weekend	-0.176*	-0.0867	-0.203*	-0.118
	(0.101)	(0.0873)	(0.115)	(0.102)
Prohibition*Treated*Weekend	```	. ,	0.129	0.126
			(0.204)	(0.177)
Weekend	0.220***	0.205***	0.206***	0.189***
	(0.0103)	(0.00850)	(0.0122)	(0.00996)
Weekend*Treated			0.0640***	0.0760***
			(0.0217)	(0.0185)
Pre-prohibition Week 1&2	-0.0239	-0.0355	-0.0239	-0.0355
	(0.0565)	(0.0538)	(0.0564)	(0.0536)
Post-prohibition Week 1&2	0.0546	0.0172	0.0546	0.0172
-	(0.0632)	(0.0527)	(0.0635)	(0.0529)
Post-prohibition Week 3&4	0.0387	-0.0152	0.0387	-0.0152
-	(0.0636)	(0.0516)	(0.0637)	(0.0516)
Post-prohibition Week 5&6	-0.0677	-0.0587	-0.0677	-0.0587
-	(0.0718)	(0.0627)	(0.0718)	(0.0627)
Weekly effects	Yes	Yes	Yes	Yes
Yearly effects	Yes	Yes	Yes	Yes
Regional effects	N.A.	N.A.	Yes	Yes
Observations	600	600	8,400	8,400
Number of regions			14	14
R-squared	0.490		0.365	
Pseudo R-squared		0.0131		0.0367

Table 5: Regression results for natural logarithms of aggregate violent crime rate

** p<0.01, ** p<0.05, * p<0.1 Full table in Appendices C-F.

The estimates of the redefined equations that are presented in Table 5 show selective effect on weekdays and weekends. The rate of violent crimes during the week days dropped, although insignificantly in case of the OLS estimates. But while these crime rates grow over weekends (Weekend=1) on average by about a fifth in the non-treated regions and by additional 7 to 8 % in the treated ones (Weekend=1; Weekend*Treated=1), the two weekends with banned sale of spirits saw much smaller week-weekend difference.

Differing in methods to fit the data, results based on OLS attribute most of the drop in crime on weekends, while Poisson regression estimates attribute the drop rather to the weekdays (Weekend=1. The results of estimating the parameters of equation (20) are shown in Table 5, the average crime rate fell during the defined 3-week prohibition period by over 11 %. Estimates of the equation (21) yield similar results as

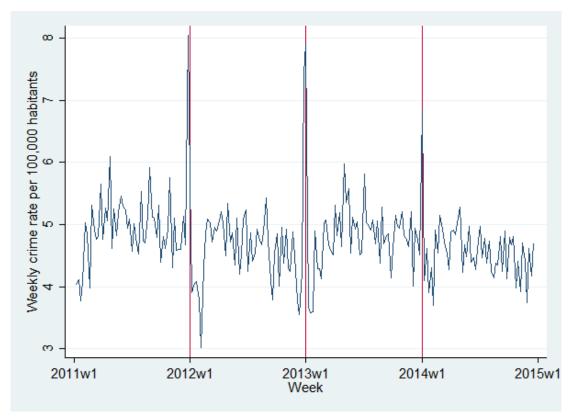
$$\frac{4}{7} * 0 + \frac{3}{7} * \left(\frac{e^{(0.206 - 0.203)}}{e^{(0.206)}} - 1\right) = -0,078$$

I.e. the average weekly change over the course of ban on spirit, calculated as a weighted average of changes in daily weekend and workday violent crime rate, is -7.8 %. It is lower than the estimates of parameters of equation 17 because the parameter for workday observations during the prohibition (Prohibition=1) is statistically indistinguishable from zero. It however shows that the main reduction occurred in violent criminality over the weekends. The results support the hypothesis that the temporary ban on sale of hard liquor had a negative effect on rates of violent crimes. In addition, the reduction was mainly in weekend criminality.

To interpret the estimates in the 3rd column of Table 5, the levels of violent crime over weekends in the non-treated regions were almost no different from the weeks as the effect equals $e^{(0.206-0.203)} - 1 = 0.03$, i.e. were 3 % more frequent. The next part of the analysis was to test, whether the regions, which were hit the heaviest by the methanol poisonings, reacted any different in these two weeks. The estimate of the parameter mean by both estimation methods indicates that they, counterintuitively, saw a less profound change. However, due to high standard error of the estimate I cannot reject that null hypothesis that in fact, the parameter equals zero. So, due to estimated significance levels we cannot reject that the violent crime rate in treated regions was any different from the non-treated regions during the prohibition's effect.

2.4 Effect on the most alcohol-involving crimes

In this part I will refine the analysis from the previous section by applying it to a more detailed crime rates. The violent crime rate measured as an aggregate of all crimes in police's first and second category may not be specific enough for capturing the link with alcohol. For that purpose, I will estimate the effect again on an aggregate of the four crimes with the highest shares of suspects having a positive blood tests on alcohol presence. These are 4 secondary alcohol-related crimes, that is, presence of alcohol is not part of the definition. The primary alcohol crimes will be studied later on. These 4 crimes in this section are aggravated physical assault (TSK 151, §145-146 Ublížení na zdraví), criminal threatening (TSK 173, §353 Nebezpečné vyhrožování), property damage (TSK 589, §228 Poškozování cizí věci) and vandalism (TSK 611, §358 Výtržnictví).


There were 150,336 cases of these crimes reported in between 2010 and 2015, specifically 35,117 aggravated assaults, 15,960 cases of criminal threatening, 76,834 property damages and 22,425 cases of vandalism. For the whole studied period, the share of known offenders being under alcohol influence is 27.67 % for these 4 crimes, while it was 18.58 % for the whole violent crime aggregate from the last section. Nevertheless, those percentages are likely suffering from underreporting, e.g. because of delay before the testing. The measured levels of alcohol are not recorded in ESSK, there is only a field specifying what substances were tested positively. Other than alcohol, another 28 substances can be tested and reported. To see the evolution of shares of known offenders under influence of alcohol or other substances, see Figure 9. The descriptive statistics of this crime rate are in Table 6.

The analysis of the effect of the prohibition on these crimes will be identical to the former section. Again, the effect will be studied on time series with weekly frequencies and then every week will be split into two observations for Monday-Tuesday and Friday-Sunday averages. The time series and prohibition timeframe are shown in Figures 7 and 8. Once more, both week before and after the New Year's Eve are excluded as outliers. The estimates of the parameters as in equations (19) - (21), with the top 4 alcohol-related crimes as the dependent variable, are in Table 7.

Mean	4.568
Standard deviation	0.663
Minimum	2.752
Maximum	8,048
Observations	312
Time frame	2010w1-2015w52
	Source: E

Table 6: Summary of descriptive statistics for the weekly rates of the 4 most alcoholinvolving crimes in the Czech Republic

Figure 6: Weekly top 4 alcohol-involving crime rates between 2011 and 2014; with vertical lines delimiting first weeks of the year (Source: ESSK)

Figure 7: Top 4 alcohol-involving crime rates by calendar weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of ban on spirits (Source: ESSK)

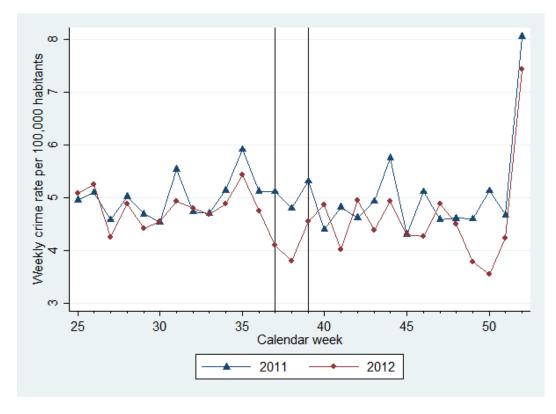
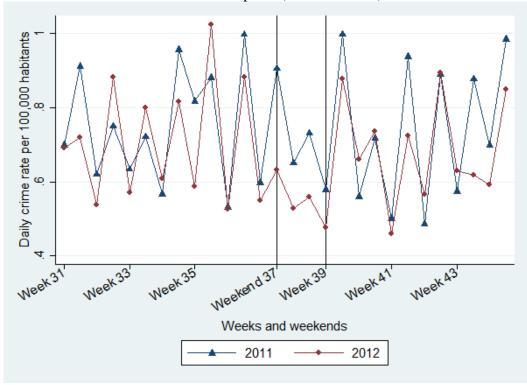



Figure 8: Detail on top 4 alcohol-involving daily crime rates by weekdays and weekends in 2012 and 2011; with the vertical lines delimiting the beginning and the end of the ban on spirits (Source: ESSK)

	(1)	(2)	(2)	(4)	(5)	(6)
Equation	(1) (19)	(2) (19)	(3)	(4) (20)	(5) (21)	(6)
Equation Method	OLS	· · ·	(20) OLS	· · ·	· · ·	(21)
		Poisson		Poisson	OLS	Poisson
Prohibition	-0.0960*	-0.0970**	-0.0117	-0.0907*	-0.0471	-0.113**
	(0.0535)	(0.0475)	(0.0592)	(0.0479)	(0.0654)	(0.0545)
Prohibition*Treated					0.165	0.106
					(0.123)	(0.0974)
Prohibition*Weekend			-0.302***	-0.235***	-0.246***	-0.208**
			(0.0869)	(0.0761)	(0.0914)	(0.0830)
Prohibition*Treated*Weekend					-0.258	-0.128
					(0.238)	(0.199)
Weekend			0.441***	0.403***	0.423***	0.384***
			(0.00927)	(0.00708)	(0.0108)	(0.00823)
Weekend*Treated					0.0881***	0.0895***
					(0.0206)	(0.0153)
Pre-prohibition Week 1&2	0.0609	0.0585*	0.0232	0.0486	0.0232	0.0486
-	(0.0370)	(0.0321)	(0.0783)	(0.0549)	(0.0787)	(0.0552)
Post-prohibition Week 1&2	-0.0540	-0.0506	0.0226	0.0119	0.0226	0.0119
1	(0.0816)	(0.0734)	(0.0522)	(0.0429)	(0.0523)	(0.0429)
Post-prohibition Week 3&4	0.0210	0.0183	0.0927*	0.0333	0.0927*	0.0333
1	(0.0435)	(0.0394)	(0.0510)	(0.0501)	(0.0509)	(0.0496)
Post-prohibition Week 5&6	0.0141	0.00637	-0.135**	-0.108**	-0.135**	-0.108**
1	(0.0346)	(0.0299)	(0.0667)	(0.0479)	(0.0668)	(0.0481)
Yearly effects	Yes	Yes	Yes	Yes	Yes	Yes
Weekly effects	Yes	Yes	Yes	Yes	Yes	Yes
Regional effects	N.A.	N.A.	N.A.	N.A.	Yes	Yes
R-squared	0.6280		0.7862		0.511	
Pseudo R-squared		0.0120		0.0169		0.539
Observations	300	300	600	600	8400	8400
Observations	300	300	600	600	8400	8400

Table 7: Regression results for natural logarithms of the top 4 most alcohol-related crimes

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Full tables in Appendices I–N

The coefficient estimates are in Table 7. Compared to the earlier aggregate, aggravated assaults, property damage, threatening and vandalism are even more common on weekends, coefficient means of by how much are ranging between 46 and 55 %. Without the distinction between weeks and weekends, the average drop during the 3-week period overlapping the ban on spirits was approximately 10 %. After the division into weekdays and weekends, it becomes apparent that the main reduction is again falling on the weekend criminality. The effect of the ban on spirits on both weekdays and weekends is negative, but the rate of these four crimes saw a more significant and noticeable reduction over the weekends. To interpret the result of the Poisson regression in the 4th column, the weekday crime rate fell by 9,5 % and over the weekend it fell by $\left(\frac{e^{(0.403-0.235)}}{e^{(0.403)}} - 1\right) = -0,209$, so the average weekly crime rate during the two weeks of the prohibition fell by:

$$\frac{4}{7} * (e^{(-0.0907)} - 1) + \frac{3}{7} * \left(\frac{e^{(0.403 - 0.235)}}{e^{(0.403)}} - 1\right) =$$
$$= \frac{4}{7} * -0.086 + \frac{3}{7} * -0.209 = -0.138 = -13.8\%$$

Again, the 3 regions in the epicenter of the methanol poisoning epidemic do not significantly differ from the rest. However, the main hypothesis seems to be proven, i.e. the Czech Republic during the two weeks with banned sale of hard liquor saw significantly less of these crimes. And unavailable hard liquor affected the weekend alcohol-related criminality the most, which saw a relative drop of 21–26 % in case of these 4 crimes.

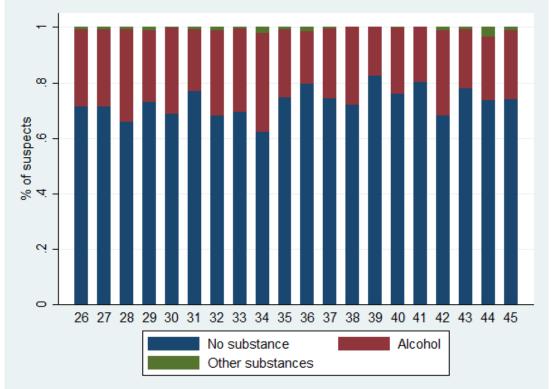


Figure 9: Shares of known offenders under influence by weeks of 2012; only the 4 most alcohol-related crimes included (Source: ESSK)

Another approach how to test the effect on the alcohol-related criminality is to simply look at the number of known crime offenders under the influence of alcohol and test whether it changed with the ban on spirits or not. The database of known offenders in ESSK keeps a record on presence of alcohol, but does not specify the blood alcohol concentration. Therefore, I cannot test the possible changes in average blood concentration of offenders, etc., but I must treat all offenders with any reported presence of alcohol identically. The counts of offenders are collapsed by crime date, i.e. the date when the offence was committed not when the offender was found or detained. The time series of drunk known offenders shall be split into two categories, traffic-related and nontraffic related, as they represent different patterns in behavior and potentially different response to the intervention. The traffic offenses include driving under the influence of alcohol and traffic accidents caused by drunk drivers. The non-traffic offences include all the rest. Graphs of these two variables are in Figures 10 and 11 and their descriptive statistics are summarized in Table 8. As the time series of non-traffic offenders is once more spiking around the end of the year, observations of the first and the last week of every year will be omitted.

Variable	Offenders in traffic-related	Offenders in non-traffic related
	crimes	crimes
Mean	191.95	97.15
Stand. Dev.	33.56	22.84
Minimum	48	25
Maximum	300	220
Observations	312	312
Time frame	2010w1-2015w52	2010w1-2015w52

 Table 8: Summary of descriptive statistics of weekly counts of known offenders under the influence of alcohol

(Source: ESSK)

The effect on these two variables will be estimated based on the equation (19), but to quantify possible persisting effects of the ban, the post-prohibition periods will be 4-week long. The pre-prohibition period is two-week long. Estimates are presented in Table 9.

Figure 10: Weekly count of non-traffic offenders under the influence of alcohol by calendar weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of ban on spirits (Source: ESSK)

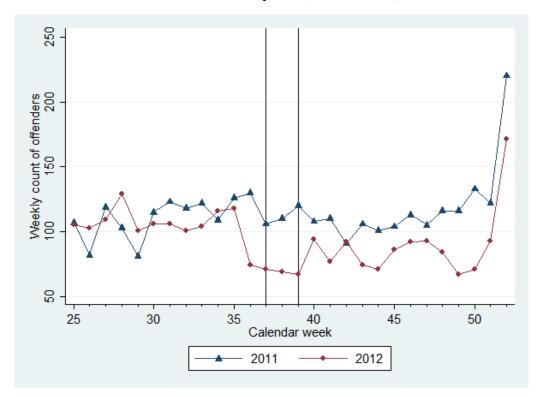
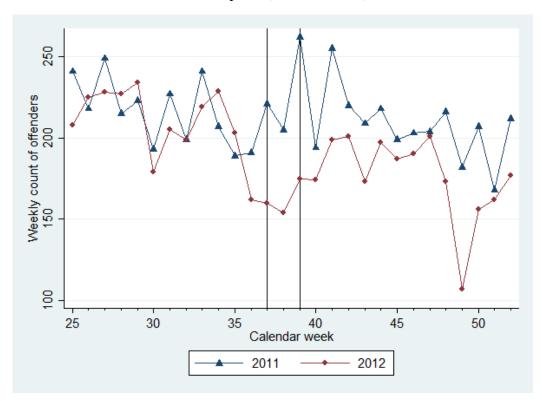



Figure 11: Weekly count of traffic offenders under the influence of alcohol by calendar weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of ban on spirits (Source: ESSK)

Variable	Non-traffic	c offenders	Traffic o	offenders
	(1)	(2)	(3)	(4)
Method	OLS	Poisson	OLS	Poisson
Prohibition	-0.320***	-0.330***	-0.196***	-0.198***
	(0.0429)	(0.0384)	(0.0605)	(0.0466)
Pre-prohibition Week 1-2	-0.0348	-0.0232	-0.0299	-0.0177
	(0.124)	(0.113)	(0.0953)	(0.0862)
Post-prohibition Week 1-4	-0.0733	-0.0833	-0.140***	-0.133***
	(0.0796)	(0.0734)	(0.0428)	(0.0360)
Post-prohibition Week 5-8	-0.0402	-0.0692	-0.0408	-0.0390
	(0.0730)	(0.0589)	(0.0391)	(0.0331)
Post-prohibition Week 9-12	-0.0329	-0.131*	-0.127	-0.120
	(0.107)	(0.0740)	(0.113)	(0.0914)
Weekly effect	Yes	Yes	Yes	Yes
Yearly effect	Yes	Yes	Yes	Yes
R-squared	0.566		0.626	
Pseudo R-squared		0.234		0.296
Observations	300	300	312	312

Table 9: Regression results for natural logarithms of counts of known offenders under influence of alcohol

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 Full tables in Appendices O-R

The parameter estimates suggest large effect on the number of drunk offenders over the course of the ban on spirits. The count of drunk traffic offenders fell by approximately 18 % and number of non-traffic offenders by 28 %. But while the early effect before the ban was in effect is insignificant, there was a significant persisting effect on traffic offenders under influence even in the following 4 weeks after the ban was lifted, when the number of offenders was lower by 13 %. While the persisting effects on the number of non-traffic offenders have a negative mean, they are indistinguishable from zero except for fall by 12.2 % in post-prohibition weeks 9-12, which corresponds to December 2012.

The data about known offenders in the ESSK are different from the recorded crimes in that not all offenders are uncovered, i.e. from all the recorded crimes only a fraction has a known offender. So, the number of known offenders can be driven down either by lower criminality or lower rate of uncovering the crimes or finding the offender. Likewise, the reported criminality may be driven down by less crimes committed or by lower rate of reporting. Since the police forces can be expected to have been overwhelmed with investigating the poisonings, searching for the source of methanol and overseeing the enforcement of the prohibition, the crime reporting itself could have been affected. However, this does not seem to be the case for the 4 crimes studied in the beginning of this section. In this 6-year-long period, 125,081 out of those 150,336 cases of reported offenses were reported by citizens and another 15,509 by businesses. So, in total it is only about 7 % of these crimes that are reported by either law enforcement, other instances of the judicial system or any other branch of the government. For the offenses reported between 37th and 39th week of 2012, this share did fall to 5.5 %, but this cannot explain the whole drop in crime. Still, in the next section I will address the possibility of certain crimes being affected rather by the lower rates of police detection capabilities.

2.5 Effect on police detection activity and driving under influence

In this section I will focus on how much of the drop in reported crimes can be attributed to the ban on hard liquor and how much to the discontinuity in police presence, i.e. they were not reported because of low detection rates. Most crimes are reported by the victims, but some, as e.g. drunk driving, can only be reported when it is detected. The intensity of detection by police can be proxied by another crime, driving with a suspended license, which also requires detection by the police to be reported, but is unlikely to be further affected by the ban on spirits.

In Czech penal code, driving under influence of alcohol can either be classified as a petty crime or a serious offense. The benchmark when the driver is considered incapable of driving a car was legally set as 1 ‰ of BAC, so anything over that is an aggravated offense qualified as §274 of the penal code, i.e. "endangerment under influence" ("Ohrožení pod vlivem návykové látky"). Nevertheless, there is currently zero alcohol tolerance policy for drivers. Any alcohol levels beneath 1 ‰ are punishable by a fine from 2,500 CZK up to 20,000 CZK and suspended driving license for up to a year. When the driver's BAC is found out to be over the benchmark, the offense will always be examined by court. The driver may be sentenced to up to 3 years in jail and can have his driving license suspended for up to 10 years, with 1 year suspension being the mandatory minimum sentence. Also, there are occasions when the offense is qualified as an aggravated crime despite being tested below 1 ‰, e.g. based on testimonies by the witnesses or when other psychoactive substance is tested positive. The offenses defined by §274 of the Czech penal code are recorded within the ESSK, unlike the cases when the driver was only charged with a petty crime. I can therefore only test if the ban on spirits influenced the recorded rate of aggravated cases of drunk driving.

The proxy variable for the detection intensity will be § 337 of the penal code "Frustrating the execution of an official decision" ("Maření výkonu úředního rozhodnutí") which covers any disobeying of court orders or orders by any other authority. These cases are recorded under TSK 663 and include mostly driving with a suspended license, but covers also offences such as disobeying deportation order, avoiding prison sentence or attending cultural or sport events while being forbidden to. So, the individual traffic related cases of these offenses cannot be distinguished from the rest. Unfortunately, neither driving under influence has a special classification within ESSK. The § 274 of the Czech penal code also applies to cases of being impaired to work, where one's intoxication could lead to damage to health or property. All such cases are reported under TSK 771, which also includes offenses defined in § 360 as drunkenness. So the way the records are kept in police's information system, I cannot distinguish the categories precisely, but I can still use them with caution as a proxy.

In the studied 6 years of available records, about 10 % of reported cases with TSK 663 (Frustrating the execution of an official decision) were reported by citizens and businesses and this ratio remained the same also during the weeks of partial prohibition. That is, assuming there are always offenders to be charged, the rate by which they are uncovered and reported as frustration can serve as a very good proxy of police detecting intensity.

Variable	"Frustrating the	"Endangerment
	execution"	under influence"
Mean	2.498112	2.15599
Standard deviation	.4602	.3486921
Minimum	.5124179	.7138225
Maximum	3.642026	2.90133
Observations	312	312
Time frame	2010w1-2015w52	2010w1-2015w52
		Source: ESS

Table 10: Summary of descriptive statistics of weekly rates of crimes recorded under TSK 663 and 771

The effect of the intervention on the time series of natural logarithms of these crime rates will be estimated on equation (19) and to capture any additional effects in the regions of the epicenter of the poisonings and arguably with the most overwhelmed police, the equation for the regional panel is:

$$\ln(Crime_rate_{rt}) = \beta_0 + \beta_1 * Prohibition_t + \beta_2 * Prohibition_t * Treated_t + \beta' * X_t + \alpha_r + \alpha_w + \alpha_y + \epsilon_{rt}$$
(22)

Figure 12: Reported rates of "endangerment under influence" by calendar weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of ban on spirits (Source: ESSK)

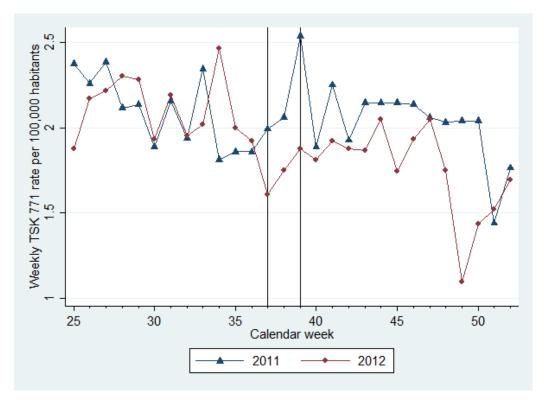
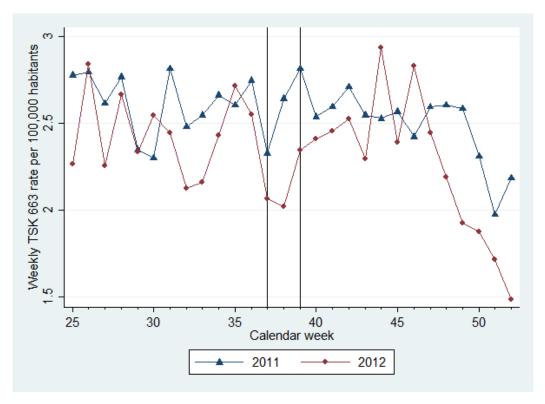



Figure 13: Reported rates of "frustrating the execution of an official decision" by calendar weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of ban on spirits (Source: ESSK)

		ln(Endangerment	under influen	ce)		In(Frustrating	the execution))
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Equation		(19)	(19)	(22)	(22)	(19)	(19)	(22)	(22)
Method		OLS	Poisson	OLS	Poisson	OLS	Poisson	OLS	Poisson
Prohibition		-0.108**	-0.102***	-0.0649	-0.0877	-0.0959***	-0.0909***	-0.129**	-0.0962*
		(0.0444)	(0.0390)	(0.0861)	(0.0707)	(0.0363)	(0.0295)	(0.0650)	(0.0563)
Prohibition*Treated				-0.242	-0.190			0.166	0.119
				(0.175)	(0.122)			(0.151)	(0.131)
Pre-prohibition Wee	ek 1&2	0.0690*	0.0737**	0.00893	0.0480	0.130***	0.129***	0.158***	0.147***
		(0.0386)	(0.0326)	(0.0794)	(0.0709)	(0.0353)	(0.0304)	(0.0583)	(0.0511)
Post-prohibition	Week	-0.122***	-0.124***	-0.125*	-0.0902	-0.0394	-0.0410	-0.0385	-0.0487
1&2		(0,0455)	(0.0207)		(0,0,0,0)	(0.02(5))	(0.0221)	(0,0)	(0.0(10)
D . 111.	*** 1	(0.0455)	(0.0387)	(0.0666)	(0.0620)	(0.0365)	(0.0321)	(0.0626)	(0.0618)
Post-prohibition 3&4	Week	-0.146***	-0.142***	-0.201**	-0.143*	-0.000179	0.000143	0.0337	0.0194
		(0.0466)	(0.0407)	(0.0946)	(0.0771)	(0.0276)	(0.0254)	(0.0583)	(0.0483)
Post-prohibition	Week	-0.0739	-0.0641	-0.104	-0.0595	0.159**	0.160***	0.208***	0.205***
5&6									
		(0.0623)	(0.0549)	(0.0870)	(0.0801)	(0.0620)	(0.0544)	(0.0574)	(0.0575)
Yearly effects		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Weekly effects		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Regional effects		N.A.	N.A.	Yes	Yes	N.A.	N.A.	Yes	Yes
R-squared		0.7810		0.5568		0.6163		0.3514	
Pseudo R-squared			0.0246		0.1041		0.0134		0.0691
Observations		312	312	4,368	4,368	312	312	4,368	4,368

Table 11: Regression results for natural logarithms of weekly rates of endangerment under influence and frustrating the execution of an official decision

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Full tables in Appendices S-Z

Estimated mean of the parameter Prohibition suggests that the recorded crime rates of both these categories decreased by approximately 10 % during the weeks of prohibition compared to the control years. Now let's imagine a perfect model, where all cases of "Frustration of execution of an official decision" represent uncovered cases of drivers with suspended license and that all the cases of "Endangerment under influence" are cases of driving under influence. Moreover, the variables rates represent true rates of drunk driving and the true reporting intensity of the police. Assuming that the ratio of these variables is constant, the intervention that would affect both the rates of drunk driving and the probability of it being uncovered by the police would affect it in these two ways:

$$\Delta DUI = \frac{DUI}{DWSL} \Delta DWSL + \Delta \left(\frac{DUI}{DWSL}\right) * DWSL (23)$$

I.e., the observed change in recorded cases of driving under influence might be decomposed into change in detection rate $\frac{DUI}{DWSL}\Delta DWSL$ and the change in drunk driving ratio $\Delta \left(\frac{DUI}{DWSL}\right) * DWSL$, which would suggest an actual decrease in prevalence of drunk driving. On an average week, there are 231 recorded cases of endangerment under influence in ESSK and 262 cases of frustration of execution of an official decision. That means the average share was $\frac{231}{262} = 0.89$. This ratio remained almost the same during the prohibition in September 2012 as both variables dropped by approximately 10 % (the change is around -1 %). Substituting the results from the Table 11, Columns (1) and (5) into equation (23) would yield following results:

$$(e^{-0.108} - 1)^* 231 \cong 0.89 * (e^{-0.096} - 1) * 262 + \left(\frac{e^{-0.108}}{e^{-0.096}} - 1\right) * 262$$

-0.102 * 231 \cong 0.89 * (-0.091) * 262 + (-0.012) * 262
-23.56 \cong -21.21 - 3.14

If the assumptions about these two variables hold, this decomposition example shows that most of the reduction in reported cases of driving under influence during the weeks of ban on spirits can be attributed to lower detection rates. While the relative drop in drunk driving of 10.8 % represents approximately 23 cases per week less, the lower detection rate (measured by rates of reported driving with a suspended driving license) in this case accounts for approximately 90 % of the decrease. These results, however, can

only be generalized for offenses that must be detected by the law enforcement, i.e. they are without a victim who would report it. But an actual reduction in drunk driving might have occurred after the end of ban. The rates of endangerment under influence are lower than predicted by control years while the rates of frustrating the execution do not differ.

2.6 Effect on property crime rates

In this final section, I will test whether there was a change in reported property crimes as a by-product of the increased police activity. Multiple previous studies show a negative correlation between police presence and different types of crime rates. The relationship between crime and policing intensity cannot be captured on random samples due to simultaneity between them, as in the long run higher criminality can be expected to lead to a higher number of hired policemen and vice versa. This simultaneity bias makes it impossible to capture the true relationship unless natural experiments are exploited. I.e., the relationship needs to be examined in a setting where the size of the police force rises exogenously.

The study of 59 cities in the USA by Steven Levitt exploits the effect of election cycle on police hiring, as the local politicians tend to increase the number of policemen during the election years. The impact of the increased hiring was a reduction in the rates of homicide, assaults and to a smaller degree property crimes. (Levitt, 1997) Other events where the activity of the police rises are terrorist attacks. Following the attacks on London's subway in July 2005, many policemen were redeployed between neighborhoods to guard public spaces and transport nodes. The visibility of the police force was estimated by Draca to affect especially street crime as thefts or violence. On the other hand, it left unaffected the rates of burglaries, criminal damage or sexual offenses, which usually happen outside main public spaces. So Draca's results conclude that increased policing does reduce crime, but only selectively for types of crime that are susceptible to the given change in policing. Another conclusion is that the effect is very local and in case of London did not spill over to any areas even few corners away. Finally, the effect was not persistent and returned to its baseline level after the end of Operation Theseus (Draca, et al., 2011)

The activity of the Czech police was shifted during September 2012 mainly towards looking for the source of poisonings in the affected regions, and to enforce the ban on spirits after the government had announced it. So, given the results by Draca, one would think that the crimes most affected by the selective focus on bars and restaurants, would be the violent offenses usually associated with bars, as shown in previous sections. I.e. the police activity may be one of the factors of the decrease. However, these facilities suffer from another crime, and that is burglary. So, I will test how did the prohibition affect the overall property crime rate, i.e. both burglaries and larcenies. Most of the property crimes are defined by § 205 of the penal code, both burglaries and larcenies together, but the police keeps track of the distinct types and objects of crime. Therefore, the second crime of interest is the burglary into bars and restaurants which is recorded within ESSK under a specific TSK code. Their descriptive statistics are in Table 12. The regression equation is:

$$\Delta_{52}Crime \ rate_{rt} = \beta_0 + \beta_1 * Prohibition_t + \beta_2 * Prohibition_t * Treated_r + \Delta_{52}x_{rt} + \Delta_{52}\epsilon_{rt} \quad (4)$$

, where Δ_{52} is the time operator as the dependent variable being tested are yearto-year differences in recorded weekly crime rate between 2012 and 2011. Parameter β_1 will absorb all the relative change that is common for all the regions and parameter β_2 is the seasonally adjusted difference-in-differences parameter, i.e. the relative change only occurring in the regions treated with the intervention.

In this case, I will also use the same method of modelling the change to crime rate levels as so far to provide a comparison of the outcomes. The regression equation for levels is again (22). The parameter estimates of yearly differences as in Equation (4) are in Table 13 and the estimates of Equation (22) are in Table 14.

Variable	Aggregate property crime	Burglary into bars and restaurants
Mean	9.802	0.397
Standard deviation	2.114	0.111
Minimum	3.748	0.142
Maximum	14.635	0.704
Observations	312	312
Time frame	2010w1-2015w52	2010w1-2015w52
		(Source: ESSV)

Table 12: Summary of descriptive statistics of weekly property crime rates

(Source: ESSK)

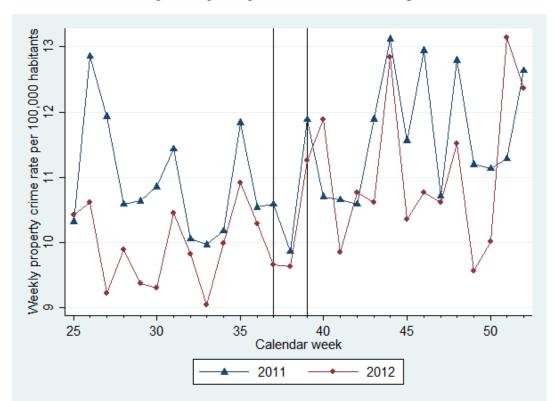


Figure 14: Weekly property crime rates by calendar weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of ban on spirits (Source: ESSK)

Figure 15: Weekly property crime rates between 2011-2015; vertical lines delimiting years (Source: ESSK)

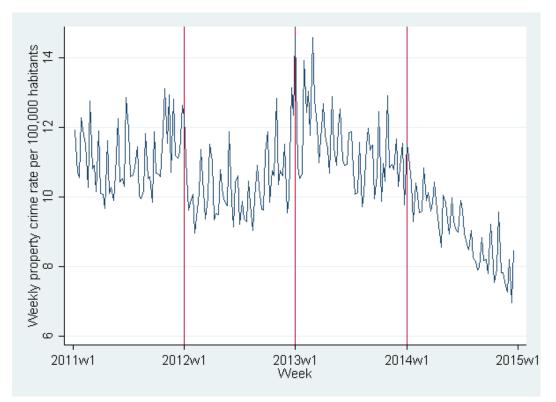


Figure 16: Weekly rates of burglaries into bars and restaurants by calendar weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of ban on spirits Bars and restaurants (Source: ESSK)

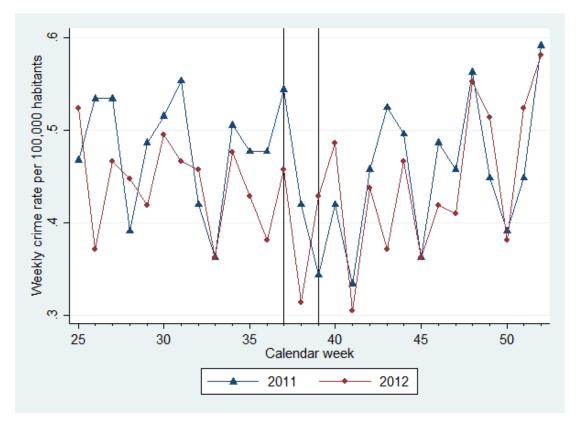
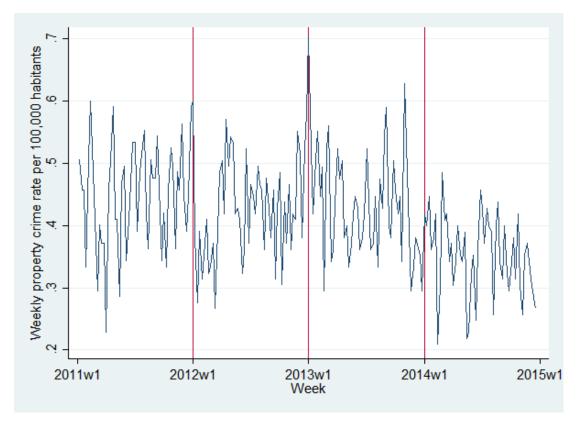



Figure 17: Weekly rates of burglaries into bars and restaurants between 2011-2015; vertical lines delimiting years (Source: ESSK)

Variable	Property crime	Burglary into bars and restaurants
	(1)	(2)
Method	OLS	OLS
Prohibition*Treated	1.142	-0.323*
	(1.346)	(0.196)
Prohibition	-0.429	0.0424
	(0.637)	(0.0572)
Trends	Yes	Yes
R-squared	0.127	0.082
Observations	728	728

Table 13: Regression results for seasonally adjusted difference-in-differences

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Full tables in Appendices AA and AB

Table 14: Regression results for natural logarithms of property crimes
--

Variable	ln(Aggregate property crime)		ln(Burglary into bars and restaurants)	
	(1)	(2)	(3)	(4)
Method	OLS	Poisson	OLS	Poisson
Prohibition	-0.0649	-0.0877	0.403	0.0744
	(0.0861)	(0.0707)	(0.375)	(0.118)
Prohibition*Treated	-0.242	-0.190	-0.794	-0.374
	(0.175)	(0.122)	(0.669)	(0.280)
Pre-Prohibition Week 1&2	0.00893	0.0480	-0.908**	-0.325**
	(0.0794)	(0.0709)	(0.442)	(0.146)
Post-prohibition Week 1&2	-0.125*	-0.0902	0.223	0.0575
	(0.0666)	(0.0620)	(0.380)	(0.139)
Post-prohibition Week 3&4	-0.201**	-0.143*	0.425	0.0368
	(0.0946)	(0.0771)	(0.384)	(0.159)
Post-prohibition Week 5&6	-0.104	-0.0595	0.145	-0.00585
	(0.0870)	(0.0801)	(0.354)	(0.133)
Yearly effects	Yes	Yes	Yes	Yes
Weekly effects	Yes	Yes	Yes	Yes
Regional effects	Yes	Yes	Yes	Yes
R-squared	0.351		0.172	
Pseudo R-squared		0.0691		0. 0286
Observations	4,368	4,368	4,368	4,368

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Full tables in Appendices AC-AF

The recorded crime rates did not significantly change during the time frame of the treatment period. Conclusions of the previous studies were that property crimes are susceptible only to a visible presence of the police, but that presence was rather shifted to enforcing the ban on spirits and preventing further spreading of the methanol poisonings and uncovering its source. Nevertheless, the results of seasonally adjusted difference-in-differences are that there was no significant change in reported overall property crime rate between weeks 37 and 39 of 2012. On the other hand, there was a significant drop in reported rate of burglaries into bars and restaurants in Moravskoslezský, Olomoucký and Zlínský regions compared to the rest of the country. The rate dropped by 0.323 burglaries per 100,000, which is almost the whole average weekly rate (however Table 12 only presents national crime rate statistics, the mean crime rate in the 3 regions is 0.49) The results of the seasonally adjusted difference-indifferences are not confirmed by the estimates of crime levels with equation (21), because the parameter Prohibition*Treated, although sizeable in mean value (corresponding to a relative drop of 51 % in OLS estimates and drop of 31 % in Poisson model) is indistinguishable from 0 given the standard error.

The results suggest that the level of aggregate property crime rate remained unchanged over the course of the intervention time frame, but the consequences of methanol poisoning epidemic discouraged burglars from breaking into bars and restaurants. The reasons may by that all the places that also sold alcohol were in the spotlight of the police and, of course, that the ban on spirits probably negatively affected the attendance and the revenue of the bars, leading to both a lower expected reward from stealing in bars and/or higher probability of being punished for the offense due to increased supervision by the law enforcement. The estimates of the post-ban parameters in Table 14 suggest that some other events might have been driving the decrease in aggregate property crime after the treatment period. Finally, the only significant effect on the rates of burglaries into bars in Table 14 is the one overlapping the pre-ban period, suggesting drop of between 28–60 %, which might have been driven by the inspection of alcohol quality since before the ban.

2.7 Model diagnostics

The two estimation methods employed in this thesis were standard OLS and Poisson regression model. The main assumption of these two methods concern the distribution of the dependent variable. Typical examples of crime rate distribution are in Appendices G and H, the levels were estimated by Poisson regression as they resemble the Poisson distribution and the effect on the natural logarithms of crime rates were then estimated with OLS.

The assumptions of these methods also include constant and finite variance of the error term, while the error term must also not be serially correlated. Any violation of either homoscedasticity or serial independence would lead to biased estimates of the standard errors and both the significance tests of parameters and the whole model lose power. The estimated means of parameters remain unbiased, but the estimation method is no longer efficient. These violations have been to a certain degree overcome by methods of robust standard error estimators which use alternative methods of determining the variance-covariance matrix without the strict assumptions. heteroscedasticity-consistent standard The error estimator. also known as Huber/White/sandwich, is integrated into Stata, where I did all my estimations. This estimator has then been extended to also account for serial correlations by Newey and West (Newey, et al., 1987). These estimates are robust to underestimation of the standard error when the data are both heteroscedastic and autocorrelated, and are integrated into Stata as command "newey". This command fits the data using OLS with heteroscedasticity and up to n serial correlations consistent standard errors. The sandwich estimator is also a special case of Newey-West estimator with 0 autocorrelated lags. To determine the number of lags n, I took standard OLS and tested the serial correlation of the error term. For example, for the estimates of the prohibition effect on the aggregate of the top 4 alcohol-involving crimes, the residuals of simple OLS are as in Figure 18 where, due to logarithmic transformation of the crime rate, the residuals are percentage deviations of fitted values from the observed data. Then I estimated the autocorrelation function and the last lag to show a correlation higher than the critical value on 95% confidence level was lag 6. The plot of the autocorrelation function with the critical values are in Figure 19. I could therefore reject that the residuals are a white noise as assumed by OLS and the model for this variable will have the standard errors estimated by Newey-West robust estimator with up to 6 lags. While the

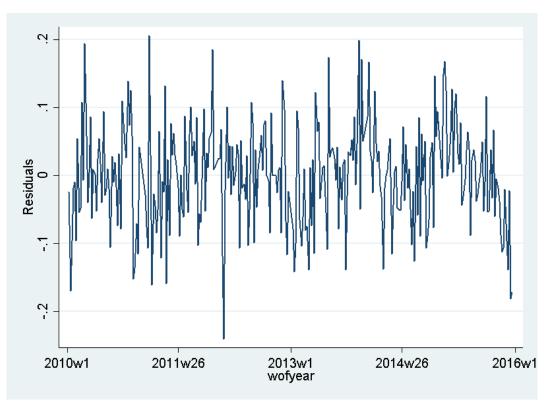
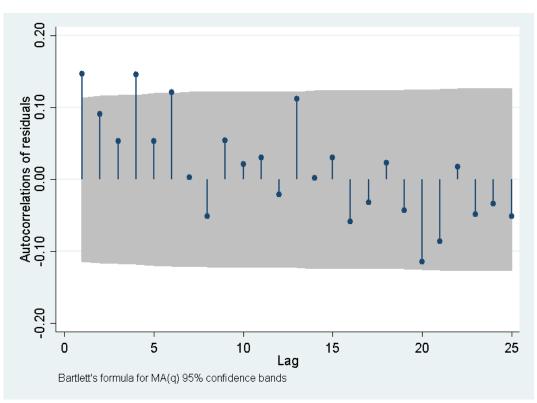



Figure 18: The residuals of equation (19) model regression explaining the top 4 alcoholinvolving crimes (Source: author's own analysis)

Figure 19: Autocorrelation function of the residuals of equation (19) model explaining the top 4 alcohol-involving crimes (Source: author's own analysis)

robust estimators correct the error for biases caused by violations of the underlying assumptions of the models, they cannot correct for any specification errors. I.e., the assumption of the robust standard error estimates is the correctness of the model to fit the parameters of the generating process. If the model is misspecified, then the robust standard errors are biased all the same. (Freedman, 2006)

The OLS estimates on time series also assume that such a time series is stationary, i.e. it has no unit root. Using the Dickey-Fuller test for the presence of a unit root in the error term of the models, each of the crime rates is either stationary or trend-stationary and so are the residuals. The models use only binary variables representing categorical dependent variables which are susceptible to perfect multicollinearity, sometimes called the dummy variable trap. That was prevented by always omitting one of them. Every model in this thesis was tested for presence of multicollinearity by variance inflation factors, and in all cases the collinearity between any given variables was low and the matrix had a full rank.

The models explaining evolution of crime in this thesis all employ only seasonal and trend adjustment in order to reduce the amount of noise in the data as much as possible, given the unavailability of suitable explicatory variables. The significance of the models employed in my analyses was supported by F-tests which in all cases I could reject the null hypothesis that the parameters of the model as a whole are insignificant. Although, the cases when one cannot reject such hypothesis are scarce. The significance of Poisson regression model is tested by likelihood ratio chi-square test, where the test statistic for x predictors is:

$$LR(x) = -2*(l(Null) - l(Model))$$
(24)

Where the l(Model) is log-likelihood of the estimated model and l(Null) is the log-likelihood of an intercept-only model. Using the likelihood ratio chi-square test, also the insignificance of all the Poisson regression estimates can be rejected. The fit of the data can be examined by R-squared, also called the coefficient of determination, in case of OLS, which is a ratio of the variability explained by the model. Poisson regression cannot be examined this way, but a similar measure was invented for it, the pseudo R-squared. However, it cannot be compared to the OLS R-squared. In Stata, Poisson regression outputs include McFadden's pseudo R-squared, which is defined as

$$Pseudo R^{2} = 1 - \frac{l(Model)}{l(Null)}$$
(25)

So, while a larger value of pseudo R-squared suggests a better fit, it is common that values over 0.2 suggest an excellent fit of the data. These statistics are attached in Appendices with every regression table.

2.8 Limitations

My thesis uses the best available data, but has a very limited sample of 6 years. In this case in which I attempted to capture the effect of a short intervention on weekly data, that can substantially bias the estimates of seasonal weekly factors which are crucial for capturing the studied effect. The thesis depends on an assumption of cyclic additive effects that are common to the same calendar weeks over the years, which is also a strong assumption. There may be many factors in determining short-run variations of crime, which are unobserved in this thesis. The estimates only capture the effect that equals the difference between the observed crime rates and what would have been expected of the same period of time given the cyclic weekly effects and correcting the yearly mean to control for long-run trends. Such assumptions are strong and the estimates may be biased by omitting other significant explanatory variables of the crime function.

For the estimates of treatment effects to be considered causal, counterfactual analysis needs to be employed. As the treatment of the ban on spirit was nationwide, no valid control group may be used. Therefore, I have to assume that no other unobserved shock that would be also correlated with the dependent variable did not take place at the same time as the ban on spirits and other consequences associated with the methanol poisonings. A valid counterfactual that would follow the same trends and shocks and would not be affected by this intervention, would have allowed me check whether such shock did or did not occur at the same time and hence prove the causality.

3 Conclusions

The two weeks of prohibition and intensive police activity helped rapidly uncover the source of the mass poisoning and certainly reduced the number of casualties. Those two entrepreneurs from whom the methanol originated were both sentenced to life imprisonment. (ČTK, 2016a) The distributors and retailers that sold or mixed the poisonous mixture were all charged as well, thus making the methanol poisonings the criminal case with the highest number of defendants in Czech history. In total 60 people were accused till April 2013. (Pokorný, 2013) However, the police also uncovered huge tax evasion as a by-product of the raids targeting the sources of methanol. One of the leads from the methanol poisonings investigation brought the police to several warehouses throughout the country with hundreds of thousands of liters of untaxed spirits which were then linked to a single organization. The head of what came to be called by the media "the spirit mafia" was sentenced to 13 years in jail for avoiding taxes over the course of 15 years, totaling estimated 6.39 billion CZK. (ČTK, 2015)

Because of the methanol poisonings and the subsequent raid on the black market, the share of illicit spirits is estimated to have dropped to about 8 % of the market. New set of regulations that were passed by the government that put the alcohol producers under constant supervision. Also, all the businesses in alcohol industry face stricter licensing policy. The average consumption of spirits in the Czech Republic slightly decreased in the next years, but both the sales of legal producers and importers and the excise tax revenue rose. (ČTK, 2016b)

The ban on hard liquor was an emergency measure following the outbreak of poisonings. Such intervention provides a valuable experimental setting to capture the causal link between alcohol and crime, one of the many externalities attributed to alcohol consumption. Using methodology specified in Section 2.1, I estimated the effect on time series and regional panels of crime rates as they were reported in police information system ESSK.

The effect on nationwide aggregate violent crime rate was negative, approximately -10 %. This reduction falls mainly on weekend criminality, as this crime aggregate usually spikes on weekends but during the timeframe of the prohibition the spikes were largely mitigated. The same results were yielded after limiting the analysis on the rates of 4 crimes that, by the police records, have the highest share

of offenders under the influence of alcohol (of course, except for primary alcohol crimes like driving under influence). The average rate of these 4 crimes, i.e. aggravated assaults, property damage, vandalism and criminal threatening fell by approximately 9 %, but is again most attributable to the decrease in weekend crime rate, which fell by estimated 21–26 %, depending on estimation method.

These results are in accordance with previous body of research on alcohol-crime relationship. However, I cannot quantify the partial prohibition's effect on total alcohol consumption. While the ban only targeted hard liquor, drinkers could have substituted it with higher doses of beverages with less than 20 % ABV so I cannot tell by how much the average consumption went down if at all. Yet, the uncertainty about alcohol quality could also lead to higher general avoidance of alcohol as such. Also, any changes in alcohol consumption may have persisted even after the ban, but any of these claims are unsubstantiated as data about any of them are not available. Still, the binge drinking as a high-risk factor of ending up in a criminal offence was to a certain degree limited by the ban, which would explain the decrease. Also, some of the reduction may be attributed to lower attendance of bars or other public drinking venues which are the usual hotspots of crime.

A substantial effect was also observed on the time series of number of known offenders that were under the influence of alcohol. The total number of drunk offenders fell by approximately 18 % in traffic-related offences, while the number of non-traffic offenders under influence fell by estimated 28 %. The negative effect on this time series also showed persistence of the negative effect.

The assumption that one usually must make when studying reported crime rates is that the ratio between the reported and the actual crime is constant over time. The reporting patterns, however, were likely affected by the increased needs of police presence in the enforcement of the prohibition or poisonings investigation. For that, I suggested a model example where reported cases of driving under the influence of alcohol are used as a proxy variable susceptible both to lower availability of alcohol and lower police detection rates and reported cases of driving with a suspended license are a proxy susceptible only to the latter. The parameter estimates suggest that most of the reduction in cases of drunk driving could be attributed to lower detection rates. Yet, the result can explain the decrease in certain victimless crimes whose reporting is dependent on it being detected, i.e. they could have just remained undetected, but cannot explain the reduction in crimes that are reported by its victims. The possible way how the reporting of crimes with victims may have been affected would be that, since the police was likely overwhelmed, the victims would see the reporting of a crime during the prohibition weeks as costlier, e.g. in terms of forgone time etc., but that is again a speculation.

The effect on the regions that were hit the heaviest by the methanol poisonings did not statistically differ from the rest of the country in any of the analyses regarding alcohol-related criminality. The exception was the analysis of property crimes, specifically the burglaries into bars and restaurants. The effect on this small niche of the property crimes (it accounts for about 4 % of the overall property crime aggregate) was significantly lower in the most affected regions, which also supports expectation of these crimes being susceptible to higher law enforcement presence. The aggregated property crime was otherwise unaffected.

The limitation of these estimates is the lack of potentially important control variables. The parameters are estimated on time series and regional panels of observed crime rates after correcting for estimates of yearly effects and cyclical seasonal variations based on 5 other control years. While it can never be ruled out that there were no other random shocks driving the change of studied offenses over the course of treatment period of the prohibition, the analyses in this thesis must assume it. Still, it would be unlikely that other events correlated with crime would occur at the same and/or would affect it more than the ban on spirits. The treatment effects would under these assumptions imply the causation of the unavailable hard liquor on crime.

References

Anderson, Peter and Baumberg, Ben. 2006. *Alcohol in Europe: A public health perspective*. 2006. 92-79-02241-5.

Bacharach, Samuel B., Bamberger, Peter and Biron, Michal. 2010. Alcohol consumption and workplace absenteeism: The moderating effect of social support. *Journal of Applied Psychology.* 2010, Vol. 95, 2, pp. 334-348.

Becker, Gary S. 1968. Crime and Punishment: An Economic Approach. *Journal of Political Economy.* 1968, Vol. 76, 2, pp. 169-217.

Block, Carolyn R. 1984. Is Crime Seasonal? s.l. : Bureau of Justice Statistics, 1984.

Blocker, Jack S. 2006. Did Prohibition Really Work? Alcohol Prohibition as a Public Health Innovation. *American Journal of Public Health.* 2006, Vol. 96, 2, pp. 233-243.

Bobak, Martin , et al. 2004. Contribution of drinking patterns to differences in rates of alcohol related problems between three urban populations. *Journal of Epidemiology and Community Health.* 2004, Vol. 58, 3, pp. 238-242.

Bouchery, Ellen E., et al. 2011. Economic Costs of Excessive Alcohol Consumption in the U.S., 2006. *American Journal of Preventive Medicine*. 2011, Vol. 41, 5, pp. 516-524.

Budd, Tracey. 2003. *Alcohol-related assault: findings from the British Crime Survey.* s.l. : Home Office, 2003. 1-84473-107-3.

Bye, Erin K. 2008. Alcohol and Homicide in Eastern Europe: A Time Series Analysis of Six Countries. *Homicide Studies*. 2008, Vol. 12, 1, pp. 7-27.

Cameron, A. Colin and Trivedi, Pravin K. 2009. *Microeconometrics Using Stata*. s.l. : Stata Press, 2009. 1-59718-048-3.

Carpenter, Christopher and Dobkin, Carlos. 2010. *Alcohol Regulation and Crime.* s.l. : National Bureau of Economic Research, 2010. Working Paper 15828.

Cohen, Lawrence E. and Felson, Marcus. 1979. Social Change and Crime Rate Trends: A Routine Activity Approach. *American Sociological Review*. 1979, Vol. 44, 4. Cohn, Ellen G. 1990. Weather and crime. *British Journal of Criminology*. 1990, 1, pp. 51-64.

ČSÚ. 2016a. Počet obyvatel v obcích. *Český statistický úřad*. [Online] 2016a. [Cited: November 22, 2016.] https://www.czso.cz/csu/czso/pocet-obyvatel-v-obcich.

—. 2016b. Vydání a spotřeba domácností statistiky rodinných účtů. Český statistický úřad. [Online] 2016b. https://www.czso.cz/csu/czso/vydani-a-spotreba-domacnosti-statistiky-rodinnych-uctu-domacnosti-podle-postaveni-osoby-v-cele-podle-velikosti-obce-prijmova-pasma-regiony-soudrznosti-2015.

ČTK. 2016b. Čtyři roky po metanolové aféře: Černý trh s alkoholem se zmenšil, říkají výrobci lihovin. *Aktuálně.cz.* [Online] 12. 9. 2016b. [Cited: November 28, 2016.] https://zpravy.aktualne.cz/ekonomika/ctyri-roky-po-metanolove-afere-cerny-trh-s-alkoholem-se-zmen/r~eaaa1cf078ca11e68d00002590604f2e/.

—. 2015. Kauza lihové mafie: Šéf skupiny Březina dostal třináct let, jeho bratr čtyři. *Lidovky.cz.* [Online] 22. 12. 2015. http://www.lidovky.cz/kauza-lihove-mafie-soud-uznal-vinnymi-vsech-osm-obzalovanych-pu0-/zpravy-domov.aspx?c=A151222_091303_ln_domov_ELE.

—. 2014. Věřil jsem, že metanol zneutralizujeme, četl soud starší výpověď míchače. *iDNES.cz.* [Online] 6. 3. 2014. [Cited: November 18, 2016.] http://zlin.idnes.cz/policejni-vypoved-hlavniho-michace-otraveneho-alkoholu-rudolfa-fiana-1k9-/zlin-zpravy_aspx?c=A140306_145247_zlin-zpravy_ras.

—. 2016a. Vrchní soud potvrdil většině aktérů metanolové kauzy mnohaleté tresty. *iDNES.cz.* [Online] 27.1. 2016a. [Cited: November 18, 2016.] http://zlin.idnes.cz/vrchni-soud-potvrdil-tresty-akterum-zlinske-metanolove-kauzy-pvf.

Dave, Dhaval and Kaestner, Robert. 2002. Alcohol taxes and labor market outcomes. *Journal of Health Economics.* 2002, Vol. 21, 3, pp. 357–371.

Draca, Mirko, et al. 2011. Panic on the Streets of London: Police, Crime, and the July 2005 Terror Attacks. *American Economic Review.* 2011, Vol. 101, 5, pp. 2157-2181.

Ehrlich, Isaac. 1973. Participation in Illegitimate Activities: A Theoretical and Empirical Investigation. *Journal of Political Economy*. 1973, Vol. 81, 3, pp. 521-565.

Ensor, Tim, et al. 1993. Modelling the interactions between alcohol, crime and the criminal justice system. *Addiction.* 1993, Vol. 88, 4, pp. 477-487.

Freedman, David A. 2006. On the So-Called "Huber Sandwich Estimator" and "Robust Standard Errors". *The American Statistician*. 2006, Vol. 60, 4.

Goodliffe, Jonathan. 2007. Insurance - solving some alcohol problems and causing others. *IAS Occasional Paper*. 2007, 2.

Grogger, Joffrey. 1991. Certainty vs. Severity of Punishment. *Economic Inquiry*. 1991, Vol. 29, 2.

Gyimah-Brempong, Kwabena. 2001. Alcohol Availability and Crime: Evidence from Census Tract Data. *Southern Economic Journal.* 2001, Vol. 68, 1, pp. 2-21.

Hignett, Kelly. 2004. Organised Crime in East Central Europe: The Czech Republic, Hungary and Poland. *Global Crime*. 2004, Vol. 6, 1, pp. 70-83.

Hovda, Knut E., et al. 2005. Methanol outbreak in Norway 2002–2004: epidemiology, clinical features and prognostic signs. *Journal of Internal Medicine*. 2005, Vol. 258, 2, pp. 181-190.

Cho, Yeok-il. 2012. Alcohol-related crimes and hotspot mapping. *Journal of the Institute of Justice and International Studies*. 2012, 12.

Kenkel, Donald S. 1996. New estimates of the optimal tax on alcohol. *Economic Inquiry*. 1996, Vol. 34, 2, pp. 296-319.

Kessler, Daniel and Levitt, Steven D. 1999. Using Sentence Enhancements to Distinguish between Deterrence and Incapacitation. *The Journal of Law & Economics.* 1999, Vol. 42, S1, pp. 343-364.

Lehto, Juhani. 1995. Alcohol Policy in the Changing Eastern Europe. *Nordisk Alkoholtidskrif.* 1995, Vol. 12.

Levine, Harry G. and Reinarman, Craig. 1991. From Prohibition to Regulation: Lessons from Alcohol Policy for Drug Policy. [ed.] 461-494. *The Milbank Quarterly*. 1991, Vol. 69, 3.

Levitt, Steven D. 1997. Using electoral cycles in police hiring to estimate the effect of police on crime. *The American Economic Review*. 1997, Vol. 87, 3, pp. 270-290.

Luca, Dara Lee, et al. 2015. Can Alcohol Prohibition Reduce Violence Against Women? *American Economic Review*. 2015, Vol. 105, 5, pp. 625–629.

MF ČR. 2016. Zpráva o činnosti Finanční správy České republiky a Celní správy České republiky za rok 2015. [Online] 2016. [Cited: November 16, 2016.] http://www.mfcr.cz/assets/cs/media/Dane_Vyhodnoceni_2015_Zprava-o-cinnosti-FS-CR-a-CS-CR-za-rok-2015.pdf.

Miron, Jeffrey A. and Zwiebel, Jeffrey. 1991. Alcohol Consumption During Prohibition. *The American Economic Review*. 1991, Vol. 18, 2, pp. 242-247.

-. **1995.** The Economic Case Against Drug Prohibition. *The Journal of Economic Perspectives.* 1995, Vol. 9, 4, pp. 175-192.

MZ ČR. 2012. Aféra "metanol" - souhrnná informace. Appendix to: Ministerstvo zdravotnictví reaguje na aktuální vývoj v kauze metanol v předvánočním čase. *Ministerstvo zdravotnictví České Republiky*. [Online] 6. 12. 2012. [Cited: October 24, 2016.] http://www.mzcr.cz/dokumenty/ministerstvo-zdravotnictvi-reaguje-na-aktualnivyvoj-v-kauze-metanol-v-predvanoc_7055_1.html.

Newey, Whitney K. and West, Kenneth D. 1987. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. *Econometrica*. 1987, Vol. 55, 3.

Osgood, D. Wayne. 2000. Poisson-Based Regression Analysis of Aggregate Crime Rates. *Journal of Quantitative Criminology.* 2000, Vol. 16, 1.

Paasma, Raido, et al. 2007. Methanol mass poisoning in Estonia: Outbreak in 154 patients. *Clinical Toxicology.* 2007, Vol. 45, 2, pp. 152-7.

PČR. 2012b. Kauza "Metyl". *Policie České republiky – KŘP Moravskoslezského kraje*.
[Online] 27. 9. 2012b. [Cited: October 24, 2016.] http://www.policie.cz/clanek/kauza-metyl.aspx.

—. 2012a. Kauza "methyl". *Policie České republiky – KŘP Moravskoslezského kraje*. [Online] 13. 9. 2012a. [Cited: October 24, 2016.] http://www.policie.cz/clanek/kauzamethyl.aspx. —. 2012c. Kauza metyl je stále aktuální. *Policie České Republiky - Zpravodajství 2012*. [Online] 23. 11. 2012c. [Cited: October 24, 2016.] http://www.policie.cz/clanek/kauzametyl-je-stale-aktualni.aspx.

Pernanen, Kai. 1998. Prevention of Alcohol-Related Violence. *Contemporary Drug Problems.* 1998, Vol. 25, 3.

Peterson, Jordan B. and Pihl, Robert O. 1993. Alcohol, serotonin and aggression. *Alcohol health and research world.* 1993, Vol. 17, 2, pp. 113-116.

Pogue, Thomas F. and Sgontz, Larry G. 1989. Taxing to Control Social Costs: The Case of Alcohol. *The American Economic Review*. 1989, Vol. 79, 1, pp. 235-243.

Pokorný, Jakub. 2013. Metanolová aféra bobtná, ale už tak je největším případem v historii. *iDNES.cz.* [Online] 4. 3. 2013. [Cited: 25 November, 2016.] http://zpravy.idnes.cz/metanolova-kauza-je-nejvetsi-pripad-ceske-kriminalistiky-p3e-/domaci.aspx?c=A130402_212608_domaci_brd.

Popova, Svetlana, et al. 2007. Comparing Alcohol Consumption in Central and Eastern Europe to other European Countries. *Alcohol & Alcoholism.* 2007, Vol. 42, 5, pp. 465–473.

Rehm, Jürgen, et al. 2009. Alcohol and Global Health 1: Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. *The Lancet.* 2009, Vol. 373, pp. 2223-33.

Rehm, Jürgen, et al. 2003. The relationship of average volume of alcohol consumption and patterns of drinking to burden of disease: an overview. *Addiction.* 2003, Vol. 98, 9, pp. 1209–1228.

Slonková, Sabina. 2010b. Exclusive:Gigantic alcohol scam costs Treasury billions. *Aktuálně.cz.* [Online] 14. 4. 2010b. [Cited: November 18, 2016.] https://zpravy.aktualne.cz/exclusivegigantic-alcohol-scam-costs-treasury-billions/r~i:article:665840/.

-... **2010a.** Malign disinfectans used by producers of alcohol drinks. [Online] 14. 4. 2010a. [Cited: November 18, 2016.] https://zpravy.aktualne.cz/malign-disinfectans-used-by-producers-of-alcohol-drinks/r~i:article:666211/.

---. **2010c.** Tajná zpráva o alkoholu. Každá druhá láhev je falešná. *Aktuálně.cz.* [Online] 13. 4. 2010c. [Cited: November 18, 2016.] https://zpravy.aktualne.cz/domaci/tajna-zprava-o-alkoholu-kazda-druha-lahev-je-falesna/r~i:article:665492/.

Šelih, Alenka and Završnik, Aleš. 2012. Crime and Transition in Central and Eastern Europe. New York : Springer, 2012. 978-1-4614-3517-4.

Štefunková, Michaela. 2012. Alkohol, násilí a kriminalita z kriminologické perspektivy. *Adiktologie*. 2012, Vol. 12, 2, pp. 128–136.

Treml, Vladimir G. 1997. Soviet and Russian statistics on alcohol consumption and abuse. [book auth.] Jose L. Bobadilla, Christine A. Costello and Faith Mitchell. *Premature death in the New Independent States.* Washington D.C. : National Academy Press, 1997.

TTB. 2012. Historical Tax Rates. *Alcohol and Tobacco Tax and Trade Bureau*. [Online] 2012. [Cited: November 19, 2016.] https://www.ttb.gov/tobacco/94a01_4.shtml.

Úřad vlády. 2012. Analýza činnosti státní správy v oblasti postihování černého trhu s alkoholem. [Online] 2012. https://www.vlada.cz/assets/mediacentrum/aktualne/Analyza-cnnosti-statni-spravy-v-oblasti-postihovani-cerneho-trhu-salkoholem.pdf.

UVDL. 2012. Smrtelné otravy alkoholem snad konečně přimějí stát k razantnějším činům. *Unie výrobců a dovozců lihovin ČR*. [Online] 7. 9. 2012. [Cited: November 18, 2016.] http://www.uvdl.cz/smrtelne-otravy-alkoholem-snad-konecne-primeji-stat-k-razantnejsim-cinum.htm.

WHO. 2014. *Global Status Report on Alcohol and Health*. [Online] 2014. [Cited: November 1, 2016.]

 $http://www.who.int/substance_abuse/publications/global_alcohol_report/en/.$

—. 2014. Country profile - Czech Republic. Global status report on alcohol and health 2014. [Online] 2014. [Cited: November 1, 2016.] http://www.who.int/substance_abuse/publications/global_alcohol_report/profiles/cze.pd

f.

—. 2012. Global Health Observatory data repository - Alcohol-attributable fractions.
 Global Information System on Alcohol and Health. [Online] 2012. [Cited: November 1, 2016.] http://apps.who.int/gho/data/node.main.A1093.

—. **2010c.** Global Health Observatory data repository - Consumption of pure alcohol by type of beverage. *Global Information System on Alcohol and Health*. [Online] 2010c. [Cited: November 1, 2016.] http://apps.who.int/gho/data/node.main.A1023.

—. **2010d.** Global Health Observatory data repository - Heavy episodic drinking, past 30 days. *Global Information System on Alcohol and Health*. [Online] 2010d. [Cited: November 1, 2016.]

---. **2010a.** Global Health Observatory data repository - Total consumption. *Global Information System on Alcohol and Health.* [Online] 2010a. [Cited: November 1, 2016.] http://apps.who.int/gho/data/node.main.GISAH.

—. 2010b. Global Health Observatory data repository - Unrecorded consumption. Global Information System on Alcohol and Health. [Online] 2010b. [Cited: November 1, 2016.] http://apps.who.int/gho/data/node.main.A1034.

Zábranský, Tomáš, et al. 2011. *Společenské náklady užívání alkoholu, tabáku a nelegálních drog v ČR v roce 2007.* Praha : Centrum adiktologie PK 1. LF UK, 2011. 978-80-260-1680-9.

Zakharov, Sergey, et al. 2014. Czech mass methanol outbreak 2012: Epidemiology, challenges and clinical features. *Clinical Toxicology*. 2014, Vol. 52, pp. 1013-1024.

List of Abbreviations

- AAF Alcohol-attributable Fraction
- ABV Alcohol by Volume
- BAC Blood Alcohol Concentration
- CEE Central and Eastern Europe
- CZK Czech Koruna
- ČSÚ Český statistický úřad (Czech Statistical Office)

ESSK – Evidenčně statistický systém kriminality (Evidential and Statistical Criminality System)

GISAH - Global Information System on Alcohol and Health

HED – Heavy Episodic Drinking

MF ČR – Ministerstvo financí České republiky (Ministry of Finance of the Czech Republic)

MZ ČR – Ministerstvo zdravotnictví České republiky (Ministry of Health of the Czech Republic)

- PČR Policie České republiky
- $\ensuremath{\mathsf{TTB}}\xspace$ Alcohol and Tobacco Tax and Trade Bureau

UVDL – Unie výrobců a dovozců lihu (The Distilleries Union)

 $VAT-Value\text{-}added \ Tax$

WHO - World Health Organization

List of Figures

Figure 1: Daily number of cases of methanol poisonings by date; vertical lines delimit the
beginning and the end of ban on sale of spirits; September-December 2012
Figure 2: Regional distribution of the methanol poisonings; September-December 2012
Figure 3: Weekly violent crime rates between 2011 and 2014; with vertical lines
delimiting first weeks of the year
Figure 4: Violent crime rates by calendar weeks in 2012 and 2011; with the vertical lines
delimiting the beginning and the end of ban on spirits
Figure 5: Detail on daily violent crime rates by weeks and weekends in 2012 and 2011;
with the vertical lines delimiting the beginning and the end of ban on spirits
Figure 6: Weekly top 4 alcohol-involving crime rates between 2011 and 2014; with
vertical lines delimiting first weeks of the year
Figure 7: Top 4 alcohol-involving crime rates by calendar weeks in 2012 and 2011; with
the vertical lines delimiting the beginning and the end of ban on spirits
Figure 8: Detail on top 4 alcohol-involving daily crime rates by weekdays and weekends
in 2012 and 2011; with the vertical lines delimiting the beginning and the end of the ban
on spirits
Figure 9: Shares of known offenders under influence by weeks of 2012; only the 4 most
alcohol-related crimes included
Figure 10: Weekly count of non-traffic offenders under the influence of alcohol by
calendar weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the
end of ban on spirits
Figure 11: Weekly count of traffic offenders under the influence of alcohol by calendar
weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of
ban on spirits
Figure 12: Reported rates of "endangerment under influence" by calendar weeks in 2012
and 2011; with the vertical lines delimiting the beginning and the end of ban on spirits
Figure 13: Reported rates of "frustrating the execution of an official decision" by calendar
weeks in 2012 and 2011; with the vertical lines delimiting the beginning and the end of
ban on spirits

List of Tables

Table 1: Average excise duties in member countries of the EU in euros/hl
Table 2: Total offences recorded in ESSK by year
Table 3: Summary of descriptive statistics for weekly violent crime rates in the Czech
Republic
Table 4 Regression results for time series of natural logarithms of weekly aggregate
violent crime rate
Table 5: Regression results for natural logarithms of aggregate violent crime rate43
Table 6: Summary of descriptive statistics for the weekly rates of the 4 most alcohol-
involving crimes in the Czech Republic
Table 7: Regression results for natural logarithms of the top 4 most alcohol-related crimes
Table 8: Summary of descriptive statistics of weekly counts of known offenders under
the influence of alcohol51
Table 9: Regression results for natural logarithms of counts of known offenders under
influence of alcohol
Table 10: Summary of descriptive statistics of weekly rates of crimes recorded under TSK
663 and 771
Table 11: Regression results for natural logarithms of weekly rates of endangerment
under influence and frustrating the execution of an official decision
Table 12: Summary of descriptive statistics of weekly property crime rates 62
Table 13: Regression results for seasonally adjusted difference-in-differences
Table 14: Regression results for natural logarithms of property crimes

Appendices

Appendix A: Regression table of violent crime rates as specified in column (1) of Table 4

Number of obs = 300F(59, 240) = 10.90Prob > F = 0.0000R-squared = 0.5310Root MSE = .17228

Prohibition	Coefficient 123263	Robust Std. Err. .0638389	t -1.93	P> t 0.055	95% Conf. 2489935	Interval .0024676
Pre-prohibition Week 1&2	.0874558	.1229045	0.71	0.477	1546044	.3295159
Post-prohibition Week 1&2	.0201446	.1264671	0.16	0.874	2289321	.2692213
Post-prohibition Week 3&4	0373234	.0603758	-0.62	0.537	1562333	.0815866
Post-prohibition Week 5&6	0039055	.0521893	-0.07	0.940	1066923	.0988813
Year effects (2010=baseline)						
2011	.065661	.0358424	1.83	0.068	0049306	.1362525
2012	0071441	.0375098	-0.19	0.849	0810195	.0667314
2013	.0230187	.0322837	0.71	0.477	0405639	.0866013
2014	0823908	.0322203	-2.56	0.011	1458487	0189329
2015	2902957	.0341058	-8.51	0.000	3574671	2231244
Calendar week effect (4=basel	line)					
2	.0480069	.0475087	1.01	0.313	0455614	.1415751
3	.045149	.0508607	0.89	0.376	0550211	.1453191
5	.3149182	.0436364	7.22	0.000	.2289764	.4008601
6	.0039891	.0486455	0.08	0.935	0918181	.0997964
7	.1189057	.0423974	2.80	0.005	.035404	.2024074
8	.1040196	.042722	2.43	0.016	.0198787	.1881605
9	.4171911	.0454846	9.17	0.000	.3276094	.5067729
10	.1019511	.0485597	2.10	0.037	.0063128	.1975894
11	.1287292	.0611519	2.11	0.036	.0082907	.2491677
12	.0929511	.0589017	1.58	0.116	0230558	.2089579
13	.2242573	.0820255	2.73	0.007	.0627082	.3858063
14	.1938877	.0796103	2.44	0.016	.0370954	.35068
15	.1162177	.0500363	2.32	0.021	.0176713	.214764
16	.0416109	.0385047	1.08	0.281	034224	.1174458
17	.2462779	.0743731	3.31	0.001	.0998003	.3927555
18	.2334692	.0963146	2.42	0.016	.0437777	.4231607
19	.0629155	.0375289	1.68	0.095	0109976	.1368285
20	.082398	.0480798	1.71	0.088	012295	.1770911
21	.0618772	.0377955	1.64	0.103	012561	.1363154
22	.3449115	.0660808	5.22	0.000	.2147654	.4750575
23	.117988	.0789105	1.50	0.136	0374261	.273402
24	.1454404	.0405267	3.59	0.000	.0656231	.2252576

25	.1247691	.0419617	2.97	0.003	.0421255	.2074126
26	.2789484	.1051574	2.65	0.008	.071841	.4860559
27	.2260558	.1170316	1.93	0.055	0044377	.4565493
28	.1303912	.0380095	3.43	0.001	.0555316	.2052508
29	.089536	.0522699	1.71	0.088	0134094	.1924814
30	.165086	.0650655	2.54	0.012	.0369396	.2932324
31	.260123	.0681747	3.82	0.000	.125853	.394393
32	.0853331	.0486007	1.76	0.080	0103859	.1810521
33	.0939752	.0470378	2.00	0.047	.0013343	.1866161
34	.1117891	.0395409	2.83	0.005	.0339134	.1896647
35	.3817439	.1195433	3.19	0.002	.1463035	.6171843
36	.0635632	.08653	0.73	0.463	1068575	.2339839
37	.0647887	.0476602	1.36	0.175	029078	.1586555
38	.0319554	.0477211	0.67	0.504	0620312	.125942
39	.1163814	.0868864	1.34	0.182	0547411	.2875039
40	.1498323	.0767354	1.95	0.052	0012979	.3009626
41	.0504941	.0488164	1.03	0.302	0456496	.1466379
42	.0405963	.0545654	0.74	0.458	0668702	.1480629
43	0394405	.0432578	-0.91	0.363	1246367	.0457557
44	.3189147	.0699931	4.56	0.000	.1810634	.4567659
45	0308152	.0443984	-0.69	0.488	1182578	.0566274
46	.0355241	.0421312	0.84	0.400	0474531	.1185014
47	0131332	.0403133	-0.33	0.745	0925302	.0662638
48	.1365865	.103227	1.32	0.187	0667188	.3398918
49	0562571	.0679523	-0.83	0.409	1900891	.0775749
50	.0011507	.0697031	0.02	0.987	1361294	.1384308
51	016125	.0651686	-0.25	0.805	1444744	.1122245
Constant	1.315607	.0410163	32.08	0.000	1.234826	1.396389

Appendix B: Regression table of violent crime rates as specified in column (2) of Table 4

Number of obs = 300Wald chi2(59) = 914.66Prob > chi2 = 0.0000Log pseudolikelihood = -528.90333Pseudo R2 = 0.0368

Coe	befficient Robust Std. Err.		t	P > t	95% Con	f. Interval
Prohibition	1308196	.0587961	-2.22	0.026	2460577	0155814
Pre-prohibition Week 1&2	.0853105	.0991612	0.86	0.390	1090419	.2796628
Post-prohibition Week 1&2	.032006	.1106331	0.29	0.772	1848308	.2488429
Post-prohibition Week 3&4	0407919	.0576112	-0.71	0.479	1537078	.0721241
Post-prohibition Week 5&6	016892	.0477404	-0.35	0.723	1104614	.0766774
Yearly effects						
2011	.0719217	.0385222	1.87	0.062	0035804	.1474237
2012	0023299	.0405009	-0.06	0.954	0817102	.0770504
2013	.0278238	.0365633	0.76	0.447	0438388	.0994865
2014	0857978	.0348261	-2.46	0.014	1540558	0175399
2015	2929248	.0351347	-8.34	0.000	3617875	2240621
Calendar week ef. (4=base	line)					
2	.0500752	.0409515	1.22	0.221	0301882	.1303386
3	.0457618	.0449109	1.02	0.308	042262	.1337856
5	.3205181	.03942	8.13	0.000	.2432563	.3977799
6	.010303	.0436188	0.24	0.813	0751884	.0957944
7	.1213013	.0374062	3.24	0.001	.0479866	.194616
8	.1061444	.0381037	2.79	0.005	.0314625	.1808263
9	.4193778	.0396739	10.57	0.000	.3416183	.4971373
10	.1020971	.0412855	2.47	0.013	.021179	.1830153
11	.1342256	.055881	2.40	0.016	.024701	.2437503
12	.093999	.0518168	1.81	0.070	0075601	.1955581
13	.245712	.0740465	3.32	0.001	.1005836	.3908404
14	.1993823	.0709602	2.81	0.005	.0603028	.3384618
15	.1168719	.0433885	2.69	0.007	.0318319	.2019118
16	.0471152	.0342873	1.37	0.169	0200867	.1143171
17	.2678396	.0706634	3.79	0.000	.129342	.4063373
18	.2492912	.0857224	2.91	0.004	.0812784	.4173041
19	.0660654	.0327934	2.01	0.044	.0017915	.1303393
20	.0850444	.0412494	2.06	0.039	.0041971	.1658918

21	.0677615	.0332278	2.04	0.041	.0026362	.1328867
22	.3680842	.0497267	7.40	0.000	.2706217	.4655466
23	.1207925	.0670448	1.80	0.072	0106129	.2521979
24	.1497455	.0357877	4.18	0.000	.0796029	.2198881
25	.1267838	.0364095	3.48	0.000	.0554224	.1981452
26	.3204021	.0940062	3.41	0.001	.1361533	.504651
27	.2544559	.1123153	2.27	0.023	.0343219	.47459
28	.1342653	.0327519	4.10	0.000	.0700727	.198458
29	.0899182	.0458858	1.96	0.050	0000163	.1798527
30	.1732176	.0616519	2.81	0.005	.052382	.2940532
31	.277941	.0581571	4.78	0.000	.1639551	.3919268
32	.0928603	.0433397	2.14	0.032	.007916	.1778047
33	.095645	.0394903	2.42	0.015	.0182454	.1730446
34	.1173757	.0343226	3.42	0.001	.0501047	.1846466
35	.42749	.0947042	4.51	0.000	.2418732	.6131068
36	.070575	.0818226	0.86	0.388	0897944	.2309444
37	.0723777	.0410762	1.76	0.078	0081302	.1528857
38	.0365097	.0413905	0.88	0.378	0446142	.1176337
39	.144505	.0809	1.79	0.074	014056	.303066
40	.1638644	.069755	2.35	0.019	.0271472	.3005816
41	.0528733	.0447899	1.18	0.238	0349133	.1406599
42	.0506935	.0489871	1.03	0.301	0453194	.1467065
43	0301984	.0386966	-0.78	0.435	1060424	.0456456
44	.3447231	.0553785	6.22	0.000	.2361833	.4532629
45	0177127	.0365919	-0.48	0.628	0894316	.0540061
46	.0441942	.0382601	1.16	0.248	0307942	.1191825
47	0048022	.0351875	-0.14	0.891	0737685	.064164
48	.1801516	.0783924	2.30	0.022	.0265054	.3337978
49	0385011	.0590427	-0.65	0.514	1542227	.0772205
50	.0265983	.0557255	0.48	0.633	0826217	.1358183
51	.003707	.0509931	0.07	0.942	0962376	.1036516
Constant	.4378246	.2707825	1.62	0.106	0928993	.9685485

Appendix C: Regression table of violent crime rates as specified in column (1) of Table 5

Number of obs = 600F(61, 538) = 35.10Prob > F = 0.0000R-squared = 0.4889MSE = .19465

Prohibition -0747391 069716 -1.07 0.284 -211398 0.0619216 Prohibition Weeknd .2196403 .0103075 21.31 0.000 .1994351 .238455 Pre-prohibition Week 1&2 .0238832 .0564983 .042 0.673 .134634 .0886876 Post-prohibition Week 3&4 .038669 .0632314 0.86 0.388 .0693589 .1783597 Post-prohibition Week 3&6 0676658 .0718052 014 0.346 .2084218 .0730020 Year effects (2010=baseline) .00122 .0161484 2.64 0.008 .019378 .0742474 2012 .03012 .0165972 0.19 0.851 .0294147 .0356547 2014 .10772 .0173474 -6.21 .0000 .336232 .2627992 Calendar week effect (2=baseline) .021561 .0589072 .039 .0700 .33153 .089433 5 .021561 .0589072 .039 .0700 .13153 .028295 7		Coefficient	Robust Std. Err.	t	P > t	95% Con	f. Interval
Weekend .2196403 .0103075 21.31 0.000 .1994351 .2398455 Pre-prohibition Week 1&2 .023882 .0564983 .0.42 .0.673 .134634 .0.86676 Post-prohibition Week 3&4 .038669 .0632314 0.86 .0.388 .0693589 .1785397 Post-prohibition Week 3&4 .038669 .0632314 0.611 0.543 .060483 .1633863 Post-prohibition Week 5&6 .0076658 .0718052 .0.94 .0.34 .2084218 .0730002 Year effects (2010=baseline) .0425926 .0161484 2.64 .0.08 .0109378 .0742474 2012 .0300466 .0175524 -1.71 0.087 .0742474 2014 .01072 .0173474 -6.21 .0000 .1417253 .0737148 2015 .2925156 .0187305 -15.99 .0000 .13033 .3947698 5 .021561 .0559072 -0.11 0.916 .118033 .019433 6 .173033	Prohibition	0747391	.069716	-1.07	0.284	2113998	.0619216
Pre-prohibition Week 1&2 -0238832 .0564983 -0.42 0.673 -134634 .0868676 Post-prohibition Week 1&2 .0545904 .0632314 0.86 0.388 .0089589 .1785397 Post-prohibition Week 5&6 .0676658 .0718052 .0.94 0.346 -2084218 .0730902 Year effects (2010=baseline) .0425926 .0161484 2.64 .008 .019378 .0742474 2011 .0425926 .0161484 2.64 .008 .019378 .0742474 2013 .00312 .0165972 0.19 .0851 .0294147 .0356547 2014 10772 .0173474 -621 .000 .346232 .2627992 Calendar week effect (2=baseline) . .2728415 .0622004 4.39 .0000 .1509133 .059437 4 .2728415 .0559072 -0.39 .070 .131153 .0880311 6 .1173033 .0558736 2.10 .036 .0394736 7 .0905877	Prohibition*Weekend	1756679	.1007681	-1.74	0.081	3731986	.0218627
Post-prohibition Week 1&2 0.545904 0.0632314 0.86 0.388 -0.693589 1.785397 Post-prohibition Week 3&4 0.3866 0.0636232 0.61 0.543 -0.8060483 1.053863 Post-prohibition Week 5&6 -0.076658 0.718052 -0.94 0.346 -2084218 0.730902 Year effects (2010=baseline) -0.0425926 0.161484 2.64 0.008 -0.09378 0.742474 2012 -0.030166 0.175524 -1.71 0.87 -0.644536 0.0043605 2013 .00012 0.165972 0.19 0.851 -0.294147 0.356247 2014 10772 .0173474 -6.21 0.000 -1.417253 .0737148 2015 .0299151 .0559072 -0.11 0.916 -1.18033 .1059437 4 .2728415 .0550072 -0.39 0.000 -1.31153 .9880311 5 .0015617 .0559473 -0.53 0.64 0.000	Weekend	.2196403	.0103075	21.31	0.000	.1994351	.2398455
Post-prohibition Week 3&4 .038669 .0636232 0.61 0.543 .0860483 .1633863 Post-prohibition Week 5&6 .0676658 .0718052 .0.94 0.346 .2084218 .0730902 Year effects (2010=baseline) .0425926 .0161484 2.64 0.008 .019378 .0742474 2012 .0300466 .0175524 -1.71 0.867 .0094 .336537 2014 .10772 .0173474 -6.21 0.000 .1417253 .0737148 2015 .2995156 .0187305 -15.99 0.000 .336232 -2627992 Calendar week effect (2=baseline) . .0006047 .0571297 -0.11 0.916 .118033 .059437 4 .2728415 .0622004 4.39 0.000 .1509133 .3947698 5 .021561 .055972 -0.39 0.700 .131153 .0880311 6 .1173033 .0558736 2.10 0.035 .021853 .034535 .13243 9 </td <td>Pre-prohibition Week 1&2</td> <td>0238832</td> <td>.0564983</td> <td>-0.42</td> <td>0.673</td> <td>134634</td> <td>.0868676</td>	Pre-prohibition Week 1&2	0238832	.0564983	-0.42	0.673	134634	.0868676
Post-prohibition Week 5&6.0676658.0718052.0.940.346.2084218.0730902Year effects (2010=baseline).0425926.01614842.640.008.0109378.0742472011.0300466.0175524-1.710.087.0644536.00436052013.00312.01659720.190.851.0294147.03565472014.10772.0173474-6.210.000.1417253.07371482015.2995156.0187305.15.990.000.336232.2627992Calendar week effect (2=baseline).0060447.0571297-0.110.916.118033.10594374.2728415.06220044.390.000.1501133.39476985.021561.0559072-0.390.000.1501133.39476985.021561.0559072.0.390.000.1501133.39476985.099877.05744051.580.115.02201.20318538.3967263.05976336.640.009.0357522.253127511.0805609.0561241.420.155.0304135.19153312.222217.05777553.850.000.1089673.335476113.1293352.06301282.050.040.0058144.252855914.1111018.0580771.990.47.001707.220498815.0394335.0742554.0530.59.1849925.106125116<	Post-prohibition Week 1&2	.0545904	.0632314	0.86	0.388	0693589	.1785397
Year effects (2010=baseline)2011.0425926.01614842.64.0.008.0109378.07424742012.0300466.0175524-1.71.0.087.0644536.00436052013.00312.0165972.0.19.0.851.0294147.03565472014.10772.0173474-6.21.0.000.1417253.07371482015.2995156.01597.0.110.916.118033.10594374.2728415.06220044.39.0.00.1509133.39476985.021561.0559072-0.390.700.131153.08803116.1173033.05587362.10.0.36.0077771.2682957.0905877.05744051.580.115.02201.20318538.3967263.05973636.64.0009.2796284.51382439.0943433.05544562.610.099.0357532.253127511.0805609.05661241.42.055.0304135.191535312.222217.05777553.850.004.0088144.252855914.1111018.05580771.99.047.0017047.220498815.0394751.06413410.37.0708.1144303.344435517.159494.07457072.14.032.013317.305671118.0239975.06413410.37.0708.1017212.149716319.1047816.05594	Post-prohibition Week 3&4	.038669	.0636232	0.61	0.543	0860483	.1633863
2011 .0425926 .0161484 2.64 0.008 .0109378 .0742474 2012 .030466 .0175524 -1.71 0.0857 .0644536 .0043605 2013 .00312 .0165972 0.19 0.857 .0294147 .0356547 2014 .10772 .0173474 -6.21 0.000 .336232 .2627992 Calendar week effect (2=baseline) .2995156 .0187305 -15.99 0.000 .336232 .2627992 Calendar week effect (2=baseline) .021561 .0559072 -0.39 0.700 .131153 .0880311 6 .1173033 .0558736 2.10 0.036 .077771 .2268295 7 .0905877 .0574405 1.58 0.115 .02011 .2031853 8 .3967263 .0597363 6.64 0.000 .276224 .138243 9 .0943433 .0571629 1.65 0.099 .017102 .2063968 10 .1444403 .0554456 2.61	Post-prohibition Week 5&6	0676658	.0718052	-0.94	0.346	2084218	.0730902
2012 -0300466 .0175524 -1.71 0.087 0644536 .0043605 2013 .00312 .0165972 0.19 0.851 0294147 .0356547 2014 10772 .0173474 -6.21 0.000 1417253 02797148 2015 2995156 .0187305 -15.99 0.000 336232 2627992 Calendar week effect (2=baseline) .0060447 .0571297 -0.11 0.916 118033 .1059433 4 .2728415 .0622004 4.39 0.000 13153 .0880311 6 .1173033 .0558736 2.10 0.036 .077771 .268295 7 .0905877 .0574405 1.58 0.115 .02201 .2031853 8 .3967263 .0597363 6.64 0.009 .0177102 .2663968 10 .1444403 .0554456 2.61 0.009 .035752 .2531275 11 .0805609 .0566124 1.42 0.155	Year effects (2010=baseline)						
2013.00312.01659720.190.851.0294147.03565472014.10772.0173474-6.210.000.1417253.07371482015.2995156.018705-15.990.000.336232.2627992Calendar week effect (2=baseline)0.0110.916.118033.10594333-0060447.0571297-0.110.916.118033.1059433.39476985-021561.0559072-0.390.700.131153.08803116.1173033.05587362.100.036.077771.2682957.0905877.05744051.580.115.02201.20318538.3967263.05973636.640.009.0777102.206396810.144403.05544562.610.099.037532.253127511.0805609.05661241.420.155.0304135.191535312.2222217.05777553.850.000.0089673.335476113.1293352.06301282.050.040.0058144.252855914.1111018.05580771.990.047.007047.220498815.0394335.0742554-0.530.595.1849925.106125516.2312879.05772114.010.000.1181403.344435517.154944.07457072.140.000.03317.35571118.0239755.0641341 <td< td=""><td>2011</td><td>.0425926</td><td>.0161484</td><td>2.64</td><td>0.008</td><td>.0109378</td><td>.0742474</td></td<>	2011	.0425926	.0161484	2.64	0.008	.0109378	.0742474
201410772.0173474-6.210.0001417253073714820152995156.0187305-15.990.000336232262799230060447.0571297-0.110.916118033.10594374.2728415.06220044.390.000.1509133.39476985021561.0559072-0.390.700131153.08803116.1173033.05587362.100.036.0077711.22682957.0905877.05744051.580.115.02201.20318538.3967263.05973636.640.000.2796284.51382439.0943433.05716291.650.099.0177102.206396810.1444403.05544562.610.009.0357532.253127511.0805609.05661241.420.155.04013.354476112.2222217.05777553.850.000.1089673.35547513.1293352.06301282.050.040.0058144.252855914.1111018.05580771.990.047.0017047.2204988150394335.0742554-0.530.595.1849925.106125516.2312879.0577114.01.0000.1181403.344435517.15944.07457072.14.032.03317.30567118.0239975.06413410.37.0708.101721	2012	0300466	.0175524	-1.71	0.087	0644536	.0043605
2015 Calendar week effect (2=baseline) 2995156 .0187305 -15.99 0.000 336232 2627992 3 0060447 .0571297 -0.11 0.916 118033 .1059437 4 .2728415 .0622004 4.39 0.000 .1509133 .3947698 5 021561 .0559072 -0.39 0.700 131153 .0880311 6 .1173033 .0558736 2.10 0.036 .007771 .2268295 7 .0905877 .0574405 1.58 0.115 -02201 .2031853 8 .3967263 .0597363 6.64 0.000 .2796284 .5138243 9 .0943433 .0571629 1.65 0.009 .0357532 .2531275 11 .0805609 .0566124 1.42 0.155 .0304135 .1915353 12 .2222217 .0577755 3.85 0.000 .1089673 .3354761 13 .123879 .0577211 4.01 0.000	2013	.00312	.0165972	0.19	0.851	0294147	.0356547
Calendar week effect (2=baseline)30060447.0571297-0.110.916118033.10594374.2728415.06220044.390.000.1591133.39476985021561.0559072-0.390.700131153.08803116.1173033.05587362.100.036.0077771.22682957.0905877.05744051.580.115-02201.20318538.3967263.05973636.640.009.2796284.51382439.0943433.05716291.650.009.0177102.206396810.144403.05544562.610.009.0357532.253127511.0805609.05661241.420.155.0304135.191535312.222217.05777553.850.000.1089673.335476113.1293352.06301282.050.040.0058144.222855914.1111018.05580771.99.0047.0017047.2240988150394335.0742554-0.530.595.1849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.01317.305671118.0239975.06413410.37.078.1017212.149716319.1047816.05949451.91.0053.0832568.2699648 <trr<td>24.1166108<td>2014</td><td>10772</td><td>.0173474</td><td>-6.21</td><td>0.000</td><td>1417253</td><td>0737148</td></trr<td>	2014	10772	.0173474	-6.21	0.000	1417253	0737148
3 0060447 .0571297 -0.11 0.916 118033 .1059437 4 .2728415 .0622004 4.39 0.000 .1509133 .3947698 5 .021561 .0559072 -0.39 0.700 131153 .0880311 6 .1173033 .0558736 2.10 0.036 .0077771 .2268295 7 .0905877 .0574405 1.58 0.115 .02201 .2031853 8 .3967263 .0597363 6.64 0.000 .2796284 .5138243 9 .0943433 .0571629 1.65 0.099 .0177102 .2063968 10 .1444403 .0554456 2.61 0.009 .0357532 .2531275 11 .0805609 .0566124 1.42 .0155 .0304135 .1915353 12 .2222217 .0577755 3.85 0.000 .1089673 .3354761 13 .1293352 .0630128 2.05 0.040 .001747 .2204988	2015	2995156	.0187305	-15.99	0.000	336232	2627992
4.2728415.06220044.390.000.1509133.39476985021561.0559072-0.390.700131153.08803116.1173033.05587362.100.036.0077771.22682957.0905877.05744051.580.11502201.20318538.3967263.05973636.640.000.2796284.51382439.0943433.05716291.650.0990177102.206396810.1444403.05544562.610.009.0357532.253127511.0805609.05661241.420.155.0304135.191535312.222217.05777553.850.000.1089673.335476113.1293352.066301282.050.040.0058144.252855914.1111018.05580771.990.047.0017047.2204988150394335.0742554-0.530.5951849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.01317.305671118.0239975.06413410.370.7081017212.149716319.047711.06561120.620.535.0878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.003.0532568	Calendar week effect (2=baseline)						
5 021561 .0559072 -0.39 0.700 131153 .0880311 6 .1173033 .0558736 2.10 0.036 .0077771 .2268295 7 .0905877 .0574405 1.58 0.115 02201 .2031853 8 .3967263 .0597363 6.64 0.000 .2796284 .5138243 9 .0943433 .0571629 1.65 0.099 017102 .2063968 10 .1444403 .0554456 2.61 0.009 .035732 .2531275 11 .0805609 .0566124 1.42 0.155 0304135 .1915353 12 .2222217 .0577755 3.85 0.000 .1089673 .3354761 13 .1293352 .0630128 2.05 0.040 .0058144 .2528559 14 .1111018 .0558077 1.99 0.047 .0017047 .2204988 15 .0394335 .0742554 -0.53 0.595 .1849925 .106	3	0060447	.0571297	-0.11	0.916	118033	.1059437
6.1173033.05587362.100.036.007771.22682957.0905877.05744051.580.1150201.20318538.3967263.05973636.640.000.2796284.51382439.0943433.05716291.650.099.0177102.206396810.1444403.05544562.610.009.0357532.253127511.0805609.05661241.420.155.0304135.191535312.222217.05777553.850.000.1089673.335476113.1293352.06301282.050.040.0058144.252855914.1111018.05580771.990.047.0017047.2204988150394335.0742554-0.530.595.1849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.013317.305671118.0239975.06413410.37.0708.1017212.149716319.1047816.05499451.910.057.0030213.212584420.0407411.06561120.620.535.0878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.62.0003.0532568.269964824.1106245.05733011.93.054.0017568 <td>4</td> <td>.2728415</td> <td>.0622004</td> <td>4.39</td> <td>0.000</td> <td>.1509133</td> <td>.3947698</td>	4	.2728415	.0622004	4.39	0.000	.1509133	.3947698
7.0905877.05744051.580.115.02201.20318538.3967263.05973636.640.000.2796284.51382439.0943433.05716291.650.099.0171102.206396810.1444403.05544562.610.009.0357352.253127511.0805609.05661241.420.155.0304135.191535312.2222217.05777553.850.000.0089673.335476113.1293352.06301282.050.040.0058144.252855914.1111018.05580771.990.047.0017047.2204988150394335.0742554-0.530.595.1849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.013317.305671118.0239975.06413410.370.708.1017212.149716319.1047816.05499451.910.057.0030213.212584420.0407411.06561120.620.535.058753.169355521.3389876.05904685.740.000.232411.454734122.1450371.05537122.62.0009.0364958.253578423.1616108.05527562.92.0003.0532568.269964824.1106245.05733011.93.054.0017568 <td>5</td> <td>021561</td> <td>.0559072</td> <td>-0.39</td> <td>0.700</td> <td>131153</td> <td>.0880311</td>	5	021561	.0559072	-0.39	0.700	131153	.0880311
8 .3967263 .0597363 6.64 0.000 .2796284 .5138243 9 .0943433 .0571629 1.65 0.099 0177102 .2063968 10 .1444403 .0554456 2.61 0.009 .0357532 .2531275 11 .0805609 .0566124 1.42 0.155 0304135 .1915353 12 .2222217 .057755 3.85 0.000 .1089673 .3354761 13 .1293352 .0630128 2.05 0.040 .0058144 .2528559 14 .1111018 .0558077 1.99 0.047 .0017047 .2204988 15 .0394335 .0742554 -0.53 0.595 .1849925 .1061255 16 .2312879 .057711 4.01 0.000 .1181403 .344355 17 .159494 .0745707 2.14 0.32 .01317 .3056711 18 .0239975 .0641341 0.37 .0708 .1017212 .14971	6	.1173033	.0558736	2.10	0.036	.0077771	.2268295
9.0943433.05716291.650.099.0177102.206396810.1444403.05544562.610.009.0357532.253127511.0805609.05661241.420.155.0304135.191535312.2222217.05777553.850.000.1089673.335476113.1293352.06301282.050.040.0058144.252855914.1111018.05580771.990.047.0017047.220498815.0394335.0742554-0.530.595.1849925.106125516.2312879.05772114.010.000.1181403.344435517.15944.07457072.140.032.013317.305671118.0239975.06413410.370.708.1017212.149716319.1047816.05499451.910.057.0030213.212584420.0407411.06561120.620.535.0878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.616108.05527562.920.003.0532568.269964824.1106245.05733011.930.054.0017568.223005825.264321.0638494.140.000.1391722.389491926.2643321.0634893.790.006.0435224 </td <td>7</td> <td>.0905877</td> <td>.0574405</td> <td>1.58</td> <td>0.115</td> <td>02201</td> <td>.2031853</td>	7	.0905877	.0574405	1.58	0.115	02201	.2031853
10.1444403.05544562.610.009.035732.253127511.0805609.05661241.420.155.0304135.191535312.2222217.05777553.850.000.1089673.335476113.1293352.06301282.050.040.0058144.252855914.1111018.05580771.990.047.0017047.220498815.0394335.0742554-0.530.595.1849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.013317.305671118.0239975.06413410.370.708.1017212.149716319.1047816.05499451.910.057.0030213.212584420.0407411.06561120.620.535.0878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.003.0532568.269964824.1106245.05733011.93.054.0017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.110698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.090.0148847<	8	.3967263	.0597363	6.64	0.000	.2796284	.5138243
11.0805609.05661241.420.155.0304135.191535312.2222217.05777553.850.000.1089673.335476113.1293352.06301282.050.040.0058144.252855914.1111018.05580771.990.047.0017047.220498815.0394335.0742554-0.530.595.1849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.013317.305671118.0239975.06413410.370.708.1017212.149716319.1047816.05499451.910.057-0030213.212584420.0407411.06561120.620.535-0878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.054958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.054-0017568.23005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.006.0435224.258309627.150916.05478572.750.006.043524.258309628.0954415.05628171.700.090.0148847<	9	.0943433	.0571629	1.65	0.099	0177102	.2063968
12.2222217.05777553.850.000.1089673.335476113.1293352.06301282.050.040.0058144.252855914.1111018.05580771.990.047.0017047.2204988150394335.0742554-0.530.5951849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.013317.305671118.0239975.06413410.370.7081017212.149716319.1047816.05499451.910.057030213.212584420.0407411.06561120.620.5350878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.006.0435224.258309628.0954415.05628171.700.090.0148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000	10	.1444403	.0554456	2.61	0.009	.0357532	.2531275
13.1293352.06301282.050.040.0058144.252855914.1111018.05580771.990.047.0017047.2204988150394335.0742554-0.530.5951849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.013317.305671118.0239975.06413410.370.7081017212.149716319.1047816.05499451.910.0570030213.212584420.0407411.06561120.620.5350878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.006.0435224.258309628.0954415.05628171.700.090.0148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.539 <td< td=""><td>11</td><td>.0805609</td><td>.0566124</td><td>1.42</td><td>0.155</td><td>0304135</td><td>.1915353</td></td<>	11	.0805609	.0566124	1.42	0.155	0304135	.1915353
14.1111018.05580771.990.047.0017047.2204988150394335.0742554-0.530.5951849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.013317.305671118.0239975.06413410.370.7081017212.149716319.1047816.05499451.910.057-0030213.212584420.0407411.06561120.620.5350878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.090.0148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.539-	12	.2222217	.0577755	3.85	0.000	.1089673	.3354761
150394335.0742554-0.530.5951849925.106125516.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.013317.305671118.0239975.06413410.370.7081017212.149716319.1047816.05499451.910.0570030213.212584420.0407411.06561120.620.5350878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.25830628.0954415.05628171.700.090.0148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	13	.1293352	.0630128	2.05	0.040	.0058144	.2528559
16.2312879.05772114.010.000.1181403.344435517.159494.07457072.140.032.013317.305671118.0239975.06413410.370.7081017212.149716319.1047816.05499451.910.0570030213.212584420.0407411.06561120.620.5350878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	14	.1111018	.0558077	1.99	0.047	.0017047	.2204988
17.159494.07457072.140.032.013317.305671118.0239975.06413410.370.7081017212.149716319.1047816.05499451.910.0570030213.212584420.0407411.06561120.620.5350878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	15	0394335	.0742554	-0.53	0.595	1849925	.1061255
18.0239975.06413410.370.708.1017212.149716319.1047816.05499451.910.057.0030213.212584420.0407411.06561120.620.5350878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	16	.2312879	.0577211	4.01	0.000	.1181403	.3444355
19.1047816.05499451.910.057.0030213.212584420.0407411.06561120.620.535.0878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	17	.159494	.0745707	2.14	0.032	.013317	.3056711
20.0407411.06561120.620.5350878733.169355521.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	18	.0239975	.0641341	0.37	0.708	1017212	.1497163
21.3389876.05904685.740.000.2232411.454734122.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	19	.1047816	.0549945	1.91	0.057	0030213	.2125844
22.1450371.05537122.620.009.0364958.253578423.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	20	.0407411	.0656112	0.62	0.535	0878733	.1693555
23.1616108.05527562.920.003.0532568.269964824.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	21	.3389876	.0590468	5.74	0.000	.2232411	.4547341
24.1106245.05733011.930.0540017568.223005825.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	22	.1450371	.0553712	2.62	0.009	.0364958	.2535784
25.2643321.0638494.140.000.1391722.389491926.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	23	.1616108	.0552756	2.92	0.003	.0532568	.2699648
26.2282864.06030693.790.000.1100698.346502927.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	24	.1106245	.0573301	1.93	0.054	0017568	.2230058
27.150916.05478572.750.006.0435224.258309628.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	25	.2643321	.063849	4.14	0.000	.1391722	.3894919
28.0954415.05628171.700.0900148847.205767729.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	26	.2282864	.0603069	3.79	0.000	.1100698	.3465029
29.1652191.05779872.860.004.0519192.278519130.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	27	.150916	.0547857	2.75	0.006	.0435224	.2583096
30.2423227.05890844.110.000.1268476.357797831.0404012.06582060.610.5390886237.169426	28	.0954415	.0562817	1.70	0.090	0148847	.2057677
31 .0404012 .0658206 0.61 0.5390886237 .169426		.1652191		2.86		.0519192	.2785191
			.0589084	4.11	0.000	.1268476	
32 .0556148 .0661893 0.84 0.401 0741326 .1853623							
	32	.0556148	.0661893	0.84	0.401	0741326	.1853623

33	3	.0546952	.0574859	0.95	0.341	0579914	.1673818
34	4	.3597859	.0633799	5.68	0.000	.2355455	.4840263
3	5	.0506038	.0606124	0.83	0.404	0682117	.1694192
30	6	.0618374	.0578929	1.07	0.285	0516471	.175322
3	7	.0252487	.0566216	0.45	0.656	0857437	.1362412
38	8	.0328487	.0709631	0.46	0.643	1062567	.1719541
39	9	.1249866	.0606846	2.06	0.039	.0060296	.2439436
4(0	.0116608	.0589072	0.20	0.843	1038119	.1271335
4	1	0260884	.0695392	-0.38	0.708	1624026	.1102258
42	2	0318167	.0581191	-0.55	0.584	1457445	.0821112
43	3	.294542	.0607966	4.84	0.000	.1753656	.4137185
44	4	0535464	.0660848	-0.81	0.418	1830891	.0759962
4	5	.0037916	.0565777	0.07	0.947	1071148	.1146979
4	6	0118064	.0539934	-0.22	0.827	1176469	.0940341
4	7	.0854799	.062788	1.36	0.173	0376002	.20856
48	8	0973585	.0586256	-1.66	0.097	2122794	.0175623
49	9	0059381	.0568824	-0.10	0.917	1174418	.1055656
50	0	0817617	.0680241	-1.20	0.229	2151057	.0515824
5	1	6809	.0493299	-13.80	0.000	7775989	584201
	Constant	0060447	.0571297	-0.11	0.916	118033	.1059437

Appendix D: Regression table of violent crime rates as specified in column (2) of Table 5

Number of obs $=$ 600							
Wald $chi2(61) = 640.45$							
Prob > chi2 = 0.0000							
Log pseudolikelihood = -473.97563							

Pseudo R2 = 0.0131

	Coefficient	Robust Std. Err.	t	P > t	95% Conf.	Interval
Prohibition	1295757	.0609749	-2.13	0.034	2490844	0100671
Prohibition*Weekend	0867404	.0872926	-0.99	0.320	2578308	.08435
Weekend	.2051578	.0085011	24.13	0.000	.188496	.2218195
Pre-prohibition Week 1&2	0355054	.0537626	-0.66	0.509	1408781	.0698673
Post-prohibition Week 1&2	.0171628	.0527112	0.33	0.745	0861492	.1204748
Post-prohibition Week 3&4	0152287	.0516353	-0.29	0.768	1164321	.0859747
Post-prohibition Week 5&6	0586705	.0627473	-0.94	0.350	1816529	.064312
Year effects (2010=baseline)						
2011	.0426497	.0146751	2.91	0.004	.013887	.0714125
2012	0290824	.0157331	-1.85	0.065	0599187	.0017539
2013	.0079165	.0149157	0.53	0.596	0213177	.0371508
2014	1006003	.0149313	-6.74	0.000	129865	0713356
2015	271103	.0154416	-17.56	0.000	3013681	240838
Calendar week effect (2=base	eline)					
3	0430307	.0369519	-1.16	0.244	115455	.0293937
4	.2722087	.0446826	6.09	0.000	.1846323	.359785
5	0506289	.037047	-1.37	0.172	1232398	.0219819
6	.0981751	.0360563	2.72	0.006	.0275061	.1688442
7	.0708855	.037851	1.87	0.061	0033011	.145072
8	.3756993	.0432181	8.69	0.000	.2909934	.4604052
9	.0610957	.0396564	1.54	0.123	0166294	.1388207
10	.0996206	.0374456	2.66	0.008	.0262285	.1730126
11	.0507825	.0379317	1.34	0.181	0235623	.1251272
12	.2177814	.0421971	5.16	0.000	.1350767	.3004861
13	.1224928	.0413816	2.96	0.003	.0413864	.2035993
14	.0582238	.0370212	1.57	0.116	0143364	.130784
15	.0049126	.037771	0.13	0.897	0691173	.0789425
16	.2422079	.0423239	5.72	0.000	.1592546	.3251612
17	.197378	.0455226	4.34	0.000	.1081553	.2866007
18	.0200904	.0381574	0.53	0.599	0546966	.0948774
19	.0726116	.037854	1.92	0.055	0015809	.1468042
20	.0375364	.0375597	1.00	0.318	0360793	.1111521
21	.3428882	.0411433	8.33	0.000	.2622488	.4235275
22	.0937509	.0362041	2.59	0.010	.0227922	.1647096
23	.1295058	.0363373	3.56	0.000	.058286	.2007257
24	.0943078	.0375363	2.51	0.012	.0207381	.1678776
25	.3260502	.0506941	6.43	0.000	.2266916	.4254088

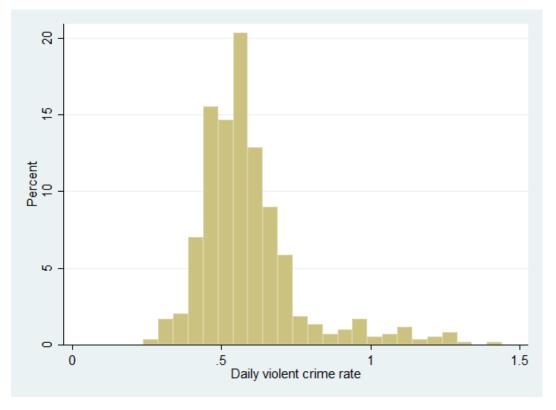
26	.2088442	.0448259	4.66	0.000	.120987	.2967014
27	.105973	.0365182	2.90	0.004	.0343986	.1775473
28	.0466868	.036767	1.27	0.204	0253751	.1187487
29	.1475934	.0401254	3.68	0.000	.068949	.2262378
30	.2351346	.0412922	5.69	0.000	.1542033	.3160658
31	.0463123	.0376055	1.23	0.218	0273932	.1200178
32	.0634568	.0365343	1.74	0.082	0081491	.1350628
33	.0609003	.0376444	1.62	0.106	0128814	.1346819
34	.4100946	.0467519	8.77	0.000	.3184626	.5017266
35	.0372386	.0422219	0.88	0.378	0455148	.1199919
36	.0449531	.0387297	1.16	0.246	0309558	.120862
37	0035638	.0379958	-0.09	0.925	0780341	.0709066
38	.1077726	.0473974	2.27	0.023	.0148755	.2006698
39	.1036603	.0398757	2.60	0.009	.0255053	.1818153
40	.0141712	.0377188	0.38	0.707	0597563	.0880987
41	.007572	.0397435	0.19	0.849	0703238	.0854677
42	0497986	.0369696	-1.35	0.178	1222577	.0226605
43	.2978537	.044279	6.73	0.000	.2110685	.3846388
44	0471797	.0382433	-1.23	0.217	1221352	.0277758
45	0000851	.0377003	-0.00	0.998	0739763	.0738061
46	0572771	.0347295	-1.65	0.099	1253456	.0107915
47	.1382122	.0453077	3.05	0.002	.0494108	.2270136
48	1055842	.0399799	-2.64	0.008	1839435	027225
49	0031009	.0381728	-0.08	0.935	0779183	.0717165
50	0648126	.03792	-1.71	0.087	1391345	.0095093
51	6390529	.0312858	-20.43	0.000	7003719	5777339
Constant	0430307	.0369519	-1.16	0.244	115455	.0293937

Appendix E: Regression table of violent crime rates as specified in column (3) of Table 5

Number of obs = 8400F(77, 8322) = 66.23 Prob > F = 0.0000 R-squared = 0.3645 Root MSE = 0.47067

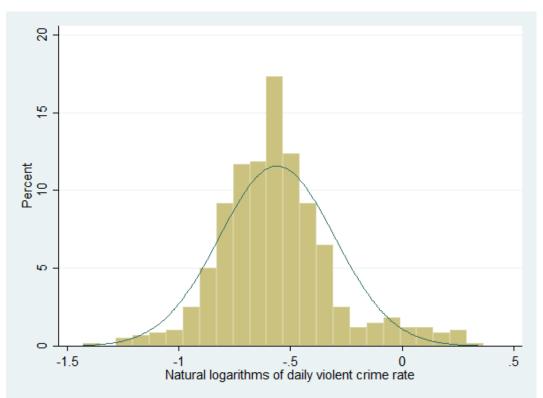
	Coefficient	Robust Std. Err.	t	P > t	95% Co	nf. Interval
Prohibition	094094	.0809463	-1.16	0.245	2527689	.064581
Prohibition*Treated	.0903225	.1165456	0.77	0.438	1381359	.318781
Prohibition*Weekend	2034171	.1146009	-1.78	0.076	4280635	.0212292
Prohibition*Treated*Weekend	.1294963	.2040444	0.63	0.526	2704815	.5294741
Weekend	.2059349	.0121682	16.92	0.000	.1820822	.2297877
Weekend*Treated	.0639583	.0217133	2.95	0.003	.0213948	.1065218
Pre-prohibition Week 1&2	0238832	.056425	-0.42	0.672	1344903	.0867239
Post-prohibition Week 1&2	.0545904	.0635043	0.86	0.390	0698938	.1790746
Post-prohibition Week 3&4	.038669	.0637013	0.61	0.544	0862013	.1635393
Post-prohibition Week 5&6	0676658	.0718479	-0.94	0.346	2085056	.073174
Year effects (2010=baseline)						
2011	.0425926	.0161294	2.64	0.008	.010975	.0742102
2012	0300466	.017533	-1.71	0.087	0644157	.0043226
2013	.00312	.016599	0.19	0.851	0294182	.0356582
2014	10772	.0173399	-6.21	0.000	1417105	0737296
2015	2995156	.0187286	-15.99	0.000	3362283	2628029
Calendar week effect (2=basel	ine)					
3	.0501894	.0564601	0.89	0.374	0604865	.1608653
4	0060447	.0571081	-0.11	0.916	1179908	.1059015
5	.2728415	.0622183	4.39	0.000	.1508782	.3948048
6	021561	.0558228	-0.39	0.699	1309877	.0878657
7	.1173033	.055809	2.10	0.036	.0079037	.2267029
8	.0905877	.0573567	1.58	0.114	0218458	.2030211
9	.3967263	.059763	6.64	0.000	.279576	.5138767
10	.0943433	.0571698	1.65	0.099	0177238	.2064103
11	.1444403	.0554663	2.60	0.009	.0357126	.2531681
12	.0805609	.0565662	1.42	0.154	0303228	.1914447
13	.2222217	.0578124	3.84	0.000	.108895	.3355484
14	.1293352	.0629352	2.06	0.040	.0059666	.2527037
15	.1111018	.0558136	1.99	0.047	.0016931	.2205104
16	0394335	.0742878	-0.53	0.596	185056	.106189
17	.2312879	.0576832	4.01	0.000	.1182144	.3443614
18	.159494	.0745036	2.14	0.032	.0134483	.3055398
19	.0239975	.0641518	0.37	0.708	101756	.1497511
20	.1047816	.0548876	1.91	0.056	0028118	.2123749
21	.0407411	.0656283	0.62	0.535	0879067	.169389
22	.3389876	.0590341	5.74	0.000	.223266	.4547092
23	.1450371	.0552935	2.62	0.009	.0366481	.2534261

24	.1616108	.0552668	2.92	0.003	.0532741	.2699474
25	.1106245	.0573115	1.93	0.054	0017202	.2229693
26	.2643321	.0638331	4.14	0.000	.1392033	.3894609
27	.2282864	.0603608	3.78	0.000	.1099642	.3466086
28	.150916	.0547308	2.76	0.006	.04363	.258202
29	.0954415	.0561822	1.70	0.089	0146896	.2055726
30	.1652191	.0578029	2.86	0.004	.051911	.2785272
31	.2423227	.0588804	4.12	0.000	.1269025	.3577429
32	.0404012	.0658392	0.61	0.539	08866	.1694623
33	.0556148	.0661699	0.84	0.401	0740945	.1853242
34	.0546952	.0574911	0.95	0.341	0580017	.1673922
35	.3597859	.063423	5.67	0.000	.235461	.4841108
36	.0506038	.060593	0.84	0.404	0681737	.1693812
37	.0618374	.0578339	1.07	0.285	0515314	.1752063
38	.0252487	.0566281	0.45	0.656	0857564	.1362539
39	.0328487	.0709549	0.46	0.643	1062406	.1719381
40	.1249866	.0605883	2.06	0.039	.0062184	.2437548
41	.0116608	.0589673	0.20	0.843	1039298	.1272514
42	0260884	.0696073	-0.37	0.708	162536	.1103593
43	0318167	.0581884	-0.55	0.585	1458804	.0822471
44	.294542	.0608014	4.84	0.000	.1753561	.413728
45	0535464	.0660878	-0.81	0.418	1830949	.0760021
46	.0037916	.0565821	0.07	0.947	1071235	.1147067
47	0118064	.0539758	-0.22	0.827	1176124	.0939996
48	.0854799	.0627649	1.36	0.173	037555	.2085148
49	0973585	.0585665	-1.66	0.096	2121634	.0174463
50	0059381	.0568762	-0.10	0.917	1174295	.1055534
51	0817617	.0680446	-1.20	0.230	2151461	.0516228
Regional effect (Prague=baselin	e)					
Středočeský	17416	.017428	-9.99	0.000	2083233	1399968
Jihočeský	.0481922	.0190747	2.53	0.012	.010801	.0855834
Plzeňský	2441603	.0232744	-10.49	0.000	2897839	1985367
Ústecký	.27033	.0175833	15.37	0.000	.2358623	.3047976
Královehradecký	4290013	.0282967	-15.16	0.000	4844699	3735327
Jihomoravský	2075843	.0181411	-11.44	0.000	2431454	1720232
Moravskoslezský	.2097998	.0194672	10.78	0.000	.1716394	.2479603
Olomoucký	0461327	.0210736	-2.19	0.029	0874423	0048232
Zlínský	5719283	.0263196	-21.73	0.000	6235213	5203352
Vysočina	6051867	.0331012	-18.28	0.000	6700733	5403002
Pardubický	5853764	.0276421	-21.18	0.000	6395619	5311909
Liberecký	.235343	.0211613	11.12	0.000	.1938617	.2768243
Karlovarský	.0052203	.028458	0.18	0.854	0505644	.061005
Constant	6738258	.0492502	-13.68	0.000	7703685	5772831


Appendix F: Regression table of violent crime rates as specified in column (4) of Table 5

Number of obs=8400Wald chi2(77)=5546.15Prob > chi2=0.0000Pseudo R2=0.0366

Log pseudolikelihood = -6618.5345


	Coefficient	Robust Std. Err.	t	P > t	95% Conf. I	Interval
Prohibition	13922	.0706358	-1.97	0.049	2776637	0007763
Prohibition*Treated	.044603	.111893	0.40	0.690	1747034	.2639093
Prohibition*Weekend	118203	.1021742	-1.16	0.247	3184608	.0820548
Prohibition*Treated*Weeken	d .1260959	.1774461	0.71	0.477	2216921	.4738839
Weekend	.1885302	.0099641	18.92	0.000	.1690009	.2080594
Weekend*Treated	.0759567	.0184578	4.12	0.000	.0397801	.1121333
Pre-prohibition Week 1&2	0355054	.0535854	-0.66	0.508	1405309	.06952
Post-prohibition Week 1&2	.0171628	.0529012	0.32	0.746	0865216	.1208472
Post-prohibition Week 3&4	0152287	.051561	-0.30	0.768	1162864	.085829
Post-prohibition Week 5&6	0586705	.0627476	-0.94	0.350	1816535	.0643126
Year effects (2010=baseline)						
2011	.0426497	.0146482	2.91	0.004	.0139398	.0713596
2012	0290824	.0157021	-1.85	0.064	0598579	.001693
2013	.0079165	.0149015	0.53	0.595	0212898	.0371229
2014	1006003	.0149054	-6.75	0.000	1298143	0713863
2015	271103	.0154222	-17.58	0.000	30133	2408761
Calendar week effect (2=base	line)					
3	.0007067	.0377917	0.02	0.985	0733638	.0747771
4	0430307	.0370019	-1.16	0.245	1155531	.0294917
5	.2722087	.0447183	6.09	0.000	.1845624	.359855
6	0506289	.0369197	-1.37	0.170	1229902	.0217323
7	.0981751	.0359935	2.73	0.006	.0276292	.1687211
8	.0708855	.0377219	1.88	0.060	0030481	.1448191
9	.3756993	.0432667	8.68	0.000	.2908981	.4605004
10	.0610957	.0396486	1.54	0.123	0166141	.1388055
11	.0996206	.0374518	2.66	0.008	.0262165	.1730247
12	.0507825	.0378829	1.34	0.180	0234667	.1250316
13	.2177814	.0422593	5.15	0.000	.1349547	.3006081
14	.1224928	.0412846	2.97	0.003	.0415765	.2034092
15	.0582238	.0370026	1.57	0.116	0143	.1307477
16	.0049126	.0377308	0.13	0.896	0690385	.0788637
17	.2422079	.0423318	5.72	0.000	.1592392	.3251766
18	.197378	.0454486	4.34	0.000	.1083003	.2864557
19	.0200904	.0381734	0.53	0.599	0547282	.094909
20	.0726116	.0377725	1.92	0.055	001421	.1466443
21	.0375364	.03758	1.00	0.318	036119	.1111918
22	.3428882	.0411621	8.33	0.000	.262212	.4235644
23	.0937509	.0360714	2.60	0.009	.0230522	.1644496
24	.1295058	.0363693	3.56	0.000	.0582232	.2007885
25	.0943078	.0375006	2.51	0.012	.0208081	.1678076
26	.3260502	.0506659	6.44	0.000	.2267469	.4253535
27	.2088442	.0448516	4.66	0.000	.1209367	.2967518
28	.105973	.0364492	2.91	0.004	.0345339	.177412
29	.0466868	.0366483	1.27	0.203	0251426	.1185162

30	.1475934	.0401527	3.68	0.000	.0688955	.2262913
31	.2351346	.0401327	5.71	0.000	.1543592	.3159099
32	.0463123	.0376229	1.23	0.218	0274272	.1200519
33	.0634568	.0366497	1.73	0.083	0083752	.1352889
34	.0609003	.0376008	1.62	0.105	012796	.1345965
35	.4100946	.046815	8.76	0.000	.3183389	.5018503
36	.0372386	.042186	0.88	0.000	0454444	.1199215
37	.0449531	.0386469	1.16	0.245	0307935	.1206996
38	0035638	.0380409	-0.09	0.925	0781344	.0710069
39	.1077726	.0474546	2.27	0.923	.0147634	.2007819
40	.1036603	.0398276	2.60	0.023	.0255997	.181721
40 41	.0141712	.0377668	0.38	0.009	0598504	.0881928
41 42	.007572	.0397923	0.38	0.707	0398304 0704195	.0855635
	0497986	.0397923	-1.35	0.849	1223522	.0833633
43	0497986 .2978537	.0370178	-1.33 6.73	0.179	1223322 .2110546	.022733 .3846527
44	0471797		-1.23			.0278488
45		.0382806		0.218	1222083	
46	0000851	.0377033	-0.00	0.998	0739821	.0738119
47	0572771	.034727	-1.65	0.099	1253407	.0107865
48	.1382122	.0453313	3.05	0.002	.0493644	.22706
49	1055842	.0398965	-2.65	0.008	1837799	0273886
50	0031009	.0381267	-0.08	0.935	077828	.0716261
51	0648126	.0379611	-1.71	0.088	139215	.0095898
Regional effect (Prague=b			0.40			
Středočeský	1569001	.0180479	-8.69	0.000	1922732	121527
Jihočeský	.0825769	.0197427	4.18	0.000	.043882	.1212719
Plzeňský	2015964	.0201349	-10.01	0.000	24106	1621328
Ústecký	.2780382	.0176943	15.71	0.000	.243358	.3127183
Královehradecký	3174502	.0239408	-13.26	0.000	3643733	2705271
Jihomoravský	1876279	.0182872	-10.26	0.000	2234702	1517856
Moravskoslezský	.1953415	.0189699	10.30	0.000	.1581613	.2325218
Olomoucký	0335142	.0203269	-1.65	0.099	0733542	.0063258
Zlínský	5031865	.0253644	-19.84	0.000	5528998	4534733
Vysočina	4614923	.0241012	-19.15	0.000	5087298	4142547
Pardubický	465496	.0249291	-18.67	0.000	514356	4166359
Liberecký	.2828976	.0208502	13.57	0.000	.2420319	.3237633
Karlovarský	.1053933	.0225714	4.67	0.000	.0611543	.1496323
Constant	1569001	.0180479	-8.69	0.000	1922732	121527

Appendix G: Distribution of daily violent crimes in the 6-year-long sample

Appendix H: Distribution of natural logarithms of the daily violent crimes in the 6-year-long sample.

Appendix I: Regression table of top 4 alcohol-involving crime rates as specified in column (1) of Table 7

Number of obs = 300

Number 01 003 – 500						
F(59, 240) = 7.99						
Prob > F = 0.0000						
R-squared $= 0.6280$						
Root MSE = .08492						
	Coefficient	Robust Std. Err.	t	P> t	95% Co	nf. Interval
Prohibition	0960102	.0534657	-1.80	0.074	2013323	.0093118
Pre-prohibition Week 1&2	.0609046	.0370023	1.65	0.101	0119861	.1337952
Post-prohibition Week 1&2	053962	.081594	-0.66	0.509	2146939	.1067698
Post-prohibition Week 3&4	.0209577	.0435335	0.48	0.631	0647988	.1067142
Post-prohibition Week 5&6	.0141128	.0346052	0.41	0.684	0540558	.0822815
Year effects (2010=baseline)			-			
2011	.1026698	.017549	5.85	0.000	.0681002	.1372395
2012	.0347889	.0184234	1.89	0.060	0015034	.0710812
2013	.0798461	.0176296	4.53	0.000	.0451176	.1145746
2014	.0253062	.0163109	1.55	0.122	0068246	.0574369
2015	0894533	.0173618	-5.15	0.000	1236543	0552523
Calendar week effect (2=basel	ine)					
3	0027669	.050804	-0.05	0.957	1028455	.0973118
4	.0368623	.0745919	0.49	0.622	1100762	.1838007
5	.1111778	.0617924	1.80	0.073	0105469	.2329024
6	.0059626	.0754785	0.08	0.937	1427222	.1546475
7	.1413217	.0560045	2.52	0.012	.0309985	.2516449
8	.1397562	.0634904	2.20	0.029	.0146865	.2648258
9	.2926096	.0537688	5.44	0.000	.1866905	.3985286
10	.2318349	.0482911	4.80	0.000	.1367064	.3269635
11	.2412451	.057508	4.19	0.000	.1279602	.3545299
12	.2177439	.0543344	4.01	0.000	.1107107	.3247771
13	.2628112	.0699112	3.76	0.000	.1250933	.400529
14	.276635	.0547428	5.05	0.000	.1687973	.3844727
15	.2649413	.050925	5.20	0.000	.1646243	.3652584
16	.2417222	.0469799	5.15	0.000	.1491766	.3342677
17	.2700637	.0619631	4.36	0.000	.1480028	.3921246
18	.2842434	.0616879	4.61	0.000	.1627245	.4057622
19	.2310297	.0523778	4.41	0.000	.1278507	.3342087
20	.257656	.0525167	4.91	0.000	.1542035	.3611086
21	.1663941	.0499073	3.33	0.001	.0680818	.2647063
22	.2629492	.0492645	5.34	0.000	.1659032	.3599952
23	.2010228	.052479	3.83	0.000	.0976445	.304401
24	.2204702	.0482535	4.57	0.000	.1254157	.3155246
25	.1786099	.052526	3.40	0.001	.075139	.2820808
26	.2405509	.0553066	4.35	0.000	.1316026	.3494992
27	.2055886	.0627784	3.27	0.001	.0819215	.3292556
28	.2066638	.046933	4.40 3.94	$0.000 \\ 0.000$.1142106	.2991171
29	.1905356	.0483216		0.000	.095347	.2857243
30	.1673615 .2180527	.0485988 .0537618	3.44 4.06	0.001	.0716268 .1121475	.2630962 .3239579
31	.1700176	.0337618	4.00 3.53	0.000	.0750834	.3239379 .2649518
32 33	.1973251	.0481923	3.55 3.57	0.001	.0730834	.2049318 .3063448
33	.1713231	.0555420	5.57	0.000	.0005055	.5005440

34	.1720361	.0522782	3.29	0.001	.0690534	.2750187
35	.2606794	.0573319	4.55	0.000	.1477413	.3736174
36	.1923919	.050669	3.80	0.000	.0925792	.2922047
37	.1760342	.0497835	3.54	0.000	.0779658	.2741026
38	.1756755	.0544747	3.22	0.001	.068366	.282985
39	.1790315	.0650475	2.75	0.006	.0508945	.3071685
40	.1984182	.0567213	3.50	0.001	.086683	.3101535
41	.2031872	.051204	3.97	0.000	.1023205	.3040539
42	.2008583	.0505998	3.97	0.000	.1011819	.3005347
43	.1589195	.0622156	2.55	0.011	.0363612	.2814778
44	.2441466	.0600734	4.06	0.000	.1258081	.3624851
45	.1037757	.061963	1.67	0.095	0182852	.2258365
46	.1932333	.0499692	3.87	0.000	.094799	.2916675
47	.1063096	.0636569	1.67	0.096	0190881	.2317072
48	.0679472	.0734807	0.92	0.356	0768021	.2126966
49	.0572664	.0580093	0.99	0.325	0570061	.1715388
50	.0449255	.0803406	0.56	0.577	1133374	.2031883
51	.1281425	.0597184	2.15	0.033	.0105034	.2457816
cons	1.302413	.046701	27.89	0.000	1.210417	1.39441

Appendix J: Regression table of top 4 alcohol-involving crime rates as specified in

column (2) of Table 7

Number of obs = 300Wald chi2(59) = 590.81Prob > chi2 = 0.0000Log pseudolikelihood = -511.13856Pseudo R2 = 0.0120

	Coefficient	Robust Std. Err.	t	P > t	95% Co	nf. Interval
Prohibition	097039	.0474856	-2.04	0.041	190109	0039691
Pre-prohibition Week 1&2	.0585064	.032067	1.82	0.068	0043438	.1213566
Post-prohibition Week 1&2	0506008	.0734034	-0.69	0.491	1944689	.0932672
Post-prohibition Week 3&4	.0183166	.039361	0.47	0.642	0588295	.0954627
Post-prohibition Week 5&6	.0063686	.0299106	0.21	0.831	0522551	.0649924
Year effects (2010=baseline)						
2011	.0993691	.0154331	6.44	0.000	.0691208	.1296175
2012	.033058	.0159531	2.07	0.038	.0017905	.0643255
2013	.0771657	.015501	4.98	0.000	.0467842	.1075472
2014	.0204717	.0144715	1.41	0.157	0078918	.0488353
2015	0913941	.0154699	-5.91	0.000	1217146	0610735
Calendar week effect (2=baseli	ne)					
3	0024214	.0453098	-0.05	0.957	091227	.0863842
4	.0410921	.065852	0.62	0.533	0879754	.1701596
5	.1121091	.0547873	2.05	0.041	.004728	.2194903
6	.0176179	.0681767	0.26	0.796	116006	.1512418
7	.1432175	.0501404	2.86	0.004	.0449442	.2414908
8	.1398794	.056408	2.48	0.013	.0293217	.2504372
9	.2911656	.0471829	6.17	0.000	.1986888	.3836425
10	.2318158	.0427811	5.42	0.000	.1479664	.3156651
11	.2397247	.0507987	4.72	0.000	.140161	.3392884
12	.2160236	.0477207	4.53	0.000	.1224927	.3095544
13	.2674851	.0624213	4.29	0.000	.1451416	.3898285
14	.2763429	.0485527	5.69	0.000	.1811814	.3715044
15	.2638807	.0448308	5.89	0.000	.176014	.3517475
16	.2424295	.0413543	5.86	0.000	.1613766	.3234824
17	.2748732	.0560543	4.90	0.000	.1650087	.3847377
18	.2877045	.0556221	5.17	0.000	.1786872	.3967217
19	.2324926	.0459222	5.06	0.000	.1424867	.3224985
20	.2573777	.0466714	5.51	0.000	.1659035	.3488518
21	.1672903	.0445575	3.75	0.000	.0799593	.2546213
22	.2652447	.0428761	6.19	0.000	.181209	.3492804
23	.2024902	.0463147	4.37	0.000	.1117151	.2932654
24	.2204595	.0424553	5.19	0.000	.1372487	.3036703
25	.1796267	.046834	3.84	0.000	.0878338	.2714196
26	.2417934	.0489825	4.94	0.000	.1457894	.3377973
27	.2109497	.0580234	3.64	0.000	.097226	.3246735
28	.2072657	.041397	5.01	0.000	.1261292	.2884022
29	.1903898	.0428909	4.44	0.000	.1063251	.2744545
30	.1665185	.042941	3.88	0.000	.0823558	.2506812
31	.222533	.0476087	4.67	0.000	.1292216	.3158443
32	.1701139	.0424577	4.01	0.000	.0868984	.2533293
33	.1969119	.0483085	4.08	0.000	.1022291	.2915948
34	.1744062	.0464044	3.76	0.000	.0834553	.265357
35	.2660698	.0512262	5.19	0.000	.1656682	.3664714

36		.1927437	.0447828	4.30	0.000	.104971	.2805164
37		.1779861	.0438325	4.06	0.000	.092076	.2638962
38		.1779023	.0479891	3.71	0.000	.0838453	.2719592
39		.1830182	.0578778	3.16	0.002	.0695799	.2964565
40		.1976758	.050325	3.93	0.000	.0990405	.2963111
41		.2042459	.0452526	4.51	0.000	.1155525	.2929394
42		.2021023	.0448192	4.51	0.000	.1142584	.2899463
43		.1642233	.0544053	3.02	0.003	.057591	.2708557
44		.251261	.052568	4.78	0.000	.1482296	.3542923
45		.1096705	.0542974	2.02	0.043	.0032495	.2160914
46		.1942435	.0440862	4.41	0.000	.1078362	.2806508
47		.1137595	.0556604	2.04	0.041	.0046671	.2228519
48		.0814478	.0658388	1.24	0.216	0475939	.2104896
49		.0611129	.0525951	1.16	0.245	0419715	.1641973
50		.062775	.0719895	0.87	0.383	0783219	.2038718
51		.1345202	.0505388	2.66	0.008	.035466	.2335745
	Constant	1.30521	.0411801	31.70	0.000	1.224498	1.385921

Appendix K: Regression table of top 4 alcohol-involving crime rates as specified in

column (3) of Table 7

Number of obs = 600F(61, 538) = 39.70 Prob > F = 0.0000 R-squared = 0.7862 Root MSE = .11591

	Coefficient	Robust Std. Err.	t	P > t	95% Co	nf. Interval
Prohibition	0117478	.0592089	-0.20	0.843	1278119	.1043164
Prohibition*Weekend	3015156	.0869082	-3.47	0.001	4718773	1311539
Weekend	.441463	.009268	47.63	0.000	.4232954	.4596306
Pre-prohibition Week 1&2	.0231749	.0782628	0.30	0.767	1302397	.1765894
Post-prohibition Week 1&2	.0225616	.0521638	0.43	0.665	0796924	.1248156
Post-prohibition Week 3&4	.0927206	.05103	1.82	0.069	0073109	.1927522
Post-prohibition Week 5&6	1354666	.0666751	-2.03	0.042	2661664	0047668
Year effects (2010=baseline)						
2011	.1221358	.0143046	8.54	0.000	.0940952	.1501763
2012	.0367043	.0161071	2.28	0.023	.0051304	.0682782
2013	.0819236	.0157745	5.19	0.000	.0510018	.1128455
2014	.0264349	.0150421	1.76	0.079	0030513	.0559211
2015 Calendar week effect (2=basel	1078917	.0170682	-6.32	0.000	1413497	0744337
3	.0694196	.0439781	1.58	0.114	0167884	.1556277
4	0385862	.0500314	-0.77	0.441	1366602	.0594878
5	.1224708	.0428364	2.86	0.004	.0385008	.2064407
6	.0040053	.045271	0.09	0.930	0847371	.0927478
7	.1493884	.0448122	3.33	0.001	.0615454	.2372314
8	.1589694	.0443934	3.58	0.000	.0719473	.2459916
9	.3258167	.0419584	7.77	0.000	.2435677	.4080657
10	.2509566	.0415768	6.04	0.000	.1694557	.3324574
11	.2466302	.0433865	5.68	0.000	.1615819	.3316785
12	.2005208	.0572735	3.50	0.000	.0882505	.3127911
13	.3192368	.0434052	7.35	0.000	.2341518	.4043218
14	.3000178	.0432916	6.93	0.000	.2151556	.3848801
15	.2980224	.0420922	7.08	0.000	.2155113	.3805336
16	.2045425	.0654223	3.13	0.002	.0762986	.3327865
17	.2985837	.041883	7.13	0.000	.2164827	.3806848
18	.3128202	.0453915	6.89	0.000	.2238415	.4017989
19	.263218	.0420178	6.26	0.000	.1808526	.3455834
20	.280578	.0412507	6.80	0.000	.1997165	.3614396
21	.175084	.04399	3.98	0.000	.0888527	.2613153
22	.3026259	.0415248	7.29	0.000	.2212271	.3840248
23	.2325333	.0427117	5.44	0.000	.1488077	.3162589
24	.2234896	.0432768	5.16	0.000	.1386563	.3083229
25	.1880701	.0442216	4.25	0.000	.1013849	.2747554
26	.283841	.0417028	6.81	0.000	.2020932	.3655888
27	.2518966	.0434527	5.80	0.000	.1667185	.3370748
28	.2511988	.040834	6.15	0.000	.1711539	.3312437
29	.2459305	.0430449	5.71	0.000	.1615518	.3303092
30	.1940429	.0420077	4.62	0.000	.1116974	.2763884
31	.2605984	.0422897	6.16	0.000	.1777	.3434968
32	.2142413	.0439404	4.88 5 5 2	0.000	.1281073	.3003754
33 34	.2383411	.0430778	5.53	0.000 0.002	.153898	.3227842
54	.1695227	.0553848	3.06	0.002	.0609546	.2780907

35		.3008398	.0423559	7.10	0.000	.2178117	.3838679
36		.1868391	.0466218	4.01	0.000	.0954488	.2782294
37		.1975114	.0431639	4.58	0.000	.1128995	.2821234
38		.2065876	.04293	4.81	0.000	.1224341	.290741
39		.1763658	.0434229	4.06	0.000	.0912461	.2614854
40		.2046675	.0451463	4.53	0.000	.1161694	.2931655
41		.1908887	.0424693	4.49	0.000	.1076383	.2741391
42		.1914367	.0450008	4.25	0.000	.103224	.2796494
43		.1854172	.0468479	3.96	0.000	.0935837	.2772507
44		.2776284	.044391	6.25	0.000	.1906111	.3646458
45		.0871362	.0572568	1.52	0.128	0251014	.1993737
46		.1853994	.0545614	3.40	0.001	.0784454	.2923534
47		.1252157	.0416131	3.01	0.003	.0436436	.2067878
48		.0341978	.045768	0.75	0.455	055519	.1239145
49		025191	.0610174	-0.41	0.680	1448003	.0944184
50		.0112222	.0575883	0.19	0.846	1016652	.1241095
51		.1472686	.0427697	3.44	0.001	.0634293	.2311079
	Constant						
		3635469	.0355358	-10.23	0.000	4332058	293888

Appendix L: Regression table of top 4 alcohol-involving crime rates as specified in

column (4) of Table 7

Poisson regression Number of obs = 600LR chi2(61) = 17.17Prob > chi2 = 1.0000Log likelihood = -498.28095 Pseudo R2 = 0.0169

	Coefficient	Robust Std. Err.	t	P > t	95% Co	nf. Interval
Prohibition	0907065	.0479373	-1.89	0.058	1846618	.0032488
Prohibition*Weekend	2347433	.0760564	-3.09	0.002	3838111	0856755
Weekend	.4027427	.0070779	56.90	0.000	.3888703	.4166151
Pre-prohibition Week 1&2	.0486387	.0548755	0.89	0.375	0589154	.1561928
Post-prohibition Week 1&2	.0119399	.0429077	0.28	0.781	0721577	.0960375
Post-prohibition Week 3&4	.0333184	.0500625	0.67	0.506	0648023	.1314392
Post-prohibition Week 5&6	1081132	.0479119	-2.26	0.024	2020189	0142076
Year effects (2010=baseline)						
2011	.1091761	.0124777	8.75	0.000	.0847202	.1336319
2012	.0412305	.0131701	3.13	0.002	.0154176	.0670434
2013	.083557	.0124529	6.71	0.000	.0591498	.1079643
2014	.0264897	.0122616	2.16	0.031	.0024574	.050522
2015	0842949	.0129036	-6.53	0.000	1095854	0590044
Calendar week effect (2=basel	ine)					
3	.0535999	.0367258	1.46	0.144	0183813	.1255811
4	0012479	.0391189	-0.03	0.975	0779196	.0754237
5	.1012951	.0368064	2.75	0.006	.0291559	.1734342
6	.0132727	.0375555	0.35	0.724	0603348	.0868802
7	.1535785	.0359002	4.28	0.000	.0832155	.2239416
8	.1496358	.0368033	4.07	0.000	.0775026	.221769
9	.290171	.0352789	8.23	0.000	.2210257	.3593164
10	.2422772	.0347547	6.97	0.000	.1741592	.3103952
11	.2421034	.0337241	7.18	0.000	.1760052	.3082015
12	.2177563	.0350024	6.22	0.000	.1491529	.2863596
13	.2947193	.0359652	8.19	0.000	.2242287	.3652099
14	.2808716	.0353087	7.95	0.000	.2116679	.3500753
15	.2669673	.0355245	7.52	0.000	.1973407	.336594
16	.2526258	.0343267	7.36	0.000	.1853466	.3199049
17	.2976067	.0362904	8.20	0.000	.2264788	.3687346
18	.2831235	.0379228	7.47	0.000	.2087963	.3574508
19	.2485237	.0350124	7.10	0.000	.1799007	.3171468
20	.2789575	.033449	8.34	0.000	.2133987	.3445164
21	.172484	.035781	4.82	0.000	.1023545	.2426136
22	.280426	.0336442	8.34	0.000	.2144845	.3463674
23	.2129945	.0357563	5.96	0.000	.1429133	.2830756
24	.2285424	.0357748	6.39	0.000	.158425	.2986598
25	.1949484	.0353219	5.52	0.000	.1257188	.264178
26	.2630846	.0361069	7.29	0.000	.1923164	.3338528
27	.2254473	.0356288	6.33	0.000	.1556161	.2952784
28	.2294618	.0354523	6.47	0.000	.1599766	.298947
29	.2148554	.0358446	5.99	0.000	.1446014	.2851095
30	.1710571	.035398	4.83	0.000	.1016784	.2404358
31	.2354905	.0360581	6.53	0.000	.1648179	.3061631
32	.1924432	.0345968	5.56	0.000	.1246347	.2602517
33	.1979137	.0342115	5.79	0.000	.1308603	.264967
34	.1878918	.0344925	5.45	0.000	.1202877	.2554959
35	.2923478	.0346245	8.44	0.000	.2244851	.3602104

36	.2039187	.0366047	5.57	0.000	.1321748	.2756626
37	.2016401	.0355504	5.67	0.000	.1319625	.2713177
38	.2022443	.0355601	5.69	0.000	.1325478	.2719409
39	.1878867	.035637	5.27	0.000	.1180395	.2577338
40	.1929107	.0366754	5.26	0.000	.1210281	.2647932
41	.2010083	.0366393	5.49	0.000	.1291966	.27282
42	.2148753	.0371969	5.78	0.000	.1419706	.2877799
43	.1973836	.0364636	5.41	0.000	.1259163	.2688509
44	.2711898	.0347782	7.80	0.000	.2030257	.3393538
45	.1266449	.0356298	3.55	0.000	.0568119	.196478
46	.2117511	.0346198	6.12	0.000	.1438975	.2796046
47	.1151971	.0334024	3.45	0.001	.0497297	.1806645
48	.077444	.0387198	2.00	0.045	.0015546	.1533334
49	.0419404	.0386481	1.09	0.278	0338085	.1176893
50	.0874049	.0384377	2.27	0.023	.0120683	.1627414
51	.1305463	.034858	3.75	0.000	.0622259	.1988667
Constant	3516253	.0282703	-12.44	0.000	407034	2962166

Appendix M: Regression table of top 4 alcohol-involving crime rates as specified in

column (5) of Table 7

Number of $obs = 8400$
F(77, 8322) = 134.86
Prob > F = 0.0000
R-squared $= 0.5111$
Root MSE = $.42221$

	Coefficient	Robust Std. Err.	t	P > t	95% Conf. Interval	
Prohibition	0471203	.0654372	-0.72	0.471	1753936	.081153
Prohibition*Treated	.1650721	.1232473	1.34	0.180	0765234	.4066675
Prohibition*Weekend	2461958	.091365	-2.69	0.007	425294	0670977
Prohibition*Treated*Weekend	2581587	.2375711	-1.09	0.277	7238572	.2075398
Weekend	.422578	.01077	39.24	0.000	.4014662	.4436898
Weekend*Treated	.0881297	.0205622	4.29	0.000	.0478227	.1284366
Pre-prohibition Week 1&2	.0231749	.078704	0.29	0.768	1311046	.1774543
Post-prohibition Week 1&2	.0225616	.0523444	0.43	0.666	0800465	.1251697
Post-prohibition Week 3&4	.0927206	.0508594	1.82	0.068	0069764	.1924177
Post-prohibition Week 5&6	1354666	.0668301	-2.03	0.043	2664703	0044629
Year effects (2010=baseline)						
2011	.1221358	.0142816	8.55	0.000	.0941403	.1501312
2012	.0367043	.0160873	2.28	0.023	.0051691	.0682394
2013	.0819236	.0157714	5.19	0.000	.0510078	.1128395
2014	.0264349	.0150241	1.76	0.079	0030161	.0558859
2015	1078917	.017062	-6.32	0.000	1413375	0744459
Calendar week effect (2=basel						
3	.0694196	.0440468	1.58	0.115	016923	.1557623
4	0385862	.0500261	-0.77	0.441	1366499	.0594775
5	.1224708	.0429383	2.85	0.004	.038301	.2066405
6	.0040053	.0451209	0.09	0.929	0844429	.0924535
7	.1493884	.0447382	3.34	0.001	.0616903	.2370865
8	.1589694	.0443999	3.58	0.000	.0719347	.2460042
9	.3258167	.042062	7.75	0.000	.2433646	.4082688
10	.2509566	.0416352	6.03	0.000	.1693413	.3325719
11	.2466302	.0434708	5.67	0.000	.1614167	.3318437
12	.2005208	.0571954	3.51	0.000	.0884035	.3126381
13	.3192368	.0433946	7.36	0.000	.2341726	.4043011
14	.3000178	.0433048	6.93	0.000	.2151297	.3849059
15	.2980224	.0420774	7.08	0.000	.2155402	.3805047
16	.2045425	.0654376	3.13	0.002	.0762686	.3328165
17	.2985837	.0418504	7.13	0.000	.2165465	.3806209
18	.3128202	.0453366	6.90	0.000	.2239491	.4016913
19	.263218	.0420951	6.25	0.000	.1807012	.3457348
20	.280578	.0411929	6.81	0.000	.1998297	.3613264
21	.175084	.0439902	3.98	0.000	.0888522	.2613158
22	.3026259	.0416353	7.27	0.000	.2210105	.3842414
23	.2325333	.0425783	5.46	0.000	.1490692	.3159973
24	.2234896	.0432172	5.17	0.000	.138773	.3082061
25	.1880701	.0442546	4.25	0.000	.1013201	.2748202
26	.283841	.0417408	6.80	0.000	.2020187	.3656633
27	.2518966	.0437057	5.76	0.000	.1662226	.3375707
28	.2511988	.0408811	6.14	0.000	.1710616	.331336
29	.2459305	.0429482	5.73	0.000	.1617413	.3301197
30	.1940429	.0420169	4.62	0.000	.1116793	.2764065
	11340423	.0.20105		0.000		12,04000

31	.2605984	.0422765	6.16	0.000	.1777259	.3434709
32	.2142413	.0440104	4.87	0.000	.12797	.3005127
33	.2383411	.0431464	5.52	0.000	.1537633	.3229188
34	.1695227	.055327	3.06	0.002	.0610679	.2779774
35	.3008398	.0424941	7.08	0.000	.2175409	.3841388
36	.1868391	.0467613	4.00	0.000	.0951753	.278503
37	.1975114	.0432115	4.57	0.000	.1128061	.2822168
38	.2065876	.0429833	4.81	0.000	.1223296	.2908456
39	.1763658	.0433108	4.07	0.000	.0914659	.2612656
40	.2046675	.0450728	4.54	0.000	.1163136	.2930213
41	.1908887	.0425168	4.49	0.000	.1075452	.2742322
42	.1914367	.0451231	4.24	0.000	.1029842	.2798892
43	.1854172	.0469891	3.95	0.000	.0933068	.2775275
44	.2776284	.0444538	6.25	0.000	.1904879	.3647689
45	.0871362	.0572207	1.52	0.128	0250307	.1993031
46	.1853994	.054398	3.41	0.001	.0787659	.292033
47	.1252157	.0416449	3.01	0.003	.0435813	.2068502
48	.0341978	.0457058	0.75	0.454	055397	.1237925
49	025191	.0609622	-0.41	0.679	1446922	.0943102
50	.0112222	.0576587	0.19	0.846	1018032	.1242475
51	.1472686	.0428012	3.44	0.001	.0633675	.2311697
Regional effect (Prague=baseline)	1					
Středočeský	5929612	.0148857	-39.83	0.000	622141	5637815
Jihočeský	5800224	.017924	-32.36	0.000	6151578	5448869
Plzeňský	9754441	.0201126	-48.50	0.000	-1.01487	9360183
Ústecký	4482337	.0154123	-29.08	0.000	4784457	4180217
Královehradecký	-1.069511	.0254235	-42.07	0.000	-1.119347	-1.019674
Jihomoravský	7103886	.0146706	-48.42	0.000	7391466	6816306
Moravskoslezský	3547108	.0168321	-21.07	0.000	387706	3217156
Olomoucký	6964354	.0194524	-35.80	0.000	734567	6583038
Zlínský	-1.235092	.0276762	-44.63	0.000	-1.289344	-1.180839
Vysočina	-1.005405	.0238073	-42.23	0.000	-1.052073	9587368
Pardubický	-1.217126	.0291455	-41.76	0.000	-1.274258	-1.159994
Liberecký	3261093	.0178199	-18.30	0.000	3610407	2911778
Karlovarský	5620318	.025665	-21.90	0.000	6123416	5117221
Constant	354053	.0355883	-9.95	0.000	4238149	2842911

Appendix N: Regression table of the top 4 alcohol-involving crime rates as presented in column

(6) of Table 7

Number of obs=8400Wald chi2(77)=13027.12Prob > chi2=0.0000Log pseudolikelihood=-6768.7626Pseudo R2=0.0539

	Coefficient	Robust Std. Err.	t	P > t	95% Co	onf. Interval
Prohibition	1126838	.0544712	-2.07	0.039	2194454	0059221
Prohibition*Treated	.1063398	.0973583	1.09	0.275	084479	.2971587
Prohibition*Weekend	208225	.0829987	-2.51	0.012	3708995	0455505
Prohibition*Treated*Weekend	1278777	.1989449	-0.64	0.520	5178025	.2620471
Weekend	.3843772	.008234	46.68	0.000	.3682387	.4005156
Weekend*Treated	.0894671	.0152572	5.86	0.000	.0595634	.1193707
Pre-prohibition Week 1&2	.0486387	.0552063	0.88	0.378	0595637	.1568411
Post-prohibition Week 1&2	.0119399	.0428715	0.28	0.781	0720867	.0959665
Post-prohibition Week 3&4	.0333184	.0495994	0.67	0.502	0638946	.1305315
Post-prohibition Week 5&6	1081132	.04806	-2.25	0.024	202309	0139174
Year effects (2010=baseline)				0.02		
2011	.1091761	.012446	8.77	0.000	.0847823	.1335699
2012	.0412305	.013144	3.14	0.002	.0154688	.0669922
2013	.083557	.0124393	6.72	0.000	.0591765	.1079375
2014	.0264897	.0122354	2.16	0.030	.0025087	.0504708
2015	0842949	.0128816	-6.54	0.000	1095424	0590473
Calendar week effect (2=baseli			0101	01000		
3	.0535999	.0368405	1.45	0.146	0186061	.1258059
4	0012479	.0391802	-0.03	0.975	0780398	.0755439
5	.1012951	.0369394	2.74	0.006	.0288952	.1736949
6	.0132727	.0374295	0.35	0.723	0600877	.0866331
7	.1535785	.0358431	4.28	0.000	.0833273	.2238297
8	.1496358	.0367984	4.07	0.000	.0775123	.2217593
9	.290171	.0353762	8.20	0.000	.220835	.3595071
10	.2422772	.0347506	6.97	0.000	.1741673	.3103871
11	.2421034	.033741	7.18	0.000	.1759722	.3082345
12	.2177563	.0349706	6.23	0.000	.1492151	.2862975
13	.2947193	.0359936	8.19	0.000	.2241731	.3652655
14	.2808716	.0352366	7.97	0.000	.2118091	.3499341
15	.2669673	.0354292	7.54	0.000	.1975274	.3364073
16	.2526258	.0343099	7.36	0.000	.1853797	.3198718
17	.2976067	.0362894	8.20	0.000	.2264808	.3687327
18	.2831235	.0378532	7.48	0.000	.2089325	.3573145
19	.2485237	.0350491	7.09	0.000	.1798287	.3172188
20	.2789575	.0334448	8.34	0.000	.213407	.3445081
21	.172484	.0356871	4.83	0.000	.1025387	.2424294
22	.280426	.0336849	8.32	0.000	.2144048	.3464472
23	.2129945	.0356268	5.98	0.000	.1431672	.2828218
24	.2285424	.0356638	6.41	0.000	.1586426	.2984421
25	.1949484	.0352728	5.53	0.000	.1258149	.2640819
26	.2630846	.0361246	7.28	0.000	.1922818	.3338875
27	.2254473	.03576	6.30	0.000	.155359	.2955356
28	.2294618	.0354436	6.47	0.000	.1599936	.2989299
29	.2148554	.0357649	6.01	0.000	.1447576	.2849533
30	.1710571	.0353769	4.84	0.000	.1017196	.2403946
31	.2354905	.035992	6.54	0.000	.1649474	.3060335
32	.1924432	.0346515	5.55	0.000	.1245275	.2603588

33	.1979137	.0342429	5.78	0.000	.1307989	.2650285
34	.1878918	.0343872	5.46	0.000	.1204941	.2552895
35	.2923478	.0346448	8.44	0.000	.2244451	.3602504
36	.2039187	.0365994	5.57	0.000	.1321851	.2756523
37	.2016401	.0355832	5.67	0.000	.1318982	.271382
38	.2022443	.0355794	5.68	0.000	.13251	.2719787
39	.1878867	.0355771	5.28	0.000	.1181568	.2576165
40	.1929107	.0365669	5.28	0.000	.121241	.2645804
41	.2010083	.0366507	5.48	0.000	.1291744	.2728423
42	.2148753	.0372753	5.76	0.000	.1418171	.2879334
43	.1973836	.0365323	5.40	0.000	.1257816	.2689856
44	.2711898	.0348047	7.79	0.000	.2029738	.3394057
45	.1266449	.0356349	3.55	0.000	.0568018	.196488
46	.2117511	.0345719	6.12	0.000	.1439915	.2795107
47	.1151971	.033445	3.44	0.001	.0496461	.1807481
48	.077444	.0387333	2.00	0.046	.0015282	.1533598
49	.0419404	.0385692	1.09	0.277	0336538	.1175347
50	.0874049	.0384593	2.27	0.023	.0120261	.1627837
51	.1305463	.0348379	3.75	0.000	.0622652	.1988274
Regional effect (Prague=baseline))					
Středočeský	5476663	.0143127	-38.26	0.000	5757187	519614
Jihočeský	5037589	.0165074	-30.52	0.000	5361128	471405
Plzeňský	8880521	.0180151	-49.29	0.000	923361	8527431
Ústecký	410086	.0142306	-28.82	0.000	4379773	3821946
Královehradecký	9370475	.0205678	-45.56	0.000	9773597	8967353
Jihomoravský	6753318	.013988	-48.28	0.000	7027478	6479159
Moravskoslezský	3400576	.015132	-22.47	0.000	3697158	3103995
Olomoucký	6428379	.0172586	-37.25	0.000	6766641	6090118
Zlínský	-1.116104	.0209396	-53.30	0.000	-1.157145	-1.075063
Vysočina	8661388	.0206023	-42.04	0.000	9065186	825759
Pardubický	-1.054919	.0206211	-51.16	0.000	-1.095336	-1.014503
Liberecký	2596089	.0168035	-15.45	0.000	2925433	2266746
Karlovarský	44771	.0192965	-23.20	0.000	4855305	4098895
Constant	3406242	.0283166	-12.03	0.000	3961236	2851247

Appendix O: Regression table for the natural logarithms of weekly count of offenders under the influence of alcohol as presented in column (1) of Table 9

300

Number of obs =

Number of $ODS = -500$						
F(59, 240) = 11.46						
$Prob > F = \ 0.0000$						
R-squared $= 0.5659$						
Root MSE = $.18274$						
	Coefficient	Robust Std. E	<i>t</i>	D> +	05% Cor	nf. Interval
Prohibition	3202504	.0428828	rr. t -7.47	P> t 0.000	4047252	2357756
Pre-prohibition Week 1&2	0347689	.1237902	-0.28	0.000	278623	.2090851
Post-prohibition Week 1-4	0732686	.0795686	-0.28	0.358	2300105	.0834733
Post-prohibition Week 5-8	0401717	.0730435	-0.55	0.558	18406	.1037165
Post-prohibition Week 9-12		.1067509	-0.31	0.758	2431632	.1774136
Year effects (2010=baseline		.1007505	0.51	0.750	.2431032	.1774150
2011	.1033087	.0354516	2.91	0.004	.0334726	.1731448
2012	0162638	.0350303	-0.46	0.643	08527	.0527423
2013	0211495	.0275088	-0.77	0.443	075339	.03304
2014	0929222	.032075	-2.90	0.004	1561067	0297377
2015	3577696	.0477445	-7.49	0.000	4518215	2637177
Calendar week effect (2=ba						
3	.1057895	.0755623	1.40	0.163	0430605	.2546395
4	.1419611	.083511	1.70	0.090	022547	.3064692
5	.1821495	.0837794	2.17	0.031	.0171127	.3471863
6	.1691608	.1016131	1.66	0.097	0310066	.3693282
7	.2854906	.0725816	3.93	0.000	.1425123	.4284689
8	.309696	.0738907	4.19	0.000	.1641388	.4552531
9	.225922	.1056746	2.14	0.034	.0177538	.4340902
10	.327669	.0833441	3.93	0.000	.1634897	.4918483
11	.3437807	.0823913	4.17	0.000	.1814783	.5060831
12	.2114445	.0912492	2.32	0.021	.0316929	.3911962
13	.257626	.0885462	2.91	0.004	.083199	.432053
14	.306603	.0995771	3.08	0.002	.1104462	.5027597
15	.3942506	.0818782	4.82	0.000	.2329589	.5555423
16	.2692721	.0997626	2.70	0.007	.0727499	.4657943
17	.381999	.0936842	4.08	0.000	.1974507	.5665473
18	.3305199	.1185099	2.79	0.006	.0970676	.5639723
19	.2803496	.0897016	3.13	0.002	.1036466	.4570526
20	.2854101	.0740856	3.85	0.000	.139469	.4313512
21	.2679929	.0802808	3.34	0.001	.1098478	.4261379
22	.1567613	.0757079	2.07	0.039	.0076245	.3058982
23	.2650824	.0750013	3.53	0.000	.1173375	.4128274
24	.3524081	.0810921	4.35	0.000	.192665	.5121512
25	.2774179	.0721994	3.84	0.000	.1351925	.4196433
26	.2042599	.0986343	2.07	0.039	.0099604	.3985594
27	.3148314	.0610796	5.15	0.000	.1945108	.435152
28	.3557533	.087048	4.09	0.000	.1842776	.5272289
29	.2929726	.1102522	2.66	0.008	.0757871	.5101582
30	.3411164	.0781718	4.36	0.000	.187126	.4951068
31	.3114599	.074161	4.20	0.000	.1653704	.4575495
32	.2765679	.0624054	4.43	0.000	.1536357	.3995001
33	.3418022	.0704157	4.85	0.000	.2030906	.4805138
34	.2250954	.0718844	3.13	0.002	.0834905	.3667002
35	.2820806	.0774531	3.64	0.000	.129506	.4346552

36	.0946498	.0969236	0.98	0.330	0962798	.2855794
37	.2362312	.0706575	3.34	0.001	.097043	.3754193
38	.1396396	.0668646	2.09	0.038	.0079232	.271356
39	.1350237	.0771901	1.75	0.082	017033	.2870803
40	.128328	.0817501	1.57	0.118	0327114	.2893674
41	.1244812	.1015766	1.23	0.222	0756144	.3245767
42	.0815871	.0727602	1.12	0.263	061743	.2249172
43	.1365171	.0827172	1.65	0.100	0264273	.2994614
44	.0741656	.1020791	0.73	0.468	1269198	.275251
45	.1015296	.063788	1.59	0.113	0241263	.2271855
46	.118786	.099997	1.19	0.236	0781978	.3157699
47	.1025059	.111226	0.92	0.358	1165979	.3216096
48	0136408	.1555239	-0.09	0.930	320007	.2927253
49	1052504	.1780781	-0.59	0.555	4560461	.2455453
50	.0134186	.1552432	0.09	0.931	2923947	.3192319
51	.1326458	.2069665	0.64	0.522	2750571	.5403487
Constant	4.400043	.0610969	72.02	0.000	4.279688	4.520397

Appendix P: Regression table for the natural logarithms of weekly count of offenders under the influence of alcohol as presented in column (2) of Table 9

Number of obs = 300 Wald chi2(59) = 902.82 Prob > chi2 = 0.0000 Log pseudolikelihood = -1264.97 Pseudo R2 = 0.2343	34					
	Coefficient	Robust Std. Err.	t	P > t	95% Co	nf. Interval
Prohibition	330293	.0383858	-8.60	0.000	4055279	2550582
Pre-prohibition Week 1&2	0231571		-0.21	0.837	2440252	.1977111
Post-prohibition Week 1-4	083308	.0734325	-1.13	0.257	2272331	.060617
Post-prohibition Week 5-8	0691544		-1.17	0.237	1846629	.046354
Post-prohibition Week 9-12	1310961	.0739855	-1.77	0.076	276105	.0139128
Year effects (2010=baseline)	.1310501	.0733033	1.77	0.070	.270105	.0135120
2011	.1040625	.0286608	3.63	0.000	.0478883	.1602367
2012	0052412	.0302571	-0.17	0.862	0645441	.0540616
2013	0244715	.0227075	-1.08	0.281	0689774	.0200343
2014	0889429		-3.20	0.001	143338	0345479
2015	3174715	.0366502	-8.66	0.000	3893046	2456384
Calendar week effect (2=baselin						
3	.0980376	.0688441	1.42	0.154	0368944	.2329696
4	.1324579	.076072	1.74	0.082	0166405	.2815562
5	.1765827	.0790027	2.24	0.025	.0217401	.3314252
6	.1837511	.0959555	1.91	0.055	0043182	.3718205
7	.2741793	.0658074	4.17	0.000	.1451992	.4031594
8	.2967609	.0666093	4.46	0.000	.1662091	.4273127
9	.2171168	.0924136	2.35	0.019	.0359894	.3982443
10	.3404496	.0762041	4.47	0.000	.1910922	.489807
11	.3404496	.0757304	4.50	0.000	.1920207	.4888785
12	.1979358	.0797698	2.48	0.013	.0415898	.3542818
13	.2643432	.0904854	2.92	0.003	.086995	.4416913
14	.3062848	.0919751	3.33	0.001	.126017	.4865526
15	.3823092	.0708971	5.39	0.000	.2433535	.5212649
16	.2823028	.0934477	3.02	0.003	.0991486	.465457
17	.386692	.088061	4.39	0.000	.2140957	.5592883
18	.3297051	.1020444	3.23	0.001	.1297017	.5297084
19	.2692733	.077087	3.49	0.000	.1181856	.420361
20	.2790613	.0694939	4.02	0.000	.1428558	.4152669
21	.2544093	.0726025	3.50	0.000	.1121111	.3967075
22	.1547636	.0721284	2.15	0.032	.0133945	.2961327
23	.2659892	.0715111	3.72	0.000	.12583	.4061485
24	.3434984	.071491	4.80	0.000	.2033785	.4836183
25	.2643432	.0646921	4.09	0.000	.137549	.3911374
26	.2101844	.0921063	2.28	0.022	.0296593	.3907095
27	.3078633	.0592814	5.19	0.000	.191674	.4240527
28	.3450193	.079288	4.35	0.000	.1896177	.5004209
29	.2839196	.0959661	2.96	0.003	.0958296	.4720097
30	.3281607	.0708481	4.63	0.000	.1893009	.4670204
31	.2999456	.0663196	4.52	0.000	.1699615	.4299297
32	.2741793	.0614437	4.46	0.000	.1537518	.3946068
33	.3281607	.0625801	5.24	0.000	.2055058	.4508155
34	.2274262	.0678372	3.35	0.001	.0944677	.3603848
35	.2765334	.0692031	4.00	0.000	.1408978	.412169
36	.1020244	.0973271	1.05	0.295	0887333	.2927821
37	.230301	.0671635	3.43	0.001	.0986629	.3619391

38	.1324787	.063225	2.10	0.036	.00856	.2563975
39	.1442667	.0746556	1.93	0.053	0020556	.2905889
40	.1217091	.0726241	1.68	0.094	0206316	.2640498
41	.1351065	.0882223	1.53	0.126	037806	.3080189
42	.0824113	.0705137	1.17	0.243	0557931	.2206158
43	.1502011	.0794308	1.89	0.059	0054804	.3058826
44	.101907	.0857896	1.19	0.235	0662375	.2700514
45	.1058209	.0613287	1.73	0.084	0143811	.2260228
46	.1478921	.0818351	1.81	0.071	0125017	.3082859
47	.1365925	.0849873	1.61	0.108	0299795	.3031645
48	.0656659	.109432	0.60	0.548	1488169	.2801488
49	0067061	.1214669	-0.06	0.956	2447768	.2313647
50	.0960019	.116465	0.82	0.410	1322654	.3242692
51	.2404299	.125485	1.92	0.055	0055162	.486376
Constant	4.399666	.058526	75.17	0.000	4.284957	4.514375

Appendix Q: Regression table for the natural logarithms of weekly count of offenders under the influence of alcohol as presented in column (3) of Table 9

Number of $obs = 312$ F(61, 250) = 7.63 Prob > F = 0.0000 R-squared = 0.6255 Root MSE = .13517						
	Coefficient	Robust Std. Err.	t	P > t	95% Co	nf. Interval
Prohibition	1959304	.0604764	-3.24	0.001	3150386	0768222
Pre-prohibition Week 1&2	0298994	.0952656	-0.31	0.754	2175249	.1577261
Post-prohibition Week 1-4	1400682	.0428455	-3.27	0.001	2244523	0556841
Post-prohibition Week 5-8	0408319	.0391026	-1.04	0.297	1178444	.0361805
Post-prohibition Week 9-12	1268229	.1127202	-1.13	0.262	3488251	.0951793
Year effects (2010=baseline)						
2011	0103264	.0254185	-0.41	0.685	060388	.0397353
2012	0638816	.0269618	-2.37	0.019	1169828	0107804
2013	1474634	.0259803	-5.68	0.000	1986315	0962952
2014	1246906	.0239168	-5.21	0.000	1717948	0775864
2015	2585867	.031451	-8.22	0.000	3205294	196644
Calendar week effect (1=baselin						
2	.1678569	.1146785	1.46	0.145	0580021	.393716
3	.089975	.1275339	0.71	0.481	1612028	.3411529
4	.1505587	.1172506	1.28	0.200	0803663	.3814837
5	.1725144	.1090409	1.58	0.115	0422415	.3872703
6	.1628528	.1174183	1.39	0.167	0684024	.3941079
7	.2269284	.1080814	2.10	0.037	.0140623	.4397945
8	.3339032	.132276	2.52	0.012	.0733858	.5944205
9	.2698123	.1094982	2.46	0.014	.0541558	.4854688
10	.2683699	.1101269	2.44	0.016	.0514751	.4852648
11	.3634255	.1147697	3.17	0.002	.1373868	.5894642
12	.3402554	.1157649	2.94	0.004	.1122566	.5682542
13	.2274691	.119648	1.90	0.058	0081774	.4631156
14	.3222909	.1102294	2.92	0.004	.1051942	.5393876
15	.369228	.1092154	3.38	0.001	.1541283	.5843276
16	.3241642	.111772	2.90	0.004	.1040294	.5442989
17	.361321	.1101557	3.28	0.001	.1443695	.5782724
18	.2901051	.1167923	2.48	0.014	.0600828	.5201274
19	.3041601	.1209804	2.51	0.013	.0658895	.5424307
20	.3248087	.1176641	2.76	0.006	.0930695	.5565478
21	.3429391	.1097041	3.13	0.002	.1268771	.5590011
22	.2666399	.1132013	2.36	0.019	.0436901	.4895896
23	.4505993	.1124306	4.01	0.000	.2291674	.6720312
24	.4678325	.1187696	3.94	0.000	.2339159	.701749
25	.4297796	.1117562	3.85	0.000	.2096759	.6498834
26	.4189285	.1095028	3.83	0.000	.2032629	.6345941
27	.3819989	.1097433	3.48	0.001	.1658596	.5981382
28	.4374299	.112098	3.90	0.000	.2166532	.6582067
29	.4030418	.1099453	3.67	0.000	.1865047	.6195788
30	.2579639	.114999	2.24	0.026	.0314735	.4844543
31	.3505994	.1109787	3.16	0.002	.1320272	.5691717
32	.3817783	.1158085	3.30	0.001	.1536937	.609863
33	.4123742	.1090528	3.78	0.000	.1975949	.6271535
34	.3401075	.1133329	3.00	0.003	.1168985	.5633165
35	.2292298	.1094444	2.09	0.037	.0136793	.4447803
36	.2303254	.1156597	1.99	0.048	.0025338	.4581171

37	.2831456	.1097933	2.58	0.010	.0669079	.4993833
38	.3088441	.1104066	2.80	0.006	.0913984	.5262897
39	.2711445	.1393856	1.95	0.053	0033752	.5456641
40	.3007806	.1154157	2.61	0.010	.0734696	.5280915
41	.417562	.1149963	3.63	0.000	.191077	.644047
42	.3734963	.1117447	3.34	0.001	.1534153	.5935774
43	.3752981	.111842	3.36	0.001	.1550256	.5955707
44	.3340518	.1100375	3.04	0.003	.1173331	.5507706
45	.2590655	.1190531	2.18	0.030	.0245907	.4935403
46	.3428775	.117152	2.93	0.004	.1121468	.5736081
47	.2898816	.1140357	2.54	0.012	.0652884	.5144748
48	.1024299	.1448719	0.71	0.480	1828949	.3877548
49	.0827412	.1277585	0.65	0.518	168879	.3343614
50	.1919651	.1346868	1.43	0.155	0733004	.4572306
51	.091636	.1495119	0.61	0.540	2028274	.3860994
52	2300558	.2264173	-1.02	0.311	6759844	.2158728
Constant	5.064405	.1066279	47.50	0.000	4.854401	5.274408

Appendix R: Regression table for the natural logarithms of weekly count of offenders under the influence of alcohol as presented in column (4) of Table 9

Number of obs = 312 Wald chi2(61) = 690.02 Prob > chi2 = 0.0000 Log pseudolikelihood = -1454.39 Pseudo R2 = 0.2961	98					
	Coefficient	Robust Std. Err.	t	P > t	95% Co	nf. Interval
Prohibition	1976884	.0465741	-4.24	0.000	2889718	1064049
Pre-prohibition Week 1&2	0177223	.0862004	-0.21	0.837	1866719	.1512274
Post-prohibition Week 1-4	1332551	.0359619	-3.71	0.000	203739	0627711
Post-prohibition Week 5-8	0389716	.0331427	-1.18	0.240	1039302	.025987
Post-prohibition Week 9-12	1204204	.0914132	-1.32	0.188	2995869	.0587461
Year effects (2010=baseline)						
2011	0259449	.0192627	-1.35	0.178	0636991	.0118094
2012	0806038	.0200009	-4.03	0.000	1198049	0414028
2013	1599884	.0205025	-7.80	0.000	2001726	1198042
2014	1414559	.019289	-7.33	0.000	1792616	1036501
2015	2548258	.0229769	-11.09	0.000	2998596	209792
Calendar week effect (1=baselin	ie)					
2	.1507551	.1008939	1.49	0.135	0469934	.3485036
3	.0677114	.1107468	0.61	0.541	1493484	.2847713
4	.1231671	.1017863	1.21	0.226	0763304	.3226646
5	.1449071	.0949896	1.53	0.127	041269	.3310833
6	.1458842	.1045183	1.40	0.163	0589679	.3507362
7	.1991287	.0944345	2.11	0.035	.0140405	.3842168
8	.3177344	.1107461	2.87	0.004	.1006761	.5347927
9	.2426138	.0952959	2.55	0.011	.0558373	.4293903
10	.2417269	.0951275	2.54	0.011	.0552805	.4281733
11	.3445109	.0991526	3.47	0.001	.1501753	.5388465
12	.3177344	.1003228	3.17	0.002	.1211054	.5143635
13	.2074275	.1021251	2.03	0.042	.0072659	.407589
14 15	.2986388	.0958435	3.12 3.63	0.002 0.000	.1107891	.4864885
15	.3461109 .2986388	.0953718 .0969403	3.05	0.000	.1591855 .1086392	.5330362 .4886383
17	.337279	.0956379	3.53	0.002	.1498321	.5247259
18	.2601889	.1014526	2.56	0.000	.0613455	.4590324
19	.2817322	.1038055	2.71	0.010	.0782772	.4851872
20	.3028211	.1016701	2.98	0.003	.1035514	.5020909
21	.3185564	.0950073	3.35	0.001	.1323456	.5047673
22	.2470366	.0989338	2.50	0.013	.05313	.4409433
23	.4289168	.0984208	4.36	0.000	.2360155	.621818
24	.4507517	.1030023	4.38	0.000	.2488709	.6526325
25	.4028251	.0963201	4.18	0.000	.2140411	.5916091
26	.3906669	.0948447	4.12	0.000	.2047746	.5765591
27	.3572398	.0964988	3.70	0.000	.1681056	.5463739
28	.4110989	.0971338	4.23	0.000	.2207202	.6014776
29	.3814502	.0960596	3.97	0.000	.1931769	.5697235
30	.231022	.0990145	2.33	0.020	.0369571	.4250869
31	.3242918	.0957864	3.39	0.001	.1365539	.5120297
32	.35803	.1010938	3.54	0.000	.1598897	.5561702
33	.3853008	.0953024	4.04	0.000	.1985116	.5720901
34	.3185564	.0989611	3.22	0.001	.1245962	.5125167
35	.2012122	.095444	2.11	0.035	.0141454	.3882791
36	.2076788	.1014137	2.05	0.041	.0089116	.4064459

37	.2594978	.0953831	2.72	0.007	.0725504	.4464451
38	.2826099	.0952799	2.97	0.003	.0958647	.4693551
39	.2720091	.1190086	2.29	0.022	.0387564	.5052618
40	.2712569	.0999754	2.71	0.007	.0753088	.467205
41	.3983858	.0999496	3.99	0.000	.2024881	.5942835
42	.3483158	.0972727	3.58	0.000	.1576647	.5389668
43	.3499444	.097677	3.58	0.000	.158501	.5413879
44	.3085469	.0953518	3.24	0.001	.1216608	.4954331
45	.2411639	.1032061	2.34	0.019	.0388836	.4434442
46	.3242953	.1020798	3.18	0.001	.1242225	.5243681
47	.2658783	.1001907	2.65	0.008	.0695083	.4622484
48	.0936287	.1283785	0.73	0.466	1579886	.345246
49	.0670455	.111516	0.60	0.548	1515218	.2856128
50	.1790648	.1186158	1.51	0.131	0534178	.4115475
51	.0873129	.127108	0.69	0.492	1618143	.33644
52	1509543	.1863301	-0.81	0.418	5161546	.214246
Constant	5.100626	.0931012	54.79	0.000	4.918151	5.283101

Appendix S: Regression table for the natural logarithms of weekly rates of endangerment under influence as presented in column (1) of Table 11

Number of $obs = 312$ F(61, 250) = 8.02 Prob > F = 0.0000 R-squared = 0.6163 Root MSE = .12665						
	Coefficient	Robust Std. Err.	t	P > t	95% Co	nf. Interval
Prohibition	1077004	.0444128	-2.42	0.016	1951713	0202294
Pre-prohibition Week 1&2	.0689638	.0386183	1.79	0.075	0070949	.1450224
Post-prohibition Week 1&2	1221151		-2.69	0.008	2116687	0325615
Post-prohibition Week 3&4	1458741		-3.13	0.002	2377506	0539976
Post-prohibition Week 5&6	0738892	.0622615	-1.19	0.236	1965131	.0487348
Year effects (2010=baseline)	.0750052	.0022015	1.15	0.200	.1909191	.040/040
2011	0182273	.0265426	-0.69	0.493	0705029	.0340482
2012	0507296		-1.65	0.101	1114335	.0099743
2013	0116761	.0266854	-0.44	0.662	064233	.0408809
2014	.1238965	.0258672	4.79	0.000	.072951	.174842
2015	.0846046	.0282841	2.99	0.003	.0288992	.1403101
Calendar week effect (1=baseli		.0202041	2.55	0.005	.0200352	.1405101
2	.2620758	.1131027	2.32	0.021	.0393201	.4848314
3	.2434763	.1252978	1.94	0.053	0032975	.4902501
4	.2670957	.1229493	2.17	0.031	.0249472	.5092441
5	.2847391	.1082136	2.63	0.009	.0716126	.4978656
6	.2822946	.1177983	2.40	0.017	.0502911	.5142982
7	.325215	.1105759	2.94	0.004	.107436	.542994
8	.4022299	.1273878	3.16	0.002	.1513398	.6531201
9	.3696892	.1077761	3.43	0.002	.1574243	.5819541
10	.3904104	.1084635	3.60	0.000	.1767917	.6040291
11	.4403975	.1128346	3.90	0.000	.21817	.6626251
12	.4127196	.1125518	3.67	0.000	.1910491	.6343902
13	.3048829	.1151176	2.65	0.009	.078159	.5316068
14	.3871879	.1103636	3.51	0.005	.169827	.6045489
15	.4242193	.1143134	3.71	0.001	.1990792	.6493594
16	.3869343	.1149172	3.37	0.000	.1606051	.6132635
17	.3843106	.1181365	3.25	0.001	.151641	.6169801
18	.3227262	.1127462	2.86	0.001	.1006728	.5447796
19	.3574265	.1190204	3.00	0.003	.1230159	.591837
20	.3333771	.1152462	2.89	0.003	.1250155	.5603543
20	.3735618	.1073649	3.48	0.004	.1621068	.5850168
22	.3126062	.110968	2.82	0.005	.0940548	.5311576
23	.4573358	.1120612	4.08	0.000	.2366313	.6780402
24	.4630255	.119664	3.87	0.000	.2273474	.6987035
25	.4099884	.1112249	3.69	0.000	.1909312	.6290456
26	.4302542	.1098152	3.92	0.000	.2139734	.646535
27	.3797109	.1088976	3.49	0.001	.1652372	.5941847
28	.426556	.1103759	3.86	0.001	.2091709	.6439412
29	.3932196	.1088528	3.61	0.000	.1788342	.6076051
30	.2598996	.1101059	2.36	0.000	.0430463	.476753
31	.3397087	.1104427	3.08	0.019	.122192	.5572253
32	.3324555	.1121874	2.96	0.002	.122192	.5534083
33	.3515409	.1135785	3.10	0.003	.1278482	.5752336
34	.3136072	.1213373	2.58	0.002	.0746337	.5525808
35	.2192176	.1092424	2.58	0.010	.0746557	.4343703
36			2.01	0.048		
50	.2469137	.1064572	2.52	0.021	.0372464	.4565809

37	.2613356	.1090426	2.40	0.017	.0465763	.4760949
38	.3034772	.1088339	2.79	0.006	.0891289	.5178255
39	.3093519	.1207499	2.56	0.011	.0715351	.5471686
40	.3164903	.1167421	2.71	0.007	.086567	.5464136
41	.4317153	.111255	3.88	0.000	.2125987	.6508318
42	.3652665	.110644	3.30	0.001	.1473534	.5831796
43	.4364838	.1123387	3.89	0.000	.2152328	.6577347
44	.3571347	.1102417	3.24	0.001	.1400138	.5742555
45	.3194514	.1164973	2.74	0.007	.0900101	.5488927
46	.3815617	.1142503	3.34	0.001	.1565459	.6065775
47	.3267467	.1149189	2.84	0.005	.1004142	.5530792
48	.1357004	.1374074	0.99	0.324	1349232	.4063241
49	.067501	.141418	0.48	0.634	2110215	.3460235
50	.1766695	.1250434	1.41	0.159	0696032	.4229422
51	.032107	.1265909	0.25	0.800	2172136	.2814275
52	2553876	.1975091	-1.29	0.197	6443814	.1336062
Constant	.421909	.1058992	3.98	0.000	.2133407	.6304773

Appendix T: Regression table for the natural logarithms of weekly rates of endangerment under influence as presented in column (2) of Table 11

Number of obs = 312 Wald chi2(61) = 693.41 Prob > chi2 = 0.0000 Log pseudolikelihood = -420.16 Pseudo R2 = 0.0134	382					
	Coefficient	Robust Std. Err.	t	P > t	95% Co	nf. Interval
Prohibition	1017545	.0389939	-2.61	0.009	1781812	0253278
Pre-prohibition Week 1&2	.0737385	.0325786	2.26	0.024	.0098855	.1375914
Post-prohibition Week 1&2	1236751	.0387349	-3.19	0.001	1995941	0477562
Post-prohibition Week 3&4	1422344	.040675	-3.50	0.001	2219559	0625128
Post-prohibition Week 5&6	064111	.0548812	-1.17	0.243	1716763	.0434542
Year effects (2010=baseline)	004111	.0546612	-1.1/	0.243	1/10/03	.0434342
2011	0384708	.0202583	-1.90	0.058	0781764	.0012348
2011	0384708		-3.06	0.002	1151205	
		.0229241				0252595
2013	0285342	.0211891	-1.35	0.178	0700641	.0129957
2014	.1039976	.0201973	5.15	0.000	.0644116	.1435836
2015	.0770659	.0206848	3.73	0.000	.0365245	.1176073
Calendar week effect (1=basel		0000024	2 40	0.012	0500011	1061175
2	.2443643	.0980034	2.49	0.013	.0522811	.4364475
3	.2410458	.1091236	2.21	0.027	.0271674	.4549241
4	.2596476	.1063698	2.44	0.015	.0511667	.4681285
5	.2658456	.0921853	2.88	0.004	.0851656	.4465255
6	.2726752	.1000837	2.72	0.006	.0765147	.4688356
7	.3077487	.0941249	3.27	0.001	.1232672	.4922302
8	.3973022	.1055496	3.76	0.000	.1904287	.6041756
9	.3506989	.092188	3.80	0.000	.1700137	.531384
10	.3708902	.0925689	4.01	0.000	.1894584	.5523219
11	.4263508	.0962873	4.43	0.000	.2376311	.6150704
12	.394621	.0961431	4.10	0.000	.2061839	.5830581
13	.2914573	.0978405	2.98	0.003	.0996934	.4832213
14	.3681103	.0941808	3.91	0.000	.1835193	.5527014
15	.4066347	.0977939	4.16	0.000	.2149623	.5983072
16	.3715314	.0980559	3.79	0.000	.1793454	.5637174
17	.3707884	.1003888	3.69	0.000	.17403	.5675468
18	.30691	.0961315	3.19	0.001	.1184956	.4953244
19	.3436313	.1016581	3.38	0.001	.1443852	.5428774
20	.3157079	.0985359	3.20	0.001	.1225811	.5088346
21	.3549095	.0916493	3.87	0.000	.1752801	.5345389
22	.2944978	.094887	3.10	0.002	.1085227	.4804729
23	.4392601	.0959028	4.58	0.000	.251294	.6272262
24	.4456779	.1022846	4.36	0.000	.2452037	.646152
25	.3946325	.0941695	4.19	0.000	.2100637	.5792013
26	.4132153	.0936138	4.41	0.000	.2297356	.596695
27	.3591839	.0934484	3.84	0.000	.1760283	.5423395
28	.4112133	.0943296	4.36	0.000	.2263307	.5960958
29	.373615	.0927824	4.03	0.000	.1917647	.5554652
30	.2442608	.0940237	2.60	0.009	.0599778	.4285439
31	.3229878	.0948022	3.41	0.001	.1371789	.5087967
32	.3157849	.0961491	3.28	0.001	.1273361	.5042337
33	.336689	.0993798	3.39	0.001	.1419081	.5314699
34	.2974811	.1054472	2.82	0.001	.0908083	.5041539
35	.2008883	.0943152	2.02	0.033	.0160339	.3857426
36	.2270757	.0907506	2.13	0.012	.0492077	.4049436
37	.2427285	.0933189	2.60	0.002	.0598269	.4256301
38	.2854085	.0935675	3.05	0.002	.1020196	.4687974
39	.2901555	.1063341	2.73	0.002	.0817445	.4985666
57	.2701555	.1003371	2.15	0.000	.0017773	.+705000

40	.3049935	.1009696	3.02	0.003	.1070967	.5028903
41	.4154002	.0965881	4.30	0.000	.2260909	.6047095
42	.3450209	.0943849	3.66	0.000	.16003	.5300118
43	.4192554	.0967694	4.33	0.000	.2295908	.6089199
44	.3340397	.0941341	3.55	0.000	.1495404	.5185391
45	.3003685	.0996395	3.01	0.003	.1050786	.4956584
46	.3674622	.0988777	3.72	0.000	.1736655	.5612589
47	.312861	.0998418	3.13	0.002	.1171747	.5085474
48	.1330967	.116467	1.14	0.253	0951743	.3613678
49	.0719044	.117956	0.61	0.542	1592852	.303094
50	.1715059	.1079504	1.59	0.112	0400731	.3830848
51	.027341	.1121546	0.24	0.807	1924779	.2471599
52	2219454	.1675682	-1.32	0.185	550373	.1064822
Constant	.4557812	.0906999	5.03	0.000	.2780127	.6335497

Appendix U: Regression table for the natural logarithms of weekly rates of endangerment under influence as presented in column (3) of Table 11

Coefficient Robust Sul. Err. t. t. 95% Conf. Interval Prohibition*Treated 2421076 .075042 3.8 0.161 5582313 .1010621 Prophibition Week L&2 .0298288 .0793733 0.11 0.010 1466838 .164541 Post-prohibition Week S&4 2011062 .094576 2.13 0.034 3865241 .0156882 Post-prohibition Week S&6 1037334 .0870353 1.19 0.32 .2743785 .0668849 Year effects (2010-baseline) .0087055 .0234587 0.37 .0.11 .0372858 .054667 2012 .0365647 .0243858 0.12 0.904 .0456857 .0517668 2013 .0003016 .0243858 0.21 0.833 .564767 .0678627 2014 .100681 .0749401 3.27 0.001 1.406235 .4180744 2015 .0065355 .0324533 3.25 0.001 1.4079404 4 .2643667 .0778333 3.27	Number of obs = 4368 F(75, 4292) = 43.02 Prob > F = 0.0000 R-squared = 0.3514 Root MSE = .48863						
Prohibition 0649368 .0861142 -0.75 0.451 2337652 .1038915 Prohibition .0809228 .0793733 0.110 .0.910 1368.383 .1665341 Post-prohibition Week 1&2 .1254309 .0665709 -1.88 .0.60 .255943 .0050825 Post-prohibition Week 3&4 201062 .094576 -2.13 0.034 3865241 .0.050825 Post-prohibition Week 3&4 201102 .0365467 .0253686 -1.44 .0150 .0668849 Year effects (2010=baseline) .0030106 .0248385 0.12 .036 .0614539 .1586824 2013 .0030106 .0248385 0.21 0.835 .0547657 .0678267 Calendar week effect (1=baseline)		Coefficient	Robust Std. Err.	t	P > t	95% Coi	nf. Interval
Prohibition*Treated 2421076 .1750425 -1.38 0.167 5852813 .1010662 Pre-prohibition Weck 1&2 12534309 .065709 18 0.005 2559443 .0050825 Post-prohibition Weck 3&4 2011062 .094576 -2.13 0.034 3865241 .0156882 Post-prohibition Weck 5&6 1037394 .0870353 -1.19 0.233 .2743736 .0668949 Year effects (2010-baseline) .0087055 .0234587 0.37 .0711 .0372858 .0546967 2011 .0080106 .0243885 0.12 .094 .0456857 .0517668 2013 .0030106 .024385 0.12 .0355 .0547657 .0678267 Calendar week effect (1=baseline) . . .2613474 .079941 3.27 .001 .1046235 .4180714 3 .2543667 .0783333 .325 .001 .1007931 .4079404 4 .3074958 .074612 .390 .0000 .1278472 .41	Prohibition	0649368	.0861142	-0.75		2337652	.1038915
Pre-prohibition Week 1&2 .0089288 .0793733 0.11 0.910 .1466838 .1645414 Post-prohibition Week 1&2 1254309 .0665709 -1.88 0.060 .2559443 .050825 Post-prohibition Week 5&6 1037394 .0870353 -1.19 0.233 .2743736 .0668949 Year effects (2010=baseline)							
Post-prohibition Week 1&2 -1254309 .0665709 -1.88 0.060 -2559443 .0050825 Post-prohibition Week 3&4 -2011062 .094576 -2.13 0.034 -3865241 .0156882 Post-prohibition Week 5&6 -1037394 .087055 0.233 .72743736 .066949 Year effects (2010=baseline) .0385467 .0235866 1.44 0.150 .0862822 .0131889 2013 .0030106 .0248385 0.12 0.904 .0456857 .0517668 2014 .1100681 .0247966 4.44 0.000 .0614239 .1586824 2015 .0065305 .0312653 0.21 0.835 .0547657 .0678267 Calendar week effect (1=baseline) 0374958 .074827 4.11 0.000 .1007931 .4079404 4 .3074958 .074827 4.11 0.000 .140573 .4476879 7 .3843108 .0725487 5.30 0.000 .4246787 .30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Post-prohibition Week 3&4 2011062 .094576 -2.13 0.034 3865241 0156882 Post-prohibition Week 5&6 1037394 .0870353 -1.19 0.233 2743736 .06698949 Year effects (2010-baseline) .0087055 .0234887 0.37 0.711 0372858 .0546967 2012 0365467 .0253686 -1.44 0.150 086822 .0131889 2013 .030106 .0243855 0.21 .0.904 0456857 .0517068 2014 .1100681 .0247966 4.44 .0000 .0614539 .1586824 2015 .0065305 .0312653 0.21 .0.001 .1007931 .4079404 3 .2543667 .078333 3.25 0.001 .1007931 .407944 4 .3074958 .0764162 .900 .1480773 .4476879 7 .3843108 .0724476 .5378 .0000 .2420779 .5265437 10 .4240575 .0764162 .900 </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1						
Post-prohibition Week 5&6 Year effects (2010=baseline) 1037394 .0870353 -1.19 0.233 2743736 .0668949 Year effects (2010=baseline) .0087055 .0234587 0.37 0.711 0372858 .0546967 2012 .0365467 .0253686 -1.44 0.150 0862822 .0131889 2013 .0030106 .0243885 0.12 0.904 0865657 .0678267 Calendar week effect (1=baseline) .0065305 .0312653 0.21 0.835 547657 .0678267 2 .2613474 .0799401 3.27 0.001 .1046235 .4180714 3 .2543667 .078333 3.25 0.001 .1007931 .4079404 4 .3074958 .0748274 4.11 0.000 .1480573 .4476879 5 .2736967 .0743934 3.68 0.000 .1480573 .4476879 7 .3843108 .0725487 5.30 0.000 .2825702 .5588054 10 .442075	-						
Year effects (2010=baseline) 2011 .0087055 .0234587 0.37 0.711 -0372858 .0546967 2012 .0365467 .0253686 -1.44 0.150 .0862822 .0131889 2013 .0030106 .0243858 0.12 0.904 0456857 .0517068 2014 .1100681 .0247966 4.44 0.000 .0614539 .158624 2015 .0065305 .0312653 0.21 0.835 057657 .0678267 Calendar week effect (1=baseline) - - - - 4.1374 .0799401 3.27 0.001 .1067951 .480714 3 .2543667 .0743934 3.68 0.000 .1278472 .4195463 6 .2978726 .0764162 3.90 .000 .1420773 .558378 7 .3843108 .0725487 .530 .000 .325702 .558464 10 .4420557 .071547 6.35 .0000 .3259270 .558484	-						
2011 .0087055 .0234587 0.37 0.711 -0372858 .0546967 2012 0365467 .0253686 1.44 0.150 03658222 .0131889 2013 .0030106 .0243855 0.12 0.904 0456827 .0517068 2014 .1100681 .0247966 4.44 0.000 .0614539 .1586824 2015 .0065305 .0312653 0.21 0.001 .1046235 .4180714 3 .2543667 .0783333 3.25 0.001 .1607961 .4541954 5 .2736967 .0743934 3.68 0.000 .128742 .4195463 6 .2978726 .0764162 3.90 0.000 .1480573 .4476879 7 .3843108 .0725487 5.30 0.000 .1480573 .4476879 7 .3843108 .0725487 .530 0.000 .2420779 .526437 8 .4545625 .0716428 6.76 0.000 .242522	-			-			
2013 .0030106 .0248385 0.12 0.904 .0456857 .0517068 2014 .1100681 .0247966 4.44 0.000 .0614539 .1586824 2015 .0065305 .0312653 0.21 0.835 .0547657 .0678267 Calendar week effect (1=baseline) 0001 .1046235 .4180714 3 .2543667 .078333 3.25 0.001 .1007931 .4079404 4 .3074558 .074827 4.11 0.000 .1480573 .4476879 5 .2736967 .0743934 3.68 0.000 .1278472 .4195463 6 .2978726 .0764162 3.90 0.000 .4240779 .5265437 7 .3843108 .0725487 6.35 0.000 .3225022 .5588054 10 .4206878 .0704496 5.97 0.000 .3265237 .5588054 11 .5129713 .0758568 6.76 0.0000 .3265213 <td></td> <td>.0087055</td> <td>.0234587</td> <td>0.37</td> <td>0.711</td> <td>0372858</td> <td>.0546967</td>		.0087055	.0234587	0.37	0.711	0372858	.0546967
2014 .1100681 .0247966 4.44 0.000 .0614539 .1586824 2015 .0063205 .021 0.835 .0547657 .0678267 Calendar week effect (1=baseline) 0079401 3.27 0.001 .1046235 .4180714 3 .2543667 .0783333 3.25 0.001 .1007931 .4079404 4 .3074958 .074827 4.11 0.000 .1278472 .4195463 6 .2978726 .0764162 3.90 0.000 .1480573 .4476879 7 .3843108 .0725487 5.30 0.000 .2825702 .5588054 10 .442175 .0712428 6.21 0.000 .3025022 .5818478 11 .5129713 .0758568 6.76 0.000 .3222978 .6037173 13 .343479 .0730469 4.70 0.000 .282633 .5767416 14 .4108837 .0721217 5.67 0.000	2012	0365467	.0253686	-1.44	0.150	0862822	.0131889
2015 .0065305 .0312653 0.21 0.835 0547657 .0678267 Calendar week effect (1=baseline) -	2013	.0030106	.0248385	0.12	0.904	0456857	.0517068
2015 .0065305 .0312653 0.21 0.835 0547657 .0678267 Calendar week effect (1=baseline) -	2014	.1100681	.0247966	4.44	0.000	.0614539	.1586824
Calendar week effect (1=baseline)2.2613474.079833333.270.001.1046235.41807143.2543667.07833333.250.001.1007931.40794044.3074958.0748274.110.000.1607961.45419545.2736967.07439343.680.000.1278472.41954636.2978726.07641623.900.000.1480573.44768797.3843108.07254875.300.000.242079.52654378.4545625.07163476.350.000.2425702.558805410.442175.07124286.210.000.3025022.581847811.5129713.07585686.760.000.322378.6031717313.343479.07304694.700.000.202693.486688814.4108837.07241175.670.000.2689194.55284815.4668193.07155676.520.000.261229.538544819.4286225.07178295.970.000.268863.57141618.3998869.07072525.650.000.234587.605571920.3903899.6966075.600.000.334587.605571922.5548428.0712294.980.000.251954.494490323.4803845.07315956.620.000.345541.62741524.5126964.01693	2015	.0065305		0.21			
3 .2543667 .0783333 3.25 0.001 .1007931 .4079404 4 .3074958 .074827 4.11 0.000 .1607961 .4541954 5 .2736967 .0743934 3.68 0.000 .1278472 .4195463 6 .2978726 .0764162 3.90 0.000 .4480573 .4476879 7 .3843108 .0725487 5.30 0.000 .2420779 .5265437 8 .4545625 .0716347 6.35 0.000 .3285702 .5588054 10 .442175 .0712428 6.21 0.000 .322978 .6037173 13 .5129713 .075856 6.76 0.000 .322978 .6037173 13 .343479 .0730469 4.70 0.000 .202693 .4866888 14 .4108837 .0715167 6.48 0.000 .284937 .5511892 15 .4668193 .071527 5.65 .0000 .26129 .538448	Calendar week effect (1=baseli	ne)					
4 .3074958 .074827 4.11 0.000 .1607961 .4541954 5 .2736967 .0743934 3.68 0.000 .1278472 .4195463 6 .2978726 .0764162 3.90 0.000 .2420779 .5265437 7 .3843108 .0725487 5.30 0.000 .2420779 .5265437 9 .4206878 .0704496 5.97 0.000 .3285702 .5588054 10 .442175 .0712428 6.21 0.000 .3225022 .5588054 11 .5129713 .0758568 6.76 0.000 .3232978 .6037173 13 .343479 .0730469 4.70 0.000 .202693 .4866888 14 .4108837 .071557 6.52 0.000 .2689194 .5518892 17 .4363139 .071527 6.09 0.000 .2844937 .5511892 18 .3998869 .0707252 5.65 0.000 .26129 .538448 19 .4266225 .071829 5.97 0.000 .281819 </td <td>2</td> <td>.2613474</td> <td>.0799401</td> <td>3.27</td> <td>0.001</td> <td>.1046235</td> <td>.4180714</td>	2	.2613474	.0799401	3.27	0.001	.1046235	.4180714
5 .2736967 .0743934 3.68 0.000 .1278472 .4195463 6 .2978726 .0764162 3.90 0.000 .1480573 .4476879 7 .3843108 .0725487 5.30 0.000 .2420779 .5265437 8 .4545625 .0716347 6.35 0.000 .2420779 .5588054 10 .442175 .0712428 6.21 0.000 .3025022 .5818478 11 .5129713 .0758568 6.76 0.000 .3242528 .6616899 12 .4635076 .0715167 6.48 0.000 .3225978 .6037173 13 .343479 .0730469 4.70 0.000 .288494 .552484 15 .4668193 .0715567 6.52 0.000 .2844937 .5511892 17 .4363139 .0716729 5.60 0.000 .287890 .5693541 20 .3903899 .0696607 5.60 0.000 .251281 .5269608 </td <td>3</td> <td>.2543667</td> <td>.0783333</td> <td>3.25</td> <td>0.001</td> <td>.1007931</td> <td>.4079404</td>	3	.2543667	.0783333	3.25	0.001	.1007931	.4079404
6.2978726.07641623.900.000.1480573.44768797.3843108.07254875.300.000.2420779.52654378.4545625.07163476.350.000.3141215.59500369.4206878.07044965.970.000.32825702.558805410.442175.07124286.210.000.302502.581847811.5129713.07585686.760.000.3642528.661689912.4635076.07151676.480.000.3232978.603717313.343479.07304694.700.000.2002693.486688814.4108837.07241175.670.000.2684937.551189217.4668193.07155676.520.000.2844937.551189217.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.25313.609571920.3903899.0696075.600.000.253819.526906821.4700794.06911066.800.000.34587.605571922.518428.07115956.620.000.346571.62741524.5126964.0716637.150.000.381877.653258225.5013823.0671027.470.000.3861877.653258225.5013823.0670637.150.000.348571.65706	4	.3074958	.074827	4.11	0.000	.1607961	.4541954
7.3843108.07254875.300.000.2420779.52654378.4545625.07163476.350.000.3141215.59500369.4206878.07044965.970.000.32825702.558805410.442175.07124286.210.000.3025022.581847811.5129713.07585686.760.000.3645258.661689912.4635076.07151676.480.000.3232978.603717313.343479.07304694.700.000.2002693.486688814.4108837.07241175.670.000.2658134.607107416.4178415.06801666.140.000.2854437.55189217.4363139.0715275.650.000.2958863.576741618.3998869.07072525.650.000.261229.538544819.4286225.07178295.970.000.2878909.569354120.3903899.06966075.600.000.234587.60571922.3548428.0712294.980.000.345817.65970823.4839845.07315956.620.000.34587.65278225.5013823.0671027.470.000.3861877.65076827.483572.06709347.150.000.386187.65278628.4943117.06709347.150.000.386187.652786	5	.2736967	.0743934	3.68	0.000	.1278472	.4195463
8 .4545625 .0716347 6.35 0.000 .3141215 .5950036 9 .4206878 .0704496 5.97 0.000 .2825702 .5588054 10 .442175 .0712428 6.21 0.000 .3025022 .5818478 11 .5129713 .0758568 6.76 0.000 .3642528 .6618899 12 .4635076 .0715167 6.48 0.000 .202593 .4866888 14 .4108837 .0724117 5.67 0.000 .202593 .4866888 15 .4668193 .0715567 6.52 0.000 .2844937 .5511892 17 .4363139 .0716279 6.09 0.000 .2844937 .5511892 17 .4363139 .0707252 5.65 0.000 .251819 .5269608 21 .4700794 .0691106 6.80 0.000 .251819 .5269608 21 .4700794 .0691106 6.80 0.000 .345871 .6055719	6	.2978726	.0764162	3.90	0.000	.1480573	.4476879
9.4206878.07044965.970.000.2825702.558805410.442175.07124286.210.000.3025022.581847811.5129713.07585686.760.000.3642528.661689912.4635076.07151676.480.000.3232978.603717313.343479.07304694.700.000.2002693.486688814.4108837.07241175.670.000.2689194.55284815.4668193.07155676.520.000.2844937.551189217.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.28319.52696820.3903899.0696075.600.000.28319.52960821.4700794.06911066.800.000.234587.605571922.3548428.07122994.980.000.345541.62741524.5126964.07169637.150.000.3861877.65328225.5013823.0671027.470.000.3861877.650706827.4813572.06709347.170.000.3861877.650708628.4943117.0690757.150.000.388484.629778629.4566147.07033726.490.000.3187175.59451230.3349662.07064934.740.000.3682761.5302	7	.3843108	.0725487	5.30	0.000	.2420779	.5265437
10.442175.07124286.210.000.3025022.581847811.5129713.07585686.760.000.3642528.661689912.4635076.07151676.480.000.3232978.603717313.343479.07304694.700.000.2002693.486688814.4108837.07241175.670.000.2689194.55284815.4668193.07155676.520.000.284937.551189217.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.2878909.569354120.3903899.06966075.600.000.253819.526960821.4700794.06911066.800.000.34587.60571922.3548428.07122994.980.000.345541.62741524.5126964.07169637.150.000.32582225.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.384848.629778627.4813572.06709347.170.000.388448.629778628.4943117.0690757.150.000.388448.629778629.4566147.0703726.490.000.318717.59512230.3349662.07064694.740.000.388448.6297786 <t< td=""><td>8</td><td>.4545625</td><td>.0716347</td><td>6.35</td><td>0.000</td><td>.3141215</td><td>.5950036</td></t<>	8	.4545625	.0716347	6.35	0.000	.3141215	.5950036
11.5129713.07585686.760.000.3642528.661689912.4635076.07151676.480.000.3232978.603717313.343479.07304694.700.000.2002693.486688814.4108837.07241175.670.000.2689194.55284815.4668193.07155676.520.000.2689194.55284816.4178415.06801666.140.000.2844937.551189217.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.261229.538544819.4286225.07178295.970.000.2878909.569354120.3903899.06966075.600.000.253819.526960821.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3698276.63293725.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3498144.61289527.4813572.06709347.170.000.3498144.62741528.4943117.0690757.150.000.3588448 <td< td=""><td>9</td><td>.4206878</td><td>.0704496</td><td>5.97</td><td>0.000</td><td>.2825702</td><td>.5588054</td></td<>	9	.4206878	.0704496	5.97	0.000	.2825702	.5588054
12.4635076.07151676.480.000.3232978.603717313.343479.07304694.700.000.2002693.486688814.4108837.07241175.670.000.2689194.55284815.4668193.07155676.520.000.3265313.607107416.4178415.06801666.140.000.2844937.551189217.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.261229.538544819.4286225.07178295.970.000.2878909.569354120.3903899.06961075.600.000.253819.526960821.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3698276.63293725.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3187175.59451228.4943117.0699757.150.000.3187175.59451229.4566147.07033726.490.000.3187175.59451230.3349662.0764694.740.000.3187175	10	.442175	.0712428	6.21	0.000	.3025022	.5818478
13.343479.07304694.700.000.2002693.486688814.4108837.07241175.670.000.2689194.55284815.4668193.07155676.520.000.3265313.607107416.4178415.06801666.140.000.2844937.551189217.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.261229.538544819.4286225.07178295.970.000.2878909.569354120.3903899.06966075.600.000.23819.526960821.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3698276.63293725.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.348148.629778629.4566147.07033726.490.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.4194449.06826836.140.000.2856037 <td< td=""><td>11</td><td>.5129713</td><td>.0758568</td><td>6.76</td><td>0.000</td><td>.3642528</td><td>.6616899</td></td<>	11	.5129713	.0758568	6.76	0.000	.3642528	.6616899
14.4108837.07241175.670.000.2689194.55284815.4668193.07155676.520.000.3265313.607107416.4178415.06801666.140.000.2844937.551189217.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.261229.538544819.4286225.07178295.970.000.2878909.569354120.3903899.06966075.600.000.253819.526960821.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3698276.63293725.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.388448.629778628.4943117.06909757.150.000.3187175.59451230.3349662.07064694.740.000.3187175.59451230.3349662.07064694.740.000.3266037.53286131.3864665.07333235.270.000.2426973 <t< td=""><td>12</td><td>.4635076</td><td>.0715167</td><td>6.48</td><td>0.000</td><td>.3232978</td><td>.6037173</td></t<>	12	.4635076	.0715167	6.48	0.000	.3232978	.6037173
15.4668193.07155676.520.000.3265313.607107416.4178415.06801666.140.000.2844937.551189217.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.261229.538544819.4286225.07178295.970.000.2878909.569354120.3903899.06966075.600.000.253819.526960821.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3861877.650706828.4943117.06909757.150.000.3187175.59451230.3349662.07064694.740.000.186419.473470631.3864665.0733235.270.000.2426973.530235632.4194449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.632751.07092645.120.000.224226	13	.343479	.0730469	4.70	0.000	.2002693	.4866888
16.4178415.06801666.140.000.2844937.551189217.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.261229.538544819.4286225.07178295.970.000.2878909.569354120.3903899.06966075.600.000.253819.526960821.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.07333235.270.000.2426973.530235632.4194449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.50659434.6332751.07092645.120.000.2242266.5023276	14	.4108837	.0724117	5.67	0.000	.2689194	.552848
17.4363139.07162796.090.000.2958863.576741618.3998869.07072525.650.000.261229.538544819.4286225.07178295.970.000.2878909.569354120.3903899.06966075.600.000.253819.526960821.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3721346.653258225.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3498194.61289528.4943117.06909757.150.000.3588448.629778629.4566147.07033726.490.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.07333235.270.000.2426973.530235632.419449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.50059434.3632751.07092645.120.000.2242266.5023276	15	.4668193	.0715567	6.52	0.000	.3265313	.6071074
18.3998869.07072525.650.000.261229.538544819.4286225.07178295.970.000.2878909.569354120.3903899.06966075.600.000.253819.526960821.4700794.06911066.800.000.334587.605571922.3548428.0712994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3721346.653258225.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.07333235.270.000.2426973.530235632.4194449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.6332751.07092645.120.000.242226.5023276	16	.4178415	.0680166	6.14	0.000	.2844937	.5511892
19.4286225.07178295.970.000.2878909.569354120.3903899.06966075.600.000.253819.526960821.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3721346.653258225.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.4194449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.632751.07092645.120.000.2242226.5023276	17	.4363139	.0716279	6.09	0.000	.2958863	.5767416
20.3903899.06966075.600.000.253819.526960821.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3721346.653258225.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.07333235.270.000.2426973.530235632.4194449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276	18	.3998869	.0707252	5.65	0.000	.261229	.5385448
21.4700794.06911066.800.000.334587.605571922.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3721346.653258225.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3498194.61289528.4943117.06909757.150.000.3588448.629778629.4566147.07033726.490.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.419449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.632751.07092645.120.000.224226.5023276	19	.4286225	.0717829	5.97	0.000	.2878909	.5693541
22.3548428.07122994.980.000.2151954.494490323.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3721346.653258225.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.07333235.270.000.2426973.530235632.419449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.224226.5023276	20	.3903899	.0696607	5.60	0.000	.253819	.5269608
23.4839845.07315956.620.000.3405541.62741524.5126964.07169637.150.000.3721346.653258225.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.224226.5023276		.4700794	.0691106	6.80	0.000	.334587	.6055719
24.5126964.07169637.150.000.3721346.653258225.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3588448.629778629.4566147.07033726.490.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.419449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.224226.5023276	22	.3548428	.0712299	4.98	0.000	.2151954	.4944903
25.5013823.0671027.470.000.3698276.63293726.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3588448.629778629.4566147.07033726.490.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.07333235.270.000.2426973.530235632.419449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276	23	.4839845	.0731595	6.62	0.000	.3405541	.627415
26.5184473.06746167.690.000.3861877.650706827.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3588448.629778629.4566147.07033726.490.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.419449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276	24	.5126964	.0716963	7.15	0.000	.3721346	.6532582
27.4813572.06709347.170.000.3498194.61289528.4943117.06909757.150.000.3588448.629778629.4566147.07033726.490.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.419449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276	25	.5013823	.067102	7.47	0.000	.3698276	.632937
28.4943117.06909757.150.000.3588448.629778629.4566147.07033726.490.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.419449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276	26	.5184473	.0674616			.3861877	
29.4566147.07033726.490.000.3187175.59451230.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.4194449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276	27	.4813572	.0670934	7.17	0.000	.3498194	.612895
30.3349662.07064694.740.000.1964619.473470631.3864665.0733235.270.000.2426973.530235632.4194449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276		.4943117	.0690975			.3588448	.6297786
31.3864665.07333235.270.000.2426973.530235632.4194449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276		.4566147				.3187175	.594512
32.4194449.06826836.140.000.2856037.553286133.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276		.3349662					
33.4124375.07050285.850.000.2742156.550659434.3632751.07092645.120.000.2242226.5023276							
34 .3632751 .0709264 5.12 0.000 .2242226 .5023276							
35 .2527959 .0725206 3.49 0.000 .110618 .3949737		.3632751					.5023276
	35	.2527959	.0725206	3.49	0.000	.110618	.3949737

36	.3263691	.0719029	4.54	0.000	.1854022	.467336
37	.3065231	.0723331	4.24	0.000	.1647127	.4483334
38	.3254909	.072007	4.52	0.000	.1843199	.4666618
39	.2823296	.1220831	2.31	0.021	.0429835	.5216757
40	.3587228	.0704197	5.09	0.000	.2206637	.4967818
41	.487161	.0701416	6.95	0.000	.3496471	.6246749
42	.3831456	.0764355	5.01	0.000	.2332925	.5329987
43	.4893844	.0693621	7.06	0.000	.3533988	.6253699
44	.4062425	.0746201	5.44	0.000	.2599485	.5525364
45	.3279451	.0765574	4.28	0.000	.177853	.4780373
46	.4270307	.0694687	6.15	0.000	.2908362	.5632253
47	.3488385	.074344	4.69	0.000	.2030858	.4945912
48	.0734524	.1137295	0.65	0.518	1495161	.2964209
49	.0542563	.0745284	0.73	0.467	091858	.2003705
50	.1801584	.079204	2.27	0.023	.0248777	.3354392
51	0385803	.1156944	-0.33	0.739	265401	.1882405
52	5443919	.1834209	-2.97	0.003	9039917	1847921
Regional effect (Prague=baseline)						
Středočeský	4627934	.0224288	-20.63	0.000	5067656	4188213
Jihočeský	7636591	.0344167	-22.19	0.000	8311337	6961845
Plzeňský	6346846	.0367834	-17.25	0.000	7067991	56257
Ústecký	82089	.0232905	-35.25	0.000	8665515	7752285
Královehradecký	-1.096824	.0293657	-37.35	0.000	-1.154396	-1.039252
Jihomoravský	4779931	.0245476	-19.47	0.000	526119	4298672
Moravskoslezský	6357125	.0222768	-28.54	0.000	6793866	5920385
Olomoucký	6297464	.0250688	-25.12	0.000	6788942	5805986
Zlínský	6786748	.0286911	-23.65	0.000	7349242	6224255
Vysočina	885143	.042457	-20.85	0.000	9683807	8019053
Pardubický	-1.270042	.0393919	-32.24	0.000	-1.347271	-1.192814
Liberecký	6327853	.0372737	-16.98	0.000	7058609	5597096
Karlovarský	2856722	.0372423	-7.67	0.000	3586864	2126581
Constant	.8952351	.062359	14.36	0.000	.7729793	1.017491

Appendix V: Regression table for the natural logarithms of weekly rates of endangerment under influence as presented in column (4) of Table 11

Number of obs = 4368 Wald chi2(75) = 4438.88 Prob > chi2 = 0.0000 Log pseudolikelihood = -6099.5 Pseudo R2 = 0.0691	443					
	Coefficient	Robust Std. Err.	t	P > t	95% Coi	nf. Interval
Prohibition	0876653	.0706829	-1.24	0.215	2262012	.0508706
Prohibition*Treated	1897861	.1224523	-1.55	0.121	4297881	.050216
Pre-prohibition Week 1&2	.0479637	.0708907	0.68	0.499	0909796	.186907
Post-prohibition Week 1&2	0902404	.0619526	-1.46	0.145	2116653	.0311846
Post-prohibition Week 3&4	1433253	.077112	-1.86	0.063	294462	.0078114
Post-prohibition Week 5&6	0595282	.0800635	-0.74	0.005	2164498	.0973935
Year effects (2010=baseline)	0555202	.0000055	-0.74	0.457	2104450	.0973935
2011	0325157	.0189392	-1.72	0.086	0696359	.0046045
2011	0778309	.0208507	-3.73	0.000	1186975	0369644
2012	0209233	.0191852	-1.09	0.000	0585255	.016679
2013	.0877881	.0191852	4.68	0.000	.0509949	.1245814
2014 2015	.0469472	.0198559	2.36	0.000	.0080303	.0858642
Calendar week effect (1=basel		.01965559	2.50	0.010	.0080303	.0838042
2	.25771	.069086	3.73	0.000	.122304	.3931161
3	.2651566	.0652021	4.07	0.000	.122304	.3929503
4	.2756082	.0674392	4.09	0.000	.1434299	.4077866
5	.2555127	.065463	3.90	0.000	.1272077	.3838178
6	.2333127	.0642611	4.33	0.000	.1272077	.4038945
0 7	.3254178	.0619472	4.33 5.25	0.000	.2040035	.4038943
8	.3969541	.0636038	5.25 6.24	0.000	.2040035	.5216152
9	.3632781	.0635206	5.72	0.000	.2387801	.4877762
10	.3859455	.0599042	6.44	0.000	.2685355	.5033555
11	.4772882	.0666136	7.17	0.000	.346728	.6078483
12	.3952131	.0622491	6.35	0.000	.2732071	.517219
13	.2981674	.0640845	4.65	0.000	.1725641	.4237706
14	.3577137	.0642254	5.57	0.000	.2318343	.4835931
15	.4188945	.0635686	6.59	0.000	.2943022	.5434867
16	.3643962	.0616717	5.91	0.000	.2435219	.4852705
17	.3767616	.062651	6.01	0.000	.2539678	.4995553
18	.3295191	.0635767	5.18	0.000	.2049111	.4541272
19	.3698884	.0598825	6.18	0.000	.2525209	.487256
20	.3212383	.0610735	5.26	0.000	.2015365	.4409401
21	.3705176	.0613859	6.04	0.000	.2502034	.4908318
22	.2961327	.064386	4.60	0.000	.1699384	.422327
23	.4326418	.0643742	6.72	0.000	.3064708	.5588128
24	.4652079	.0634058	7.34	0.000	.3409348	.589481
25	.4177068	.06014	6.95	0.000	.2998346	.5355789
26	.4311588	.0594285	7.26	0.000	.3146811	.5476364
27	.4058235	.0594537	6.83	0.000	.2892964	.5223506
28	.4366711	.0598031	7.30	0.000	.3194591	.553883
29	.3917004	.0613219	6.39	0.000	.2715117	.5118891
30	.2705193	.0621799	4.35	0.000	.148649	.3923896
31	.3349806	.0642279	5.22	0.000	.2090961	.460865
32	.3482308	.0624717	5.57	0.000	.2257885	.470673
33	.3740918	.0651803	5.74	0.000	.2463408	.5018428
34	.3213713	.0617075	5.21	0.000	.2004268	.4423158
35	.1927356	.0648614	2.97	0.003	.0656097	.3198615

36	.2599297	.062937	4.13	0.000	.1365755	.3832839
37	.2488479	.062429	3.99	0.000	.1264893	.3712065
38	.2871127	.0629214	4.56	0.000	.1637891	.4104362
39	.3189029	.0673292	4.74	0.000	.18694	.4508657
40	.2985239	.0608145	4.91	0.000	.1793296	.4177182
41	.4151462	.0607946	6.83	0.000	.295991	.5343013
42	.34454	.0669526	5.15	0.000	.2133154	.4757646
43	.4327315	.06044	7.16	0.000	.3142712	.5511918
44	.3658046	.0656925	5.57	0.000	.2370497	.4945595
45	.3166558	.066957	4.73	0.000	.1854225	.4478891
46	.3695593	.0608443	6.07	0.000	.2503067	.488812
47	.3352061	.0638767	5.25	0.000	.2100101	.4604021
48	.1142774	.0670617	1.70	0.088	0171612	.2457159
49	.0440881	.066076	0.67	0.505	0854185	.1735946
50	.1668414	.0677282	2.46	0.014	.0340967	.2995861
51	.0166614	.067446	0.25	0.805	1155303	.1488531
52	2049803	.0830177	-2.47	0.014	367692	0422686
Regional effect (Prague=baseline)						
Středočeský	4346634	.020924	-20.77	0.000	4756738	393653
Jihočeský	6904184	.0234857	-29.40	0.000	7364495	6443872
Plzeňský	5398663	.0272389	-19.82	0.000	5932535	486479
Ústecký	7881571	.021234	-37.12	0.000	829775	7465393
Královehradecký	-1.025839	.025032	-40.98	0.000	-1.074901	9767775
Jihomoravský	428582	.0223522	-19.17	0.000	4723914	3847726
Moravskoslezský	608943	.0194306	-31.34	0.000	6470264	5708597
Olomoucký	5898608	.0222801	-26.47	0.000	6335291	5461926
Zlínský	5954242	.0254856	-23.36	0.000	6453749	5454734
Vysočina	7716854	.0263921	-29.24	0.000	8234129	7199578
Pardubický	-1.146036	.0291709	-39.29	0.000	-1.20321	-1.088862
Liberecký	551891	.0248253	-22.23	0.000	6005477	5032344
Karlovarský	1863611	.0247606	-7.53	0.000	2348911	1378311
Constant	.9610288	.0539062	17.83	0.000	.8553746	1.066683

Appendix W: Regression table for the natural logarithms of weekly rates of frustrating the execution of an official decision as presented in column (5) of Table 11

Number of	obs =	312
F(61, 250) = 14	.91
Prob > F	= 0.0	000
R-squared	= 0.7	7810
Root MSE	= .1	1519

		Robust Std.				
	oefficient	Err.	t	P > t	95% Cor	ıf. Interval
Prohibition	0958687	.0363008	-2.64	0.009	1673631	0243744
Pre-prohibition Week 1&2	.129851	.0353312	3.68	0.000	.0602662	.1994357
Post-prohibition Week 1&2	0394302	.0365248	-1.08	0.281	1113657	.0325053
Post-prohibition Week 3&4	0001788	.0275699	-0.01	0.995	0544778	.0541202
Post-prohibition Week 5&6	.1593614	.0619698	2.57	0.011	.037312	.2814108
Year effects (2010=baseline)	0144067	0104574	0.70	0 422	0210551	0500404
2011 2012	.0144967	.0184574 .0206395	0.79	0.433	0218551 116508	.0508484
2012	0758586 .0741386	.0206395	-3.68 4.58	0.000 0.000	110508 .0422789	0352091 .1059982
2013	0644142	.0101703	4.38 -4.19	0.000	0946907	0341376
2014	3455559	.0133727	-4.19	0.000	4016233	2894885
Calendar week effect (1=basel		.0204075	12.14	0.000	.4010233	.2094009
2	.1726104	.1305382	1.32	0.187	0844843	.4297052
3	.2010596	.137572	1.46	0.145	0698882	.4720074
4	.1641106	.1398201	1.17	0.242	1112648	.439486
5	.2192161	.1332158	1.65	0.101	0431523	.4815844
6	.1425528	.1437886	0.99	0.322	1406387	.4257442
7	.1913553	.141375	1.35	0.177	0870826	.4697932
8	.2122241	.134557	1.58	0.116	0527856	.4772339
9	.26739	.1321277	2.02	0.044	.0071647	.5276154
10	.2476838	.1317298	1.88	0.061	0117579	.5071254
11	.2617677	.1319425	1.98	0.048	.0019071	.5216282
12	.2094128	.1318975	1.59	0.114	0503591	.4691847
13	.178842	.1341769	1.33	0.184	0854191	.4431031
14	.1391896	.1383548	1.01	0.315	1332999	.411679
15	.1895641	.1299748	1.46	0.146	0664211	.4455493
16	.1452788	.1376591	1.06	0.292	1258406	.4163982
17	.1430373	.1309921	1.09	0.276	1149514	.401026
18	.0924427	.1323433	0.70	0.486	1682071	.3530926
19	.0757529 .1127583	.1330956	0.57	0.570	1863787	.3378846
20 21	.1127583 .1442741	.132715 .1299927	0.85 1.11	0.396 0.268	1486237 1117463	.3741403 .4002945
22	.1373162	.1293927	1.06	0.289	1170811	.3917135
23	.1497245	.1382184	1.00	0.289	1224964	.4219454
24	.1061031	.129587	0.82	0.414	1491184	.3613245
25	.0701224	.1353219	0.52	0.605	1963939	.3366387
26	.1449263	.1361823	1.06	0.288	1232845	.4131371
27	.1271033	.1360186	0.93	0.351	1407852	.3949917
28	.1222628	.130217	0.94	0.349	1341994	.3787249
29	.0204256	.1304484	0.16	0.876	2364923	.2773435
30	.0391845	.1342172	0.29	0.771	2251562	.3035251
31	.0653448	.1333454	0.49	0.625	1972787	.3279683
32	.0066796	.1293412	0.05	0.959	2480578	.261417
33	.0284672	.1311884	0.22	0.828	2299082	.2868425
34	.0305514	.1358813	0.22	0.822	2370665	.2981693

35	.0399972	.1303283	0.31	0.759	2166841	.2966785
36	.0159808	.134285	0.12	0.905	2484933	.2804549
37	.0502333	.1328601	0.38	0.706	2114345	.311901
38	0022397	.1313434	-0.02	0.986	2609203	.2564409
39	.0897335	.1315302	0.68	0.496	1693149	.348782
40	.1055996	.1356393	0.78	0.437	1615418	.3727409
41	.1318136	.1327339	0.99	0.322	1296056	.3932328
42	.1030227	.1287679	0.80	0.424	1505855	.3566309
43	.0340655	.1310043	0.26	0.795	2239474	.2920783
44	.0405478	.1319968	0.31	0.759	2194196	.3005152
45	0315142	.1340461	-0.24	0.814	2955178	.2324895
46	0013765	.1402613	-0.01	0.992	2776208	.2748679
47	.00656	.135817	0.05	0.962	2609314	.2740514
48	109955	.1362584	-0.81	0.420	3783156	.1584057
49	1387185	.1432878	-0.97	0.334	4209235	.1434865
50	1625793	.1385761	-1.17	0.242	4355047	.1103462
51	2568847	.139767	-1.84	0.067	5321556	.0183862
52	5873818	.1980697	-2.97	0.003	9774796	1972839
Constant	.8852779	.1262174	7.01	0.000	.6366929	1.133863

Appendix X: Regression table for the natural logarithms of weekly rates of frustrating the execution of an official decision as presented in column (6) of Table 11

Number of obs = 312Wald chi2(61) = 1522.82Prob > chi2 = 0.0000Log pseudolikelihood = -440.35683Pseudo R2 = 0.0246

		Robust Std.				
	oefficient	Err.	t	P > t	95% Cor	ıf. Interval
Prohibition	0908795	.0294965	-3.08	0.002	1486915	0330674
Pre-prohibition Week 1&2	.1289894	.0304427	4.24	0.000	.0693229	.188656
Post-prohibition Week 1&2	0410379	.0321198	-1.28	0.201	1039916	.0219158
Post-prohibition Week 3&4	.0001434	.0254416	0.01	0.996	0497212	.0500079
Post-prohibition Week 5&6	.1599873	.0544435	2.94	0.003	.05328	.2666946
Year effects (2010=baseline)	0007454	04 427 47	0.47	0.027	0242225	0247224
2011 2012	.0067454	.0142747	0.47	0.637	0212325	.0347234
2012	0797926 .0708665	.0176754 .0136502	-4.51 5.19	0.000 0.000	1144357 .0441127	0451496 .0976204
2013	0677929	.0136302	-5.13	0.000	0937142	0418715
2014 2015	3223783	.0132234	-3.13 -14.32	0.000	3665156	278241
Calendar week effect (1=basel		.0225195	-14.52	0.000	3003130	278241
2	.1168837	.0922375	1.27	0.205	0638984	.2976659
3	.141043	.0973293	1.45	0.147	0497188	.3318049
4	.1032479	.0990232	1.04	0.297	0908339	.2973297
5	.1630418	.0934543	1.74	0.081	0201252	.3462089
6	.0876935	.1031938	0.85	0.395	1145627	.2899497
7	.1393598	.1000847	1.39	0.164	0568026	.3355223
8	.1547288	.0965519	1.60	0.109	0345094	.3439671
9	.2077823	.0919554	2.26	0.024	.027553	.3880116
10	.1938446	.0926147	2.09	0.036	.0123231	.3753661
11	.2072311	.0932983	2.22	0.026	.0243697	.3900925
12	.1529848	.0923334	1.66	0.098	0279853	.3339549
13	.1197684	.0941393	1.27	0.203	0647412	.304278
14	.0786589	.097897	0.80	0.422	1132157	.2705335
15	.1342221	.090951	1.48	0.140	0440387	.3124828
16	.0901526	.0984246	0.92	0.360	102756	.2830612
17	.0896038	.092369	0.97	0.332	0914362	.2706437
18	.042915	.0954909	0.45	0.653	1442437	.2300738
19	.0328766 .0597709	.0951273	0.35	0.730	1535695	.2193227
20 21	.0597709	.0940008 .0916383	0.64 1.00	0.525 0.315	1244674 0875773	.2440091 .2716383
22	.0920303	.0910383	0.95	0.343	0919661	.264141
22 23	.0920542	.0908455	0.95	0.345	1034351	.2875436
23	.0498574	.091056	0.55	0.584	128609	.2283238
25	.0109862	.095799	0.11	0.909	1767765	.1987488
26	.084803	.0968535	0.88	0.381	1050264	.2746323
27	.0738322	.0976213	0.76	0.449	1175021	.2651665
28	.0702761	.0920165	0.76	0.445	110073	.2506252
29	0375993	.0914712	-0.41	0.681	2168795	.141681
30	0200465	.0950201	-0.21	0.833	2062825	.1661894
31	.0077544	.0941707	0.08	0.934	1768167	.1923255
32	0464571	.0906856	-0.51	0.608	2241976	.1312834
33	0206256	.0930309	-0.22	0.825	2029629	.1617116
34	0105597	.0969178	-0.11	0.913	2005151	.1793957

35	0085514	.0917632	-0.09	0.926	1884039	.171301
36	0341429	.0958379	-0.36	0.722	2219817	.153696
37	0091665	.092652	-0.10	0.921	1907611	.172428
38	0579374	.0935473	-0.62	0.536	2412868	.125412
39	.0420815	.0924366	0.46	0.649	1390909	.2232539
40	.0595685	.0975213	0.61	0.541	1315697	.2507067
41	.0798755	.095007	0.84	0.400	1063347	.2660858
42	.0511013	.0900385	0.57	0.570	1253708	.2275735
43	0146635	.0937214	-0.16	0.876	198354	.169027
44	0052129	.0934652	-0.06	0.956	1884013	.1779755
45	0790949	.0962814	-0.82	0.411	267803	.1096133
46	0450074	.1034256	-0.44	0.663	2477178	.1577031
47	0340578	.0952176	-0.36	0.721	2206809	.1525653
48	1536963	.0999001	-1.54	0.124	3494968	.0421042
49	1722064	.104142	-1.65	0.098	3763211	.0319082
50	2023452	.0997234	-2.03	0.042	3977995	006891
51	2932254	.1037397	-2.83	0.005	4965514	0898994
52	56428	.1462083	-3.86	0.000	850843	277717
Constant	.9398005	.0882835	10.65	0.000	.766768	1.112833

Appendix Y: Regression table for the natural logarithms of weekly rates of frustrating the execution of an official decision as presented in column (7) of Table 11

Number of obs = 4368 F(75, 4292) = 74.87 Prob > F = 0.0000 R-squared = 0.5568 Root MSE = .35506						
		Robust Std.				
	Coefficient	Err.	t	P > t	95% Coi	nf. Interval
Prohibition	1290517	.0649634	-1.99	0.047	2564135	0016899
Prohibition*Treated	.1661448	.1512848	1.10	0.272	1304517	.4627412
Pre-prohibition Week 1&2	.1583822	.0582778	2.72	0.007	.0441275	.2726369
Post-prohibition Week 1&2	0385041	.0625713	-0.62	0.538	1611762	.084168
Post-prohibition Week 3&4	.0336735	.0582849	0.58	0.563	080595	.147942
Post-prohibition Week 5&6	.2077878	.0573779	3.62	0.000	.0952973	.3202783
Year effects (2010=baseline						
2011	.0130958	.0169328	0.77	0.439	0201013	.0462928
2012	0922381	.0184546	-5.00	0.000	1284187	0560576
2013	.0528764	.0169789	3.11	0.002	.019589	.0861639
2014	06525	.0174268	-3.74	0.000	0994156	0310845
2015	357888	.0206315	-17.35	0.000	3983364	3174396
Calendar week effect (1=bas	<i>,</i>					
2	.1522885	.0595079	2.56	0.011	.0356222	.2689548
3	.1775903	.0600202	2.96	0.003	.0599197	.2952609
4	.1222144	.0677134	1.80	0.071	0105389	.2549678
5	.213368	.0580255	3.68	0.000	.0996079	.327128
6	.1329527	.0619836	2.14	0.032	.0114328	.2544727
7	.1795373	.0614798	2.92	0.004	.059005	.3000696
8	.2019038	.0618688	3.26	0.001	.080609	.3231986
9	.2330461	.0607964	3.83	0.000	.1138538	.3522384
10	.217638	.0591442	3.68	0.000	.1016847	.3335913
11	.2742139	.0571379	4.80	0.000	.162194	.3862337
12	.2108854	.0579839	3.64	0.000	.097207	.3245638
13	.1676711	.059919	2.80	0.005	.0501989	.2851433
14	.1546306	.0588247	2.63	0.009	.0393039	.2699574
15	.2018952	.0584305	3.46	0.001	.0873412	.3164491
16	.1230853	.0591937	2.08	0.038	.0070351	.2391356
17	.1023755	.0620884	1.65	0.099	0193499	.224101
18	.0709213	.0581931	1.22		0431674	.1850099
19	.0303558	.063224	0.48	0.631	0935958	.1543075
20	.089091	.060472	1.47	0.141	0294654	.2076475
21	.1457794	.0599938	2.43	0.015	.0281604	.2633984
22	.1150096	.0606327	1.90	0.058	0038619	.2338811
23	.1332591	.0591185	2.25	0.024	.0173563	.2491619
24	.128896	.0571608	2.25	0.024	.0168312	.2409608
25	.0488195	.0580416	0.84	0.400	0649721	.1626111
26	.1341987	.0592361	2.27	0.024	.0180652	.2503322
27	.0961677	.0623623	1.54	0.123	0260948	.2184301
28	.1351246	.0562125	2.40	0.016	.024919	.2453303
29	.0308348	.0594815	0.52	0.604	0857796	.1474492
30	.0175792	.0625954	0.28	0.779	1051401	.1402986
31	.051012	.0652747	0.78	0.435	0769601	.1789841
32	0010496	.057425	-0.02	0.985	1136322	.1115331
33	.023527	.0619477	0.38	0.704	0979226	.1449767
34	.0048491	.0614871	0.08	0.937	1156975	.1253957

35	.0070247	.059243	0.12	0.906	1091223	.1231717
36	0252451	.0623303	-0.41	0.685	1474447	.0969545
37	.0156281	.0627172	0.25	0.803	1073301	.1385864
38	0001059	.0580955	-0.00	0.999	1140031	.1137914
39	.0815606	.0652689	1.25	0.212	0464003	.2095215
40	.0978043	.0656534	1.49	0.212	0309102	.2265189
40 41	.1164997	.0591501	1.49	0.130	.0005348	.2205185
41 42	.1047625	.0578225	1.97	0.049	0085996	.2324043
42	.0236606	.0592585	0.40	0.690	0925167	.1398379
44	.015903	.0608277	0.26	0.794	1033507	.1351568
45	0780128	.0585626	-1.33	0.183	1928259	.0368003
46	0473313	.0612026	-0.77	0.439	16732	.0726574
47	0156517	.0663061	-0.24	0.813	145646	.1143427
48	1308017	.0632675	-2.07	0.039	2548388	0067646
49	2030046	.0672065	-3.02	0.003	3347642	071245
50	2386437	.0668386	-3.57	0.000	3696819	1076056
51	3027704	.063416	-4.77	0.000	4270986	1784422
52	6461924	.0758829	-8.52	0.000	7949622	4974225
Regional effect (Prague=baseli						
Středočeský	1990234	.0173509	-11.47	0.000	23304	1650067
Jihočeský	5374074	.0248361	-21.64	0.000	5860989	4887159
Plzeňský	2618413	.0225926	-11.59	0.000	3061344	2175482
Ústecký	.1418396	.0189127	7.50	0.000	.1047608	.1789183
Královehradecký	6859658	.0258657	-26.52	0.000	7366759	6352557
Jihomoravský	6714295	.0211418	-31.76	0.000	7128784	6299805
Moravskoslezský	4648602	.0200145	-23.23	0.000	504099	4256214
Olomoucký	7999669	.0254149	-31.48	0.000	8497933	7501405
Zlínský	904606	.0279201	-32.40	0.000	9593439	8498682
Vysočina	8035254	.0278199	-28.88	0.000	8580668	7489839
Pardubický	8792892	.0289891	-30.33	0.000	9361229	8224556
Liberecký	1480597	.0234131	-6.32	0.000	1939615	1021578
Karlovarský	1064384	.0283992	-3.75	0.000	1621156	0507612
Constant	1.235776	.0496922	24.87	0.000	1.138354	1.333199

Appendix Z: Regression table for the natural logarithms of weekly rates of frustrating the execution of an official decision as presented in column (8) of Table 11

Number of obs = 4368 Wald chi2(75) = 6434.92 Prob > chi2 = 0.0000 Log pseudolikelihood = -6366 Pseudo R2 = 0.1041	5.2223					
		Robust Std.				
	Coefficient	Err.	t	P > t	95% Cor	nf. Interval
Prohibition	0961864	.0562561	-1.71	0.087	2064464	.0140736
Prohibition*Treated	.1191534	.1306166	0.91	0.362	1368505	.3751573
Pre-prohibition Week 1&2	.1470497	.051111	2.88	0.004	.0468739	.2472255
Post-prohibition Week 1&2	0486982	.0617662	-0.79	0.430	1697578	.0723614
Post-prohibition Week 3&4	.0194444	.0482896	0.40	0.687	0752016	.1140903
Post-prohibition Week 5&6	.2052342	.0574743	3.57	0.000	.0925867	.3178817
Year effects (2010=baseline))					
2011	.0074682	.015135	0.49	0.622	0221958	.0371322
2012	0889572	.0159995	-5.56	0.000	1203156	0575988
2013	.065147	.0153964	4.23	0.000	.0349706	.0953234
2014	0688227	.0156689	-4.39	0.000	0995333	0381122
2015	3269688	.0174799	-18.71	0.000	3612289	2927088
Calendar week effect (1=bas						
2	.1189408	.0491954	2.42	0.016	.0225196	.2153621
3	.1396364	.0519832	2.69	0.007	.0377511	.2415217
4	.1073378	.052985	2.03	0.043	.0034891	.2111865
5	.1860024	.0496646	3.75	0.000	.0886615	.2833432
6	.1117345	.0521581	2.14	0.032	.0095065	.2139625
7	.1586843	.0540044	2.94	0.003	.0528376	.2645309
8	.173091	.0551792	3.14	0.002	.0649419	.2812402
9	.2014593	.0480093	4.20	0.000	.1073628	.2955558
10	.1895265	.0502322	3.77	0.000	.0910733	.2879798
11	.2157873	.0486472	4.44	0.000	.1204406	.3111341
12	.1656022	.0505838	3.27	0.001	.0664597	.2647447
13	.1279834	.0517045	2.48	0.013	.0266445	.2293223
14	.0886395	.0498122	1.78	0.075	0089906	.1862697
15	.1518424	.0496242	3.06	0.002	.0545807	.2491041
16	.0910086	.0519763	1.75	0.080	0108631	.1928802
17	.0792727	.0508319	1.56	0.119	0203559	.1789014
18	.0398705	.0502291	0.79	0.427	0585767	.1383176
19	.0461042	.0518137	0.89	0.374	0554488	.1476572
20	.060727	.0510409	1.19	0.234	0393113	.1607653
21	.1337626	.0517829	2.58	0.010	.0322701	.2352552
22	.1001656	.0549638	1.82	0.068	0075616	.2078927
23	.0893522	.051419	1.74	0.082	0114273	.1901316
24	.061636	.0491177	1.25	0.210	0346329	.1579048
25	.0203864	.05155	0.40	0.692	0806497	.1214225
26	.0963196	.050482	1.91	0.056	0026233	.1952625
27	.0643145	.0492637	1.31	0.192	0322405	.1608695
28	.0872734	.0486594	1.79	0.073	0080974	.1826441
29	0097959	.0533034	-0.18	0.854	1142687	.0946768
30	0084042	.0502488	-0.17	0.867	1068901	.0900817
31	.00723	.0514372	0.14	0.888	0935851	.108045
32	0434886	.0476893	-0.91	0.362	1369579	.0499808
33	0053087	.0509366	-0.10	0.917	1051427	.0945252
34	006422	.0500072	-0.13	0.898	1044342	.0915903

35	0134447	.050028	-0.27	0.788	1114977	.0846084
36	0464792	.0521459	-0.89	0.373	1486833	.0557249
37	0142963	.0530362	-0.27	0.788	1182453	.0896526
38	0446467	.0490465	-0.91	0.363	1407761	.0514827
39	.0579172	.0526379	1.10	0.271	0452513	.1610857
40	.0822837	.05486	1.50	0.134	02524	.1898074
41	.070683	.0505266	1.40	0.162	0283473	.1697134
42	.0574833	.0499516	1.15	0.250	0404201	.1553866
43	01684	.0529619	-0.32	0.751	1206434	.0869634
44	003143	.0552534	-0.06	0.955	1114376	.1051517
45	1135281	.0518799	-2.19	0.029	2152108	0118454
46	0452164	.0525641	-0.86	0.390	1482401	.0578074
47	0166217	.0515616	-0.32	0.747	1176805	.0844371
48	1488619	.0508924	-2.93	0.003	2486091	0491147
49	1814051	.05461	-3.32	0.001	2884386	0743715
50	2149139	.0503162	-4.27	0.000	3135319	1162959
51	3198577	.0567025	-5.64	0.000	4309925	2087229
52	5842839	.0634566	-9.21	0.000	7086566	4599112
Regional effect (Prague=basel	ine)					
Středočeský	2010172	.0166962	-12.04	0.000	2337411	1682933
Jihočeský	5071347	.02227	-22.77	0.000	550783	4634864
Plzeňský	237409	.0203913	-11.64	0.000	2773753	1974427
Ústecký	.1494732	.0182022	8.21	0.000	.1137976	.1851488
Královehradecký	6446301	.0231852	-27.80	0.000	6900723	599188
Jihomoravský	6503284	.0199852	-32.54	0.000	6894986	6111582
Moravskoslezský	4667387	.018697	-24.96	0.000	503384	4300933
Olomoucký	7595892	.0233169	-32.58	0.000	8052895	7138889
Zlínský	8553615	.0244155	-35.03	0.000	9032151	8075079
Vysočina	7340221	.0253483	-28.96	0.000	7837038	6843405
Pardubický	8207534	.0266861	-30.76	0.000	8730572	7684497
Liberecký	1183912	.0210805	-5.62	0.000	1597082	0770742
, Karlovarský	0225543	.0252543	-0.89	0.372	0720518	.0269433
Constant	1.279178	.0423461	30.21	0.000	1.196181	1.362175

Appendix AA: Regression table for the yearly differences in aggregate property crime as presented in column (1) of Table 13

Number of	obs = 728
F(15, 712) = 7.37
Prob > F	= 0.0000
R-squared	= 0.1268
Root MSE	= 4.2402

K001 MBE = 4.2402						
					95%	
		Robust			Conf.	
	Coefficient	Std. Err.	t	P > t	Interval	Coefficient
Prohibition*Treated	1.142371	1.346267	0.85	0.396	-1.500757	3.7855
Prohibition	42924	.6370867	-0.67	0.501	-1.680033	.8215532
Regional trend (Prague=baseli	ne)					
Středočeský	1.819034	.9774889	1.86	0.063	1000711	3.73814
Jihočeský	1.539479	.9939101	1.55	0.122	4118657	3.490824
Plzeňský	.863714	.9805981	0.88	0.379	-1.061496	2.788924
Ústecký	8671824	1.115487	-0.78	0.437	-3.057219	1.322854
Královehradecký	3.372339	.9613343	3.51	0.000	1.48495	5.259728
Jihomoravský	3.724652	.9650869	3.86	0.000	1.829895	5.619408
Moravskoslezský	.9075878	1.13979	0.80	0.426	-1.330163	3.145339
Olomoucký	3.004858	1.005875	2.99	0.003	1.030023	4.979694
Zlínský	3.392022	.95485	3.55	0.000	1.517363	5.26668
Vysočina	4.604543	.9453288	4.87	0.000	2.748577	6.460508
Pardubický	3.676419	.956614	3.84	0.000	1.798297	5.55454
Liberecký	3.344176	1.199866	2.79	0.005	.9884768	5.699876
Karlovarský	3.80866	1.143897	3.33	0.001	1.562845	6.054475
Constant	-3.992139	.863298	-4.62	0.000	-5.687053	-2.297225

Appendix AB: Regression table for the yearly differences in burglaries into bars and restaurants

as presented in column (2) of Table 13

Number of obs = 728F(15, 712) = 4.60 Prob > F = 0.0000 R-squared = 0.0821 Root MSE = .40521

100010000 = .40321						
					95%	
		Robust			Conf.	
	Coefficient	Std. Err.	t	P> t	Interval	Coefficient
Prohibition*Treated	3231642	.1956446	-1.65	0.099	7072735	.060945
Prohibition	.0424477	.0572159	0.74	0.458	0698844	.1547797
Regional trend (Prague=base	line)					
Středočeský	.1613533	.0651727	2.48	0.014	.0333996	.2893071
Jihočeský	.2894781	.0803337	3.60	0.000	.1317589	.4471973
Plzeňský	.2426717	.091434	2.65	0.008	.0631591	.4221842
Ústecký	.0614939	.0721852	0.85	0.395	0802273	.2032152
Královehradecký	.1338724	.0811071	1.65	0.099	0253654	.2931101
Jihomoravský	.3286789	.0719044	4.57	0.000	.1875089	.4698489
Moravskoslezský	.0309742	.0751443	0.41	0.680	1165566	.178505
Olomoucký	.419643	.0924588	4.54	0.000	.2381185	.6011675
Zlínský	.3293829	.0806076	4.09	0.000	.171126	.4876398
Vysočina	.2599601	.0707842	3.67	0.000	.1209893	.3989309
Pardubický	.1697812	.0762989	2.23	0.026	.0199835	.319579
Liberecký	.2130445	.0778562	2.74	0.006	.0601893	.3658996
Karlovarský	.1398528	.1028374	1.36	0.174	0620479	.3417535
Constant	1984044	.0579526	-3.42	0.001	3121827	084626

Appendix AC: Regression table for the natural logarithms of weekly rates of aggregate property crime as presented in column (1) of Table 14

Number of obs = 4368 F(75, 4292) = 43.02 Prob > F = 0.0000 R-squared = 0.3514 Root MSE = $.48863$						
		Robust Std.				
	Coefficient	Err.	t	P > t	95% Cor	nf. Interval
Prohibition	0649368	.0861142	-0.75	0.451	2337652	.1038915
Prohibition*Treated	2421076	.1750425	-1.38	0.167	5852813	.1010662
Pre-prohibition Week 1&2	.0089288	.0793733	0.11	0.910	1466838	.1645414
Post-prohibition Week 1&2	1254309	.0665709	-1.88	0.060	2559443	.0050825
Post-prohibition Week 3&4	2011062	.094576	-2.13	0.034	3865241	0156882
Post-prohibition Week 5&6	1037394	.0870353	-1.19	0.233	2743736	.0668949
Year effects (2010=baseline	e)					
2011	.0087055	.0234587	0.37	0.711	0372858	.0546967
2012	0365467	.0253686	-1.44	0.150	0862822	.0131889
2013	.0030106	.0248385	0.12	0.904	0456857	.0517068
2014	.1100681	.0247966	4.44	0.000	.0614539	.1586824
2015	.0065305	.0312653	0.21	0.835	0547657	.0678267
Calendar week effect (1=ba						
2	.2613474	.0799401	3.27	0.001	.1046235	.4180714
3	.2543667	.0783333	3.25	0.001	.1007931	.4079404
4	.3074958	.074827	4.11	0.000	.1607961	.4541954
5	.2736967	.0743934	3.68	0.000	.1278472	.4195463
6	.2978726	.0764162	3.90	0.000	.1480573	.4476879
7	.3843108	.0725487	5.30	0.000	.2420779	.5265437
8	.4545625	.0716347	6.35	0.000	.3141215	.5950036
9	.4206878	.0704496	5.97	0.000	.2825702	.5588054
10	.442175	.0712428	6.21	0.000	.3025022	.5818478
10	.5129713	.0758568	6.76	0.000	.3642528	.6616899
12	.4635076	.0715167	6.48	0.000	.3232978	.6037173
13	.343479	.0730469	4.70	0.000	.2002693	.4866888
13	.4108837	.0724117	5.67	0.000	.2689194	.552848
15	.4668193	.0715567	6.52	0.000	.3265313	.6071074
16	.4178415	.0680166	6.14	0.000	.2844937	.5511892
17	.4363139	.0716279	6.09	0.000	.2958863	.5767416
18	.3998869	.0710279	5.65	0.000	.2958885	.5385448
19			5.97			.5693541
20	.4286225 .3903899	.0717829 .0696607	5.60	0.000 0.000	.2878909 .253819	.5269608
20				0.000		.6055719
	.4700794	.0691106	6.80		.334587	
22	.3548428	.0712299	4.98	0.000	.2151954	.4944903
23	.4839845	.0731595	6.62	0.000	.3405541	.627415
24	.5126964	.0716963	7.15	0.000	.3721346	.6532582
25	.5013823	.067102	7.47	0.000	.3698276	.632937
26	.5184473	.0674616	7.69	0.000	.3861877	.6507068
27	.4813572	.0670934	7.17	0.000	.3498194	.612895
28	.4943117	.0690975	7.15	0.000	.3588448	.6297786
29	.4566147	.0703372	6.49	0.000	.3187175	.594512
30	.3349662	.0706469	4.74	0.000	.1964619	.4734706
31	.3864665	.0733323	5.27	0.000	.2426973	.5302356
32	.4194449	.0682683	6.14	0.000	.2856037	.5532861
33	.4124375	.0705028	5.85	0.000	.2742156	.5506594
34	.3632751	.0709264	5.12	0.000	.2242226	.5023276

35	.2527959	.0725206	3.49	0.000	.110618	.3949737
36	.3263691	.0719029	4.54	0.000	.1854022	.467336
37	.3065231	.0723331	4.24	0.000	.1647127	.4483334
38	.3254909	.072007	4.52	0.000	.1843199	.4666618
39	.2823296	.1220831	2.31	0.021	.0429835	.5216757
40	.3587228	.0704197	5.09	0.000	.2206637	.4967818
41	.487161	.0701416	6.95	0.000	.3496471	.6246749
42	.3831456	.0764355	5.01	0.000	.2332925	.5329987
43	.4893844	.0693621	7.06	0.000	.3533988	.6253699
44	.4062425	.0746201	5.44	0.000	.2599485	.5525364
45	.3279451	.0765574	4.28	0.000	.177853	.4780373
46	.4270307	.0694687	6.15	0.000	.2908362	.5632253
47	.3488385	.074344	4.69	0.000	.2030858	.4945912
48	.0734524	.1137295	0.65	0.518	1495161	.2964209
49	.0542563	.0745284	0.73	0.467	091858	.2003705
50	.1801584	.079204	2.27	0.023	.0248777	.3354392
51	0385803	.1156944	-0.33	0.739	265401	.1882405
52	5443919	.1834209	-2.97	0.003	9039917	1847921
Regional effect (Prague=baseli	ine)					
Středočeský	4627934	.0224288	-20.63	0.000	5067656	4188213
Jihočeský	7636591	.0344167	-22.19	0.000	8311337	6961845
Plzeňský	6346846	.0367834	-17.25	0.000	7067991	56257
Ústecký	82089	.0232905	-35.25	0.000	8665515	7752285
Královehradecký	-1.096824	.0293657	-37.35	0.000	-1.154396	-1.039252
Jihomoravský	4779931	.0245476	-19.47	0.000	526119	4298672
Moravskoslezský	6357125	.0222768	-28.54	0.000	6793866	5920385
Olomoucký	6297464	.0250688	-25.12	0.000	6788942	5805986
Zlínský	6786748	.0286911	-23.65	0.000	7349242	6224255
Vysočina	885143	.042457	-20.85	0.000	9683807	8019053
Pardubický	-1.270042	.0393919	-32.24	0.000	-1.347271	-1.192814
Liberecký	6327853	.0372737	-16.98	0.000	7058609	5597096
Karlovarský	2856722	.0372423	-7.67	0.000	3586864	2126581
Constant	.8952351	.062359	14.36	0.000	.7729793	1.017491

Appendix AD: Regression table for the natural logarithms of weekly rates of aggregate property crime as presented in column (2) of Table 14

Number of obs = 4368 Wald chi2(75) = 4438.88 Prob > chi2 = 0.0000 Log pseudolikelihood = -6099 Pseudo R2 = 0.0691	9.5443					
		Robust Std.				
	Coefficient	Err.	t	P > t	95% Cor	nf. Interval
Prohibition	0876653	.0706829	-1.24	0.215	2262012	.0508706
Prohibition*Treated	1897861	.1224523	-1.55	0.121	4297881	.050216
Pre-prohibition Week 1&2	.0479637	.0708907	0.68	0.499	0909796	.186907
Post-prohibition Week 1&2	0902404	.0619526	-1.46	0.145	2116653	.0311846
Post-prohibition Week 3&4	1433253	.077112	-1.86	0.063	294462	.0078114
Post-prohibition Week 5&6	0595282	.0800635	-0.74	0.457	2164498	.0973935
Year effects (2010=baseline)					
2011	0325157	.0189392	-1.72	0.086	0696359	.0046045
2012	0778309	.0208507	-3.73	0.000	1186975	0369644
2013	0209233	.0191852	-1.09	0.275	0585255	.016679
2014	.0877881	.0187724	4.68	0.000	.0509949	.1245814
2015	.0469472	.0198559	2.36	0.018	.0080303	.0858642
Calendar week effect (1=bas	seline)					
2	.25771	.069086	3.73	0.000	.122304	.3931161
3	.2651566	.0652021	4.07	0.000	.1373629	.3929503
4	.2756082	.0674392	4.09	0.000	.1434299	.4077866
5	.2555127	.065463	3.90	0.000	.1272077	.3838178
6	.277945	.0642611	4.33	0.000	.1519956	.4038945
7	.3254178	.0619472	5.25	0.000	.2040035	.4468321
8	.3969541	.0636038	6.24	0.000	.2722929	.5216152
9	.3632781	.0635206	5.72	0.000	.2387801	.4877762
10	.3859455	.0599042	6.44	0.000	.2685355	.5033555
11	.4772882	.0666136	7.17	0.000	.346728	.6078483
12	.3952131	.0622491	6.35	0.000	.2732071	.517219
13	.2981674	.0640845	4.65	0.000	.1725641	.4237706
14	.3577137	.0642254	5.57	0.000	.2318343	.4835931
15	.4188945	.0635686	6.59	0.000	.2943022	.5434867
16	.3643962	.0616717	5.91	0.000	.2435219	.4852705
17	.3767616	.062651	6.01	0.000	.2539678	.4995553
18	.3295191	.0635767	5.18	0.000	.2049111	.4541272
19	.3698884	.0598825	6.18	0.000	.2525209	.487256
20	.3212383	.0610735	5.26	0.000	.2015365	.4409401
21	.3705176	.0613859	6.04	0.000	.2502034	.4908318
22	.2961327	.064386	4.60	0.000	.1699384	.422327
23	.4326418	.0643742	6.72	0.000	.3064708	.5588128
24	.4652079	.0634058	7.34	0.000	.3409348	.589481
25	.4177068	.06014	6.95	0.000	.2998346	.5355789
26	.4311588	.0594285	7.26	0.000	.3146811	.5476364
27	.4058235	.0594537	6.83	0.000	.2892964	.5223506
28	.4366711	.0598031	7.30	0.000	.3194591	.553883
29	.3917004	.0613219	6.39	0.000	.2715117	.5118891
30	.2705193	.0621799	4.35	0.000	.148649	.3923896
31	.3349806	.0642279	5.22	0.000	.2090961	.460865
32	.3482308	.0624717	5.57	0.000	.2257885	.470673
33	.3740918	.0651803	5.74	0.000	.2463408	.5018428
34	.3213713	.0617075	5.21	0.000	.2004268	.4423158

35	.1927356	.0648614	2.97	0.003	.0656097	.3198615
36	.2599297	.062937	4.13	0.000	.1365755	.3832839
37	.2488479	.062429	3.99	0.000	.1264893	.3712065
38	.2488479	.0629214	4.56	0.000	.1637891	.4104362
39	.3189029	.0673292	4.30	0.000	.18694	.4508657
40		.0608145	4.74 4.91	0.000	.1793296	
	.2985239					.4177182
41	.4151462	.0607946	6.83	0.000	.295991	.5343013
42	.34454	.0669526	5.15	0.000	.2133154	.4757646
43	.4327315	.06044	7.16	0.000	.3142712	.5511918
44	.3658046	.0656925	5.57	0.000	.2370497	.4945595
45	.3166558	.066957	4.73	0.000	.1854225	.4478891
46	.3695593	.0608443	6.07	0.000	.2503067	.488812
47	.3352061	.0638767	5.25	0.000	.2100101	.4604021
48	.1142774	.0670617	1.70	0.088	0171612	.2457159
49	.0440881	.066076	0.67	0.505	0854185	.1735946
50	.1668414	.0677282	2.46	0.014	.0340967	.2995861
51	.0166614	.067446	0.25	0.805	1155303	.1488531
52	2049803	.0830177	-2.47	0.014	367692	0422686
Regional effect (Prague=baseli	ine)					
Středočeský	4346634	.020924	-20.77	0.000	4756738	393653
Jihočeský	6904184	.0234857	-29.40	0.000	7364495	6443872
Plzeňský	5398663	.0272389	-19.82	0.000	5932535	486479
Ústecký	7881571	.021234	-37.12	0.000	829775	7465393
Královehradecký	-1.025839	.025032	-40.98	0.000	-1.074901	9767775
Jihomoravský	428582	.0223522	-19.17	0.000	4723914	3847726
Moravskoslezský	608943	.0194306	-31.34	0.000	6470264	5708597
Olomoucký	5898608	.0222801	-26.47	0.000	6335291	5461926
Zlínský	5954242	.0254856	-23.36	0.000	6453749	5454734
, Vysočina	7716854	.0263921	-29.24	0.000	8234129	7199578
Pardubický	-1.146036	.0291709	-39.29	0.000	-1.20321	-1.088862
Liberecký	551891	.0248253	-22.23	0.000	6005477	5032344
Karlovarský	1863611	.0247606	-7.53	0.000	2348911	1378311
Constant	.9610288	.0539062	17.83	0.000	.8553746	1.066683
Constant	.5010200		17.00	5.000	10000740	1.000000

Appendix AE: Regression table for the natural logarithms of weekly rates of burglaries into bars and restaurants as presented in column (3) of Table 14

Number of obs = 4368 F(75, 4292) = 13.39 Prob > F = 0.0000 R-squared = 0.1723 Root MSE = 2.0352						
		Robust Std.				
	Coefficient	Err.	t	P > t	95% Cor	nf. Interval
Prohibition	.4032824	.374667	1.08	0.282	3312585	1.137823
Prohibition*Treated	7937861	.6694431	-1.19	0.236	-2.106241	.5186684
Pre-prohibition Week 1&2	9082899	.4422817	-2.05	0.040	-1.775391	0411893
Post-prohibition Week 1&2		.3803993	0.59	0.557	5224827	.969076
Post-prohibition Week 3&4		.3835476	1.11	0.268	327133	1.17677
Post-prohibition Week 5&6		.3535457	0.41	0.683	5485382	.8377264
Year effects (2010=baselin	e)					
2011	37191	.1003803	-3.71	0.000	5687072	1751128
2012	2123832	.1026265	-2.07	0.039	4135842	0111823
2013	225278	.0962125	-2.34	0.019	4139043	0366517
2014	7865116	.1047688	-7.51	0.000	9919127	5811105
2015	-1.668101	.1121325	-14.88	0.000	-1.887939	-1.448263
Calendar week effect (1=ba						
2	1086902	.313575	-0.35	0.729	7234593	.5060788
3	1602482	.3083579	-0.52	0.603	7647892	.4442927
4	1549835	.3046946	-0.51	0.611	7523425	.4423754
5	0653809	.3092809	-0.21	0.833	6717314	.5409695
6	2985155	.3166748	-0.94	0.346	9193617	.3223307
7	1828508	.307962	-0.59	0.553	7866156	.4209139
8	.0537172	.2856739	0.19	0.851	5063514	.6137857
9	2468054	.3076992	-0.80	0.423	8500549	.3564441
10	4118047	.3139862	-1.31	0.190	-1.02738	.2037705
11	1243675	.3025663	-0.41	0.681	7175539	.4688189
12	5869327	.324667	-1.81	0.071	-1.223448	.0495825
13	.094037	.2976822	0.32	0.752	489574	.677648
14	2483275	.2976339	-0.83	0.404	8318437	.3351887
15	1983151	.311887	-0.64	0.525	8097748	.4131446
16	2472922	.3110103	-0.80	0.427	8570331	.3624487
17	.1830572	.2876695	0.64	0.525	3809237	.7470382
18	.0156864	.2827921	0.06	0.956	5387322	.570105
19	3259013	.3126768	-1.04	0.297	9389094	.2871067
20	4566218	.3125215	-1.46	0.144	-1.069326	.156082
21	2930995	.3166183	-0.93	0.355	913835	.327636
22	0262458	.2946825	-0.09	0.929	6039759	.5514843
23	6731666	.3350366	-2.01	0.045	-1.330011	0163217
24	6534765	.3253396	-2.01	0.045	-1.29131	0156427
25	1663902	.307785	-0.54	0.589	7698078	.4370274
26	.1357688	.286006	0.47	0.635	4249507	.6964883
27	1254056	.3082223	-0.41	0.684	7296807	.4788695
28	0763901	.2963429	-0.26	0.797	6573753	.5045951
29	1481313	.3132948	-0.47	0.636	762351	.4660884
30	0949761	.3094245	-0.31	0.759	701608	.5116558
31	.2117686	.27677	0.77	0.444	3308437	.7543809
32	3817128	.3079444	-1.24	0.215	9854429	.2220174
33	0443595	.2993177	-0.15	0.882	631177	.542458
34	1017248	.3035776	-0.34	0.738	6968938	.4934442

35	.3991704	.2868543	1.39	0.164	1632123	.961553
36	.162631	.3170648	0.51	0.608	4589799	.7842418
37	2222558	.3135501	-0.71	0.478	8369761	.3924645
38	6920724	.3368799	-2.05	0.040	-1.352531	0316138
39	4996237	.3199251	-1.56	0.118	-1.126842	.1275948
40	0868215	.3106033	-0.28	0.780	6957646	.5221215
40	412302	.319659	-1.29	0.197	-1.038999	.2143949
42	6157806	.3354286	-1.84	0.066	-1.273394	.0418329
43	1858552	.325685	-0.57	0.568	8243661	.4526556
44	0327536	.3162122	-0.10	0.918	6526929	.5871858
45	2064308	.3098023	-0.67	0.505	8138033	.4009418
46	.0438563	.2865172	0.15	0.878	5178655	.6055781
47	5404619	.3168461	-1.71	0.088	-1.161644	.0807203
48	.0041548	.2923456	0.01	0.989	5689937	.5773033
49	7035064	.3244849	-2.17	0.030	-1.339665	0673483
50	2298943	.2847108	-0.81	0.419	7880746	.3282861
51	1845216	.2982295	-0.62	0.536	7692056	.4001625
52	2064505	.3173048	-0.65	0.515	8285319	.415631
Regional effect (Prague=basel						
Středočeský	3656371	.0708608	-5.16	0.000	5045609	2267133
Jihočeský	9025062	.1256328	-7.18	0.000	-1.148811	6562011
, Plzeňský	-1.193031	.1428566	-8.35	0.000	-1.473103	9129578
Ústecký	8114066	.1097437	-7.39	0.000	-1.026561	5962522
Královehradecký	-1.782842	.1478739	-12.06	0.000	-2.072752	-1.492933
Jihomoravský	427749	.085541	-5.00	0.000	5954535	2600445
Moravskoslezský	.0972406	.0682235	1.43	0.154	0365128	.230994
Olomoucký	5292246	.1116503	-4.74	0.000	7481169	3103323
Zlínský	-1.245004	.1360986	-9.15	0.000	-1.511827	9781799
Vysočina	-2.019278	.1553737	-13.00	0.000	-2.32389	-1.714665
Pardubický	-1.592392	.1445571	-11.02	0.000	-1.875799	-1.308986
Liberecký	-1.556854	.152536	-10.21	0.000	-1.855904	-1.257805
Karlovarský	-2.041176	.1703868	-11.98	0.000	-2.375222	-1.707129
Constant	1417623	.2230223	-0.64	0.525	5790013	.2954768

Appendix AF: Regression table for the natural logarithms of weekly rates of burglaries into bars and restaurants as presented in column (4) of Table 14

Number of obs = 4368 Wald chi2(75) = 937.98 Prob > chi2 = 0.0000 Log pseudolikelihood = -2843.9099 Pseudo R2 = 0.0286										
		Robust Std.		D III		6 T . 1				
N 1911	Coefficient	Err.	t	P> t		nf. Interval				
Prohibition	.074404	.1180178	0.63	0.528	1569067	.3057146				
Prohibition*Treated	3735416	.2796363	-1.34	0.182	9216188	.1745355				
Pre-prohibition Week 1&2	3251115	.1460232	-2.23	0.026	6113117	0389112				
Post-prohibition Week 1&2		.1390588	0.41	0.679	2150261	.3300742				
Post-prohibition Week 3&4		.159064	0.23	0.817	2749698	.3485497				
Post-prohibition Week 5&6 Year effects (2010=baseline		.1325364	-0.04	0.965	2656188	.2539144				
2011	1187541	.0346641	-3.43	0.001	1866944	0508138				
2012	1119434	.0390432	-2.87	0.004	1884667	0354202				
2013	1112276	.0354172	-3.14	0.002	180644	0418111				
2014	3749959	.0373388	-10.04	0.000	4481785	3018132				
2015	7551878	.0421813	-17.90	0.000	8378616	672514				
Calendar week effect (1=baseline)										
2	1276922	.104891	-1.22	0.223	3332749	.0778904				
3	2039794	.1074725	-1.90	0.058	4146217	.0066628				
4	0998319	.1087222	-0.92	0.358	3129234	.1132597				
5	1243601	.1092765	-1.14	0.255	3385381	.0898179				
6	1914886	.1054215	-1.82	0.069	3981109	.0151338				
7	1355967	.1084363	-1.25	0.211	3481278	.0769345				
8	2087403	.1032744	-2.02	0.043	4111545	0063261				
9	1961319	.1028643	-1.91	0.057	3977422	.0054784				
10	2325186	.1048691	-2.22	0.027	4380583	0269789				
11	2018391	.1117149	-1.81	0.071	4207963	.0171182				
12	286892	.1154613	-2.48	0.013	513192	0605919				
13	1134556	.1038505	-1.09	0.275	3169989	.0900877				
14	2131482	.1066527	-2.00	0.046	4221836	0041128				
15	1471135	.1069682	-1.38	0.169	3567674	.0625405				
16	0705061	.1032315	-0.68	0.495	2728361	.1318239				
17	0856027	.1009816	-0.85	0.397	283523	.1123176				
18	1234539	.0983445	-1.26	0.209	3162056	.0692979				
19	2204195	.1045135	-2.11	0.035	4252622	0155767				
20	3173757	.1169021	-2.71	0.007	5464996	0882517				
21	1682383	.121153	-1.39	0.165	4056938	.0692171				
22	1359765	.0991832	-1.37	0.170	330372	.0584189				
23	2201022	.1271479	-1.73	0.083	4693076	.0291032				
24	2806241	.1161359	-2.42	0.016	5082462	053002				
25	1157325	.1094023	-1.06	0.290	3301571	.0986922				
26	0676699	.1016141	-0.67	0.505	2668298	.1314901				
27	071266	.1076293	-0.66	0.508	2822156	.1396836				
28	2025557	.1018673	-1.99	0.047	4022119	0028996				
29	1342753	.1052525	-1.28	0.202	3405664	.0720159				
30	0926985	.1088665	-0.85	0.394	3060729	.1206758				
31	0128809	.1045586	-0.12	0.902	2178119	.1920502				
32	2482114	.1075341	-2.31	0.021	4589744	0374484				
33	1132017	.1080689	-1.05	0.295	3250129	.0986094				
34	0491354	.107776	-0.46	0.648	2603725	.1621017				

35	.0278072	.1031264	0.27	0.787	1743167	.2299312
36	.0488965	.1031204	0.27	0.640	1562772	.2540702
37	1184471	.1040824	-1.12	0.265	3265658	.0896716
38	2362893	.1183558	-2.00	0.205	4682624	0043163
39	2630655	.1105046	-2.38	0.040	4796506	0464804
40	1308989	.1089718	-2.38	0.230	4790300	0404804 .0826819
40 41	3400829	.1188646	-2.86	0.230	5730533	1071125
41 42	3400829 2497746	.1188646	-2.80	0.004	4717637	0277855
42	0758019	.1135842	-2.21	0.505	2984229	0277833
44	020303	.1014087	-0.20	0.841	2190605	.1784545
45	2048959	.1148471	-1.78	0.074	4299922	.0202003
46	1476694	.1013924	-1.46	0.145	3463948	.051056
47	2563686	.1061387	-2.42	0.016	4643967	0483405
48	1353909	.1053931	-1.28	0.199	3419577	.0711758
49	2641637	.1246929	-2.12	0.034	5085574	0197701
50	3431347	.106034	-3.24	0.001	5509574	135312
51	1899644	.1138597	-1.67	0.095	4131253	.0331965
52	0722239	.1114674	-0.65	0.517	290696	.1462481
Regional effect (Prague=basel	ine)					
Středočeský	3588128	.0414486	-8.66	0.000	4400506	277575
Jihočeský	266272	.052523	-5.07	0.000	3692153	1633287
Plzeňský	2575424	.0551538	-4.67	0.000	3656418	149443
Ústecký	2917848	.047249	-6.18	0.000	3843912	1991784
Královehradecký	5646707	.0582001	-9.70	0.000	6787407	4506006
Jihomoravský	320759	.0448921	-7.15	0.000	4087458	2327722
Moravskoslezský	.0894415	.038725	2.31	0.021	.0135418	.1653412
Olomoucký	0945687	.0499055	-1.89	0.058	1923817	.0032443
Zlínský	4596805	.0529935	-8.67	0.000	5635458	3558152
Vysočina	6505315	.0603237	-10.78	0.000	7687639	5322992
Pardubický	4692267	.0574251	-8.17	0.000	5817777	3566756
Liberecký	4134984	.0582503	-7.10	0.000	5276668	2993299
Karlovarský	3742126	.0632712	-5.91	0.000	498222	2502033
Constant	3085736	.0807117	-3.82	0.000	4667656	1503816