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Abstract
The main objective of this thesis is to investigate whether multivariate models using High-
frequency data provide significantly more accurate forecasts of Value at Risk and Expected
Shortfall than multivariate models using only daily data. Our objective is very topical since the
Basel Committee announced in 2013 that is going to change the risk measure used for calculation
of capital requirement from Value at Risk to Expected Shortfall. The further improvement of
accuracy of both risk measures can be also achieved by incorporation of high-frequency data
that are rapidly more available due to significant technological progress. Therefore, we employed
parsimonious Heterogeneous Autoregression and its asymmetric version that uses high-frequency
data for the modeling of realized covariance matrix. The benchmark models are chosen well es-
tablished DCC-GARCH and EWMA. The computation of Value at Risk (VaR) and Expected
Shortfall (ES) is done through parametric, semi-parametric and Monte Carlo simulations. The
loss distributions are represented by multivariate Gaussian, Student’s t, multivariate distributions
simulated by Copula functions and multivariate filtered historical simulations. There are used
univariate loss distributions: Generalized Pareto Distribution from EVT, empirical and standard
parametric distributions. The main finding is that Heterogeneous Autoregression model using
high-frequency data delivered superior or at least the same accuracy of forecasts of VaR to bench-
mark models based on daily data. Finally, the backtesting of ES remains still very challenging
and applied Test I. and II. did not provide credible validation of the forecasts.
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Abstrakt
Hlavním cílem této práce je zjistit, zda vícerozměrné modely s použitím vysokofrekvenčních dat
poskytují výrazně přesnější předpovědi Value at Risk a Expected Shortfall než vícerozměrné
modely pouze s pomocí denních data. Náš cíl je velmi aktuální, protože v roce 2013 Basile-
jský výbor oznámil, že se chystá změnit rizikovou míru používanou pro výpočet kapitálových
požadavků z Value at Risk na Expected Shortfall. Další zlepšení přesnosti obou rizikových měr
může být také dosaženo začleněním vysokofrekvenční údajů, které jsou mnohem více k dispozici
vzhledem k významnému technologickému pokroku. Jako reprezentativní model, který využívá
vysokofrekvenční data pro modelování realizované kovarianční matice, jsme vybrali heterogenní
autoregresi a její asymetrickou verzi. Jako benchmark jsou vybrány dobře zavedené modely
DCC-GARCH a EWMA. Výpočet Value at Risk a Expected Shortfall se provádí pomocí para-
metrické, semi-parametrické metody a Monte Carlo simulace. Vícerozměrné rozdělení ztrát jsou
reprezentovány Gaussovým, Studentovým rozdělením, simulovaným rozdělením z copula funkcí
a filtrovaných historických simulací. Jako jednorozměrné rozdělení byly použity generalizované
Paretovo rozdělení z EVT, empirické a standartní parametrické rozdělení. Hlavním zjištěním je,
že heterogenní autoregrese s použitím vysoko frekvenčních dat dodala lepší nebo alespoň stej-
nou přesnost prognóz Value at Risk jako benchmark modely s použitím denních dat. Nakonec
backtesting Expected Shortfall zůstává stále velmi náročný a aplikace testů I. a II. neposkytla
věrohodnou validaci předpovědí.
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Chapter 1

Introduction

Since the first implementation of VaR in the early ’90 by J.P. Morgan, the VaR became the key
modern risk measure from the internal and regulatory point of view for financial institutions.
The further development of financial econometrics in the field of risk measure was particularly
focused on the investigation of VaR. The key parameters of VaR have become volatility estimated
by standard deviation from the sample of daily closing prices and covariance as the representative
of linear dependence also estimated from the same type of data as volatility. However, the recent
financial crisis in 2007-2009 showed that neither VaR that is in effect only the lower or upper
quantile of the loss distribution nor just using daily closing prices is sufficient risk approach in
current conditions.

The academic research was aware of these main issues and hence, since 1997 there has been
proposed the alternative to VaR called ES that studies the average of loss distribution given that
VaR was exceeded. Thus, ES is more informative about the possible risk according to certain
probability. Simultaneously to ES, since 1998, there has been started a deep research about the
utilization of prices sampled with higher frequency than one day until the finest frequency that
is transaction by transaction. The importance of ES has been recently even magnified as Basel
Committee in 2013 announced that ES is going to replace VaR measure for calculation of capital
requirements.

In case of high-frequency data, meaning prices, the rapid technological progress allowed to
boost significantly the computation power resulting in the substantial volume of trading. Many
markets turned to such liquidity that intraday information become statistically relevant also for
the measurement of volatility and covariance that is currently known as realized measures.

These events give the main motivation for this master thesis to investigate ES besides of VaR

as we are currently in the transition period from VaR to ES from regulator point of view and recent
advent of utilization of high-frequency data also for risk management purposes. Additionally,
our investigation is from the portfolio perspective because in practice we are usually interested
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in various assets at least for the diversification purposes as basic technique to minimize the risk.

The main objectives of this thesis is to investigate whether multivariate models using High-
frequency data provide significantly more accurate forecasts of VaR and ES than multivariate
models using only daily data. The investigation will be carried out through answering following
questions: What model and approach provides the most accurate forecasts of VaR and ES? Does
the best model and approach of VaR perform similarly also in the forecasting of ES? What is
the difference between the two approaches for various market volatility periods (stable versus
turbulent period)?

We choose standard practice of financial econometrics for the methodology. Our bench-
mark models for modeling of covariance matrix use daily prices represented be the Exponential
weighted moving average (EWMA) model with estimated parameter λ by RiskMetrics and well-
established Dynamic Conditional Correlation (DCC)-Generalized Autoregressive Conditional Het-
erosckedasticity (GARCH) with its asymmetric versions. The representation of model using high-
frequency data is the one of class called Heterogeneous Autoregression (HAR) due to its parsimony
and proven good performance from the other researchers. We implement all standard methods
of calculation meaning parametric, semi-parametric and non-parametric. The latter one will be
using advanced econometric approaches such as Extreme Value Theory (EVT) and copula func-
tions. Finally, we check the validity and accuracy of models by using the most common backtests
and model selection represented by loss functions in case of VaR.

However, the conducted research is limited in the certain areas. The first limitation lies in
the type of products used in the portfolio. The portfolio consists of only linear products such as
futures and spot prices. The reason is that applied models do not capture correctly nonlinear
dependency between the price of product and the underlying variables. The second limitation is
that the agent using VaR and ES measures is a price taker and he is able to close out its entire
position for the market price from the used data set. Therefore the liquidity adjustment of VaR

and ES is omitted. The third limitation is that we investigate only passive risk management ap-
plication and we do not study the active one such as incremental, marginal and component VaR

and ES. The another limitation is assumption that circuit breakers applied on futures products in
our portfolio will remain in the same structure also for the future implying that we do not expect
the structural change from the regulator. The latest example how such an assumption can be
strong is the unexpected exit of peg on Swiss franc by Swiss National Bank. It caused the unseen
volatility in the entire history of currency trading since the floating regime was established. The
last limitation is in the size of portfolio and variety of assets since the used portfolio contains
only four and low correlated assets, specifically S&P500 futures, Crude oil futures, Spot gold,
EURUSD currency pair. In the case of larger portfolio or high correlated assets, the different
approaches or models would be more suitable. Nevertheless, the recommended length of master
thesis by itself is limitation because there exist much higher number of models, distributions and
backtests that would cover our objectives.
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Our contribution according to review of literature is that there has not been published or
found by author yet which investigate the application of high-frequency data in terms of realized
measure in multivariate space in order to estimate ES measure. Furthermore, the we provide a
comprehensive comparison of the difference between high-frequency and daily data according to
all standard methods of calculation VaR and ES. Such a scope has not been conducted yet to the
best author’s knowledge.

The thesis is structured as follows: Chapter 2 gives besides of enlightening literature review a
necessary theoretical background of realized and risk measure. Chapter 3 covers the introduction
of variance-covariance models, loss distribution and backtesting and model selection methods
applied in empirical analysis Chapter 4 provides tha investigation of our data sets, application
of chosen models and presentation of the empirical results Chapter 5 summarizes our findings.



Chapter 2

Theoretical background

2.1 Literature review
The history of VaR measure is well-documented in the working paper Holton (2002) where he
considers the origins of VaR in the first risk metric - standard deviation of simple return proposed
in the portfolio theory of Markowitz (1952) and capital requirements imposed by the New York
Stock Exchange around 1922.

The standard deviation of asset returns was the first estimator of dispersion so-called volatil-
ity. It was simple to estimate but there was a major drawback since it could assign the same value
to different probability distributions of returns and differently risky assets were considered as
the same one. In the late of 1980’s and the beginning of 1990’s the financial institutions started
using current known VaR measure defined as a high quantile of the financial returns distribution
of a portfolio over a certain time horizon Cont (2001) or in other words the maximum loss of the
portfolio at a given confidence level and time horizon. The high popularity and wide adaption
of VaR came in 1994 when J. P. Morgan released for free the technical document describing in
details their internal computation of VaR named RiskMetricsTM J.P.Morgan (1996). Since then,
the VaR has been perceived as main benchmark risk measure in the financial industry.
Nevertheless, the VaR represents still only the quantile and therefore its main drawback is that
VaR does not say what a loss can be made when the VaR is breached. Additionally, Artzner et al.
(1997) and Artzner et al. (1999) has shown that VaR even does not satisfy one of the axioms of
the coherence since it is not sub-additive meaning that in some cases a diversified portfolio of
assets can obtain higher VaR than would be the sum of individual VaRs of the same assets. As a
solution, Artzner et al. (1999) proposed new risk measure called ES as expected value of a loss
given that VaR was exceeded or in other words, mean value of the worst losses exceeding given
confidence level. It can be easily seen there is connection between the ES ES computation and
VaR.

The VaR can be decomposed as a conditional mean plus a product of conditional volatility and
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the high quantile of the distribution function of the innovation process. Thus, the conditional
volatility and the distribution function of the innovation process are the key parameters in the
VaR measure since the conditional mean of the financial returns distribution is close to zero for
the short time horizon (e.g. one day what is a typical prediction horizon for VaR).

The systematic modeling of conditional volatility was founded by the introduction of para-
metric Autoregressive Conditional Heterosckedasticity (ARCH) model of Engle (1982) and its
generalized version GARCH of Bollerslev (1986). Particularly, univariate family of GARCH mod-
els became widely used in the modeling of conditional volatility for its ability to accommodate
the most of the stylized facts of volatility such as volatility clustering, asymmetric impact of
the asset returns on the conditional volatility well-known as leverage effect, time-varying higher
moments, fat tails and long memory (persistence) of the innovations Cont (2001), Jondeau et al.
(2007, pp. 10-26). The further improvement of the VaR estimation is achieved by the choice
of the second key parameter, the distribution of the innovations. The significance gains in the
accuracy of VaR can be gained with Skew-Student’s t distribution that allows for skewness and
fat tails according to Kuester et al. (2006) as non-Gaussian distribution of asset returns was
already discovered by Mandelbrot (1963). However, for each of asset class those stylized facts
applies in different magnitude. The comprehensive overview of univariate VaR approaches can be
found in Engle & Manganelli (2001), Dowd (2005), Kuester et al. (2006) and Alexander (2009).

Regarding to ES in an univariate dimension, an excellent survey of estimation methods of ES

for various probability distributions is provided in Nadarajah et al. (2014) including the list of
available software and relating packages. Another assessment of the all established models for
VaR in terms of accuracy of ES estimation is in a study of Righi & Ceretta (2015) resulting in the
preference of conditional models, particularly GARCH with Filtered Historical Simulations (FHS)
distribution and an interesting finding that accuracy of ES estimation depends on the accuracy
of VaR estimation. Obviously further references for ES estimation can be found in the mentioned
papers or literature overview mentioned for univariate estimation of VaR.

In the case of Portfolio VaR and ES, we are interested in the modeling of the conditional
portfolio volatility (if we consider only elliptical multivariate distribution of innovations) what
is the most popular approach in the academic research. The conditional portfolio volatility is
obtained either directly from portfolio returns or from the covariance matrix of individual asset
returns. The most popular methods of modeling covariance matrix for VaR purpose are mul-
tivariate RiskMetricsTM and multivariate GARCH. RiskMetricsTM applies EWMA methodology
with estimated parameter λ = 0.94 J.P.Morgan (1996). The first well-known representatives
of multivariate GARCH became diagonal VECH of Bollerslev et al. (1988) and BEKK of Engle
& Kroner (1995) but those models suffers with the curse of the dimensionality. This problem
was resolved in the model Constant Conditional Correlation (CCC) of Bollerslev (1990) and
time-variant conditional covariance called DCC of Engle (2000). As is the case with univariate
modeling, the conditional covariance matrix experiences not only asymmetric behaviour of vari-
ances but also covariances, especially during stress events . This characteristics is more analyzed
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and incorporated in the Asymmetric Dynamic Conditional Correlation (ADCC) GARCH model
of Cappiello et al. (2006). Other viewpoint on DCC model has Aielli (2013) in his paper where
he claims that DCC estimator of the correlation can be inconsistent and he suggests corrected
Dynamic Conditional Correlation (cDCC) and proves that cDCC is uniformly unbiased. The ref-
erence guide to the majority of univariate and multivariate GARCH models and their alternatives
is provided in the glossary of Bollerslev (2008), more detailed overview of multivariate GARCH

models can be found in the review article of Laurent et al. (2006) and multivariate concepts in
calculation of VaR in McNeil et al. (2015), Christoffersen (2011) and Alexander (2008).

Besides of multivariate EWMA and Conditional Correlation GARCH models for estimation
of covariance matrix, there are other approaches such as multivariate versions of Stochastic
Volatility (SV) and R (RVOL). A shortcoming of multivariate stochastic model is the complexity
of estimation Laurent et al. (2006) .The latter option brings a novel concept of understanding
and estimating volatility and covariance. All aforementioned models treat daily volatility and
covariance as non-observable variables (latent). However, daily realized volatility and covariance
are estimated, in their naive version, as the sum of the squared intraday returns and the sum of
the products of intraday returns, respectively. Based on this methodology, realized volatility and
covariance are, in principle, observable and estimators become non-parametric (model-free). The
new paradigm of volatility and covariance estimators perceived as realized ones was introduced
in the seminal work of Andersen & Bollerslev (1998) and Andersen et al. (1999). The theoretical
framework of realized volatility and covariance can be found in Andersen et al. (2003) , Barndorff-
Nielsen & Shephard (2004) and comprehensive summary in McAleer & Medeiros (2008) and
Bauwens et al. (2012).

An essential property of forecasted covariance matrix for computation of VaR is the Positive
Semi-Definiteness (PSD). This property is not guaranteed from the naive version of realized co-
variance due to market microstructure noise and hence, one of the proposed augmented realized
covariance estimators satisfying mentioned property is multivariate realized kernel of Barndorff-
Nielsen et al. (2011). The other methods insuring PSD property include the Matrix Logarithm
transformation of realized covariance of Bauer & Vorkink (2007) and adapting long-memory uni-
variate model Heterogeneous Autoregression of realized volatility of Corsi (2009) on the individual
elements of transformed realized covariance matrix. The similar technique is used by Chiriac
& Voev (2011) which applies Cholesky decomposition of realized covariance and forecasting
Cholesky factors by a multivariate long-memory Vector Autoregressive Fractionally Integrated
Moving Average (VARFIMA) model and univariate HAR model. The drawback of previous two
approaches was a lost of interactions between variances and covariances. In a different approach
Gourieroux et al. (2009) modeled entire realized covariance matrix by the Wishart Autoregres-
sion (WAR) and further extensions by block WAR and HAR-WAR can be found in Bonato et al.
(2009) or asymmetric version of WAR in Jin & Maheu (2010). The dynamic generalization of the
models of Gourieroux et al. (2009) and Jin & Maheu (2010) was proposed by Golosnoy et al.
(2012) as a Conditional Autoregressive Wishart (CAW).

A new class of multivariate models modeling realized covariance matrix can be considered
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also a High-frEquency-bAsed VolatilitY (HEAVY) model of Noureldin et al. (2012). There is a
wide body of additional literature focusing on estimation of realized covariance matrix and hence
above paragraph represents just only the selection of the most established approaches nowadays.

Completely different multivariate approaches that are not based on covariance matrix, as the
main parameter describing dependence and one of the parameters describing entire multivariate
distribution, are represented by Monte Carlo simulations. One approach uses returns of each
asset are modeled by stochastic process and another common approach is through Copulas which
estimates marginal distributions and dependence structure separately. The last unique method
which is not Monte Carlo simulations is the multivariate EVT that estimates directly only the
tail of the multivariate distribution. A disadvantage of multivariate extreme value theory is
the curse of dimensionality Rocco (2011) and Goix et al. (2015). The most promising concept
from Monte Carlo simulations is the Copula which allows to construct multivariate distributions
that do not have even analytical form. According to knowledge of author, there are only three
papers of Fengler & Okhrin (2012),Fengler & Okhrin (2016) and Brechmann et al. (0) proposing
utilization of high-frequency data in Copula estimation. First one establishes the term Realized
Copula as ”the copula structure materialized in realized covariance estimated from within-day
high-frequency data”. Second one continues in the fashion of first paper and just extend number
of competitor models by dynamic Copula models such as DCC, Patton (2004), the Generalized
Autoregressive Score (GAS), realized GAS and realized covariance models of Bauer & Vorkink
(2007) and Chiriac & Voev (2011). The last one uses vine copulas which provides more flexible
modeling of dependencies among the asset returns.

The applications of high-frequency data in risk management set off, as usual in an univariate
dimension. The pioneering paper was of Giot & Laurent (2004) where they did not find superior
perfomance of VaR forecasts of ARFIMAX-RV model in comparison with Asymmetric Power
ARCH (APARCH) model using Skew-Student’s t distribution. However, one of the outcomes
was that neither daily log returns nor intraday log returns have Normal distribution. The most
complex research was conducted by Kruse (2006) who analyzed 107 models including ARCH,
Realized volatility, Stochastic volatility models based on Normal, Skew-Student’s t distributions
and FHS or EVT approach. His finding was that benchmark models RiskMetricsTM and GARCH

with Normal distribution were not significantly outperformed by any other model. Nonetheless,
he chose FHS approach with Realized volatility model as the best performing model in VaR fore-
casting. Another rewarding paper is Louzis et al. (2014) providing extensive literature review
of 11 papers inspecting whether realized volatility models give higher accuracy of VaR estimates
than ARCH-type models. They highlighted that around 60% of papers prefer VaR models em-
ploying high-frequency data than ARCH models based on daily data. Furthermore, they pointed
out that nearly all of researchers used only full parametric approach in computation of VaR what
means that quantiles of innovations were computed always from the same parametric distri-
butions such as Normal, Student’s t or Skew-Student’s t. Therefore different estimates of VaR

were mainly driven only by the estimation of dispersion computed either as standard deviation
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from daily data or squared realized variance. Contrary to this practice, Louzis et al. (2014)
applied similarly to Kruse (2006) also FHS, EVT approach and in addition to standard statistical
backtesting seen in other papers, they examined the models even in terms of Basel II accuracy,
regulatory accuracy and capital efficiency. Their empirical analysis showed that any volatility
models using Skew-Student’s t distribution or EVT method have the best results in complying
the statistical and regulatory accuracy. Regarding to the efficiency of VaR, the results are in fa-
vor of realized volatility model which is the Asymmetric HAR model together with EVT method.
Finally, they provide conclusions also from the regulatory and financial institutions point of view.

Unlike the VaR, academic research dedicate much less attention to ES risk measure in terms
of high-frequency data in univariate dimension. There were found only four papers analyzing
the impact of intraday returns on ES measure.

The paper of Watanabe (2011) concludes that the Realized GARCH with Skew-Student’s t
distribution performs in estimation of ES superior to Student’s t or Normal distribution and
also toExponential GARCH (EGARCH) model using daily data. The type of realized estimator
meaning naive realized variance or realized kernel did not show any significant difference in the
forecasts of ES. That result of the Realized GARCH was confirmed by Contino & Gerlach (2014)
where they state that the Realized GARCH provided more accurate estimates of ES in all eight
stock indices than its daily counterpart. On the other hand, the preferred distributions depended
on significance level when on 5% Skew-Student’s t distribution was solely preferred but on 1 %
the choice would be also either Student’s t or Normal distribution.

Besides of standard deviation and realized volatility, there is another estimator of volatility
called range-based estimator which takes into account either only high and low price or includ-
ing open and close price, for further reference Chou et al. (2010). The incorporation of realized
range estimator was done by Chao & Richard (2014) who favor the realized range estimor us-
ing Realized GARCH and Markov Chain Monte Carlo estimation and forecasting approach with
Student’s t distribution of innovations, as the most accurate at forecasting 1% ES in compari-
son with realized volatility estimator, daily data based GARCH, Historical simulations and the
Conditional Autoregressive Expectile (CARE) indirect GARCH model. The last study comes from
Bee et al. (2016) who examine EVT approach with filtration of returns by asymmetric Glosten-
Jagannathan-Runkle GARCH (GJR-GARCH) using daily data and high-frequency data based HAR

and its extensions such as inclusion of jumps and asymmetry. From the ES perspective, there
is not significant distinction between HAR models and GJR-GARCH. Different case is VaR where
HAR models prove higher accuracy than GJR-GARCH increasing with the longer time horizon.

Finally, we assess the literature of papers investigating potential benefits of high-frequency
data in estimation of portfolio VaR and ES in a multivariate dimension. This area of research is
even smaller than univariate one. We can divide papers again in two groups, those do compare
the performance against daily data based models and those that do not.

Let’s start with the first group initiated by McMillan et al. (2008) who found the preferred
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model is univariate GARCH estimated on the raw intraday portfolio returns to multivariate Vector
Autoregression (VAR) model using the same type of data or other models using daily data. Follow-
ing innovative report of Fengler & Okhrin (2012) showed that proposed realized copula managed
to adopt quickly to volatile events thanks to utilization of high-frequency data and enabled suf-
ficient capturing of non-trivial tail-dependence structures in comparison with Gaussian copulas
and hence, realized copulas were superior to other models. Another very comprehensive compar-
ison is due to Candila (2013) where he evaluated rolling realized covariance, CAW models versus
BEKK, DCC-GARCH and Generalized Orthogonal GARCH (GO-GARCH) models without find-
ing the significant difference of forecasting portfolio VaR. The only one result considering the
most appropriate models such as DCC-GARCH and RiskMetricsTM based on daily is in the mas-
ter thesis of Čech (2013). Even though he included not only basic multivariate HAR model based
on Cholesky decomposition but also more advanced WAR models of Bonato et al. (2009). The
biggest sample of data consisting of 52 stocks of the largest U.S. financial institutions is in Boudt
et al. (2014) with the most accurate VaR forecasts recorded by model utilizing high-frequency
data by corrected realized Dynamic Conditional Correlation (cRDCC) on Cholesky decomposed
realized covariance (Liquidity sorting type) using Autoregressive Fractionally Integrated Mov-
ing Average (ARFIMA) model. Generally cRDCC performed good and Scalar-BEKK or HEAVY

significantly worse in comparison cRDCC or cDCC. The last one comparing article is Fengler &
Okhrin (2016) with the same conclusion as in Fengler & Okhrin (2012) namely with Cholesky
decomposition irrespective to marginal distribution or type of realized copula but in the context
of additional high-frequency and daily data models.

The second group of papers that did not assessed performance of portfolio VaR between high-
frequency and daily data models can serve as the inspiration for further assessment, specifically
Bonato et al. (2009), Bauwens et al. (2014) and Brechmann et al. (0).

The common aspects of all papers evaluating models using multivariate realized measure
are that the most popular multivariate distributions are the elliptical Normal and Student-t
apart from simulations applied in Copula models, as the data are used almost solely only sets
of currency pairs and stocks. The exception is the master thesis of Čech (2013) who included
commodities such as futures Light Crude NYMEX and futures Gold COMEX. Overall, there
were four papers in favor of high-frequency data based models, one paper preferring daily data
based models, one paper that was irresolute to any kind of data and three papers estimating
VaR portfolio exclusively on high-frequency data based models. Moreover, the most popular
backtesting methods were (Un)conditional coverage tests of Kupiec (1995) and Christoffersen
(1998) and Dynamic Quantile test of Engle & Manganelli (2004). To the best knowledge of
author, there is only one paper of estimating VaR and ES portfolio Ubukata & Watanabe (2015)
but entirely for purposes of hedging performance and not risk management one.
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2.2 High-frequency data
High-frequency data (HFD) are generally considered as data (prices of trades, quotes or close
prices of financial assets) sampled with higher frequency than one day. The most finest frequency
is trade-by-trade or tick what is a definition of the smallest price increment in case of organized
market. Such data are know as an ultra high-frequency data or alternatively as tick data. There
is a wide range of applications of HFD with several examples mentioned in Tsay (2012) for instance
price discovery process, bid-ask dynamics, algorithmic trading or designing trading strategies.
Nevertheless, the interesting benefits can be found also in the risk management field. The
availability or the intraday prices introduces new properties not encountered in homogenously
spaced daily or lower frequencies.

• First property is an univariate one. HFD, especially tick data are contaminated by mar-
ket microstructure noise which consist of bid-ask bounce (transaction prices tend to
bounce between bid and ask quotes what cause false impression of increased volatility
and subsequently such a recorded volatility is upward biased Bauwens et al. (2012)), price
discretization, irregular trading, etc. In order to reduce this noise for the purpose of estima-
tion Realized Variance (RV) or Realized Covariance (RCOV), there were suggested various
methods. The most simple one is to sample data from lower frequency with equidistant
intervals i.e. 5 or 20 minutes, see Hansen & Lunde (2006) or Liu et al. (2015). This is
called calendar time sampling or sparse sampling and its disadvantage is a significant loss
of HFD and a necessity to decide about the optimal sampling frequency. Another approach
is to use all available data even on the tick level and apply kernel based techniques as
mentioned in Hansen & Lunde (2006).

Figure 2.1: Bid Ask Bounce

Source: Snowfall Systems (2014)

• Second property appears in the multivariate dimension where non-synchronous trading
occurs among several financial assets on high-frequency basis. One method how to deal with
this issue is to sample HFD at fixed time when trades of all assets occurred i.e. to use close
prices on minute basis what would cause again the loss of data. Barndorff-Nielsen et al.
(2011) suggests a different approach, so called refresh-time, that synchronizes data based
on the least traded asset. The synchornization could be considered both an advantage and
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Figure 2.2: Bid and Ask Quotes (defined by the shaded area) and Actual
Transaction Prices Over 20-Minute Subperiods on April 24,
2004 for AA

Source: Hansen & Lunde (2006)

its weak point. Both methods require liquid traded assets. However, asynchronicity is not
solely an issue for HFD but it can become also for daily data from different exchanges and
platforms which are recorded at different time due to different time-zones, trading hours
or other reasons.

• Third property is derived from the second one. HFD are asynchronously traded, then
covariance among assets with increasing sampling frequency has downward bias. This is
called Epps effect by Epps (1979) who observed it in the stock prices.

2.3 Realized measures
”We designate the class of estimators of quadratic (co) variation based on the high frequency data
as ‘‘realized measures’’.” Bauwens et al. (2012). As we will show, the theory of quadratic (co)
variation is the corner stone of derived RV and RCOV estimators. The foundations of realized
measures were laid in the papers of Andersen et al. (2003) and Barndorff-Nielsen & Shephard
(2004) with comprehensive summary in Andersen et al. (2011) and Bauwens et al. (2012) where
we drew mostly the inspiration for following subsections. Very good job with explanation of
realized measures for purpose of master thesis was already written in the master thesis of Čech
(2013).

2.3.1 Realized Volatility

Let logarithmic asset price increment dSt be determined by the following a continuous time mean
diffusion semi-martingale process of the form:

dSt = µtdt+ σtdWt, 0 ≥ t ≥ T, (2.1)
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where µt is an instantaneous drift (predictable locally bounded variation process), σt is an
instantaneous volatility (strictly positive and stochastic volatility process) and Wt is a standard
Brownian motion. If we assume the discrete interval of length of 1 what would represent one day
and set an instantaneous drift µt = 0 (non-zero drifts are relevant for longer time horizons than
one day and they are easy to incorporate into the model) then:

rt ≡ St − St−1 =

∫ t

t−1
σ(u)dW (u), (2.2)

and

rt ∼ N(0, IVt), (2.3)

where IVt denotes the integrated variance (quadratic variation if we assume no jumps, then
QVt = IVt) what is a key factor for risk management.

IVt ≡
∫ t

t−1
σ2(u)du. (2.4)

However, IVt is not observable and therefore, Andersen & Bollerslev (1998) and Andersen
et al. (1999) popularized an idea of an precise estimator of IVt based on sums of intraday squared
returns and called it realized variance1. Realized variance in its naive version on day t and at
intraday frequency △ is defined as

RVt(△) ≡
N(△)∑
j=1

(St−1+j△ − St−1+(j−1)△)
2 =

M∑
j=1

r2t,j , (2.5)

subsequently realized volatility,

RV OLt(△) =
√
RVt(△), (2.6)

where St−1+j△ ≡ S(t−1+(j−1)△) denotes the intraday log-price at the end of the jth interval
on day t, and N(△) ≡ 1/△ = M what is a number of intraday prices or returns. For instale,
M = 1380 for 1-minute returns in a 23-hour market, corresponding to △ = 1/(23·60) ≈ 0.000724.
When we let △ to go to zero, RV estimator will approach the integrated variance (convergence
in probability) defined in equation 2.4 . In order to construct RV as unbiased and consistent
estimator, the intraday returns cannot be serially correlated and no market microstructure noise
Bauwens et al. (2012) described in subsection 2.2 can be present. These conditions are not
met in empirical HFD. There are several adequate solutions for this problem. First one is to
find out optimal sampling frequency which reduce market microstructure and ensure acceptable
bias-variance trade-off for RV estimator. Second one is about to choose more advanced estimator
than in equation 2.5. The last one is to include additional characteristics of price generating

1We can find in the original papers or in some other cited literature the term realized volatility or integrated
volatility as interchangeable terms for realized variance, resp. integrated variance. In order to keep consistency
and distinguish volatility and variance, we will stick in this master thesis with notation of volatility as a square
root of variance.
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process such as jumps in the estimator which were omitted in the semimartingale assumption in
equation 2.1 when jumps are detected in empirical HFD.

First solution can be proceed through the signature volatility plots which set on y-axis com-
puted average RVOL over the different sampling frequencies and x-axis the decreasing sequence of
sampling frequency (i.e. from 1 min to 120 min) and choose sampling frequency where the curve
shows stabilized average RVOL. Liquid assets should have downward sloping curve and illiquid
assets upward one see Andersen et al. (1999). Moreover, RVOL does not need to yield precise
estimates for illiquid financial assets and feasible alternative to daily data based estimator is to
use range-based estimator of volatility proposed in Christoffersen (2011). Suggestions for second
and third solution can be found in the paper of McAleer & Medeiros (2008) and in Chapters 17.
and 18. of book Bauwens et al. (2012) with comparison of different estimators using methods
such as subsampling or kernel based one or to be robust against jumps.

The theory of construction of RV implies using only intraday returns from market open to
market close what omits overnight return information that can be significant for risk management
purposes. The relevant adjustments of RV are proposed Christoffersen (2011, pp.108-109).

Stylized facts

The list of stylized facts of RV was provided in Christoffersen (2011).

• ”RV is a more precise indicator of daily variance than is the daily squared return” if
conditions are met.

• ”RV has large positive autocorrelations for many lags.” This feature is also called as long-
memory or high persistence.

• ”The log of RV is approximately normally distributed.”

• ”The daily return divided by the square root of RV is close to independent and identically
distributed (iid) standard Gaussian.”

2.3.2 Realized Covariance

In case of multivariate dimension, we assume that prices follow a multivariate semimartingale
proces:

dSt = µtdt+ΩtdWt, 0 ≥ t ≥ T, (2.7)

where St and µt is the N dimensional vector of the log prices, respectively instantaneous
drifts, while Ωt is the N×N càdlàg process such that Σt = ΩtΩ

′
t is the instantaneous covariance

matrix and Wt is a N dimensional vector of independent standard Brownian motion processes.
Likewise the instantaneous volatility is difficult to estimate, it applies also for instantaneous
covariance and hence, in practice we are interested in the estimation of integrated covariance
(quadratic covariation without presence of jumps, ICOVt = QCOVt) for a day t,
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ICOVt ≡
∫ t

t−1
Σ(u)du. (2.8)

The estimator of ICOVt is realized covariance computed for a day t as the sum of the
products of intraday returns rj,t = St−1+j△ − St−1+(j−1)△, j = 1, . . . , d(△) when we assume
that µ(t) = 0. RCOV in its naive version is defined as

RCOVt(△) ≡
N(△)∑
j=1

(St−1+j△ − St−1+(j−1)△)(St−1+j△ − St−1+(j−1)△)
′ =

M∑
j=1

rt,jr
′
t,j , (2.9)

and realized correlation between asset i and j for day t,

RCORt =
RCOVi,j,t

RV OLi,tRV OLj,t
(2.10)

Similarly to univariate case, if we let △ to go to zero, RCOV estimator will converge to
the integrated covariance matrix of the continuous stochastic volatility process on day t under
conditions that there are no market microstructure noise, Epps effect and asset returns are
linearly independent, so RCOV will be an unbiased and consistent estimator. Obviously, these
conditions are hardly fulfilled in reality. Additional requirement is that number of sampled
intraday returns for one day is not lower than number of assets N, otherwise RCOVt would
become singular. Singularity or mentioned market microstructure noise cause that RCOVt is
not guaranteed to be PSD while PSD being a desired property for application in risk management.

The simplest way how to mitigate market microstructure noise, Epps effect, non-PSD is to
apply calendar time sampling with fairly low (optimal) frequency, synchronization at fixed clock
time and use number of assets that do not exceed the number of observations for one day. More
advanced method was proposed in Barndorff-Nielsen et al. (2011) who constructed multivariate
realised kernel that is robust to noise, guarantee PSD characteristic and uses refresh time tech-
nique to synchronize multivariate HFD. Other estimators which are even robust to jumps can be
found in chapters 1., 13. and 17. of bookBauwens et al. (2012). The theory of construction of
RCOV implies using only intraday returns from market open to market close what omits overnight
return information that can have substantial impact for risk management purposes.

2.4 Risk measures
The term ”Risk” does not have unambiguous definition, for instance the Concise Oxford English
Dictionary defines it as ”hazard, a chance of bad consequences, loss or exposure to mischance”
McNeil et al. (2015). In this master thesis we will focus on financial risk, particularly market
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risk 2 that has very apt definition as ”the risk of a change in the value of a financial position
or portfolio due to changes in the value of the underlying components on which that portfolio
depends, such as stock and bond prices, exchange rates, commodity prices, etc.” McNeil et al.
(2015). Mentioned ”underlying components” are perceived also as risk factors. Market risk
represents possible downside what means a possible loss but it is not associated exclusively with
decline of price because the profit of short position is made thanks to decline of price.
Now we can set up a framework for modeling the value of a financial position or portfolio and
its change. Let introduce the formal definitions based on Danielsson (2011).

Definition 2.1 (Risk measure). A risk measure is a mathematical method for computing risk.

Definition 2.2 (Risk measurement). A number that captures risk. It is obtained by applying
data to a risk measure.

Exceptional explaining guidance through risk measures was written in chapter 2. McNeil
et al. (2015) where we pick up the most important parts for the purpose of this master thesis.
Considering the change of portfolio value as △Vt = Vt−Vt−1, then the loss is Lt := −△Vt where
we can neglect time value of money if time horizon △ is short, i.e. one day. The Lt is random
value from point of t and its distribution is called loss distribution. Modeling of Vt is done as a
function of time and a N -dimensional random vector Zt = (Zt,1, . . . , Zt,d) of risk factors,

Vt = f(t,Zt) (2.11)

for some measurable function f : R+ ×Rd → R. Observable risk factors of random vector Zt

takes realized value zt at time t while the portfolio Vt has realized value f(t, zt). The decision
about the choice of risk factors and of f is crucial in risk modeling and it depends on the
characteristics of portfolio, available data and on the desired level of sophistication to achieve.
Let assume an increment in risk factors as △Zt = Zt −Zt−1. Then portfolio loss has following
form

Lt = −(f(t, zt +△Zt) + f(t− 1, zt−1)), (2.12)

we see that the distribution of of loss is given by the distribution of the risk factor increment
△Zt. In order to find a change of portfolio loss, we can assume that f is differentiable, then we
can use a first-order approximation L△t of the portfolio loss of the form

L△t = −

(
ft−1(t− 1, zt−1) +

d∑
i=1

fzi(t− 1, zt−1)△Zt,i

)
, (2.13)

where L△t denotes to linearized portfolio loss, the subscripts on f denote partial derivatives.
Thanks to first-order approximation, we can represent the portfolio loss as a linear function of

2Other categories of risk are: credit and operational (main interest in the banking industry), then liquidity
(can be closely connected with market risk when agent is capable to influence significantly the risk factors) and
model risk, see definitions in McNeil et al. (2015)
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the risk factor increments. However such an approximation gives accurate result if the risk factor
increments are small (this is achieved if we use only short time horizon, i.e. one day) and if the
portfolio value is almost linear in the risk factors, so f would have small second derivative (this
is achieved when we use as risk factors only financial assets which have payoff diagram linear).

Practitioners in risk management usually use logarithmic prices as risk factors and their
difference gives geometric return, i.e. △Zt,i = lnSt,i − lnSt−1,i, where St,i is the price process of
asset i. Portfolio value can be computed as Vt =

∑d
i=1 wiSt,i where wi is the weight of asset i

and
∑d

i=1 wi = 1. Linearization of the portfolio loss allow us to compute first two moments of
the distribution of △Lt as

E(L△t ) = −Vtw′µ (2.14)

V ar(L△t ) = V 2
t w
′Σw (2.15)

Currently the most popular risk measures in financial institutions and especially their regu-
lators are based on loss distribution. These risk measures allow to compute the conditional or
unconditional loss distribution of the portfolio over given horizon △t, incorporate netting and
diversification effects. The representatives are VaR and ES. Nevertheless, the level of accuracy de-
pends on how properly are these loss distributions estimated and hence, we find more approaches.
The simplest one is an analytical method using well-known defined statistical distributions such
as Normal or Student’s t, historical simulations using empirical distribution and Monte Carlo
simulations using an explicit parametric model for risk factors or Copula function to construct
unique multivariate distributions from various different marginal distributions and their depen-
dency structure separately. The issue of loss distributions is more discussed in the subsection 3.2.

The latest inventions or suggestions as risk measures are Expectiles with attractive features
proposed by Emmer et al. (2015), Shortfall Deviation and with combination of ES called Shortfall
Deviation Risk proposed by Righi & Ceretta (2015).

2.4.1 Value at Risk

VaR is mostly adapted risk measure in financial industry and its regulation since Basel regulatory
framework chose VaR as main measure to calculate capital requirements. We continue with
previous concept of loss distribution of a portfolio of financial assets and a fixed time horizon
△t defined as: FL(l) = P (L ≤ l). As pointed out in McNeil et al. (2015) maximum possible loss
of such portfolio neglects any probability information, so its information value is very limited.
Therefore VaR combines these two terms as ”maximum loss that is not exceeded with a given high
probability” McNeil et al. (2015) over time horizon △t . Formal definition is following.

Definition 2.3 (Value at Risk). Given some condifence level α ∈ (0, 1), the VaR of a portfolio
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with loss L at the confidence level α is given by the smallet number l, such that the probability
that the loss L exceeds l is no larger than 1− α. Formally,

VaRα = VaRα(L) = inf{l ∈ R : P (L > 1)1− α} = inf{l ∈ R : FL(l) ≤ α}. (2.16)

Statistically speaking VaR is a quantile of the loss distribution. The time horizon3 considered
for a bank’s trading desk is a one day, ten business days for calculation of capital requirements
and one year for credit and operational risk management. The confidence level is usually within
range 95

The choice of parameters depends how risk averse is the agent or its regulator, than the
availability of data and computational burden as higher confidence level and longer time horizon
will be more demanding for data and computation capacity.

Regarding to multivariate dimension, there are basically two approaches Andersen et al.
(2011). First one is called portfolio-level where portfolio return is calculated as rp,t =

∑d
i=1 wt,irt,i

of i = 1, . . . , d and thereinafter considered as univariate time series. The drawback is, we cannot
track and compute the dependency between assets.

Example 2.1. This is an example how VaR is derived analytically under condition F = Gaussian
distribution. Let consider L iid∼ F (µ, σ2) with confidence level α and time horizon one day4, then

P (L ≤ l) = P

(
L− µ

σ
≤ l − µ

σ

)
= P

(
Lstd ≤ l − µ

σ

)
= α, (2.17)

where Lstd ∼ F (0, 1), F is the distribution of the standardized loss Lstd or innovations. Then
P (Lstd ≤ F−1α ) = α, so

l − µ

σ
= F−1α (2.18)

then VaR is defined

VaRα(L) = µ+ σF−1α or VaRα(L) = µ+ σqα(F ) (2.19)
3while the portfolio is held unchanged
4In practice, the most common time horizon is one day. However, for capital requirements there is a requirement

to calculate VaR for ten business days. If we apply the same method of calculation as we describe below and in
Chapter 3, then in order to have non-overlapping data, our data will shrink by ten times what would dramatically
influence the quality of forecasted VaR. The simple solution is scaling by square-root-of-time rule, where we scale
up day ahead forecast of volatility to h business days by square root of h, i.e. ten business days VaR(h)

α (L) =

µ +
√
10σF−1

α what implies VaR(h)
α (L) =

√
10VaR(1)

α (L). This approach holds only under the conditions that
risk-factor change distribution is iid and Gaussian. Otherwise square-root-of-time is only an approximation. The
limitation is overcome by Monte Carlo simulation when risk-factor change is simulated M times for time horizon h
and resulting h day loss distribution is used for calculation of VaR and also ES since the same technique described
above applies also for ES measure. More detailed explanation can be found in McNeil et al. (2015, pp. 349-351)
where the inspiration for this foot note was taken from.
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Second approach is called asset-level which takes into account an N -dimensional loss distri-
bution and it allows us to compute covariance matrix that tracks the linear dependency and
hence, active risk management. We will use in this master thesis asset-level.

We can follow an 2.1 but in multivariate dimension where we assume Lstd ∼ F (0, Id) and
the VaR will follow of the form:

VaRα(L) = w′µ+
√
w′Σwqα(F ) (2.20)

Such a linear transformation is possible only for elliptical distribution of loss, for instance: Normal
and Student’s t according to Jondeau et al. (2007).

Methods of VaR computation

1. Variance-covariance or parametric. This methods is based on the estimation of covari-
ance matrix and mean vector of asset losses proceeded with further linear transformation
to univariate dimension of portfolio mean and variance. It requires an assumption of ellip-
tical loss distribution. Since mean vector is usually assumed to be equal to zero for short
time horizon, then this method depends solely on the technique of estimation of covari-
ance matrix and choice about the loss distribution. Since loss distribution is assumed to be
described completely by its parameters that is the reason this method is called also as para-
metric. Portfolio-level VaR requires only model for estimation of variance and asset-level,
obviously, estimation of covariance matrix.

2. Semi-parametric. We can consider this method as combination of parametric model and
empirical loss distribution. Typical representative on asset-level approach would be Mul-
tivariate FHS of Christoffersen (2011, pp. 194-195). For the portfolio-level VaR it would be
univariate FHS, EVT5 and Conditional Autoregressive Value at Risk by Regression Quan-
tiles (CAViaR) of Engle & Manganelli (2004).

3. Non-parametric. There is only one method for portfolio-level VaR called Historical sim-
ulations.

4. Monte Carlo simulations. This method complies with description mentioned already
in section 2.4. Additionall remark, there is a possibility to combine various models, for
instance for standardization of losses, it can be used volatility model (i.e. GARCH) and
EVT together for more accurate further estimation with Copula function.

Coherency

Since introduction of VaR in the early ’90 and its wide range of applications, there was still a lack
of theoretical framework what a good risk measure should constitute. The turning point was
done by seminal works of Artzner et al. (1997) and Artzner et al. (1999) who defined axioms (a

5Depending on the method of estimation, EVT can belong either to parametric or semi-parametric class
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list of properties) of risk measures which fulfillment would provide us a coherent risk measure.

Let consider risk measures to be a real-valued functions defined on a linear space of random
variables M, assumed to include constants where elements L1 and L2 of M represent losses of
any two portfolios and risk measure denotes to ϱ(.) McNeil et al. (2015, pg. 73).

Axiom 2.1 (Monotonicity). For L1, L2 ∈ M such that L1 ≤ L2 =⇒ ϱ(L1) ≤ ϱ(L2).

Portfolio with higher losses implies higher riskiness, i.e. higher capital requirements.

Axiom 2.2 (Translation invariance). For all L ∈ M and every linR we have ϱ(L + l) =

ϱ(L) + l.

If we add or subtract a deterministic loss l to a portfolio loss L, the riskiness of such a
portfolio will be changed exactly by that quantity l.

Axiom 2.3 (Subaddivitity). For all L1, L2 ∈ M we have ϱ(L1 + L2) ≤ ϱ(L1) + ϱ(L2).

This axiom is the most discussed from all of them because it states the riskiness of diversified
portfolio should be the exact or lower than non-diversified portfolio. If a risk measure does not
hold this axioms, it means diversification of agent’s portfolio lead to higher capital requirements
what is exactly in contradiction of agent’s motivation to diversify trading activities.

Axiom 2.4 (Positive homogeneity). For all L ∈ M and every λ > 0 we have ϱ(λL) = λϱ(L).

If axiom 2.3 holds, then this axiom is justified but only till to certain extend of λ. The reason
is for very high values of multiplier λ the agent concentrates a significant position in such a
portfolio and if he decides to liquidate its position in short time horizon, it will have huge impact
on price (this holds also for opposite direction if an agent wants to create a significant position
for short time horizon). Hence, the risk measure should add to market risk also a liquidity risk,
so we get ϱ(λL) > λϱ(L). Problem is that it contradictory to subadditivity and it was the reason
to introduce convex risk measure Embrechts et al. (2016).

We say the risk measure ϱ(.) is coherent when it satisfies all four above axioms.

Axiom 2.5 (Convexity). For all L1, L2 ∈ M and all λ ∈ [0, 1] we have ϱ(λL1 + (1− λ)L2) =

λϱ(L1) + (1− λ)ϱ(L2).

The idea is again the diversification should reduce the riskiness.

We say the risk measure ϱ(.) is convex when it satisfies axioms 2.1, 2.2 and 2.5. Every risk
measure which is coherent is also convex but vice versa it does not hold.
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Advantages

The list of advantages of VaR is well elaborated in Dowd (2005, pp. 11-13). The summary of
advantages can be characterized as VaR is the first risk measure which can be computed across
different position and risk factors and hence, it allows to aggregate the risk of subpositions into
one portfolio risk using probability, so an agent can join computed risk with level of probability
and finally, the output is a single number in the unit of ”lost money” that is easily understood
through the all departments in the agent’s structure and its stakeholders such as regulator or
clients. Moreover VaR is easier to estimate for heavy-tail loss distributions and backtest than ES

McNeil et al. (2015, pg. 77).

Disadvantages

Each coin has two sides and VaR is not an exception. The following list of disadvantages was
provided in Danielsson (2011, pp. 80-85).

1. VaR is only a quantile on the loss distribution. This is a conceptual flaw of VaR

because it gives us no information what a loss an agent can face to if the VaR is exceeded
on given confidence level. The most extreme situation can happen in the credit risk when
an occurrence of defaults starts beyond VaR confidence level, then VaR is not able to detect
any risk and returns zero. The other implications is that VaR would be the same for two
financial assets but due to different tails in loss distributions the breach of VaR will cause
different losses, so these assets would be equally risky only till VaR’s confidence-level.

2. VaR is is not a coherent risk measure due to violence of subadditivity axiom when
loss distributions of financial assets does not come from multivariate Gaussian distribution.
The empirical loss distribution of financial assets was found already by Mandelbrot (1963)
is non-Gaussian and since then it became an stylized fact6. Therefore an agent will face to
increased capital requirements due to diversification.

3. VaR is easy to manipulate. VaR as defined as it is above due to assumption of linear
payoff of underlying risk factors. The involvement of non-linear risk factors in the portfolio
such as options will cause artificial decrease of VaR but the real riskiness will be increased
Danielsson (2011, pp. 84-85).

2.4.2 Expected Shortfall

The first and second diasadvantange of VaR let Artzner et al. (1999) to propose a new risk
measure named Expected Shortfall which does not suffer those disadvantages. The ES answers
the question what is an expected loss given that VaR was exceeded or in other words, mean value
of the worst losses exceeding given confidence level.

6It was confirmed by many researchers but with technological development, the financial markets become more
and more efficient and currently, the most liquid markets such as foreign exchange market have the shape of loss
distribution the closest to Gaussian one
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Definition 2.4 (Expected Shortfall). For a loss L with E(|L|) <∞ and distribution function
FL, the ES at confidence level α ∈ (0, 1) is defined as

ESα(L) =
1

1− α

∫ 1

α

qu(FL)du, (2.21)

where qu(FL)du = F←L (u) is the quantile function of FL. Then connection between ES and
VaR is

ESα(L) =
1

1− α

∫ 1

α

VaRu(L)du, (2.22)

or simple notation

ESα(L) = E[L|L > VaRα] (2.23)

When we follow an example 2.1, then ES would be defines for univariate and multivariate
dimension as

ESα(L) = µ+ σESα(F ) resp. ESα(L) = w′µ+
√
w′ΣwESα(F ) (2.24)

Based on above formulas, we conclude that we can use the same methods of computation as
in case of VaR.

Advantages

Unlike VaR, ES is a coherent risk and convex measure and reflects the tail of loss distribution
beyond VaR McNeil et al. (2015, pg. 77).

Disadvantages

ES posses also drawbacks that did not occure by VaR for instance, it is more difficult to estimate
for heavy-tail loss distributions and to backest McNeil et al. (2015, pg. 77). We will discuss more
the issue of ES backtesting in subsection 3.4.
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Figure 2.3: VaR and ES = Conditional VaR (CVaR)

Source: Sarykalin et al. (2014)



Chapter 3

Methodology

The purpose of this chapter is to present individual methodological approaches chosen for this
master thesis. We will apply each method of computation of VaR and ES mentioned in the
subsection 2.4.1 separately for data sampled on daily and high-frequency basis. Lastly, we
describe backtesting methods for each risk measure in order to test the validity of each model
and compare to each other.

3.1 Model Choice
In this subsection we characterize models which are used in all three mentioned methods of com-
putation ofVaR and ES. We decided to use Multivariate version of EWMA and DCC-GARCH as
representatives using daily data. They were chosen based on their high popularity for estimation
of covariance matrix, especially in among academics, and often are set as benchmark models
using daily data. These models are able to estimate volatility or covariance matrix which are
the key parameters for parametric method or also used for standardization of financial asset
returns for semi-parametric and Monte Carlo simulation methods. The opponent to them will
be Multivariate HAR model using high-frequency data that is also very popular and parsimonious
model to estimate.

The continuation of the theoretical framework from section 2.4 and from now on notation
will be following.

According to McNeil et al. (2015, pg. 338), we introduce the loss operator at time t, written
l[t] : Rd → R which maps risk-factor changes into losses1. Portfolio loss on will be given as
Lt = l[t−1](rt) where rt = △Zt = lnSt − lnSt−1 where St vector of prices of financial assets in
the portfolio at time t.

1For further references see Chapter 9. in McNeil et al. (2015)



3. Methodology 24

Additional property of estimation of risk measures is that they use the recent available data
set (Ft denotes sigma algebra) and therefore they become conditional risk measures which uses
conditional loss distribution what is the ”the distribution of the loss operator l[t−1](.) under
Fr|Ft−1

, that is, the distribution with distribution function FLt|Ft−1
(l) = P (l[t−1](rt) ≤ l|Ft−1).

McNeil et al. (2015, pg. 339).The disadvantage of conditional approach is that if used conditional
distributional function does not contain high volatility period, then resulting conditional risk
measure can be underestimated. The opposite approach is an unconditional one which is based
on assumption that rt forms a stationary2 multivariate time series. So we need to ”estimate
a stationary distribution function Fr of the time series and the evaluate the unconditional loss
distribution of Lt” McNeil et al. (2015, pg. 339). If rt are iid then we get Frt|Ft−1

= Fr. However,
as we mentioned in the section 2.1, compounded returns of financial assets usually show volatility
clustering what violates iid condition, so previous equation does not hold McNeil et al. (2015,
pg. 339).

3.1.1 EWMA

First model is EWMA which was suggested by RiskMetricsTM J.P.Morgan (1996).

Portfolio-level We consider setup proposed by RiskMetricsTM. We assume that, given Ft−1,
rp,t = µt + σtϵt, rp,t ∼ N(µt, σ

2
t ), and ϵt ∼ N(0, 1), where N denotes to univariate Gaussian

distribution, ϵt is innovations, µt = 0, decay factor lambda = 0.94 for 1-day time horizon and .
The conditional variance is estimated recursively by

σ2
p,t = λσ2

p,t−1 + (1− λ)r2p,t−1, 0 < λ < 1 (3.1)

The decay factors represent the weight of the previous observations and decay exponentially.
The initial value of σ2

p is usually set as the unconditional variance of the data and its influence
is negligible after about 30 days (known as burn time) Danielsson (2011, pg. 60). If we use λ
estimated by RiskMetricsTM, then we have model-free approach. On the other hand, if we choose
to estimate λ, then we can consider EWMA model as a special version of IGARCH(1,1) model
and use it for estimation of λ for further reference with example see Tsay (2012, pp.252-255).

Asset-level We augment the assumptions from univariate to multivariate dimension that rt =
µt + Aϵt, rt ∼ Nd(µt,Σt) and ϵt ∼ Nd(0, Id), where Nd denotes to multivariate Gaussian
distribution and µt = 0 and Σt = AA′.

The conditional covariance matrix is estimated recursively by

2 The multivariate time series (Xt)t∈Z is strictly stationary if (Xt
′
1, . . . , Xt

′
n)

d
= (X′

t1+k, . . . , X
′
tn+k) for all

t1 . . . , tn, k ∈ Z and for all n ∈ N. The multivariate time series (Xt)t ∈ Z is covariance stationary (or weakly
if the first two moments exist and satisfy µ(t) = µ, t ∈ Z and Γ(t, s) = Γ(t + k, s + k), t, s, k ∈ Z. A strictly
stationary multivariate time series with finite covariance matrix is covariance stationary but vice versa it does
not hold. Moreover, it is possible to define infinite-variance processes (including certain multivariate ARCH and
GARCH processes) that are strictly stationary but not covariance stationary McNeil et al. (2015, pg. 540).
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Σt = λΣt−1 + (1− λ)r′t−1rt−1 (3.2)

The decay factor 0.94 was estimated by RiskMetricsTM but decay factor lambda = 0.94 for
1-day time horizon.

Advantages It is simple and fast estimation of large covariance matrices and required positive
semi-definiteness is always guaranteed (conditional portfolio volatility is non-negative).

Disadvantages It does not allow to incorporate leverage effect, counterfactual longer-horizon
forecasts Christoffersen (2011), heavy dependence on the accuracy of estimation of λ which has
the same degree for all elements of the covariance matrix and lack of mean-reversion Andersen
et al. (2011).

3.1.2 DCC-GARCH

DCC-GARCH is the model which estimates the conditional covariance matrix as its decomposition
into diagonal matrix of conditional volatility and correlation matrix and it allows to incorporate
the most of stylized facts about financial asset returns.

GARCH

Initially, we describe univariate estimation of conditional variance for portfolio-level approach
which is applied later in asset-level approach.

Symmetric - GARCH(1,1) The GARCH was introduced by Bollerslev (1986) which become
the most common used model in practice from the rich family of GARCH models drawn up by
Bollerslev (2008).

We assume that, given Ft−1, rp,t = µt + σtϵt, rp,t ∼ N(µt, σ
2
t ), and ϵt ∼ N(0, 1), where

N denotes to univariate Gaussian distribution, ϵt is innovations, µt = 0, then GARCH(s3,q) is
defined as

σ2
p,t = ω +

s∑
i=1

αir
2
p,t−i +

q∑
j=1

βjσ
2
p,t−j (3.3)

and the simplest GARCH(1,1) which employes one lag is defined as

σ2
p,t = ω + αr2p,t−1 + βjσ

2
p,t−1 (3.4)

where ω > 0, α ≤ 0, β ≤ 0 (positive volatility is ensured) and α + β < 1 what implies that
the unconditional variance of rt is finite (covariance stationarity is ensured) and it is defined as
σ2
p = ω

1−α−β (if α + β = 1, then σ2 is infinite and otherwise undefined) while its conditional
variance σ2

t is time variant Tsay (2012). The distribution of ϵ is not limited only to Gaussian one
3Usual label is p but we use p as portfolio in this master thesis
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but in the context of financial asset returns and risk measure, there are often used Student’st,
Generelized Error Distribution, etc.

Asymmetric - GJR-GARCH(1,1) The asymmetric version of GARCH(1,1) with acronym
GJR is able to accommodate the leverage effect and is commonly used in the practice besides of
EGARCH. It was introduced by Glosten et al. (1993).

The model GJR-GARCH(1,1) follows of the form:

σ2
p,t = ω + αr2p,t−1 + γr2p,t−1I(rp,t−1 < 0) + βjσ

2
p,t−1 (3.5)

where I(.) denotes the indicator function.

Advantages The GARCH models offer wide flexibility to adapt to a specific characteristics
of financial asset returns such as volatility clustering and leverage effect and at the same time
they stay parsimonious (other models can accommodate even long-memory or other stylized
facts). Moreover, it adds that its forecasts revert back to the long-run variance. The estimation
is based on Quasi Maximum Likelihood Estimation (QMLE) that allows to violate assumption
of conditional Gaussian distribution if mean and variance are correctly specified with the cost
that estimates of QMLE are less efficient than Maximum Likelihood Estimation (MLE) estimates
Christoffersen (2011).

Disadvantages Difficulty to forecast the entire conditional distribution Christoffersen (2011)
or possible issues in the optimization if likelihood function has multiple local minima or numerical
instability, especially for higher magnitute of lags Danielsson (2011). The papers specialized in
the issues of GARCH can be find in the Further resources of chapter 4. in Christoffersen (2011).

DCC

We now turn to the asset-level approach using DCC model introduced by Engle (2000) to model
covariance matrix. Unlike EWMA, this model consists of two components that are estimated
separately. First component is a diagonal matrix of conditional volatilities denotes to Dt and
second component is time variant conditional correlation matrix denotes to Γt.

Symmetric - DCC Basic version of DCC model is its symmetric version. We use the assump-
tions rt = µt + Aϵt, rt ∼ Nd(µt,Σt) and ϵt ∼ Nd(0, Id), where Nd denotes to multivariate
Gaussian distribution and µt = 0 and Σt = AA′. The covariance matrix is given by:

Σt = DtΓtDt, (3.6)

where
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Dt =


σt,1 0 0

0
. . . 0

0 0 σt,d

 (3.7)

and

Γt = diag{Qt}−1/2Qtdiag{Qt}−1/2 (3.8)

with Qt given by:

Qt = (1− α− β)Q̄+ α(ϵt−1ϵ
′
t−1) + βQt−1 (3.9)

where Q̄ = E[ϵtϵ
′
t is the unconditional correlation matrix of epsilons that are given ϵt =

D−1t rt , α and β are non-negative real numbers satisfying 0 < α + β < 1 to ensure positive
definiteness , stationarity and that models becomes mean reverting.

Asymmetric - ADCC As volatility exhibits asymmetric response to positive and negative
shocks, the similar case is also for covariance where the negative shock can induce disproportional
joint reaction of financial assets if the same magnitude of the shock would be positive. The
asymmetric version of DCC (scalar) was introduced by Cappiello et al. (2006) as adjusted version
of equation 3.9 and as a special case of Asymmetric generalized DCC .

Qt = (Q̄− α2Q̄− β2Q̄− γ2N̄) + α2(ϵt−1ϵ
′
t−1) + γ2(ηt−1η

′
t−1) + βQt−1 (3.10)

where ηt = I(ϵt < 0) ◦ ϵt, I(.) is a d × 1 indicator function whole ◦ denotes the Hadamard
product, N̄ = E(ηtη

′
t) and if condition α2+β2+δγ2 < 1 holds, where δ = maximum eigenvalue

[Q̄
−1/2

N̄Q̄
−1/2

], then Qt is guaranteed to be positive definite.

Advantages We can estimate each variance of d financial assets separately using different
GARCH models and then time depending conditional correlation matrix. This models handle to
model also a large covariance matrix.

Disadvantages The parameters α and β are constant values meaning that ”the conditional
correlations of all assets are driven by the same underlying dynamics - often an unrealistic
assumption” Danielsson (2011).

3.1.3 HAR

In the section 2.3 we defined estimators of RV and RCOV. We now illustrate how these estimators
can be forecasted with HAR model of Corsi (2009) for portfolio-level and its multivariate version
of Chiriac & Voev (2011) for asset-level. The choice of this model is based on its ability to
capture the one of key stylized facts that is high persistence and its simplicity in comparison
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with initially proposed ARFIMA model in Andersen et al. (1999).

The meaning of long-memory feature is that high autocorrelation function decays slowly
at a hyperbolic rate and characterized by fractional integration whereas short-memory model’s
(Autoregressive model (AR) or Autoregressive Moving Average (ARMA)) autocorrelation function
would decay faster at an exponential rate.

The economic interpretation of long-memory property of volatility was proposed in the work
of Müller et al. (1997) who introduced heterogeneous market hypothesis. The main idea is
that ”different market agent types or components perceive, react to, and cause different types of
volatility.”. The meaning of ”different” is in terms of time resolution that volatility is measured,
i.e. short-term trades (intraday traders, dealers or market makers) watch, trade, analyze the
situation on high-frequency basis wheres long-term traders (financial institutions) monitor and
trade on daily or lower frequency. This heterogeneous behaviour of market participants cause
aggregation of these different volatilities and so high persistence according to Bauwens et al.
(2012, pg.364). This idea has been followed in Corsi (2009), who introduced symmetric HAR

model as ”an additive cascade model of realized volatility aggregated at different time horizons”
[pg. 364]Bauwens2012.

Symmetric

Portfolio-level Univariate version of HAR model is not an exact long-memory model such as
ARFIMA but only approximate because it is type of AR-model estimated with Ordinary Least
Squares (OLS) method.

We assume that, given Ft−1, rp,t = µt + σtϵt, rp,t ∼ N(µt, σ
2
t ), and ϵt ∼ N(0, 1), where N

denotes to univariate Gaussian distribution, ϵt is innovations, µt = 0 and σ2
t = RV

(d)
t , then HAR

is defined as

RV
(d)
t+1 = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + νt, νt

iid∼ N(0, σ2
ν) (3.11)

where individual components of HAR are calculated as daily, weekly and monthly realized
volatility in terms of business days and vector of parameters β = (c, β(d), β(w), β(m)) is estimated
by the OLS regression.

RV
(d)
t ≡ RVt

RV
(w)
t ≡ RVt−4,t =

[RVt−4,t +RVt−3,t +RVt−2,t +RVt−1,t +RVt−4,t]

5

RV
(m)
t ≡ RVt−20,t =

[RVt−20,t +RVt−19,t + · · ·+RVt]

21

(3.12)

Given the log normal property of RV

ln(RV (d)
t+1) = c+ β(d)ln(RV (d)

t ) + β(w)ln(RV (w)
t ) + β(m)ln(RV (m)

t ) + νt (3.13)
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Asymmetric

We can find different implementations of leverage effect into HAR model, i.e. Corsi & Reno
(2009b) or in Chapter 15. Bauwens et al. (2012) including incorporation of jumps. However, we
chose the version of asymmetric HAR introduced in the article of Allen et al. (2014) that even
implement the asymmetry of realized volatility of risk-factors as well as asymmetry of volatility
of realized volatility and hence, they call it a dually asymmetric realized volatility model. For
the scope of this master thesis, it will be satisfying to incorporate only the former degree of
asymmetry that has the same construction as the asymmetry in GJR-GARCH(1,1). Simplified
or ”singular” asymmetric HAR of DARV-HAR suggest by Allen et al. (2014) is defined as

RV
(d)
t+1 = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t

+ γ(d)r
(d)
p,t I(r

(d)
p,t < 0) + γ(w)r

(w)
p,t I(r

(w)
p,t < 0)

+ γ(m)r
(m)
p,t I(r

(m)
p,t < 0) + νt, νt

iid∼ N(0, σ2
ν)

(3.14)

where I(.) is an indicator function, r(d)p,t is a daily financial asset return, r(w)
p,t and r

(m)
p,t

are cumulated returns for weekly, respectively monthly period and vector of parameters β =

(c, β(d), β(w), β(m), γ(d), γ(w), γ(m)) is estimated by the OLS regression.

Asset-level One of basic approaches how to model realized covariance was proposed by Chiriac
& Voev (2011). The model constitutes of the Cholesky decomposition of RCOV into Cholesky
factors At (lower triangular matrix) for which A′tAt = Σt. Chiriac & Voev (2011) suggest
to model the dynamics of the individual components of lower triangular matrix by using m

univariate HAR models described in portfolio-level approach. Thanks to Cholesky decomposition,
the resulting RCOV is guaranteed to be PSD.

We assume rt = µt + Aϵt, rt ∼ Nd(µt, Σt) and ϵt ∼ Nd(0, Id), where Nd denotes to
multivariate Gaussian distribution, µt = 0,Σt = AA′ and d = 2. The covariance matrix is given
by:

At =

(
aRCOV,t,11 0

aRCOV,t,21 aRCOV,t,22

)
(3.15)

a(d)
RCOV,t+1,11 = c+ β(d)a

(d)
RCOV,t,11 + β(w)a

(w)
RCOV,t,11 + β(m)a

(m)
RCOV,t,11 + νt,11

a(d)
RCOV,t+1,21 = c+ β(d)a

(d)
RCOV,t,21 + β(w)a

(w)
RCOV,t,21 + β(m)a

(m)
RCOV,t,21 + νt,21

a(d)
RCOV,t+1,22 = c+ β(d)a

(d)
RCOV,t,22 + β(w)a

(w)
RCOV,t,22 + β(m)a

(m)
RCOV,t,22 + νt,22

(3.16)

where a(d)RCOV,t,11, a
(w)
RCOV,t,11, a

(m)
RCOV,t,11 is calculated in the same way as in equations 3.12.

Logarithmic form of RCOV does not exist since covariance component can obtain negative value.
In case of asymmetric multivariate HAR the procedure is similar, we replace symmetric HAR

for its asymmetric version defined in Equation 3.14 for forecasting RV and keep symmetric HAR
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for forecasting RCOV. Therefore such a asymmetric multivariate HAR is a counterpart to DCC-
GJR-GARCH.

Advantages Parsimonious model with low demanding estimation that has a good performance
in reproduction of persistence of realized (co)variance. Multivariate version is immune to curse
of dimensionality in the number of parameters of the model in comparison with other models for
RCOV Bauwens et al. (2012).

Disadvantages It can happen that volatility clustering of realized volatility appears and then
extension of HAR model by GARCH to model innovations νt of HAR can be suitable solution,
known has HAR-GARCH model Bauwens et al. (2012, pg. 369). In case of asset-level approach,
”a drawback of this approach is that the dynamic linkages among the variance and covariance
series (e.g., volatility spillovers) is neglected” Chiriac & Voev (2011).

3.2 Loss Distribution
As we mentioned in Section 2.4 that our focus is on the risk measure based on conditional
loss distribution, we will review now applied loss distributions in this master thesis. First two,
specifically, Gaussian and Student’s t, belong to class of elliptical distributions that can be
estimated through its parameters either in univariate or multivariate dimension. Following two,
FHS and EVT, are non-elliptical and are estimated semi-parametrical. FHS will be presented for
univariate as wells as for multivariate dimension. Strictly speaking, EVT is the method to analyze
the tail of loss distribution and the most used distributions of tail are Generalized Extreme Value
distribution (GEV) or Generalized Pareto Distribution (GPD). In this master thesis we will only
work with EVT in univariate dimension jointly with Monte Carlo simulations via Copula in order
to construct multivariate loss distribution.

3.2.1 Elliptical Distributions

Let’s define an elliptical distributions as ”distributions with densities which are constant on
ellipsoids”Kyselá (2016, pg. 26) and their properties according to McNeil et al. (2015, pp. 200-
203) and Jondeau et al. (2007, pp. 223-230).

Definition 3.1. An d-dimensional vector X, from X = µ+Σ1/2Y , is considered to be elliptically
distributed with location vector µ of size d×1 and dispersion matrix Σ of size d×d, if the density
is

g(x|µ,Σ) = |Σ|−1/2f (d)((x− µ)′Σ−1(x− µ)) (3.17)

where the spherical vector Y has d-dimensional density generating function f (d).
We denote X ∼ Ed(µ,Σ, f

(d)) with following properties.
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Linear combinations ”If we take linear combinations of elliptical random vectors, then these
remain elliptical with the same characteristic generator f (d). Let’s take any B ∈ Rk×d and
b ∈ Rk” McNeil et al. (2015, pg. 202). We can show that

BX + b ∼ Ek(Bµ+ b,BΣB′, f (d)). (3.18)

If we apply vector of portfolio weights w ∈ Rd, then

w′X ∼ E1(w
′µ,w′Σw, f (d)). (3.19)

Marginal distributions ”Marginal distributions of X must be elliptical distributions with the
same characteristic generator. Using the X = (X ′1,X

′
2)
′ notation and again extending this

notation naturally to µ and Σ” McNeil et al. (2015, pg. 202).,

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
(3.20)

we have that X1 ∼ Ek(µ1,Σ11, f
(d)) and X2 ∼ Ek(µ2,Σ22, f

(d)).

Further properties can be found in Chapter 6. in McNeil et al. (2015).

Risk measurement for elliptical risk factors Suppose that X ∼ Ed(µ,Σ, f
(d)) and let

M be the space of linear portfolios M = {L : L = m + w′X,m ∈ R,w ∈ Rd}. For any risk
measure ϱ that satisfy axioms 2.2,2.4 and is law-invariant4, then on M the following property
hold McNeil et al. (2015, pg. 295).

• For any L = m+w′X ∈ M we have

ϱ(L) = m+w′µ+
√
w′Σw, (3.21)

where Y ∼ S1(f
(d)), i.e. a univariate symmetric around 0 spherical distribution with

generator f (d).

Further properties can be find in Chapter 8. McNeil et al. (2015). This was an excursion how
and why we can calculate VaR and ES as linear combination of risk factors that have Gaussian
and Student’s t multivariate distribution that are elliptical distributions5

Gaussian

One of the stylized fact about financial asset returns was that they commonly did not come
from Gaussian (Normal) distribution neither at daily frequency nor higher-frequency than daily.

4Such a risk measure ϱ(L) if it depends on L only via its distribution function FL, i.e. VaR and ES McNeil
et al. (2015, pg. 295)

5For enthusiastic reader willing to learn about skewed elliptical distributions, we can refer to Chapter 16. in
Jondeau et al. (2007).
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However Gaussian distribution is still used in quantitative finance for its appealing mathematical
features and simplicity to estimate because it is fully described by its first two moments.

Let’s set f (d)(u) = e−u/2

(2π)d/2
and we get joint density of multivariate Gaussian distribution given

by

g(x|µ,Σ) =
1

(2π)d/2
|Σ|−1/2exp(−1

2
(x− µ)′Σ−1(x− µ)) (3.22)

Multivariate Gaussian distribution is deemed attractive due to its properties. These proper-
ties are the same properties mentioned in the section about elliptical distributions. Moreover,
if the risk factors are iid, then we can conclude sample mean and covariance matrix are good of
estimators of the mean vector µ and covariance matrix Σ, respectively. However, financial asset
returns are not described very well by multivariate Gaussian distribution. It is mainly due to its
dependency introduced by the covariance matrix equals to zero in the tails of the distributions.
Another disadvantage arises from the symmetrical construction omitting any leverage effect.
Particularly, the first shortcoming is the crucial for portfolio VaR and ES as one of stylized fact
about multivariate distribution of financial asset returns suggests that ”Extreme returns in one
series often coincide with extreme returns in several other series” McNeil et al. (2015) especially
if such returns are member of the same category of financial asset i.e. stocks (even more if these
stocks are from the same industry). The latter limitation can be fixed by using skewed elliptical
distribution.

Portfolio-level: parametric VaR and ES Suppose that the loss distribution FL is univariate
Gaussian with forecasted conditional mean µT+1 and variance σ2

T+1 and confidence level α.

VaRp,α,T+1(L) = µp,T+1 + σp,T+1Φ
−1
α (3.23)

ESp,α,T+1(L) = µp,T+1 + σp,T+1
ϕ(Φ−1α )

1− α
(3.24)

where Φ−1α denotes the quantile of standard univariate Gaussian distribution and ϕ is the
density of standard univariate Gaussian distribution.

Asset-level: parametric VaR and ES Suppose that the multivariate loss distribution FL

is multivariate Gaussian with forecasted conditional mean vector µT+1 and covariance matrix
ΣT+1, vector of portfolio weights w and confidence level α.

VaRα,T+1(L) = w′µT+1 +
√
w′ΣT+1wΦ−1α (3.25)

ESα,T+1(L) = w′µT+1 +
√
w′ΣT+1w

ϕ(Φ−1α )

1− α
(3.26)
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Student’s t

The solution for serious limitation of multivariate Gaussian distribution can be provided by
employing multivariate Student’s t distribution which allows dependency in the tails besides of
heavier tail than in univariate Gaussian distribution.

Let’s set f (d)(u) =
(
1 + u

ν

)−(ν+d)/2
, ν > 0 and we get joint density of multivariate Student’st

distribution given by

g(x|µ,Σ, ν) =
Γ
(
ν+d
2 )

(πν)
d/2

Γ
(
ν
2

) |Σ|−1/2
(
1 +

(x− µ)′Σ−1(x− µ)

ν

)− ν+d
2

(3.27)

We say that X has a multivariate Student’s t distribution with ν degrees of freedom where
ν stands for the parameter determining the kurtosis or in other words, fat-tailedness of the Stu-
dent’s t distribution. We denote X ∼ td(µ,Σ, ν) and cov(X) = Σ ν

ν−2 where covariance matrix
is defined if ν > 2 and mean vector if ν > 1. As ν approaches large value, Student’s t distribution
converge to the normal distribution.

According to Jondeau et al. (2007, pg. 226) we should rule out the possibility of ν being
constant because that would mean each distribution of the financial asset returns would have the
same fat tails and the dependence in tails can be biased. Due to this fact this scenario is overly
simplified and should be avoided. If we assume that the degrees of freedom νi is different for
each financial asset, then multivariate Student’s t will not be an elliptical distribution anymore.
Therefore we will need to employ i.e. Monte Carlo simulations through Copula to sample such
a multivariate Student’s t distribution.

The multivariate Student’s t distribution is a special case of the Gaussian variance mixture
distribution with the mixing variable W from the inverse gamma distribution W ∼ Ig( 12ν,

1
2ν)

that is equivalent to ν
W ∼ χ2

ν . Further theory about the construction of multivariate Student’s
t distribution can fined in Chapter 6. in McNeil et al. (2015) or from a bit different angle in
Jondeau et al. (2007, pp.225-229) or Dowd (2005, pp.159-160).

Portfolio-level: parametric VaR and ES Suppose that the loss distribution FL is univariate
Gaussian with forecasted conditional mean µT+1 and variance σ2

T+1 and confidence level α and
degrees of freedom ν.

VaRp,α,T+1(L) = µp,t+1 + σp,T+1

√
ν − 2

ν
t−1ν,α (3.28)

ESp,α,T+1(L) = µp,T+1 + σp,T+1

√
ν − 2

ν

(
gν(t

−1
ν,α)

1− α

)(
ν + (t−1ν,α)

2

ν − 1

)
(3.29)

where tα denotes the quantile of standard univariate Student’s t distribution and gν is the
density of standard univariate Student’s t distribution .
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Asset-level: parametric VaR and ES Suppose that the multivariate loss distribution FL is
multivariate Student’s t with forecasted conditional mean vector µT+1 and covariance matrix
ΣT+1

ν
ν−2 , vector of portfolio weights w, confidence level α and degrees of freedom ν .

VaRα,T+1(L) = w′µT+1 +
√

w′ΣT+1w

√
ν − 2

ν
t−1ν,α (3.30)

ESα,T+1(L) = w′µT+1 +
√
w′ΣT+1w

√
ν − 2

ν

(
gν(t

−1
ν,α)

1− α

)(
ν + (t−1ν,α)

2

ν − 1

)
(3.31)

McNeil et al. (2015) has shown in Figure 3.2 that at relatively low confidence levels, say
95−97.5% portfolio-level VaR using Gaussian vs Student’s t distribution for ν = 4, the Student’s
t distribution has even lower VaR than Gaussian one despite of higher likelihood of large losses
for Student’s t. Difference becomes apparent for higher confidence level than 97.5. On the other
hand, risk measure ES reflects already on those relatively lower confidence levels the significant
difference in the riskiness between Gaussian and Student’s t distribution.

Figure 3.1: Comparison between VaRα and ESα from Gaussian and
Student’s t with ν = 4 for α ∈ (0.001, 0.5)

Source: Embrechts et al. (2016)

The calculation of analytical VaR and ES can be characterized as easy and fast computation
at the cost of high simplification and possible significant departure from the empirical evidence.

3.2.2 Filtered Historical Simulations

The Filtered Historical Simulations belongs to class of semi-parametric method of calculation
of VaR and ES and it was suggested by Barone-Adesi et al. (1998), Barone-Adesi et al. (1999).
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The approach is based on first phase that is standardization of (filtration) financial asset re-
turns via forecasted conditional mean and (co)variance and instead of analytical specification of
the standardized loss (innovations) distribution, the second phase uses historical (or empirical)
standardized loss distribution which is model-free6. FHS is the one of the ways how to avoid
of misspecification of loss distribution but still incorporate forecasts of conditional mean and
(co)variance by sophisticated models and hence, it is more advanced method than naive histori-
cal simulations.

In order to compute VaR and ES, we only need to decide what model to use for forecasts of
conditional mean and (co)variance and what size of window (length) of past observed financial
asset returns to take in order to construct empirical distribution of innovations.

The problematic spot is in the choice of size of window to be adequately representing the
distribution, so it should contain also the period of increased volatility in order not to underesti-
mate the risk. On the other hand, if there happened some structural break in the market for in
favor of volatility drop or reverse, then long size of window could cause overestimate of the risk
or underestimate the risk. The same applies if the size of window is too short. Therefore it is a
very tricky decision about the optimal size of window. One of the recommendation mentioned
in Christoffersen (2011) but for naive historical simulation is between 250 and 1000 business days.

Detailed discussion of advantages and disadvantages can be found in Dowd (2005, pp. 99-101).
Following computing methods of FHS are based on Part V. Value-at-Risk Models in Andersen
et al. (2009) with various extensions.

Portfolio-level: semi-parametric VaR and ES We assume that, given Ft−1, rp,t = µt +

σtϵt, rp,t ∼ G(µt, σt), ϵt ∼ G(0, 1), where G denotes the univariate empirical distribution of
innovations ϵt, {ϵt}Tt is the set of empirical innovations and window size (t, T ), then portfolio-
level VaR and ES is given for long position by

VaRp,α,T+1 = µp,T+1 + σp,T+1Percentile
{
{ϵt}Tt , 100(1− α)

}
, (3.32)

where the Percentile is the function that returns an empirical quantile ϵ100(1−α).

ESp,α,T+1 = µp,T+1 + σp,T+1
1

(1− α)T

T∑
t=1

ϵtI

(
ϵt <

VaRp,α,T+1

σp,T+1

)
,

(3.33)

where I(.) is the indicator function returning a 1 if the argument is true and zero otherwise.
6we do not make even iid assumption
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Asset-level: semi-parametric VaR and ES We assume rt = µt + Aϵt, rt ∼ Gd(µt,Σt)

and ϵt ∼ Gd(0, Id), where Gd denotes to multivariate empirical distribution of innovations ϵt,
Σt = DtΓtDt and we assume µt = 0.

First step is to remove volatilities from the vector of portfolio return by

zt = D−1t rt, (3.34)

where Dt is an d × d diagonal matrix of volatility estimates. Then we create a data set of
empirical dynamically uncorrelated innovations as

zD
t = Γ

−1/2
t zt, (3.35)

where, Γ−1/2t is the cholesky decomposition of conditional correlation matrix Γt. When we
finish a data set of empirical uncorrelated shocks{zD

t }Tt=1, we draw a random vector, called zD
i,T+1

from this data set and re-apply forecasted Γ
−1/2
T+1 and DT+1. Afterwards, we compute simulated

vector of portfolio return as

ri,T+1 = DT+1Γ
−1/2
T+1 z

D
i,T+1. (3.36)

It will be repeated T times. Finally, we transform logarithmic returns to arithmetic returns
since logarithmic returns are not portfolio additive Ri,T+1 = exp(ri,T+1) − 1, consequently we
convert arithmetic portfolio return back to logarithmic one and compute VaR and ES given by

VaRα,T+1 = Percentile
{

ln(w′Ri,T+1 + 1)}Ti=1, 100(1− α)
}
, (3.37)

ESα,T+1 =
1

(1− α)T

T∑
i=1

ln(w′Ri,T+1 + 1)I (ln(w′Ri,T+1 + 1) < VaRT+1) .

(3.38)

3.2.3 Extreme Value Theory

Given the interest in risk measures such as VaR and ES, we are exposed to study and analysis
of extreme events which Dowd (2005, pg. 189) characterizes as low-probability and high-impact
events resulting in large changes of risk-factors. Thus, practitioners in financial risk management
need to deal with extreme values that are observed rarely7. Unlike modeling of entire loss distri-
bution discussed in previous subsections, EVT is ”a branch of probability concerned with limiting
laws for extreme values in large samples . . . describing the behaviour of sample maxima and
minima, upper-order statistics and sample values exceeding high thresholds” McNeil et al. (2015,
pg. 135). Our interest will be in the analysis of tail of loss distributions that are well-studied by

7As Dowd (2005, pg. 189) points out, this issue is present not only in financial risk management but also in
other fields, i.e. hydrology ”where engineers have long struggled with the question of how high dikes, sea walls
and similar barriers should be to contain the probabilities of floods within reasonable limits.”
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models of block maxima and peaks-over-threshold denoted Peak-Over-Threshold (POT).

The block maxima method initially divides the sample of risk changes into blocks and observed
values within inside the block are assumed to be iid. Then, the largest8 observed value is selected
and subsequently the sample of these largest values across all blocks will construct the tail
distribution. The most used tail distributions in risk management are Gumbel, Fréchet and
Weibull. If we generalize these distributions, we get GEV distribution which is able to describe
each of these distributions according to selected tail9 parameter. The disadvantage of this method
is the significant waste of data leading to requiring rather very large data sets - a requirement that
is rarely met in financial markets. These reasons motivate to consider the second method POT

described briefly in following subsection. The more detailed explanation of EVT and its models
exceeds the scope of this master thesis and hence, we refer to comprehensive book devoted to
only EVT Embrechts et al. (1997) or a more handy summary in Chapter 5. of McNeil et al.
(2015).

Peak Over Threshold

but use all of those exceeding Contrary to Block maxima method, POT does not divide full sample
of data into blocks but use all of those exceeding determined by high threshold and those ones
construct the tail of a distribution. There are two approaches to model the tail of a distribution.
First one is the full parametric model so-called Generalized Pareto distribution and its alternative
is semi-parametric the Hill approach using the Hill estimator. As McNeil et al. (2015, pp. 161-
162) has shown in their Monte Carlo experiment to estimate the 99% VaR that GPD method is
more robust than Hill method and that was the reason why we implemented only GPD method
in this master thesis.

Generealized Pareto Distribution Let’s consider an iid random variable X with distribution
functionF (x) and u is a threshold of X (i.e. risk-factor changes), then the excess distribution
over threshold u (for upper tail) is given by:

Fu(x) = Pr(X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
(3.39)

for x > 0. It gives us the probability that X exceeds the threshold u by no more than x,
given that threshold u was violated. The distribution of X itself (i.e. Gaussian, Student’s t,
etc.) does not play crucial role since we are only interested in the excesses. The important
conclusion driven by Gnedenko-Pickands-Balkema-deHaan (GPBdH) theorem is that as u→ ∞,
Fu(x) converges to the GPD Gξ,β(x):

Definition 3.2 (Generalized Pareto distribution). The distribution function of GPD is
8Depending on the position if it is long, then largest negative value otherwise positive value
9Inverse tail index is called shape parameter
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defined as

Gξ,β(x) =

1− (1 + ξx/β)−1/ξ if ξ ̸= 0,

1− exp(−x/β) if ξ = 0,
(3.40)

where β > 0, and x ≤ 0 when ξ ≤ 0 and 0 ≥ x ≥ −β/ξ when ξ < 0. The parameter ξ
is the shape or tail index parameter that can be positive (common for heavy-tail data), zero or
negative and β is a positive scale parameter. The latter one is the same one as mentioned in
GEV distribution Dowd (2005).

Figure 3.2: (a) Distribution function of the GPD in three cases: the
solid line corresponds to ξ = 0 (exponential); the dotted
line to ξ = 0.5 (a Pareto Distribution); and the dashed line
to ξ = −0.5 (Pareto type II). The scale parameter β is equal
to 1 in all cases. (b) Corresponding densities.

Source: McNeil et al. (2015)

Another important result of GPBdH theorem is that ”the distribution of excess losses always
has the same form (in the limit, as the threshold gets high), pretty much regardless of the
distribution of the losses themselves.” Dowd (2005, pg. 202). Therefore considering that threshold
is optimally set, we can say that GPD is a natural model for the excess losses.

Selection of the optimal threshold and estimation The optimal threshold u should be a
sufficiently high that the GPD is an appropriate fit and simultaneously keep enough exceeding
observations in order to provide reliable estimates of the GPD parameters. In order to decide
about optimal trade-off between those two conditions, we can construct mean excess function
(MEF) defined as e(u) = E(X − u|X > u) and visually select the threshold u where the MEF
starts to be linear McNeil et al. (2015). The estimation of GPD paramaters can be done by either
MLE or probability-weighted moments McNeil et al. (2015).

Apart from the issue of selection of threshold, there is often a departure from iid assumption
in context of time series of raw financial asset returns. The solution is either to apply GEV

distribution to block maxima method but with new issue that what length the block should have
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or we treat the tail of the distribution as a conditional one and filter raw financial asset returns
with the conditional volatility model (i.e. GARCH or HAR) and eliminate the time dependency.
Therefore the EVT-POT with GPD is applied rather on innovations10 than raw financial asset
returns Dowd (2005).

Portfolio-level: parametric VaR and ES We assume that, given Ft−1, rp,t = µt + σtϵt,
rp,t ∼ G(µt, σt), ϵt ∼ G(0, 1), where G denotes the univariate distribution of innovations ϵt with
number of innovations exceeding the threshold u is Nu and total number of innovations n11, then
GPD is estimated on innovations with portfolio-level VaR and ES estimates are given by

VaRp,α,T+1 = u+
β

ξ

((
1− α

Nu/n

)−ξ
− 1

)
, (3.41)

ESp,α,T+1 =
VaRp,α,T+1

1− ξ
+
β − ξu

1− ξ
. (3.42)

Asset-level: semi-parametric VaR and ES As it was mentioned in Section 2.1, the multi-
variate EVT is cumbersome, much less spread in risk management field than all other discussed
methods and lastly, the theoretical and practical background would certainly exceed the scope of
this master thesis. However, the easiest way how to implement EVT-POT in multivariate dimen-
sion is to use univariate EVT-POT for additional filtration with the entire distribution (upper and
lower tail estimated parametrically as GPD and the interior with non-parametric kernel or FHS)
and apply on residuals the Monte Carlo simulations with Copula functions to model multivariate
loss distribution.

3.2.4 Monte Carlo - Copula

The main pitfalls of covariance (normalized covariance is Pearson’s correlation coefficient com-
puted as ρ(X,Y ) = Cov(X,Y√

V ar(X)V ar(Y )
which takes values in [−1, 1] and henceforth we use only

term correlation) pointed out in Dowd (2005, pg. 146) as concept of dependency measure is that
it describes only linear dependence what is a good measure for elliptical distributions such as
Gaussian and Student’s t since they are fully specified by their mean vector, covariance matrix
and characteristic generator function. Therefore if there is a non-linear dependency among risk-
factors, then correlation is not able to detect it and is equal to zero. So we cannot say that
zero correlation means generally no dependency. The only exception is multivariate Gaussian
distribution. Its dependency is fully described linearly and correlation coefficient implies also
general dependency. Additionally, correlation is not invariant under non-linear transformations
of the risk-factors McNeil et al. (2015, pg. 239).

The more critical pitfall is the correlation usage itself when we move beyond elliptical distribu-
tions where correlation does not need to be even defined since correlation requires finite variances

10This term is used interchangeably with standardized loss
11In Subsection 3.2.2 we used notation T
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what is not necessary condition for non-elliptical distributions (particularly heavy-tailed distri-
butions with infinite variance such as Student’s t with ν < 2). Anyway, if the correlation is
defined, then it is not necessary that correlation takes values in [−1, 1].

Thus, we need firstly dependency measure that is less restrictive than correlation and the
statistical concept how to model the multivariate distribution when we are able to estimate
separately univariate distributions (known as marginal distributions or margins) relatively well
and join them through the function that is using less restrictive alternative to correlation. The
construction of multivariate distribution is finished by the Monte Carlo simulations of this con-
cept. The concept is known as ”bottom-up approach to multivariate model building” McNeil et al.
(2015, pg. 221) and is called copula. Copula gives us a possibility to link the combinations of
all sorts of marginal distributions into joint (multivariate) distribution even though these joint
distributions have not been analytically defined yet.

Definition 3.3 (copula McNeil et al. (2015, pg. 221)). A d-dimensional copula is a distribution
function [0, 1]d with standard uniform marginal distributions.

We reserve the notation C(u) = C(u1, . . . , ud) for the multivariate distribution functions that
are copulas. Hence C is a mapping of the form C : [0, 1]d → [0, 1], i.e. a mapping of the unit
hypercube into the unit interval. The following three properties must hold.

(1) C(u1, . . . , ud) is increasing in each component ui.

(2) C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d}, ui ∈ [0, 1].

(3) For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi we have
2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1i1, . . . , udid) ≤ 0, (3.43)

where uj1 = aj and uj1 = bj for all j ∈ {1, . . . , d}. As we can see from the second property,
the copula requires the marginal distributions to be uniform but our risk-factors have stan-
dard Gaussian distribution, Student’s t or any other and hence, we need to recall the quantile
and probability transformation that we will use later in empirical part of our master thesis in
simulations.

Proposition 3.1. Let F be a distribution function and let F← denote its generalized inverse,
i.e. the function F←(u) = inf{x : F (x) ≥ u}.

(1) Quantile transformation. If U ∼ U(0, 1) has a standard uniform distribution, then
P (F←(U) ≤ x) = F (x).

(2) Probability transform. If X has distribution function F, where F is a continuous univariate
distribution function, then F (X) ∼ U(0, 1).

The connection between the joint distribution and a copula was shown in Sklar’s theorem.
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Theorem 3.1 (Sklar’s Theorem Sklar (1959)). Let F be a joint distribution function with
margins F1, . . . , Fd. Then there exists a copula C : [0, 1]d → [0, 1] such that, for all x1, . . . , xd ∈
R = [−∞,∞],

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (3.44)

If the margins are continuous, then C is unique; otherwise C is uniquely determined on RanF1×
RanF2 × . . .RanFd, where RanFi = Fi(R̄) denotes the range of Fi. Conversely, if C is a copula
and F1, . . . , Fd are univariate distribution functions, then the function F defined in Equation 3.44
is a joint distribution function with margins F1, . . . , Fd.

The importance of Sklar’s theorem lies in two aspects. Firstly, it shows that each multivariate
distribution function has a copula. Secondly, the Equation 3.44 shows that coupling copula C
and univariate distribution functions allows us to construct the multivariate distribution function
F .

If we evaluate Equation 3.44 at the arguments xi = F←i (ui), 0 ≤ ui ≤ 1, i = 1, . . . , d, and use
Proposition A.3 (viii) in McNeil et al. (2015, pg. 642), we obtain

C(u1, . . . , ud) = F (F←1 (u1), . . . , F
←
d (ud)), (3.45)

The Equation 3.45 shows how copulas are extracted from multivariate distribution functions
with continuous margins. Furthermore, Equation 3.45 tells us that copula convey dependence on
quantile scale since copula represents the joint probability of X1 being below its u1 quantile and
X2 below its u2 quantile (contrary to previous methods of dependence which were on risk-factor
changes scale) McNeil et al. (2015, pg. 224). Another advantage of copula of a distribution is
its invariance property under strictly increasing transformation of the marginals McNeil et al.
(2015, pg. 224) since we transform all underlying margins to uniform margins before estimating
copula.

As we mentioned in the beginning of this subsection, Pearson’s correlation coefficient would
not be the suitable correlation estimate, particularly for non-elliptic multivariate distributions,
which we could construct via copula function. Therefore the alternative was proposed to be rank
correlation that are scalar measures of dependence that depend only on the copula of a bivariate
distribution and not on the marginal distributions, unlike linear correlation, which depends on
both and they are able to calibrate copulas to empirical data McNeil et al. (2015, pp. 243-244).

The representatives of rank’s correlation are Kendall’s tau and Spearman’s rho. According
to McNeil et al. (2015, pg. 244)] ”the both can be understood as a measure of concordance for
bivariate random vectors. Two points in R2, denoted by (x1, x2) and (x̃1, x̃2) are said to be
concordant if (x1 − x̃1)((x2 − x̃2) > 0 and to be disconcordant if (x1 − x̃1)((x2 − x̃2) < 0.

Definition 3.4 (Kendall’s tau McNeil et al. (2015, pg. 244)). Consider a random vector
(X1, X2) and an independent copy (X̃1, X̃2), then the Kendall’s tau is defined as

ρτ (X1, X2) = P [(X1 − X̃1)(X2 − X̃2) > 0]− P [(X1 − X̃1)(X2 − X̃2) < 0]. (3.46)
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Simply said, the Kendall’s tau is the probability of concordance minus the probability of
discordance for used pairs.

Definition 3.5 (Spearman’s rho McNeil et al. (2015, pg. 245)). Consider a random vector
(X1, X2) with continuous marginal distributions F1 and F2, then the Spearman’s rho is defined
as

ρS(X1, X2) = ρ(F1(X1), F2(X2)). (3.47)

what is ”the linear correlation of the probability transformed random variables which for con-
tinuous random variables is the linear correlation of their unique copula” Kyselá (2016, pg. 27).

Simply said, the Kendall’s tau is the probability of concordance minus the probability of
discordance for used pairs.

Rank correlations have symmetric dependence property that is taking values in [−1, 1]. They
give zero value for independent random values but what does not necessary mean generally inde-
pendence. The main advantage is that rank correlation can allocate any value on its range [−1, 1]

from a specified bivariate distribution constructed by any combination of continuous marginal
distributions in contrast to Pearson’s rho.

The family of copula functions is very wide and they are divided in three categories fundamen-
tal (copulas with special dependence structure), implicit (copulas derived from their multivariate
distributions i.e. elliptic ones) and explicit (copulas with simple closed-form what is a subset
of Archimedean copulas) but some copulas can be assigned to both implicit and explicit cate-
gory. The advantages of implicit copulas are quite easily extended into higher dimension than
bivariate but on the other hand, they are symmetric and do not have closed form expressions in
comparison to Archimedean Bauwens et al. (2012, pg. 248).

Further division can be between static and dynamic copulas that have time-varying depen-
dence parameter and some examples of dynamic copulas are provided in Bauwens et al. (2012,
pp. 304-308). The more advanced copulas are vine copulas. These are multivariate copulas that
can be decomposed into a cascade of iteratively conditioned bivariate copulas see Bauwens et al.
(2012, pp. 313-315) or extreme value copula see McNeil et al. (2015, pg. 591-598).

Gaussian copula

Definition 3.6 (Gaussian copula McNeil et al. (2015, pg. 226)). If Y ∼ Nd(µ, σ) is a multi-
variate normal random vector, then its copula is a so-called Gaussian copula. Since the operation
of standardizing the margins amounts to applying a series of strictly increasing transformations.
The copula of Y is exactly the same as the copula X ∼ Nd(0,P), where P is the correlation
matrix of Y (Pearson’s rho). This copula is given by

CGa
P (u) = ϕP(ϕ

−1(u1), . . . , ϕ
−1(ud)), (3.48)
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where ϕ dones the standard univariate normal distribution function and ϕP denotes the
joint distribution function of X, so Gaussian copula is equivalent to a multivariate Gaussian
distribution. The Gaussian copula is parametrized by the correlation matrix P (we can use
analytically either Pearson’s rho, Kendaull’s tau or Spearman’s rho, see Jondeau et al. (2007,
pg. 246 )) and for bivariate dimension it would be ρ = ρ(X1, X2). The fundamental copulas
are special cases of Gaussian copula see McNeil et al. (2015, pg. 227). The main limitation of
Gaussian copula is that it does not allow tail dependence12 and symmetry.

t-copula

The example of copula with tail dependence is t-copula that belongs also to implicit and sym-
metry class of copulas.

Definition 3.7 (t-copula McNeil et al. (2015, pg. 228)). The copula is constructed by the
process as it was described in Gaussian copula. The copula is given by

Ct
ν,P(u) = tν,P(t

−1
ν (u1), . . . , t

−1
ν (ud)), (3.49)

where tν is the distribution function of a standard univariate t distribution with ν degrees
of freedom. tν,P is the joint distribution function of the vector X ∼ td(ν, 0,P) and P) is a
correlation matrix (we can use analytically either Pearson’s rho or Kendaull’s tau, see Jondeau
et al. (2007, pg. 248 )).

Explicit copulas

Explicit copulas are characterized by their simple closed forms but have difficulties to be ex-
tended to higher dimensions. We will mention just the most commonly used. Gumbel copula
is asymmetric with significant upper tail dependence without lower tail dependence. The op-
posite tail dependencies than Gumbel has the Clayton copula. If we want to generate some
dependence in the independent tails, then we can use their rotated versions Jondeau et al. (2007,
pp. 251-252). These copulas are useful for the financial assets which behave similarly to only
direction of shocks i.e. stocks from the same sector. Other explicit copulas are Frank, Plackett,
Marshall-Olkin, see Jondeau et al. (2007, pp. 246-254).

Estimation

One-step estimator Exact MLE is a method that estimates the joint likelihood of parameters
associated to marginal distributions as well as to copula functions. In other words, we estimate

12”Quantile dependence focuses on the tails of the distribution. If X and Y are random variables with
distribution functions FX and FY , there is quantile dependence in the lower tail at threshold α, whenever
P [Y ≤ F−1

Y (α)|X ≤ F−1
X (α)] is different from zero. Finally, tail dependence is obtained as the limit of this

probability, as we go arbitrarily far out into the tails.” Bauwens et al. (2012, pg. 298). The perfect example how
to misuse the Gaussian copula was application for pricing and risk management of credit derivatives that contains
high tail dependence of defaults. This practice contributed to the latest financial crises in 2007-2009 McNeil et al.
(2015, pg. 14).
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all parameters simultaneously. Obviously, this method faces to computational burden when
number of parameters is large.

Two-step estimator The computationally friendly alternative is to split vector of parameters
between those for margins and copula functions and estimate them separately. There are three
common methods to estimate parameters of margins in order to transform the original data
vectors to uniformly distributed vectors.

1. Parametric. We select an appropriate parametric model(s) describing underlying margins
and fit them. This is called also as inference functions for margins (IFM).

2. Semi-parametric. Instead of relying on full description of margins by parametric models,
we estimate the tail of margins by EVT (i.e. via GPD and the interior of margin can be
estimated parametrically or non-parametrically.

3. Non-parametric. No assumptions of margins will be made and instead, they will be
estimated through empirical distribution function.

Asset-level: non-parametric VaR and ES The formulas of VaR and ES are the same as in
Asset-level in Subsection 3.2.2 only T will represent a number of simulations.

3.3 Backtesting of VaR
Since our objective is to forecast VaR day-ahead, we need to introduce backtesting methods. We
understand13 under the term backtesting as quantitative check of the significance of the forecasts
from the out-of-sample14 against the realization of the losses. Nonetheless, backtesting methods
do not pick up the best model from the set of candidate models, given data. Therefore we intro-
duce also the methods for model selection.

The basic and primitive test for backtesting and model selection is so-called violation ratio. It
is defined for long position where loss and VaR obtain negative values as V R =

∑T
t=1 It(Lt<V aRt)

(1−α)T

where n = [t, T ] is length of out-of-sample forecasts, n1 =
∑T

t=1 It is number of failures violations,
number of non-failures is n0 = n − n1, numerator is total observed violations, denominator is
total expected violations, It(.) is an indicator function of failures. The book of Danielsson
(2011, pg. 147) advices as a rule of thumb for VaR model to be precise is that V R ∈ [0.8, 1.2].

The accurate VaR model is achieved when proportion of failures PoF = [
∑T

t=1 It(Lt <

V aRt)]/T is equal to coverage level (1− α) and It follows an iid Bernoulli process.
13The backtesting does not have formal definition and we can find various definition, see Roccioletti (2016,

pg. 44)
14Sometimes is referred as testing window what is the data sample with m forecasts of period [T + 1, . . . , T∗]

using in-sample data of period [t, . . . , T ].
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3.3.1 Unconditional coverage test

Unconditional coverage test was introduced by Kupiec (1995) with null hypothesis whether PoF
is statistically equal to coverage level (1− α), ignoring the history of the indicator function and
the alternative hypothesis is non-equivalence. Under the null hypothesis E(It) = (1 − α) and
assuming the independence, Kupiec (1995) proposes the likelihood ratio (LR)

LRuc = 2[ln((1− PoF )n0PoFn1)− ln((1− (1− α))n0(1− α)n1)] (3.50)

which is asymptotically distributed χ2(1).

3.3.2 Conditional coverage test

It is clear that previous test lacks of detecting failure clustering if the VaR model cannot react
adequately i.e. to volatility clustering. We would expect that failures of correct VaR model are
spread over time and so to be independent. Danielsson (2011, pg. 155). Thus, Christoffersen
(1998) proposes a joint test of previous unconditional coverage test plus test of first order in-
dependence of the failure process called conditional coverage test. Under the null hypothesis is
that failures are independently distributed through time and at the same time PoF equals to
coverage level (1− α) and the alternative hypothesis is at least one of these equalities does not
hold, the LR statistic is given by

LRcc = 2[ln((1− p̂01)
n00 p̂n01

01 (1− p̂11)
n10 p̂n11

11 )− ln((1− (1− α))n0(1− α)n1) (3.51)

which is asymptotically distributed χ2(1). where according to Louzis et al. (2014) ”pij is
the transition probability between two consecutive observations from state i to state j assuming a
first-order Markov chain probability transition matrix between the two possible states (a successful
VaR estimation, or a failure), nij is the number of all occurrences of transitions from state i to
state j, with i, j = 0, 1 and p̂ij = nij/

∑1
j=0 nij are the maximum likelihood estimates for pij.”

3.3.3 Dynamic Quantile test

Engle & Manganelli (2004) point out that Christoffersen test can detect the serial correlation
of failures (they show that it is relatively easy to generate such failures with iid property).
They proposed more powerful test called dynamic quantile test. They defined a new variable
Hitt = It − (1 − α) to use in OLS regression in order to test if E(Hitt) = 0 (what is the
unconditional coverage test) and at the same if the Hitt is serially uncorrelated with the past
information. Therefore we run the regression Hitt(1−α) = δ+

∑K
k=1 βkHitt−k(1−α)+ϵt and test

the joint hypothesis H0 : δ = β1 = · · · = βk = 0 for all lags k. The Hitt are serially uncorrelated
over time if the β are 0 and the PoF is correct if δ = 0 and the alternative hypothesis is at
least one of these equalities does not hold. The test statistic is given by λ̂X′Xλ̂

(1−α)α ∼ χ2
K+1 where

λ̂ = (δ, β1, . . . , βK)′ is the vector of estimated parameters of the OLS model and X is the matrix
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of explanatory variables. We are going to choose lag k = 5 as it was chosen in Louzis et al.
(2014).

3.3.4 Loss Function

All previous three tests are backtesting methods and they do not have ability to compare different
VaR models but only validate. We now present loss functions that calculate a loss (magnitude of
failure) per observation for each model and the model with the smallest average loss is considered
as the best one. The loss function is interchangeable with the term ”scoring function” that will
be mentioned in backtesting methods of ES.

Regulatory Loss function

The magnitude of failures is also a concern for regulators and Lopez (1998) proposed quadratic
or regulatory loss function that is mainly used in the assessment of bank internal models of VaR.
It is defined for long position as

RLF =

1 + (Lt − VaRt,α)
2 if Lt < VaRt,α

0 if Lt ≥ VaRt,α

We can see that larger failures are penalized more heavily due to squared distance between
failure and VaR. However, RLF measure prefer the VaR model that favours too conservative VaR

models due to fact that RLF does not penalize non-failures.

Firm Loss function

If we include penalization of the non-failures meaning penalization of agent’s opportunity cost
of its reserved capital, then we talk about the economic or firm loss function FLF . There were
proposed many FLF as well as RLF and we can find exhausting overview of RLF and FLF loss
functions for VaR model selection in article of López Martín et al. (2015). We consider the most
apt FLF newly suggested by López Martín et al. (2015) called FABL but it is a questionable
how much it is ”new” since from the methodological point of view it is a subset of FLF mentioned
in Jondeau et al. (2007, pg. 343), we call it as JPR. Both are defined as

FLFFABL =

(VaRt,α − Lt)
2 if Lt < VaRt,α

(Lt − VaRt,α)β if Lt ≥ VaRt,α

FLFJPR =

|Lt − VaRt,α|γ if Lt < VaRt,α

|Lt − VaRt,α| × i if Lt ≥ VaRt,α
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where in both cases i = β are considered to be interest rate and López Martín et al. (2015)
uses in empirical analysis the key interest rate of European Central Bank and the Deutsche
Bundesbank’s interest rate for the previous period . In our case, we are going to apply RLF and
FLFJPR with γ = 2 and instead of constant interest rate i, we choose classical risk premium
from Capital Asset Pricing Model (CAPM) which will be time-varying such as rpt = (rm,t−rf,t)
where rm,t is the market return and rf,t is the risk free interest. The reason is that we assume
the agent’s capital reserved for VaR yields at least the risk free return. Moreover, we assume zero
transaction cost.

Asymmetric Loss function

The RLF favors only the most conservative VaR models. Despite of the correction by penalization
of opportunity cost of reserved capital, FLF might favor the model that is weakly conservative
due to minimization of often exhibited opportunity cost. The opportunity cost events have ex-
pected large sample itself due to high confidence level of VaR. In case, there are even less than
expected violations, the opportunity cost intensifies. Additionally, the impact can be increased
if agent has high opportunity cost. As a result, we might get from FLF function the inverse
model selection to RLF.

The required balance between high disproportion between violations and non-violations and
their impacts, can be found in asymmetric loss function (AFL) suggested by González-Rivera
et al. (2004). The asymmetric loss function is defined for confidence level α as

ALF =

((1− α)− 1)(Lt − VaRt,α) if Lt < VaRt,α

(1− α)(Lt − VaRt,α) if Lt ≥ VaRt,α

Suppose the VaRt+1,97.5% is −5% and realization is −7%. The loss will be ((1 − 0.975) −
1)(−2) = 1.95 and if VaRt+2,97.5% remains −5% and realization will be −2%. The loss will be
only (1 − 0.975)(−3) = 0.075. Due to fact that non-violations occur more often, they are less
penalized than violations that happen rarely.

ALF is mainly used in the Model Confidence Set (MCS) that serves for advanced model
selection of VaR models but the MCS is out of the scope of this master thesis. Further reference
about the MCS is presented in Hansen et al. (2011).

3.4 Backtesting of ES
Since VaR was established as the main risk measure for the calculation of capital requirements,
there was a little research about the backtesting methods of ES. One of pioneering ES backtests
was for instance a test of McNeil & Frey (2000, pg. 294) ased on exceedance residuals that can
be considered as t-test. Following research brought on light a fundamental question whether
ES is backtestable since Gneiting (2011) showed that ES lacks a mathematical property called
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elicitability while VaR does have it. The meaning of eliticability got absolutely new dimension
when in October 2013 Basel Committee on Banking Supervision issued the revision of market
risk framework which contained also a replacement of 99% VaR for 97.5% ES Committee (2013,
pg. 18). This sparked a new global discussion among scholars, research and practitioners about
ES backtesting because Basel Committee did not suggest that time any backtesting method
(neither if it exists) for ES but to keep backtesting 99% and 97.5% VaRs. These circumstances
motivated research to investigate how and if ES can be backtested.

Definition 3.8 (Elicitability). A statistical function psi(Y ) of a random variable Y is defined
as elicitable if it minimizes the expected value of a scoring functionS that is strictly consistent.

ψ(Y ) = argmin
x

E[S(x, Y )] (3.56)

where the representative of scoring function S can be for instance a squared error15 S(x, Y ) =

(x− Y )2, x denote the point forecasts and Y the realization. If the ψ is elicitable, then we can
backtest the performance of the predictions y1, . . . , yT and their realizations x1, . . . , xT through
model

S̄ =
1

T

T∑
t=1

S(xt, yt). (3.57)

The elicitability of VaRα(Y ) is given through scoring function S(x, y) = (I(x ≥ y)−α)(x−y)
and so it can be shown that VaRα(Y ) = argmin

x
E[(I(x)−α)(x− y)] equals to α =

∫ x

−∞ fY (y)dy

and x = F−1Y (α). The full proof can be found in Wimmerstedt (2015, pg. 13). Contrary to VaR,
Gneiting (2011) showed it is not possible to find minimizing scoring function for ES and hence,
ES is not elicitable.
As Acerbi & Szekely (2014a) points out that the most of people understood Gneiting (2011) that
ES is not backtestable at all and they explain it was further strengthen by statement of Embrecht
”ES cannot be back-tested because it fails to satisfy elicitability ... If you held a gun to my head and
said: ‘We have to decide by the end of the day if Basel 3.5 should move to ES, or do we stick with
VaR’, I would say: ‘Stick with VaR’ ” said in 2013 at Imperial College. The opposition to these
statements was formalized in the article of Acerbi & Szekely (2014b) where the authors firstly
argue that the property of elicitability has to do only with model selection in order to choose
the best model among competitors and additional argument is that currentlyVaR is backtested
without exploiting its elicitability property. Therefore they suggested three ES non-parametric
tests using Monte-Carlo simulations even with missing elicitability property because it is not
needed for backtesting of ES. Another insightful article of Emmer et al. (2015) showed that ES

is conditionally elicitable and proposed another non-parametric without need of Monte-Carlo
simulations.

The great overview of ES backtesting methods is written in the master thesis of Wimmerst-
15Other famous scoring functions are absolute error S(x, Y ) = |x−Y |, absolute percentage S(x, Y ) = |(x−Y )/Y |

or relative error S(x, Y ) = |(x− Y )/x|.
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edt (2015) including implementation of four of them. The other were not chosen due to their
parametric assumptions and requirement of large out-of-sample samples. The conclusion of that
master thesis16 is that backtesting of ES is possible but the complexity is significantly higher
compared to the backtesting of VaR and further research is needed. Nonetheless, the author
prefers the test of Emmer et al. (2015) where ES is backtested through approximation of several
VaR levels.

We are going to implement first two tests proposed by Acerbi & Szekely (2014b) due to their
non-parametric, simulation properties and possibility to backtest on just one confidence level
contrary to test of Emmer et al. (2015) which is designed for four or even more confidence levels
what increase computational burden.

Both tests of Acerbi & Szekely (2014b) assume that out-of-sample period consits of days
t = 1, . . . , T and Xt represents a bank’s profit and loss that has a real (unknowable) distribution
Ft and it is forecasted by a model predictive distribution Pt which is also used for computation
of the VaR and ES. The random variables X⃗ = {X} are assumed to be independent, but not
identically distributed. There is no restriction on variability of Ft and Pt over time. We denote
the value of the risk measures as VaRF

α,t and ESF
α,t when X ∼ F . Under null hypothesis it is

generally assumed that the predicted ES is correct, while the alternative hypotheses is that the
predicted ES is underestimated and so following tests are only one-tailed tests what is the their
disadvantage from the agent’s point of view.

3.4.1 Test 1: testing ES after VaR

Let ES defined as
ESα,t = −E[Xt|Xt + VaRα,t < 0] (3.58)

Previous equation can be rearranged to

E

[
Xt

ESα,t
+ 1|Xt + VaRα,t < 0

]
= 0 (3.59)

We assume that V aRα,t has been already tested (necessary requirement for Test 1) and hence,
we can test the magnitude of the realized violations against the model predictions. Let’s define
an indicator function of a VaRα,t violations It = (Xt + VaRα,t < 0) and if Nt =

∑T
t=1 It > 0 as

the number of violations. Then we construct the test statistics given by

Z1(X⃗) =

∑T
t=1

LtIt
ESα,t

NT
+ 1 (3.60)

The null hypothesis is
H0 : P

[α]
t = F

[α]
t , ∀t (3.61)

16Further thesis dedicated to elicitability and implementation of backtesting of ES are Roccioletti (2016) and
Jäger (2015). Both include the MATLAB codes in their appendices.
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where P [α]
t (x) = min(1, Pt(x)/α) is the distribution tail for x < −VaRα,t. The alternatives are

H1 : ESF
α,t ≥ ESα,t, for all t and > for some t

VaRF
α,t = VaRα,t, for all t

(3.62)

We can see from H1 that predicted VaRα,t is assumed to be correct and that is the reason why
Test 1 should be proceed only after non-rejected backtest of VaRα,t. As (Acerbi & Szekely 2014b,
pg. 4) mentioned ”this test is in fact completely insensitive to an excessive number of exceptions as
it’s an average taken over exceptions themselves.”. Under these conditions EH0

[Z1|NT > 0] = 0

and EH1
[Z1|NT > 0] < 0 meaning that expected value of Z1(X⃗) is zero and if it negative, then

ESα,t is underestimated and if positive, then ESα,t is overestimated. The proofs can be found in
Proposition A.2 Acerbi & Szekely (2014b).

3.4.2 Test 2: testing ES directly

Let’s write ES as an unconditional expectation

ESα,t = −E
[
XtIt
α

]
(3.63)

the above equation can be converted to test statistic

Z2(X⃗) =

∑T
t=1

LtIt
ESα,t

TαESα,t
+ 1 (3.64)

and following hypotheses were suggested

H0 : P
[α]
t = F

[α]
t , ∀t

H1 : ESF
α,t ≥ ESα,t, for all t and > for some t

VaRF
α,t ≥ VaRα,t, for all t

(3.65)

We can see that Test 2 jointly test VaRα,t as well as ESα,t. Unfortunately, it remains one-
tailed test. Under conditions EH0 [Z2] = 0 and EH1 [Z2] < 0 meaning that expected value of
Z2(X⃗) is zero and if it is negative, then ESα,t is underestimated and if positive, then ESα,t is
overestimated. The proofs can be found in Proposition A.3 Acerbi & Szekely (2014b). Test 2
jointly evaluates frequency and magnitude of α-tail events as shown by the relationship

Z2 = 1− (1− Z1)
NT

Tα
(3.66)

3.4.3 Finding the significance

Testinf the significance was proposed by Acerbi & Szekely (2014b, pg. 6) to be done through
Monte Carlo simulations where it is simulated the distribution PZ under H0 to compute p-value
p = PZ(Z(x⃗)) of a realization Z(x⃗):
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• simulate independent Xi
t ∼ Pt, ∀t,∀i = 1, . . . ,M

• compute Zi = Z(X⃗i) where Z represents either Z1 or Z2

• estimate p =
∑M

i=1(Z
i < Z(x⃗))/M

where M is sufficient number of simulations. Given a significance level of test ϕ, the test is
non-rejected if p > ϕ or rejected if otherwise.

Quite exceptional finding is shown in Acerbi & Szekely (2014b, pg. 8) that critical levels of Z2

were discovered to be remarkably stable across different distribution types. It means that usage
of critical level in tab:3.Z2 would eliminate the need of Monte Carlo simulations and storage of
all predictive distributions. The authors remark that for extra heavy tails, meaning ν < 5, the
critical levels significantly diverge from previous stable level and Test 2 would be more penalizing.

Table 3.1: 5% and 0.01% significance thresholds for Z2 across Student’s
t distributions with different ν and location

Significance
5% 0.01%

location location
ν -1 0 1 -1 0 1
3 -0.78 -0.82 -0.88 -3.9 -4.4 -5.5
5 -0.72 -0.74 -0.78 -1.9 -2.0 -2.3
10 -0.70 -0.71 -0.74 -1.8 -1.9 -1.9
100 -0.70 -0.70 -0.72 -1.8 -1.8 -1.9
Gaussian -0.70 -0.70 -0.72 -1.8 -1.8 -1.9

Source: Acerbi & Szekely (2014b, pg. 10)



Chapter 4

Empirical analysis

Having defined necessary theoretical background and introduced selected methodological ap-
proaches for this master thesis, we can move to their application on empirical data in this
chapter. All computational work of this master thesis was done in RStudio version 1.0.136
using language R version 3.3.2.

4.1 Data analysis
Our portfolio consists of the most liquid representatives of major financial asset classes denomi-
nated in the U.S. dollars. Specifically, the data employed in this thesis are E-mini futures S&P
500, Light Crude Oil futures, Spot gold and spot EURUSD for the time period from January 1,
2008 to June 15, 2015.

E-mini futures with underlying stock index S&P 5001 (denoted with the ticker symbol ES) are
traded on the Chicago Mercantile Exchange. The notional value of one contract is 50 times the
value of the SP 500 stock index quoted in U.S. dollars. The source of data is Tickdatamarket2.

Light Crude Oil futures (denoted with the ticker symbol CL) are traded on the New York
Mercantile Exchange and represent a blend of several U.S. domestic streams of light sweet crude
oil with the delivery point in Cushing, Oklahoma. The notional value of one contract is 1,000
barrels of the Light Crude Oil futures price quoted in U.S. dollars per barrel. The source of data
is Tickdatamarket.

Spot gold (denoted with the symbol XAU) is mainly traded through London, in Over-the-
Counter (OTC) transactions. ”The governance of this market is maintained through the London
Bullion Market Association’s (LBMA) publication of the Good Delivery List. This is the list of
accredited refiners, whose standards of production and assaying meet the requirements set out in
the LBMA’s Rules. Only bullion conforming to these standards is acceptable in settlement against
transactions conducted between participants in the bullion market” LBMA (2017). Furthermore,

1Standard & Poor’s 500, it is an American stock market index based on the market capitalizations of 500 large
companies having common stock listed on the NYSE or NASDAQ

2see http://www.tickdatamarket.com/

http://www.tickdatamarket.com/
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LBMA provides clearing system, vaulting servis, good delivery, pricing and statistics. The price
discovery takes place twice a day through auctions or so-called ”fixings” by ICE Benchmark
Administration (IBA) at 10:30 and 15:00 with the price set in U.S. dollars per fine troy ounce3.
Our source of data is Dukascopy4 and denoted with the symbol XAUUSD.

Spot EURUSD is the euro and U.S. dollar pair for the currencies of the European Union
and the United States. We will use indirect quotation, for instance a quote of 0.70 EURUSD
would mean that it takes 0.70 euros to purchase 1 U.S. dollar. Our source of data is forexhisto-
rydatabase.com5.

All HFD are sampled at 1 minute frequency with candle structure. It means we obtained open,
high, low and close price at 1 minute frequency. In case of futures, we talk about continuous
front month prices and otherwise spot prices.

4.1.1 Data processing

In the beginning, we check whether there are no zero prices or some abnormal high prices in
terms of multiples. We did not find any such an error in our samples. The first decision about
data processing is that we are going to work only with close prices. Since we have financial assets
traded in different time zones and some of them are not available each minute, we need to apply
price synchronization. We decide to synchronize them according to Central European Time zone
(CET6) taking into account also the differences in dates of daylight saving time between USA
and Central Europe.

Secondly, we keep only prices with the same timestamp according to minute, hour and day
or in other words, in other words price synchronization at fixed clock time. Due to structural
changes in the markets, we kept only prices between time 00:00:00 and 23:00:00 (CET) each
trading day what are current standard trading hours on all four markets. Furthermore, we
consider as eligible days for trading only from Monday till Friday.

The last step is to compute logarithmic returns as ri,t = ln(Si,t)− ln(Si,t−1) for i = 1, . . . , d

assets (in our case d = 4) and create the time series at different time equidistant frequencies in
order to decide about optimal frequency of sampling for the purpose of market microstructure
noise and Epps effect reduction. Our decision tool about optimal sampling frequency is the sig-
nature covariance plot in Figure 4.1 estimated on full sample of data. We prefer some empirical
evidence for the choice of optimal sampling frequency to blindly believe the choice written in
articles or studies.7

Regarding to prices on daily basis, we are using daily closing prices recorded at 22:00 CET
31 troy ounce = 31.1034768 g (≈ 1.0971 oz.)
4see https://www.dukascopy.com/swiss/english/marketwatch/historical/
5Unfortunately not available anymore.
6Central European Time is 1 hour ahead of Coordinated Universal Time (UTC)
7We have seen in some papers or thesis that researches just blindly picked up i.e. 5min frequency and au-

tomatically assumed to get an unbiased estimator while ignoring possible unique properties of their underlying
financial assets or portfolio which would be against the choice of 5min frequency.

https://www.dukascopy.com/swiss/english/marketwatch/historical/
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(pseudo-closing prices) for the purpose of correct8 synchronization. We decided for the time
22:00 CET due to fact that it is closing time of major US stock exchanges and there is only 1
hour left for the closing of US trading session on futures markets. Daily returns are computed
in the same manner as high-frequency returns.

Figure 4.1: Signature Covariance Plot
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It is shown in Figure 4.1 that volatility and relatively also covariance is stabilized around 20
minute frequency. Thus, we assume that market microstructure noice is sufficiently eliminated
at this frequency and so we choose t20 minute frequency for computation of realized covariance
matrix defined in Equation 2.9. Additionally, Figure 4.1 provides an empirical evidence for Epps
effect. We can observe that negative realized covariances (those including EURUSD) are biased
upwards to zero with increasing frequency and positive covariances experience downward bias
to zero with increasing frequency.

Another aspect of realized covariance is that implies only using intraday returns from market
open to market close what omits overnight return information. In our case when when there

8We can find articles or thesis that are using daily closing so-called settlement prices from different exchanges
or platforms and at the same time omitting the fact that these settlement prices are recorded at different time.
Moreover, the exchanges publish several correction of settlement prices and therefore it can be nearly impossible
to construct correct synchronization
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is only 1 hour break in the trading during the week, we do not expect the high variability of
overnight return wheres the weekend9 break aggregates a lot of new information and higher vari-
ability of over the weekend return is expected. The Figure 4.2 matches with previous expectation
where we can see negligible variability in overnight returns within week and just little significance
overnight returns from Friday 23:00:00 to Monday 00:00:00 on CL and XAUUSD asset.

Figure 4.2: Densities of overnight returns
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Based on Figure 4.2 we omit overnight returns and leave the correction of this deficiency for
further research. We are aware that deficiency can cause worse forecasting accuracy of VaR and
ES from models using RCOV matrix.

4.1.2 Descriptive statistics

Summary of descriptive statistics of daily and HF returns for our portfolio tells is provided in
Table 4.1.

Daily returns It is clear that the least volatile asset is the EURUSD and the closest parameters
of skewness and kurtosis to Gaussian distribution but A-D test probably mainly due to fact that
it is the most efficient market. The equivalence of empirical distribution of EURUSD to Gaussian

9Despite of the fact that weekend days are non-working days in the USA and other developed countries, the
prices of our financial assets are reflecting and reacting also to business, political, environmental or military events
happening during weekend. Additionally, it is familiar that working hours of companies in financial industry are
often prolonged even to weekends. Both phenomena can result in new decisions (which were not known when
market was closing on Friday) in trading or investing strategies transferred to markets immediately at the opening
markets. The significant changes in prices are known as gaps due to large positive or negative in difference between
Friday’s close price and Monday’s open price.
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Table 4.1: Descriptive statistics for the full data set (1/1/2008–
6/15/2015).

Data Asset mean sd median min max skew kurtosis A-Da pv
Daily

CL -0.00 0.02 0.00 -0.09 0.07 -0.23 1.57 0.00
ES 0.00 0.02 0.00 -0.12 0.15 0.13 12.42 0.00
EURUSD 0.00 0.01 0.00 -0.04 0.03 0.06 1.76 0.00
XAUUSD 0.00 0.01 0.00 -0.09 0.11 -0.32 6.76 0.00

20min
CL -0.00 0.00 0.00 -0.03 0.03 -0.03 9.63 0.00
ES 0.00 0.00 0.00 -0.05 0.05 0.22 38.14 0.00
EURUSD -0.00 0.00 0.00 -0.02 0.01 -0.01 11.06 0.00
XAUUSD -0.00 0.00 0.00 -0.03 0.03 -0.12 18.02 0.00

Note: aAnderson-Darling test of normality with p-value.

Source: Author’s computation

distribution is rejected as well as for all other assets. Such zero values of p-values of A-D tests
indicate that multivariate distribution of risk-factors of our portfolio will not be Gaussian one.

Interesting outcome is that ES has bigger extreme values meaning minimum and maximum
and CL. This can be explained that stock markets face to larger daily shocks than CL. On the
other hand, higher kurtosis of ES than CL tells that ES has fewer extreme returns from the
tails and the returns are more concentrated around mean wheres CL returns are more dispersed
around mean. XAUUSD is between CL as ES. It has considerable extreme returns but fewer
than CL and more than ES. The explanation can be due to XAUUSD role as ”safe haven” on
financial and capital markets.

We can find support of previous statements also in Figure 4.3. The histogram with fitted
Gaussian distribution and Q-Q plot visually confirm our opinion about the statistical properties
of assets in our portfolio.

20min returns The obvious main difference between 20min and daily returns is seen in kurto-
sis. All assets have significantly higher kurtosis than at daily frequency. Other properties more
or less copy the behavior of the daily frequency. The additional evidence for very strong depar-
ture from the assumption of Gaussian distribution is provided in Figure 4.4 through histogram
and QQ-plot. Another interesting statistics is serial correlation which looks to be insignificant
in both frequencies.

Volatility Our main interest is in volatility and linear dependence represented by RV, respec-
tively RCOV. The visual inspection of Figure 4.5 confirm another stylized fact that squares of
daily returns exhibit significant serial correlation or known as long-memory. Regarding to RV,
we witness even stronger serial correlation until 150th lag. Thus, we can evaluate that modeling
of RV through HAR model will be an appropriate approach. Moreover, we can see from the
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Figure 4.3: Summary statistics of daily returns
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Figure 4.4: Summary statistics of 20min returns
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Figure 4.5 stress events in our assets. The most volatile year was definitely 2009 for all assets
excluding CL. We will focus on the stress periods more in decision about the in-sample and
out-of-sample in Subsection 4.2.1.

Figure 4.5: Daily squares vs High-frequency RV
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Covariance The last one is Figure 4.6 illustrating us the time development of interactions
between individual couple of assets in our portfolio. The important property to study of RCOV

is also its serial correlation. It is shown again that RCOV exhibit strong long-memory to RV. It
give us another incentive for the modeling of RCOV through HAR model. We included also time
varying Realized Correlation (RCOR) because it is easier to imagine for the linear dependence
than RCOV. It is a nice evidence how correlation can behave steadily within certain range and
after a few years it sets up a new range, for instance RCOR between CL and EURUSD or CL
and ES. Thus, intended dynamic modeling of RCOV/RCOR in this master thesis will be more
than appropriate. The most of histograms of RCOR are economically justifiable. The exception
is RCOR between ES and EURUSD giving the bimodal distribution what can be quite interesting
issue for further investigation and understanding.
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Figure 4.6: RCOV and RCOR
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4.2 Application
After initial analysis of our data, we describe briefly the implementation of cross-validation
technique as a basis for backtesting and model selection methods. Then, we outline the individual
steps in the implementation of methodology introduced in Chapter 3.

4.2.1 In-sample and out-of-sample

The idea of cross-validation for the purpose of forecasting is about to split of data set between
training sample so-called in-sample and testing sample so-called out-of-sample. The main goal is
to estimate statistical model on in-sample data and consequently perform the forecasting which
is compared against the out-of-sample. Such technique helps to avoid overfitting (in-sample and
out-of-sample is actually identical sample). Moreover, it allows to measure the accuracy of the
forecasts under realistic conditions because we usually do not know the future when we make
forecast.

In terms of time series, unfortunately we cannot make several iterations of those splits of data
because we have for each day only one realization. At least we divide our full sample into two
subsamples that represent two different stress periods and subsequently we split each subsample
between in-sample and out-of-sample. We choose the proportion for each in-sample as 67% of
data and out-of-sample remaining 33%. We characterize three scenarios as Full sample meaning
that we used all data we had. The second one is a subsample of time period with High volatility
with some stress events and the third one is a subsample of time period with Low volatility.

1. Full The initial in-sample covers the period from January 3, 2008 until December 31, 2012
consisting of 1,240 business days. The period is distinguished by the latest financial crises
in 2007-2009, then temporarily calm period in 2010 which was replaced by again high
volatility due to European debt crises and again followed by low volatility in 2012. The
out-of-sample covers the period from January 2, 2013 until June 12, 2015 consisting of 604
business days. There were no huge stress events apart from increased volatility on CL at
the end of the out-of-sample.

2. High The initial in-sample covers the period from January 2, 2009 until December 31,
2010 consisting of 501 business days. The out-of-sample covers the period from January 3,
2011 until December 30, 2011 consisting of 249 business days. As it was already said, the
both samples exhibit the highest price movements.

3. Low The initial in-sample covers the period from January 3, 2012 until December 31, 2013
consisting of 495 business days. The out-of-sample covers the period from January 2, 2014
until December 31, 2014 consisting of 247 business days. Both samples are almost without
no stress in the markets.

An useful illustration of all these scenarios is done through their densities in Figure 4.7. Both
scenarios Low and High have almost identical densities for in-sample and out-of-sample and only
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Full scenario shows that in-sample contained fat tails that were not repeated in out-of-sample
anymore.

Figure 4.7: Densities of daily returns from in-samples and out-of-
samples during different volatility scenarios

−0.04 −0.02 0.00 0.02 0.04

0
20

40
60

80
10

0

Index

D
en

si
ty

Full IN
Full OUT
High IN
High OUT
Low IN
Low OUT

Source: Author’s computation

However, the Figure 4.7 was only illustration because since we make only day ahead forecasts,
we establish moving window in order to include always the latest information and leave out the
oldest information. Our moving window has the length of initial in-sample.
For example, considering Full scenario, we make the first forecast for January 2, 2013 using
data from January 3, 2008 until December 31, 2012. The next forecast for January 3, 2013
is done by using data from January 4, 2008 until January 2, 2013. Each forecast includes the
re-estimation of the model. This is computationally demanding, especially if it includes Monte
Carlo simulations. Thus, there is also practice to re-estimate the model by each i.e. 5th or 10th

business day. It has additional advantage that estimated parameters are more stable. However,
we stick with daily re-estimation in this master thesis.

4.2.2 Implementation of models

We briefly describe how we switched theoretically defined models in Chapter 3 into practice.
The necessary component of the below models is the portfolio logarithmic return defined defined
as weighted sum of the individual financial asset returns. In this master thesis we work with
equally weighted portfolio wi = 0.25 for i = 1, . . . , d. Moreover, we assume that our portfolio is
perfectly10 re-balanced each day while we omit transaction cost11.

1. Parametric models are pretty straightforward for the estimation and the fastest meth-
ods. HFD models consisting of HAR and Leveraged Heterogeneous Autoregression (LHAR)

10It is an unrealistic condition because futures are standardized products and we cannot trade arbitrary sizes
but for the sake of simplicity the academy prefers this condition

11Another unrealistic condition omitting brokerage, exchange, clearing and other fees or costs connected with
re-balancing
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(asymmetric version) were estimated by regular OLS method which is implemented in each
statistical application for regressions. EWMA model does not even require estimation if we
use estimated parameter by RiskMetrics, so it is clear winner in terms of speed.

Regarding to DCC-GARCH and its asymmetric version, they are more sophisticated but
there are available very comprehensive and well-documented R packages for univariate
estimation rugarch and multivariate estimation rmgarch. Thanks to linear transformation
of forecasted covariance matrix, there is left only the computation of quantile of distribution
representing the innovations.

The only hurdle is to estimate properly the degrees of freedom for standardized Student’s
t distribution of innovations. We solved it that we estimated the degrees of freedom from
the innovations that were filtered for the purpose of multivariate FHS since we wanted to
estimate it in the multivariate dimension. The much faster approach would be in univari-
ate dimension. First step is to calculate the portfolio return and fitted volatility (from
fitted covariance matrix) and subsequently to divide such return by volatility and resulting
outcome is univariate innovation.

2. Semi-parametric method is very well described in Chapter 3 and consists of only vector
and matrix operations. Nevertheless, it is more time consuming than Parametric method
because we work need to filtrate entire in-sample with fitted covariance matrix in order to
get the empirical distribution of innovations.

3. Monte Carlo - Copula is unambiguously the most sophisticated approach applied in
this master thesis. The level of sophistication can be easily increased thanks to simplicity
of incorporation of other models. Our highest sophistication was achieved by joining of
volatility models with EVT and consequently Copula. We proceeded following steps:

(a) Individual creating innovations for each asset by dividing the historical daily returns
by volatility fitted from either HFD model or model using daily data.

(b) In case of incorporation of EVT, we fit semi-parametric distribution consisting of tails
from GPD and Gaussian kernel for the interior part (using the package spd). The
key parameter for the optimal fit of GPD is the threshold level. The most common
way is the visual inspection of mean excess function described in Section 3.2.3. This
method is not practical if we use moving window with daily re-estimation and require
automation of the decision about threshold level. We follow findings from the Monte
Carlo experiment in McNeil et al. (2015, pp. 161-162) where they concluded that
optimal choice of the threshold level would be from the sample of 100-150 exceedances.
Therefore, we decide to take 10% observations from each tail in case of Full scenario
(124 observations) and 20% from each tail in case of High and Low scenario (100,
resp. 99 observations).

(c) Transformation of each asset’s innovations to uniformly distributed variable by:

i. Through empirical distribution function using function pobs from package copula
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ii. Through standard distribution function such as Gaussian or Student’s t (in this
case, we estimated degrees of freedom from the innovations).

iii. Through semi-parametric distribution meaning GPD+Kernel fitted in previous
step.

(d) Copula fit using the package copula with copula parameter estimator Kendall’s tau.

(e) 10,000 simulations from the fitted copula

(f) Transformation of simulated uniformly distributed variables through quantile function
of Gaussian, Student’s t or previously estimated semi-parametric distribution.

(g) Backward filtration by forecasted day ahead volatility from the same model as in the
beginning.

(h) Transformation of logarithmic returns to arithmetic ones because they are portfolio
additive.

(i) Calculation of portfolio arithmetic return by weights. So we got final univariate time
series.

(j) Transformation of portfolio returns back to logarithmic ones because they are time
additive. This property is exploited in following backtesting methods.

(k) Final computation of the required quantile from 10,000 simulated portfolio logarithmic
returns as day ahead forecast of VaR and average value of exceedances of VaR as day
ahead forecast of ES

The summary of applied models is provided in Table 4.2. In case of distribution column next
to copula models, the first distribution means transformation to uniform distribution (step (c))
and the second distribution means transformation from uniform distribution (step (f)).

The proceeded forecasting of VaR and ES from 18 models of HAR using HFD and 24 models
using daily data is shown for each scenario in Figure 4.8, respectively Figure 4.9.

4.3 Results of backtesting

4.3.1 Value at Risk

Our evaluation strategy of VaR consits of two steps. In the first step, we conduct statistical
tests, specifically unconditional and conditional coverage test and dynamic quantile test. In the
second step, we assess significantly valid models according to their value of regulator, firm and
asymmetric loss function. Afterwards, we sort the models according to their value of asymmetric
loss function in ascending order. Finally, we briefly discuss our findings.

Before we start discussion about the results of our assessment of VaR forecasts, we explain a
bit the implementation of loss functions. The important factor is the performance criterion of
loss function. We calculate an average value of loss function as a performance criterion for all
applied loss functions in this master thesis.
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Table 4.2: The list of applied methods, distribution and resulting mod-
els.

VaR/ES Method Data Variance-Covariance model Distribution Model name

Parametric
20min

HAR.Chol MV-Normal HAR.Chol.RCOV.N
HAR.Chol MV-t HAR.Chol.RCOV.t
LHAR.Chol MV-Normal LHAR.Chol.RCOV.N
LHAR.Chol MV-t LHAR.Chol.RCOV.t

Daily
EWMA MV-Normal EWMA.COV.N
EWMA MV-t EWMA.COV.t
DCC-GARCH(1,1) MV-Normal DCC.GARCH.COV.N
DCC-GARCH(1,1) MV-t DCC.GARCH.COV.t
DCC-GJR-GARCH(1,1) MV-Normal DCC.GJR.GARCH.COV.N
DCC-GJR-GARCH(1,1) MV-t DCC.GJR.GARCH.COV.t
ADCC-GJR-GARCH(1,1) MV-Normal aDCC.GJR.GARCH.COV.N
ADCC-GJR-GARCH(1,1) MV-t aDCC.GJR.GARCH.COV.t

Semi-parametric
20min

HAR.Chol FHS HAR.Chol.FHS
LHAR.Chol FHS LHAR.Chol.FHS

Daily
EWMA FHS EWMA.COV.FHS
DCC-GARCH(1,1) FHS DCC.GARCH.COV.FHS
DCC-GJR-GARCH(1,1) FHS DCC.GJR.GARCH.COV.FHS
ADCC-GJR-GARCH(1,1) FHS aDCC.GJR.GARCH.COV.FHS

Monte Carlo
20min

HAR-GaussCopula Normal-Normal HAR.nC.n
HAR-GaussCopula Empirical-Normal HAR.nC.e
HAR-tCopula t-t HAR.tC.t
HAR-tCopula Empirical-t HAR.tC.e
HAR-EVT-GaussCopula GPD+Kernel HAR.nC.gpd
HAR-EVT-tCopula GPD+Kernel HAR.tC.gpd
LHAR-GaussCopula Normal-Normal LHAR.nC.n
LHAR-GaussCopula Empirical-Normal LHAR.nC.e
LHAR-tCopula t-t LHAR.tC.t
LHAR-tCopula Empirical-t LHAR.tC.e
LHAR-EVT-GaussCopula GPD+Kernel LHAR.nC.gpd
LHAR-EVT-tCopula GPD+Kernel LHAR.tC.gpd

Daily
GARCH(1,1)-GaussCopula Normal-Normal GARCH.nC.n
GARCH(1,1)-GaussCopula Empirical-Normal GARCH.nC.e
GARCH(1,1)-tCopula t-t GARCH.tC.t
GARCH(1,1)-tCopula Empirical-t GARCH.tC.e
GARCH(1,1)-EVT-GaussCopula GPD+Kernel GARCH.nC.gpd
GARCH(1,1)-EVT-tCopula GPD+Kernel GARCH.tC.gpd
GJR-GARCH(1,1)-GaussCopula Normal-Normal GJR.GARCH.nC.n
GJR-GARCH(1,1)-GaussCopula Empirical-Normal GJR.GARCH.nC.e
GJR-GARCH(1,1)-tCopula t-t GJR.GARCH.tC.t
GJR-GARCH(1,1)-tCopula Empirical-t GJR.GARCH.tC.e
GJR-GARCH(1,1)-EVT-GaussCopula GPD+Kernel GJR.GARCH.nC.gpd
GJR-GARCH(1,1)-EVT-tCopula GPD+Kernel GJR.GARCH.tC.gpd

Source: Author’s computation
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Figure 4.8: Forecasts of day-ahead VaR97.5% for all scenarios
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Figure 4.9: Forecasts of day-ahead ES97.5% for all scenarios
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The Regulator Loss Function (RLF) is calculated according to its definition in Subsec-
tion 3.3.4. The Firm Loss Function (FLF) is also calculated according to its previous definition
with our adjustment of interest rate. Instead of interest rate, we calculate the difference between
market return and risk free return as opportunity cost of reserved capital for VaR measure. We
choose market return to be represented by daily log return of settlement prices of futures product
ES112 provided by Quandl and risk free return is represented by daily log return of settlement
prices of US Treasury notes futures TU113 with maturity 2 years provided by Quandl. Obvi-
ously, the agent would choose the yield of its i.e. trading desk or other opportunity that has
better yield than reserved capital in some very liquid assets with very low yield.

Additionally to this, we calculated also a percentile of RLF and FLF in order to have better
visual understanding how many competitors the each model beats. Percentiles of RLF and FLF
are denoted with symbol %.

Regarding to statistical tests, we use significance level to be 5% and excluded all VaR models
that did not pass at least one of these statistical tests (it is rather a strict condition). Finally, we
recalculated again our loss functions percentiles in order to see how many left models are worse.

The final results are summarized in below tables and they reveal many interesting information.
We start with individual scenarios and then with the global view across all scenarios.

Full scenario has the first places dominantly occupied by HAR models. The best two models
according to FLF and ALF are parametric models of RCOV following multivariate Student’s t
and Gaussian distribution. It is a bit surprising that the first model has the Gaussian distribu-
tion since the evidence from our descriptive statistics suggested the non-Gaussian distribution.
Anyway, from the third to sixth position, we see t and Gaussian copula models utilizing again
HAR models. Overall, the HAR models on top position have also very favourable violation ratio
close to one and also high p-values. The viewpoint from another angle are the values of RLF.
They suggest exact opposite and rank the most conservative models as the best ones. Thus, our
assumption was met in this particular case that FLF and RLF tend to suggest models in inverse
way.

High scenario has assigned symmetric and asymmetric version of HAR again on top positions
according to ALF as well as RLF. Although we need to be careful about the first model as it
has p-value of Unconditional test only 0.08 what would be even rejected under significance level
of 10%. Unlike first symmetric HAR, the very good performance can be seen by acLHAR in
connection with Gaussian or Student’s t copula and GPD distribution of tails. Both models have
perfect violation ratio, high p-values and RLF gives them the lowest regulator loss. Nevertheless,
all nine variants of LHAR are among top eleven models. Moreover, copula functions with GPD

distribution among top four. Thus, we have an evidence that the choice of copula, GPD and
12Continuous front month product
13Continuous front month product
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Table 4.3: VaR and ES Test I. results for Full sample and significant
models.

Model Viol.
ratio

UC
pv

CC
pv

DQ
pv RLF RLF

% FLF FLF
% ALF ALF

% Z1 Z1
pv

HAR.Chol.RCOV.N 1.3 0.22 0.44 0.62 0.019 0 0.243 100 0.039 73 -0.27 0.58
HAR.Chol.RCOV.t 1.2 0.46 0.64 0.66 0.018 15 0.244 94 0.039 73 -0.18 0.48
HAR.tC.e 1.1 0.82 0.72 0.61 0.019 0 0.248 61 0.039 73 -0.22 0.27
HAR.tC.t 1.1 0.82 0.72 0.61 0.019 0 0.248 61 0.039 73 -0.24 0.24
HAR.nC.e 1.1 0.63 0.70 0.65 0.019 0 0.247 76 0.039 73 -0.33 0.35
HAR.nC.n 1.1 0.63 0.70 0.66 0.019 0 0.246 88 0.039 73 -0.34 0.31
DCC.GJR.GARCH.COV.N 0.8 0.40 0.34 0.30 0.015 61 0.248 61 0.039 73 -0.30 0.28
DCC.GJR.GARCH.COV.t 0.7 0.26 0.22 0.29 0.015 61 0.250 45 0.039 73 -0.20 0.23
aDCC.GJR.GARCH.COV.N 0.8 0.40 0.34 0.30 0.015 61 0.249 55 0.039 73 -0.29 0.30
aDCC.GJR.GARCH.COV.t 0.7 0.16 0.13 0.17 0.014 94 0.250 45 0.039 73 -0.23 0.16
HAR.Chol.RCOV.FHS 1.3 0.33 0.55 0.56 0.018 15 0.244 94 0.040 42 -0.11 0.41
HAR.nC.gpd 0.7 0.16 0.13 0.16 0.015 61 0.257 9 0.040 42 -0.33 0.10
DCC.GARCH.COV.N 0.9 0.57 0.47 0.32 0.016 45 0.246 88 0.040 42 -0.30 0.27
DCC.GARCH.COV.t 0.8 0.40 0.34 0.26 0.015 61 0.247 76 0.040 42 -0.19 0.25
DCC.GJR.GARCH.COV.FHS 0.7 0.26 0.22 0.14 0.015 61 0.254 24 0.040 42 -0.17 0.16
aDCC.GJR.GARCH.COV.FHS 0.8 0.40 0.34 0.24 0.015 61 0.254 24 0.040 42 -0.14 0.18
GJR.GARCH.tC.e 0.7 0.26 0.22 0.16 0.017 24 0.252 33 0.040 42 -0.22 0.17
GJR.GARCH.tC.t 0.8 0.40 0.34 0.26 0.017 24 0.251 36 0.040 42 -0.20 0.20
GJR.GARCH.nC.e 0.8 0.40 0.34 0.24 0.017 24 0.248 61 0.040 42 -0.33 0.19
GJR.GARCH.nC.n 0.8 0.40 0.34 0.26 0.017 24 0.250 45 0.040 42 -0.34 0.19
HAR.tC.gpd 0.7 0.16 0.13 0.16 0.015 61 0.259 6 0.041 15 -0.29 0.08
GARCH.tC.e 0.8 0.40 0.34 0.20 0.017 24 0.248 61 0.041 15 -0.21 0.17
GARCH.tC.t 0.8 0.40 0.34 0.19 0.017 24 0.249 55 0.041 15 -0.22 0.16
GARCH.tC.gpd 0.7 0.26 0.22 0.13 0.016 45 0.251 36 0.041 15 -0.19 0.19
GARCH.nC.e 0.8 0.40 0.34 0.22 0.017 24 0.247 76 0.041 15 -0.36 0.16
GARCH.nC.n 0.8 0.40 0.34 0.22 0.018 15 0.247 76 0.041 15 -0.36 0.14
GARCH.nC.gpd 0.7 0.26 0.22 0.14 0.016 45 0.251 36 0.041 15 -0.24 0.19
GJR.GARCH.tC.gpd 0.6 0.09 0.07 0.06 0.016 45 0.254 24 0.041 15 -0.28 0.08
GJR.GARCH.nC.gpd 0.6 0.09 0.07 0.07 0.016 45 0.255 21 0.041 15 -0.32 0.08
LHAR.tC.e 0.6 0.09 0.07 0.14 0.015 61 0.257 9 0.042 6 -0.25 0.14
LHAR.nC.e 0.7 0.16 0.13 0.21 0.015 61 0.257 9 0.042 6 -0.36 0.20
LHAR.nC.n 0.6 0.09 0.07 0.14 0.015 61 0.256 18 0.042 6 -0.42 0.12
LHAR.Chol.RCOV.N 0.6 0.09 0.07 0.15 0.012 97 0.262 3 0.043 0 -0.29 0.34
LHAR.Chol.RCOV.FHS 0.6 0.09 0.07 0.15 0.012 97 0.264 0 0.043 0 -0.09 0.27

Source: Author’s computation
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Table 4.4: VaR and ES Test I. results for High sample and significant
models.

Model Viol.
ratio

UC
pv

CC
pv

DQ
pv RLF RLF

% FLF FLF
% ALF ALF

% Z1 Z1
pv

HAR.tC.gpd 1.8 0.08 0.17 0.42 0.014 67 0.835 37 0.059 93 -0.01 0.95
LHAR.tC.gpd 1.0 0.93 0.86 0.99 0.006 100 0.861 4 0.059 93 0.05
LHAR.nC.gpd 0.8 0.61 0.79 0.99 0.007 93 0.856 7 0.059 93 -0.03
HAR.nC.gpd 1.8 0.08 0.17 0.42 0.015 63 0.837 30 0.060 81 -0.07 0.93
LHAR.Chol.RCOV.N 1.3 0.49 0.60 0.95 0.009 85 0.853 19 0.060 81 -0.06
LHAR.Chol.RCOV.t 1.1 0.76 0.78 0.98 0.009 85 0.856 7 0.060 81 0.01 0.91
LHAR.Chol.RCOV.FHS 1.3 0.49 0.60 0.64 0.007 93 0.880 0 0.061 63 0.23
LHAR.tC.e 1.4 0.29 0.41 0.47 0.012 74 0.836 33 0.061 63 0.02 0.90
LHAR.tC.t 1.4 0.29 0.41 0.48 0.013 70 0.835 37 0.061 63 0.01 0.90
LHAR.nC.e 1.4 0.29 0.41 0.45 0.012 74 0.831 48 0.061 63 -0.10
LHAR.nC.n 1.4 0.29 0.41 0.48 0.012 74 0.839 26 0.061 63 -0.10 0.90
GJR.GARCH.tC.gpd 1.4 0.29 0.41 0.65 0.022 48 0.807 56 0.062 52 -0.15 0.65
GJR.GARCH.nC.n 1.6 0.16 0.24 0.56 0.025 22 0.795 78 0.062 52 -0.24 0.70
GJR.GARCH.nC.gpd 1.4 0.29 0.41 0.65 0.022 48 0.807 56 0.062 52 -0.21 0.56
GJR.GARCH.tC.e 1.4 0.29 0.41 0.65 0.024 41 0.797 74 0.063 41 -0.17 0.58
GJR.GARCH.tC.t 1.4 0.29 0.41 0.65 0.025 22 0.803 63 0.063 41 -0.20 0.48
GJR.GARCH.nC.e 1.6 0.16 0.24 0.56 0.025 22 0.792 81 0.063 41 -0.26 0.67
DCC.GARCH.COV.FHS 1.4 0.29 0.41 0.62 0.024 41 0.819 52 0.064 26 -0.18 0.29
DCC.GJR.GARCH.COV.FHS 1.8 0.08 0.17 0.33 0.021 56 0.855 15 0.064 26 -0.11 0.73
aDCC.GJR.GARCH.COV.FHS 1.8 0.08 0.17 0.33 0.021 56 0.851 22 0.064 26 -0.11 0.70
GARCH.nC.gpd 1.6 0.16 0.24 0.45 0.025 22 0.801 67 0.064 26 -0.17 0.62
aDCC.GJR.GARCH.COV.t 1.8 0.08 0.13 0.40 0.026 15 0.834 44 0.065 7 -0.14 0.70
GARCH.tC.e 1.6 0.16 0.24 0.44 0.026 15 0.788 96 0.065 7 -0.15 0.53
GARCH.tC.gpd 1.6 0.16 0.24 0.42 0.025 22 0.790 93 0.065 7 -0.13 0.64
GARCH.nC.e 1.6 0.16 0.24 0.45 0.027 7 0.791 89 0.065 7 -0.27 0.51
GARCH.nC.n 1.6 0.16 0.24 0.43 0.028 0 0.787 100 0.065 7 -0.28 0.47
DCC.GARCH.COV.t 1.8 0.08 0.17 0.36 0.028 0 0.801 67 0.066 0 -0.15 0.59
GARCH.tC.t 1.6 0.16 0.24 0.40 0.027 7 0.792 81 0.066 0 -0.15 0.54

Source: Author’s computation
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asymmetric version of HAR are appropriate and accurate methods for modeling the extreme
events for the purpose of forecasting VaR. We witness again the inverse phenomena when FLF
assigns low average loss to symmetric model GARCH whereas this model does not beat any other
competitor from the point of view ALF and FLF.

Table 4.5: VaR and ES Test I. results for Low sample and significant
models.

Model Viol.
ratio

UC
pv

CC
pv

DQ
pv RLF RLF

% FLF FLF
% ALF ALF

% Z1 Z1
pv

HAR.Chol.RCOV.N 1.1 0.74 0.77 0.53 0.004 0 0.201 24 0.028 83 -0.21 0.70
HAR.Chol.RCOV.t 1.1 0.74 0.77 0.53 0.004 0 0.203 17 0.028 83 -0.09 0.74
DCC.GJR.GARCH.COV.N 0.8 0.62 0.80 0.29 0.002 31 0.193 69 0.028 83 -0.10 0.84
DCC.GJR.GARCH.COV.t 0.8 0.62 0.80 0.29 0.002 31 0.194 55 0.028 83 0.00 0.86
aDCC.GJR.GARCH.COV.N 0.8 0.62 0.80 0.29 0.002 31 0.193 69 0.028 83 -0.09 0.86
aDCC.GJR.GARCH.COV.t 0.8 0.62 0.80 0.29 0.002 31 0.194 55 0.028 83 0.02
HAR.Chol.RCOV.FHS 1.1 0.74 0.77 0.56 0.004 0 0.201 24 0.029 38 0.04 0.74
HAR.tC.e 1.1 0.74 0.77 0.61 0.003 10 0.204 7 0.029 38 -0.08 0.63
HAR.tC.t 1.1 0.74 0.77 0.60 0.003 10 0.204 7 0.029 38 -0.08 0.66
HAR.nC.e 1.1 0.74 0.77 0.55 0.003 10 0.204 7 0.029 38 -0.16 0.80
HAR.nC.n 1.1 0.74 0.77 0.58 0.003 10 0.202 21 0.029 38 -0.17 0.76
DCC.GJR.GARCH.COV.FHS 0.8 0.62 0.80 0.39 0.002 31 0.195 45 0.029 38 0.07 0.84
aDCC.GJR.GARCH.COV.FHS 0.8 0.62 0.80 0.36 0.002 31 0.194 55 0.029 38 0.14
GJR.GARCH.tC.e 0.8 0.62 0.80 0.37 0.002 31 0.198 38 0.029 38 -0.01
GJR.GARCH.tC.t 0.8 0.62 0.80 0.36 0.002 31 0.196 41 0.029 38 -0.00
GJR.GARCH.tC.gpd 0.8 0.62 0.80 0.34 0.001 97 0.201 24 0.029 38 0.05
GJR.GARCH.nC.e 0.8 0.62 0.80 0.37 0.002 31 0.195 45 0.029 38 -0.11 0.80
GJR.GARCH.nC.n 0.8 0.62 0.80 0.36 0.002 31 0.195 45 0.029 38 -0.09
GJR.GARCH.nC.gpd 0.8 0.62 0.80 0.36 0.001 97 0.201 24 0.029 38 0.00
HAR.tC.gpd 0.8 0.62 0.80 0.41 0.002 31 0.214 0 0.030 3 -0.01
HAR.nC.gpd 0.8 0.62 0.80 0.40 0.002 31 0.213 3 0.030 3 -0.05
DCC.GARCH.COV.N 1.0 0.94 0.86 0.56 0.003 10 0.187 93 0.030 3 -0.12
DCC.GARCH.COV.t 0.8 0.62 0.80 0.38 0.002 31 0.187 93 0.030 3 -0.05 0.55
GARCH.tC.e 1.1 0.74 0.77 0.07 0.002 31 0.190 79 0.030 3 0.04 0.89
GARCH.tC.t 1.1 0.74 0.77 0.65 0.002 31 0.190 79 0.030 3 0.03
GARCH.tC.gpd 0.8 0.62 0.80 0.40 0.002 31 0.194 55 0.030 3 -0.00
GARCH.nC.e 1.1 0.74 0.77 0.07 0.002 31 0.190 79 0.030 3 -0.07
GARCH.nC.n 1.1 0.74 0.77 0.06 0.002 31 0.189 90 0.030 3 -0.07
GARCH.nC.gpd 0.8 0.62 0.80 0.39 0.002 31 0.193 69 0.030 3 -0.03
DCC.GARCH.COV.FHS 0.8 0.62 0.80 0.41 0.003 10 0.187 93 0.031 0 0.10

Source: Author’s computation

Low scenario is the most balanced scenario where all models have almost indentical violation
ratio closely around one. Additionally, all p-values of statistical tests are very similar. The loss
functions have ambiguous vales and are not able to distinguish the models in the way we have
seen in previous scenarios. This can be a nice example that if we validate and try to select the
models on the time period without volatility, then it is very little robust decision about the best
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model. In this case, it looks that any of the validated models have sufficient accuracy in the
forecasts of VaR.

Overall, the HAR models using high-frequency data showed very good performance in Full
scenario and especially its asymmetric version in High scenario. The benchmark model DCC-
GARCH performed relatively poorly and it required at least to incorporate its asymmetric version
GJR in order to improve the performance. The superiority of GPD and copula in highly volatile
times made an excellent job and performed the best as expected. The drawback of LHAR is its
probably too conservative forecasting because we can see that it was rejected in Low scenario.
Another proof is the visual inspection of Figure 4.8 where we see forecasts of LHAR are often
much lower than forecasts of other models. Lastly, pioneering model RiskMetrics was rejected
in all scenarios and nowadays we can say it is already obsolete approach.

The full results can be found in appendix, concretely Full scenario Table A.1, High scenario
Table A.2 and Low scenario Table A.3.

4.3.2 Expected shortfall

The backtesting of ES was proceeded according to its mentioned definition and thep-value was
found through 5,000 simulations by bootstrapping for both tests. Since the Test I. assumes valid
forecasts of VaR, we included test statistics Z1 and its p-value in tables with VaR results.

The results of Test I. are quite surprising. If we use significance level 5%, then we will not
reject any model from all three scenarios. Even if we increase significance level to 10%, then we
will reject four models only from Full scenario. These models are GJR-GARCH and HAR using
copula function with GPD distribution. So there can be some influence of GPD distribution.

Another interesting finding is that Full scenario has Z1 test statistic mostly negative and Low
scenario has very close oscillation of Z1 around zero with significantly higher p-values than in
Full scenario. Therefore, the forecasts of ES might indicate to be more valid in Low scenario. In
case of High scenario, the p-values are very high for the best asymmetric HAR models and Z1
test statistic also close to zero.

The imperfection of Test I. is that it might happen that p-value is not even calculated (as we
could see from our results) due to possible zero violation of VaR during bootstrapping process.
This situation causes undefined mathematical operation (division by zero) returning an error.
To sum up, the Test I. has still considerable limitations in order to be routinely used in practice.

The second backtest of ES was Test II that is testing the forecasts of VaR and ES mutually.
The results are presented in Table 4.6. We could say that this test provided even more contro-
versial results than Test I. Based on our simulated p-value from boostrapping, we did not reject
any model from any scenario.

Nonetheless, we can have a look on the Table 3.1 of significance thresholds provided by the
authors of test and compare with our Z2 test statistics.
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Table 4.6: ES Test II. results for all scenarios

Full High Low

Model Z2 pv Z2 pv Z2 pv

HAR.Chol.RCOV.N -0.68 0.95 -1.52 0.80 -0.37 0.98
HAR.Chol.RCOV.t -0.41 0.96 -1.29 0.77 -0.23 0.98
HAR.Chol.RCOV.FHS -0.39 0.94 -0.88 0.70 -0.09 0.96
HAR.tC.e -0.29 0.94 -1.21 0.79 -0.23 0.94
HAR.tC.t -0.31 0.94 -1.12 0.83 -0.23 0.94
HAR.tC.gpd 0.14 0.92 -0.79 0.77 0.18 0.87
HAR.nC.e -0.49 0.94 -1.66 0.72 -0.31 0.95
HAR.nC.n -0.51 0.94 -1.46 0.79 -0.33 0.96
HAR.nC.gpd 0.12 0.94 -0.89 0.77 0.15 0.90
LHAR.Chol.RCOV.N 0.23 0.96 -0.36 0.64 0.63 0.99
LHAR.Chol.RCOV.t 0.36 0.96 -0.11 0.71 0.66 0.99
LHAR.Chol.RCOV.FHS 0.35 0.93 0.01 0.54 0.69 0.99
LHAR.tC.e 0.25 0.97 -0.42 0.65 0.66 0.99
LHAR.tC.t 0.30 0.98 -0.43 0.65 0.66 0.99
LHAR.tC.gpd 0.50 0.90 0.08 0.76 0.72 0.96
LHAR.nC.e 0.10 0.96 -0.59 0.66 0.62 0.99
LHAR.nC.n 0.15 0.97 -0.60 0.65 0.62 0.99
LHAR.nC.gpd 0.41 0.87 0.17 0.86 0.70 0.97
EWMA.COV.N 0.56 0.45 -1.45 0.39 -0.03 0.42
EWMA.COV.t 0.58 0.43 -1.33 0.36 0.00 0.38
EWMA.COV.FHS 0.48 0.42 -1.61 0.44 -0.09 0.38
DCC.GARCH.COV.N -0.12 0.90 -1.37 0.66 -0.09 0.85
DCC.GARCH.COV.t 0.05 0.90 -1.03 0.70 0.15 0.90
DCC.GARCH.COV.FHS 0.02 0.85 -0.71 0.78 0.27 0.88
DCC.GJR.GARCH.COV.N -0.03 0.91 -1.52 0.67 0.11 0.94
DCC.GJR.GARCH.COV.t 0.13 0.91 -1.30 0.64 0.20 0.92
DCC.GJR.GARCH.COV.FHS 0.15 0.89 -0.96 0.73 0.25 0.89
aDCC.GJR.GARCH.COV.N -0.02 0.91 -1.34 0.73 0.12 0.93
aDCC.GJR.GARCH.COV.t 0.19 0.94 -1.02 0.77 0.21 0.91
aDCC.GJR.GARCH.COV.FHS 0.09 0.84 -0.97 0.74 0.30 0.90
GARCH.tC.e 0.04 0.78 -0.85 0.77 -0.09 0.72
GARCH.tC.t 0.03 0.76 -0.85 0.78 -0.10 0.73
GARCH.tC.gpd 0.13 0.70 -0.82 0.72 0.19 0.82
GARCH.nC.e -0.08 0.80 -1.04 0.79 -0.21 0.75
GARCH.nC.n -0.08 0.79 -1.05 0.79 -0.21 0.74
GARCH.nC.gpd 0.10 0.72 -0.87 0.76 0.17 0.84
GJR.GARCH.tC.e 0.11 0.82 -0.69 0.90 0.18 0.88
GJR.GARCH.tC.t 0.04 0.73 -0.73 0.88 0.19 0.89
GJR.GARCH.tC.gpd 0.24 0.78 -0.66 0.86 0.23 0.84
GJR.GARCH.nC.e -0.06 0.78 -1.02 0.85 0.10 0.90
GJR.GARCH.nC.n -0.06 0.77 -1.00 0.86 0.12 0.91
GJR.GARCH.nC.gpd 0.21 0.81 -0.74 0.86 0.19 0.85

Source: Author’s computation
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We can observe on Full scenario the distribution of Z2 is centred around zero and quite
dispersed with the highest value of 0.58 from EWMA.COV.t indicating overestimation of ES and
-0.68 from HAR.Chol.RCOV.N indicating underestimation of ES.

The opposite situation is on High scenario where the majority of Z2 statistics are negative.
It means that the majority of models underestimate the forecast of ES. The densities of Z2 from
all our models can be seen in Figure 4.10. We can compare Z2 value of the best selected VaR

model that was LHAR.tC.gpd with Z2 values of rejected models, i.e. family of EWMA models.
LHAR had Z2 value 0.08 and EWMA family had in range of -1.33 and -1.61. We could say from
this primitive comparison that EWMA models underestimate forecasts of ES. Anyway, it is very
difficult to infer specific conclusion from Test II. On one hand, we have high positive p-values
from all models and scenarios and on the other hand, we would reject 26 models of 42 for High
scenario if we consider proposed critical values for Student’s t with ν = 3.

The Low scenario is the same situation as the Full scenario. We observe very high p-values
and Z2 statistics surrounded around zero.

Figure 4.10: Z2 density for all scenarios
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Considering all findings from ES backtesting, we conclude that there is still plenty of room for
further research about the backtesting methods of ES and it depends if there are any methods
depending on the definition of backtesting and the issue of elicitability.

Moreover, the highest challange would be to find out the way of comparison various ES since
there is currently no theoretical basis for this due to elicitability.

Thus, the promising alternative approach can be indirect backtesting through VaR such as
one proposed in Emmer et al. (2015).



Chapter 5

Conclusion

In this master thesis we investigated the performance of forecasting accuracy of VaR and ES from
the multivariate models based on high-frequency and daily data. The literature overview about
current research focused on modeling of realized volatility and covariance with application in
forecasting of VaR and ES can be found in Chapter 2 together with theoretical framework of
realized measures, VaR and ES. Thanks to literature review, we found out that there has not
been written any paper about the application of multivariate model using high-frequency data
for forecasting of ES. Chapter 3 brings introduction of all applied variance-covariance models
with their pros and cons. Moreover, we described also all used loss distributions because they are
as important as estimation of volatility or covariance matrix but we could see in many papers
that this fact is overlooked. The last subsection was dedicated description to standard back-
testing methods and model selection methods represented by loss functions in case of VaR. The
backtesting of ES was described by two recently proposed tests I. and II. Chapter 4 contains
entire empirical analysis that we summarize in next paragraph.

Regarding to data analysis, we implemented the simplest estimator of realized covariance
constructed by homogeneously spaced returns on 20 minutes frequency which were chosen from
signature covariance plot, synchronization according to fixed time when all assets were traded and
omitting the overnight returns. We found that overnight returns were only significant between
Friday closing and Monday opening on CL and XAUUSD asset. Our synchronization technique
resulted in high reduction of data as we had left only 69 observation per business day. Moreover,
the long-memory effect was confirmed on all elements of realized covariance matrix that provided
the support for our multivariate HAR model. Overall, the estimation of realized covariance
matrix is still relatively in its infancy period and hence, the more advanced methods are very
sophisticated with little documentation of their implementation in practice. From the practical
point of view, one thinking about HFD sampled with very high frequencies must be also aware
of substantial increased demand of computation power.

Subsequent modeling of realized covariance matrix was very efficient due to the parsimony
and stability of multivariate HAR models. We tried to apply also ARFIMA model in the same
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fashion as multivariate HAR but it was very unstable estimation returning many errors. The
estimation of multivariate distributions through copula functions is very well-documented and
implemented also within R. The challenging point was the determination of threshold level for
the GPD and we decided to set it as percentage of observations in order to get around 100 ob-
servations that should provide stable estimates of GPD.

Regarding to answers to our main objective and following questions, we are going to answer
through our empirical results of our backtesting and model selection methods (the position of
models were determined by the asymmetric loss function). All empirical results are derived for
full sample called Full scenario and subsamples containing periods of high volatility called High
scenario and low volatility called Low scenario.

The first question was ”What model and approach provides the most accurate forecasts of VaR

and ES?” The answer is that the most robust performance was achieved by utilization of HFD

through univariate HAR using copula function either Gaussian or t in terms of forecasts of VaR.
The second question was ”Does the best model and approach of VaR perform similarly also

in the forecasting of ES?”. Unfortunately, we are not able to answer this question. The reason
is that backtests of ES did not give credible results since both tests did not reject any model on
significance level 5%. Moreover, the test I. did not even calculate p-value because the simulation
via bootstrapping resulted in calculation of p-value that would include division by zero what
is undefined mathematical operation. The both tests were rather disappointing and probably
the backtesting approach by approximation of ES by VaR for different confidence levels can be
better alternative as it was suggested by Emmer et al. (2015). The third question was ”What
is the difference between the two approaches for various market volatility periods (stable versus
turbulent period)?”. The answer is there is significant difference. When we have a look on top
models in High scenario, we can find the best performing model asymmetric version of univariate
HAR called LHAR with Gaussian or t copula using GPD as marginal distribution. These models
coped with the fat tails the best. Anyway, asymmetric version of univariate HAR was an excel-
lent model in all its variations in High scenario. Another interesting result is from Low scenario
where all models either using HFD or daily data performed relatively the same. It tells us that
backtesting and selecting the models based on this scenario is very low robust.

The final answer for our main objective is that Heterogeneous Autoregression model using
high-frequency data delivered superior or at least the same accuracy of forecasts of VaR to bench-
mark models (DCC-GARCH or EWMA) based on daily data. Nevertheless, EWMA model was
the worst model from all because it was rejected in all scenarios and therefore it was not included
in model selection.

The model selection based on loss functions revealed also interesting information. The regu-
latory loss function was giving more or less inverse preference of models than firm loss function.
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This was the reason why we implemented asymmetric loss function as our decisive criterion to
define the order of preference of models.

Another important finding about backtesting of ES is that depending on the definition of
”backtesting”, the backtesting might not exist or at least the model selection does not exist due
to lack of elicitability what means there does not exist scoring function such as loss functions
applied in the model selection of VaR.

The inspiration for further research can be found in the relaxing of limitations of this master
thesis mentioned in Chapter 1 or implementation of more advanced methods mentioned in this
master thesis that have not been implemented here.
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A. Tables II

Table A.1: VaR and ES Test I. results for Full sample and all models.

Model Viol.
ratio

UC
pv

CC
pv

DQ
pv RLF RLF

% FLF FLF
% ALF ALF

% Z1 Z1
pv

HAR.Chol.RCOV.N 1.3 0.22 0.44 0.62 0.019 0 0.243 100 0.039 78 -0.27 0.58
HAR.Chol.RCOV.t 1.2 0.46 0.64 0.66 0.018 12 0.244 95 0.039 78 -0.18 0.48
HAR.Chol.RCOV.FHS 1.3 0.33 0.55 0.56 0.018 12 0.244 95 0.040 54 -0.11 0.41
HAR.tC.e 1.1 0.82 0.72 0.61 0.019 0 0.248 68 0.039 78 -0.22 0.27
HAR.tC.t 1.1 0.82 0.72 0.61 0.019 0 0.248 68 0.039 78 -0.24 0.24
HAR.tC.gpd 0.7 0.16 0.13 0.16 0.015 49 0.259 20 0.041 29 -0.29 0.08
HAR.nC.e 1.1 0.63 0.70 0.65 0.019 0 0.247 80 0.039 78 -0.33 0.35
HAR.nC.n 1.1 0.63 0.70 0.66 0.019 0 0.246 90 0.039 78 -0.34 0.31
HAR.nC.gpd 0.7 0.16 0.13 0.16 0.015 49 0.257 24 0.040 54 -0.33 0.10
LHAR.Chol.RCOV.N 0.6 0.09 0.07 0.15 0.012 83 0.262 17 0.043 10 -0.29 0.34
LHAR.Chol.RCOV.t 0.5 0.04 0.03 0.08 0.012 83 0.264 12 0.043 10 -0.21 0.28
LHAR.Chol.RCOV.FHS 0.6 0.09 0.07 0.15 0.012 83 0.264 12 0.043 10 -0.09 0.27
LHAR.tC.e 0.6 0.09 0.07 0.14 0.015 49 0.257 24 0.042 22 -0.25 0.14
LHAR.tC.t 0.5 0.04 0.03 0.07 0.015 49 0.258 22 0.043 10 -0.32 0.07
LHAR.tC.gpd 0.4 0.01 0.00 0.07 0.011 93 0.270 7 0.046 0 -0.26 0.14
LHAR.nC.e 0.7 0.16 0.13 0.21 0.015 49 0.257 24 0.042 22 -0.36 0.20
LHAR.nC.n 0.6 0.09 0.07 0.14 0.015 49 0.256 32 0.042 22 -0.42 0.12
LHAR.nC.gpd 0.5 0.02 0.01 0.03 0.012 83 0.271 2 0.046 0 -0.26 0.22
EWMA.COV.N 0.4 0.01 0.00 0.00 0.007 98 0.271 2 0.044 5 -0.11
EWMA.COV.t 0.4 0.01 0.00 0.00 0.006 100 0.273 0 0.044 5 -0.05
EWMA.COV.FHS 0.5 0.02 0.01 0.00 0.008 95 0.266 10 0.043 10 -0.13
DCC.GARCH.COV.N 0.9 0.57 0.47 0.32 0.016 37 0.246 90 0.040 54 -0.30 0.27
DCC.GARCH.COV.t 0.8 0.40 0.34 0.26 0.015 49 0.247 80 0.040 54 -0.19 0.25
DCC.GARCH.COV.FHS 0.9 0.57 0.07 0.00 0.015 49 0.251 46 0.041 29 -0.13 0.23
DCC.GJR.GARCH.COV.N 0.8 0.40 0.34 0.30 0.015 49 0.248 68 0.039 78 -0.30 0.28
DCC.GJR.GARCH.COV.t 0.7 0.26 0.22 0.29 0.015 49 0.250 56 0.039 78 -0.20 0.23
DCC.GJR.GARCH.COV.FHS 0.7 0.26 0.22 0.14 0.015 49 0.254 37 0.040 54 -0.17 0.16
aDCC.GJR.GARCH.COV.N 0.8 0.40 0.34 0.30 0.015 49 0.249 63 0.039 78 -0.29 0.30
aDCC.GJR.GARCH.COV.t 0.7 0.16 0.13 0.17 0.014 80 0.250 56 0.039 78 -0.23 0.16
aDCC.GJR.GARCH.COV.FHS 0.8 0.40 0.34 0.24 0.015 49 0.254 37 0.040 54 -0.14 0.18
GARCH.tC.e 0.8 0.40 0.34 0.20 0.017 20 0.248 68 0.041 29 -0.21 0.17
GARCH.tC.t 0.8 0.40 0.34 0.19 0.017 20 0.249 63 0.041 29 -0.22 0.16
GARCH.tC.gpd 0.7 0.26 0.22 0.13 0.016 37 0.251 46 0.041 29 -0.19 0.19
GARCH.nC.e 0.8 0.40 0.34 0.22 0.017 20 0.247 80 0.041 29 -0.36 0.16
GARCH.nC.n 0.8 0.40 0.34 0.22 0.018 12 0.247 80 0.041 29 -0.36 0.14
GARCH.nC.gpd 0.7 0.26 0.22 0.14 0.016 37 0.251 46 0.041 29 -0.24 0.19
GJR.GARCH.tC.e 0.7 0.26 0.22 0.16 0.017 20 0.252 44 0.040 54 -0.22 0.17
GJR.GARCH.tC.t 0.8 0.40 0.34 0.26 0.017 20 0.251 46 0.040 54 -0.20 0.20
GJR.GARCH.tC.gpd 0.6 0.09 0.07 0.06 0.016 37 0.254 37 0.041 29 -0.28 0.08
GJR.GARCH.nC.e 0.8 0.40 0.34 0.24 0.017 20 0.248 68 0.040 54 -0.33 0.19
GJR.GARCH.nC.n 0.8 0.40 0.34 0.26 0.017 20 0.250 56 0.040 54 -0.34 0.19
GJR.GARCH.nC.gpd 0.6 0.09 0.07 0.07 0.016 37 0.255 34 0.041 29 -0.32 0.08

Source: Author’s computation



A. Tables III

Table A.2: VaR and ES Test I. results for High sample and all models.

Model Viol.
ratio

UC
pv

CC
pv

DQ
pv RLF RLF

% FLF FLF
% ALF ALF

% Z1 Z1
pv

HAR.Chol.RCOV.N 2.1 0.02 0.05 0.17 0.025 32 0.805 63 0.064 34 -0.20 0.83
HAR.Chol.RCOV.t 2.1 0.02 0.05 0.17 0.024 46 0.808 51 0.064 34 -0.10 0.87
HAR.Chol.RCOV.FHS 1.9 0.04 0.10 0.26 0.017 73 0.834 29 0.061 73 0.02 0.93
HAR.tC.e 2.1 0.02 0.05 0.17 0.023 54 0.808 51 0.063 51 -0.06 0.91
HAR.tC.t 1.9 0.04 0.10 0.23 0.023 54 0.807 56 0.063 51 -0.10 0.85
HAR.tC.gpd 1.8 0.08 0.17 0.42 0.014 78 0.835 24 0.059 95 -0.01 0.95
HAR.nC.e 2.2 0.01 0.02 0.07 0.023 54 0.809 49 0.064 34 -0.18 0.90
HAR.nC.n 2.1 0.02 0.05 0.17 0.022 61 0.812 46 0.062 63 -0.18 0.91
HAR.nC.gpd 1.8 0.08 0.17 0.42 0.015 76 0.837 20 0.060 88 -0.07 0.93
LHAR.Chol.RCOV.N 1.3 0.49 0.60 0.95 0.009 90 0.853 12 0.060 88 -0.06
LHAR.Chol.RCOV.t 1.1 0.76 0.78 0.98 0.009 90 0.856 5 0.060 88 0.01 0.91
LHAR.Chol.RCOV.FHS 1.3 0.49 0.60 0.64 0.007 95 0.880 0 0.061 73 0.23
LHAR.tC.e 1.4 0.29 0.41 0.47 0.012 83 0.836 22 0.061 73 0.02 0.90
LHAR.tC.t 1.4 0.29 0.41 0.48 0.013 80 0.835 24 0.061 73 0.01 0.90
LHAR.tC.gpd 1.0 0.93 0.86 0.99 0.006 100 0.861 2 0.059 95 0.05
LHAR.nC.e 1.4 0.29 0.41 0.45 0.012 83 0.831 34 0.061 73 -0.10
LHAR.nC.n 1.4 0.29 0.41 0.48 0.012 83 0.839 17 0.061 73 -0.10 0.90
LHAR.nC.gpd 0.8 0.61 0.79 0.99 0.007 95 0.856 5 0.059 95 -0.03
EWMA.COV.N 1.9 0.04 0.10 0.00 0.035 2 0.731 100 0.069 2 -0.27 0.60
EWMA.COV.t 1.9 0.04 0.10 0.00 0.034 5 0.732 98 0.069 2 -0.21 0.69
EWMA.COV.FHS 2.1 0.02 0.02 0.00 0.037 0 0.733 95 0.070 0 -0.25 0.64
DCC.GARCH.COV.N 1.9 0.04 0.10 0.26 0.029 7 0.798 73 0.066 7 -0.23 0.64
DCC.GARCH.COV.t 1.8 0.08 0.17 0.36 0.028 12 0.801 68 0.066 7 -0.15 0.59
DCC.GARCH.COV.FHS 1.4 0.29 0.41 0.62 0.024 46 0.819 44 0.064 34 -0.18 0.29
DCC.GJR.GARCH.COV.N 2.1 0.02 0.02 0.01 0.029 7 0.827 41 0.066 7 -0.21 0.81
DCC.GJR.GARCH.COV.t 2.1 0.02 0.02 0.01 0.028 12 0.830 37 0.066 7 -0.10 0.84
DCC.GJR.GARCH.COV.FHS 1.8 0.08 0.17 0.33 0.021 68 0.855 10 0.064 34 -0.11 0.73
aDCC.GJR.GARCH.COV.N 1.9 0.04 0.10 0.25 0.028 12 0.830 37 0.066 7 -0.21 0.76
aDCC.GJR.GARCH.COV.t 1.8 0.08 0.13 0.40 0.026 27 0.834 29 0.065 22 -0.14 0.70
aDCC.GJR.GARCH.COV.FHS 1.8 0.08 0.17 0.33 0.021 68 0.851 15 0.064 34 -0.11 0.70
GARCH.tC.e 1.6 0.16 0.24 0.44 0.026 27 0.788 90 0.065 22 -0.15 0.53
GARCH.tC.t 1.6 0.16 0.24 0.40 0.027 22 0.792 80 0.066 7 -0.15 0.54
GARCH.tC.gpd 1.6 0.16 0.24 0.42 0.025 32 0.790 88 0.065 22 -0.13 0.64
GARCH.nC.e 1.6 0.16 0.24 0.45 0.027 22 0.791 85 0.065 22 -0.27 0.51
GARCH.nC.n 1.6 0.16 0.24 0.43 0.028 12 0.787 93 0.065 22 -0.28 0.47
GARCH.nC.gpd 1.6 0.16 0.24 0.45 0.025 32 0.801 68 0.064 34 -0.17 0.62
GJR.GARCH.tC.e 1.4 0.29 0.41 0.65 0.024 46 0.797 76 0.063 51 -0.17 0.58
GJR.GARCH.tC.t 1.4 0.29 0.41 0.65 0.025 32 0.803 66 0.063 51 -0.20 0.48
GJR.GARCH.tC.gpd 1.4 0.29 0.41 0.65 0.022 61 0.807 56 0.062 63 -0.15 0.65
GJR.GARCH.nC.e 1.6 0.16 0.24 0.56 0.025 32 0.792 80 0.063 51 -0.26 0.67
GJR.GARCH.nC.n 1.6 0.16 0.24 0.56 0.025 32 0.795 78 0.062 63 -0.24 0.70
GJR.GARCH.nC.gpd 1.4 0.29 0.41 0.65 0.022 61 0.807 56 0.062 63 -0.21 0.56

Source: Author’s computation
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Table A.3: VaR and ES Test I. results for Low sample and all models.

Model Viol.
ratio

UC
pv

CC
pv

DQ
pv RLF RLF

% FLF FLF
% ALF ALF

% Z1 Z1
pv

HAR.Chol.RCOV.N 1.1 0.74 0.77 0.53 0.004 0 0.201 41 0.028 78 -0.21 0.70
HAR.Chol.RCOV.t 1.1 0.74 0.77 0.53 0.004 0 0.203 34 0.028 78 -0.09 0.74
HAR.Chol.RCOV.FHS 1.1 0.74 0.77 0.56 0.004 0 0.201 41 0.029 41 0.04 0.74
HAR.tC.e 1.1 0.74 0.77 0.61 0.003 7 0.204 27 0.029 41 -0.08 0.63
HAR.tC.t 1.1 0.74 0.77 0.60 0.003 7 0.204 27 0.029 41 -0.08 0.66
HAR.tC.gpd 0.8 0.62 0.80 0.41 0.002 27 0.214 22 0.030 15 -0.01
HAR.nC.e 1.1 0.74 0.77 0.55 0.003 7 0.204 27 0.029 41 -0.16 0.80
HAR.nC.n 1.1 0.74 0.77 0.58 0.003 7 0.202 37 0.029 41 -0.17 0.76
HAR.nC.gpd 0.8 0.62 0.80 0.40 0.002 27 0.213 24 0.030 15 -0.05
LHAR.Chol.RCOV.N 0.3 0.05 0.14 0.88 0.001 76 0.224 10 0.029 41 -0.15
LHAR.Chol.RCOV.t 0.3 0.05 0.14 0.88 0.001 76 0.225 7 0.029 41 -0.04
LHAR.Chol.RCOV.FHS 0.3 0.05 0.14 0.88 0.001 76 0.229 5 0.030 15 0.04
LHAR.tC.e 0.3 0.05 0.14 0.88 0.001 76 0.220 12 0.028 78 -0.04
LHAR.tC.t 0.3 0.05 0.14 0.88 0.001 76 0.220 12 0.028 78 -0.06
LHAR.tC.gpd 0.3 0.05 0.14 0.88 0.000 98 0.232 2 0.032 7 0.12
LHAR.nC.e 0.3 0.05 0.14 0.88 0.001 76 0.219 20 0.028 78 -0.16
LHAR.nC.n 0.3 0.05 0.14 0.88 0.001 76 0.220 12 0.028 78 -0.17
LHAR.nC.gpd 0.3 0.05 0.14 0.88 0.000 98 0.233 0 0.032 7 0.08
EWMA.COV.N 1.0 0.94 0.30 0.01 0.003 7 0.201 41 0.035 0 -0.06
EWMA.COV.t 1.0 0.94 0.30 0.01 0.002 27 0.202 37 0.035 0 -0.02
EWMA.COV.FHS 1.1 0.74 0.38 0.03 0.003 7 0.201 41 0.034 5 0.04
DCC.GARCH.COV.N 1.0 0.94 0.86 0.56 0.003 7 0.187 95 0.030 15 -0.12
DCC.GARCH.COV.t 0.8 0.62 0.80 0.38 0.002 27 0.187 95 0.030 15 -0.05 0.55
DCC.GARCH.COV.FHS 0.8 0.62 0.80 0.41 0.003 7 0.187 95 0.031 12 0.10
DCC.GJR.GARCH.COV.N 0.8 0.62 0.80 0.29 0.002 27 0.193 78 0.028 78 -0.10 0.84
DCC.GJR.GARCH.COV.t 0.8 0.62 0.80 0.29 0.002 27 0.194 68 0.028 78 0.00 0.86
DCC.GJR.GARCH.COV.FHS 0.8 0.62 0.80 0.39 0.002 27 0.195 61 0.029 41 0.07 0.84
aDCC.GJR.GARCH.COV.N 0.8 0.62 0.80 0.29 0.002 27 0.193 78 0.028 78 -0.09 0.86
aDCC.GJR.GARCH.COV.t 0.8 0.62 0.80 0.29 0.002 27 0.194 68 0.028 78 0.02
aDCC.GJR.GARCH.COV.FHS 0.8 0.62 0.80 0.36 0.002 27 0.194 68 0.029 41 0.14
GARCH.tC.e 1.1 0.74 0.77 0.07 0.002 27 0.190 85 0.030 15 0.04 0.89
GARCH.tC.t 1.1 0.74 0.77 0.65 0.002 27 0.190 85 0.030 15 0.03
GARCH.tC.gpd 0.8 0.62 0.80 0.40 0.002 27 0.194 68 0.030 15 -0.00
GARCH.nC.e 1.1 0.74 0.77 0.07 0.002 27 0.190 85 0.030 15 -0.07
GARCH.nC.n 1.1 0.74 0.77 0.06 0.002 27 0.189 93 0.030 15 -0.07
GARCH.nC.gpd 0.8 0.62 0.80 0.39 0.002 27 0.193 78 0.030 15 -0.03
GJR.GARCH.tC.e 0.8 0.62 0.80 0.37 0.002 27 0.198 56 0.029 41 -0.01
GJR.GARCH.tC.t 0.8 0.62 0.80 0.36 0.002 27 0.196 59 0.029 41 -0.00
GJR.GARCH.tC.gpd 0.8 0.62 0.80 0.34 0.001 76 0.201 41 0.029 41 0.05
GJR.GARCH.nC.e 0.8 0.62 0.80 0.37 0.002 27 0.195 61 0.029 41 -0.11 0.80
GJR.GARCH.nC.n 0.8 0.62 0.80 0.36 0.002 27 0.195 61 0.029 41 -0.09
GJR.GARCH.nC.gpd 0.8 0.62 0.80 0.36 0.001 76 0.201 41 0.029 41 0.00

Source: Author’s computation
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