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VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE

Fakulta financí a účetnictví
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Abstrakt

Tato bakalářská práce se zabývá asymetrií ve výnosech kukuřice, zlata a ropy (jak u spo-
tových výnosů, tak i u výnosů futures) a efektivností hedgování těchto komodit pomocí
hedge ratia odhadnutého modely ze skupiny DCC. Asymetrie v podmíněném rozptylu
byla zjištěna statisticky významnou pouze v případě spotových a futures výnosů ropy a
asymetrie v podmíněné korelaci mezi výnosy spot a futures nebyla identifikována sta-
tisticky významnou v případě žádné ze studovaných komodit. V rámci efektivnosti hed-
gování jsem došel k závěru, že rozdíly v eliminaci rozptylu měřeného pomocí Hedging
effectiveness indexu jsou mezi jednotlivými modely založenými na DCC a MNČ (slouží
jako benchmark) zanedbatelné. Historický Value at Risk naproti tomu identifikoval DCC
model s asymetrií v rozptylu (avšak statisticky nevýznamnou) jako potenciálně nejvhod-
nější z použitých modelů pro hedgovaní kukuřice. V případě ostatních komodit hedge
ratio založené na MNČ poskytlo srovnatelný nebo nižší VaR než hedge ratio založené na
DCC. Hlavní přínos práce tedy spočívá v empirickém ověření asymetrie ve výnosech vy-
braných komodit a otestovaní hedgovacích schopností hedge ratia odhadnutého pomocí
modelů ze skupiny DCC.

Klíčová slova: DCC, ADCC, GARCH, GJR GARCH,MNČ, Hedge ratio, HE index, VaR

Abstract

This bachelor thesis investigates asymmetry in returns of corn, gold and crude oil (both
spot and futures) and hedging effectiveness of these commodities when employing DCC
family models for hedge ratio estimation. The asymmetry in conditional variances was
found to be significant only in case of crude oil spot and futures returns and asymmetry
in conditional correlation of spot and futures returns was not shown to be significant
in neither of the investigated commodities. With respect to the hedging performance,
we conclude that differences in hedging performance measured by hedging effectiveness
index are negligible and thus do not support superiority of DCC family models over OLS,
which served as a benchmark. Historical Value at Risk, on the contrary, identified the
DCC with asymmetry in conditional variance (despite asymmetry not being significant)
to be appropriate for corn hedging, however not for the other two commodities, where the
OLS based hedge ratio performed similarly or even better than the DCC family models.
The main contribution of the thesis thus lays in empirical investigation of asymmetry in
returns of selected commodities and testing hedging potential of DCC family based hedge
ratio.

Keywords: DCC, ADCC, GARCH, GJR GARCH,OLS, Hedge ratio, HE index, VaR
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Introduction

This bachelor thesis aims on estimating the hedge ratio by several techniques in order
to mitigate the risk attached to holding a physical commodity. The estimation methods
namely are ordinary least squares, dynamic conditional correlation, dynamic conditional
correlation with asymmetric GARCH and asymmetric dynamic conditional correlation.

There has been an increase in volatility of commodity prices in recent years, which made
hedging a necessary part of businesses such as physical commodity trading or airlines
(Geman 2005). This change in volatility can be, for instance, attributed to increase in en-
vironmental regulation, political instability in certain regions and increase in consumption
of commodities in China (Geman 2005).

There are several ways of hedging and this thesis is concerned with hedging using futures
contracts as it is probably the most employed strategy among hedgers (Brooks, Henry
and Persand 2002). Hedging by futures starts with constructing a portfolio consisting
of physical asset and a corresponding opposite position in futures. In order to decrease
volatility of portfolio profit in time we employ the minimum variance hedge ratio, which
adjusts the futures position so that the P/L from physical asset is offset by the hedge.
Within this thesis the hedging of corn, gold and crude oil are investigated, while not
accounting for costs arising from futures position adjustment.

The aim of this thesis is twofold. First, it is to investigate whether there is any asymmetry
in volatility and correlation. The second hypothesis is concerned with hedging effective-
ness where we test whether dynamic conditional correlation family models and account-
ing for asymmetry leads to higher risk reduction measured by the hedging effectiveness
index and the Value at Risk.

The thesis has the following structure. First, we introduce the relevant literature and its
main findings linked to the topic of the thesis. Next section contains methodology, which
is applied in empirical section. This includes futures pricing, portfolio construction and
further econometric techniques employed for volatility and correlation modeling. In next
sections, we follow by providing a description of employed data, and finally, we provide
empirical results of asymmetries and hedging performance of investigated commodities
both in-sample and out-of-sample. The last section of the thesis sums up the main findings
and conclusions.
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1 Literature review

In paper written by Myers (1991), the hedge ratio of cash (i.e., spot) and futures market
of wheat is investigated in period from June 1977 to May 1983. The author calculates
the hedge ratio using moving sample variances and covariances of past prediction errors
and using GARCH model of Bollerslev (1986). The contribution of the author lays in
providing an empirical evidence of time-varying hedge ratio. Despite this, the author em-
phasizes that the above employed models lead to only slightly better hedging performance
than conventional regression techniques.

The hedge ratio has also been investigated by Switzer and El-Khoury (2007) who focused
on hedging effectiveness of light sweet crude oil (NYMEX) using futures during periods
of high volatility. The data are from 1986 to 2005 and thus contain events such as Iraqi
war. The authors test whether including asymmetry in volatility leads to higher variance
reduction measured by the Hedging effectiveness index (Ederington 1979). The models
employed for hedge ratio modeling include OLS, symmetric BEKK (Engle and Kroner
1995) (BEKK is an acronym of Baba, Engle, Kraft and Kroner, who initially developed
the model in 1990) and asymmetric BEKK (Engle and Kroner 1995). The authors con-
clude that adding asymmetry to conditional volatility improves hedging effectiveness.

The hedging effectiveness of agricultural futures has also been studied by Choudhry
(2009), who took cointegration into account and also tested whether there is any dif-
ference in hedging performance of storable and non-storable commodities. The author
has provided an empirical evidence of negligibly better performance of advanced mod-
els compared to traditional OLS estimated models. As another conclusion, the author
presents that there is no difference in hedging effectiveness of storable and non-storable
commodities.

The hedging performance of several multivariate volatility models including BEKK or
CCC (Bollerslev 1990) has been investigated by Chang, McAleer and Tansuchat (2011)
on two crude oil benchmarks. The hedging effectiveness is tested on Western Texas In-
termediate (WTI) and Brent in period from November 1997 to November 2009. The
results of the analysis summarize that the best hedging performance, which is measured
by the hedging effectiveness index, provides the diagonal BEKK model, while the DCC is
only slightly worse. Other articles concerned with hedge ratio were written by Cecchetti,
Cumby and Figlewski (1988) or Chou, Wu and Liu (2009).
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2 Methodology

2.1 Spot and Futures markets

With respect to hedging and commodity markets, there are two price quotations, which
have to be observed. Those namely are spot and futures prices.

The spot market can be defined as a market, where delivery takes place immediately or
with a minimum lag due to technical constraints (Geman 2005). There may be different
spot prices on different places, which can, for instance, be caused by transaction costs
or quality. Futures presents an agreement between two counterparties, where one party
agrees to deliver certain amount of asset of pre-specified quality on pre-specified date
(maturity) for a price given today and the other party is obliged to pay for it. Futures
are traded on exchanges and thus the contracts are standardized in terms of asset quality,
contract maturity and contract size. Forwards, on the contrary, are traded over-the-counter
and therefore may be adjusted. Both of these derivatives share similarities, which are
reflected in similar pricing techniques.

There are three types of derivatives users (Geman 2005), who namely are speculators,
arbitragers and hedgers. Speculators undertake risk in order to bet on either increase or
decrease of the underlying asset price. Arbitrageurs seek opportunities to make a riskless
profit when no-arbitrage principle is violated. Hedgers are probably the original users of
the derivatives and their main objective, on contrary to speculators, is to reduce the risk.
For instance, a corn growing farmer may want to protect himself from decrease in corn
prices during harvest, therefore he sells a futures contract in spring in order to lock the
price in advance. The physical trader can use hedging to eliminate price risks, but he is
still exposed to (Geman 2005):

• Delivery risk

• Transportation risk

• Credit risk

The main focus of the thesis is the price risk elimination, which is further described in
section 2.3.
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2.2 No-arbitrage principle

The price of futures contract is closely linked to the price of the underlying asset. Based
on no-arbitrage principle, we can derive a formula for futures pricing (Wilmott 2007) .

Consider this set of variables, t standing for time now, T for time at maturity, F T for
amount of dollars handed at time T and St for a spot price in dollars at time t. Now, let us
assume we simultaneously sell a unit of an asset for spot price and enter a long forward
with maturity at T , which will secure that we will get the asset back for F T dollars (by
definition F T can be seen as forward). We immediately put the dollars obtained from
the short position into a bank account. On maturity, we receive the amount of dollars
(RDT ) corresponding to Equation (1), which is time value of money with interest rate i
and continuous compounding.

RDT = St × ei×(T−t) (1)

The money obtained from the bank account will be used to fulfill the obligation arising
from the forward contract and thus the net position (NP T ) at maturity will be as described
in following equation:

NP T = RDT − F T
T (2)

Based on no-arbitrage principle, our net position at maturity has to be zero, otherwise
there exists an opportunity to make riskless profit by either selling spot and going long in
forward market or vice versa. Hence, the price of the forward contract at time t maturing
at time T is

F T
t = St × ei×(T−t) (3)

The above described formula is however not valid for commodities, where special charac-
teristics have to be taken into account. Most of the commodities are storable and therefore
storage theory of Working (1933) has to be applied. Based on this, we compute F T

t by
formula in Equation (4), which accounts for convenience yield (denoted as y) of Brennan
(1958) and Telser (1958). The authors claim that holding a commodity can be viewed as
a timing option to flexibly react to market changes given the availability of the asset.

F T
t = St × e(i−y)×(T−t) (4)

The introduced forward pricing can be also applied to futures as the differences between
them are for purpose of the thesis negligible.

Note that if we put the prices of futures contracts into a graph as a function of maturities,
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the forward curve is constructed. This curve can be both upward or downward sloping,
which depends on risk-free rate and convenience yield. Upward sloping curve is named
contango while the downward one is often referred as backwardation. In case of changes
in convenience yield or risk-free rate (or both), the forward curve may change. This
behavior can be observed, for instance, in case of oil futures (Geman 2005), where the
forward curve changes from contango to backwardation and vice versa quite often.

2.3 Hedging and optimal hedge ratio

The initial purpose of derivatives as Geman (2005, p. 4) states is ‘vehicle against price
risk’. We focus on hedging the price risk using futures and subsequent estimation of
hedge ratio.

When futures hedging is employed, an opposite position to the physical trade is taken on
futures market. For instance, when a farmer decides to hedge himself against the change
in corn prices, he sells a corresponding contract on futures market. This way the farmer
locks the price of the corn and his profit/loss from both assets should offset. This however
does not work perfectly, since when using naive hedge (i.e., hedge ratio equal one), there
still remains the risk that price of futures contract will not be equal to the spot price, when
closing the contract before maturity. The risk is named basis risk (Geman 2005) and can
be defined as the difference between spot price and futures price at time t of contract
maturing at T (see Equation (5)).

Basist = St − F T
t (5)

The hedge ratio aims to capture these differences based on adjustment of futures position
so that the final P/L is equal to zero. Hull (2012, p. 68) defines the hedge ratio as ‘ratio of
the size of the position taken in futures contracts to the size of the exposure’. The naive
hedge ratio is not usually sufficient, hence, a hedger may employ a so-called minimum
variance hedge ratio, which tries to minimize the variance of the portfolio changes. The
portfolio change can be seen in Equation (6a) and hedge ratio (h∗) is subsequently defined
in Equation (6b),

∆PortfolioV aluet = ∆St − h∗ ×∆F T
t (6a)

h∗ = ρS,F
σS
σF

(6b)

where ρS,F stands for correlation between spot and futures returns and σS , σF represent
standard deviations of the spot and futures returns, respectively. The Equation (6b) can
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be further modified to Equation (7), which is for instance employed by Chang, McAleer
and Tansuchat (2011) in slightly different notation:

h∗ =
Cov(∆S,∆F )

V ar(∆F )
(7)

Cov(∆S,∆F ) stands for covariance between spot and futures returns and V ar(∆F ) rep-
resents variance of futures returns. This formula however assumes time-invariant hedge
ratio, which has been shown to be insufficient (Myers 1991), therefore, a modified condi-
tional hedge ratio is proposed in Equation (8),

h∗t =
Cov(∆S,∆F |Ωt−1)

V ar(∆F |Ωt−1)
(8)

where Ωt−1 denotes the information set available at t− 1.

2.4 Stationarity and unit root testing

Time series is considered to be strictly stationary if the joint distribution of returns is
time invariant, which is a strong assumption, therefore a weaker version of stationarity is
usually assumed (Tsay 2010). The time series (rt) is said to be weakly stationary in case
it has constant mean (µ), finite variance and covariance (γl) dependent only on lag (l).
This is described in Equations (9a) and (9c), respectively.

E(rt) = µ (9a)

V ar(rt) <∞ (9b)

Cov(rt, rt−l) = γl l = 1, ..., n (9c)

The parameter l stands for order of the lag and thus the value of the covariance changes
only with changes of l. The time series which satisfies these conditions is considered to
be weakly stationary.

The concept of stationarity (non-stationarity) is closely linked to the so-called unit root
testing. In case the time series follows stochastic, non-stationary process, then as Brooks
(2008) suggests: Let the process be defined as random walk with a drift,

yt = µ+ yt−1 + ut (10)

where ut is idd(0, σ2). Letting ∆y = yt − yt−1 and subtracting yt−1 from both sides of
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Equation (10) we obtain Equation (11a), which can be modified to obtain Equation (11b):

yt − yt−1 = µ+ ut (11a)

∆y = µ+ ut (11b)

Since µ is a constant and ut is idd(0, σ2) we can conclude that the process is integrated of
order one.

Theoretical properties described above can be formally tested using Dickey-Fuller test of
Dickey and Fuller (1979), which we employ in its augmented modification since it has
certain advantages over the traditional Dickey-Fuller test in terms of error structure in
regression (there will be no autocorrelation in ut) (Brooks 2008). The hypothesis is tested
on parameter ψ of Equation (12),

∆yt = ψyt−1 +

p∑
i=1

αi∆yt−i + ut (12)

where ψ is supposed to be less than zero in case of stationary and non-stationary other-
wise. The null hypothesis of unit root is tested in favor of alternative hypothesis (station-
arity).

2.5 Volatility process

Volatility, which is by its nature unobservable (Chou, Wu and Liu, 2009), plays a vital role
in risk management. The commonly used proxy for volatility is standard deviation. Volat-
ility can be modeled as it appears in bunches or clusters. In other words, periods of high
volatility are often followed by periods of high volatility and vice versa. Within this thesis
two univariate volatility models are described, which namely are GARCH (Bollerslev
1986, Taylor 1987) and GJR GARCH (Glosten, Jagannathan and Runkle 1993).

2.5.1 Generalized autoregressive conditional heteroscedasticity

This model is a generalization of ARCH (Autoregressive conditional heteroskedastic)
model of Engle (1982). The conditional variance is modeled using lagged conditional
variance estimates and lagged squared error terms, which is depicted in following equa-
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tion,

ht = α0 +

p∑
i=1

αiu
2
t−i +

q∑
j=1

βjσ
2
t−j (13)

where α0 stands for intercept, u2t−i represents i-th lag of squared error and σ2
t−j describes

j-th lagged estimate of variance while αi and βj are parameters. Parameters p and q stand
for order of the GARCH, which is denoted as GARCH(p, q). In order to be stationary, the
model has to comply with this condition:

p∑
i=1

αi +

q∑
j=1

βj < 1 (14)

Also note that the parameters α0, αi and βj have to be positive for all i and j. As the
estimation technique, we employ the maximum likelihood estimation (MLE).

Before estimating any kind of GARCH family model, it is particularly useful to test
ARCH effects (Engle 1982). To test for ARCH effect the residuals of mean equation
(example can be seen in Equation (19)) are squared and studied. For instance, the Ljung-
Box test (1978) can be used to identify dependence in squared residuals or an approach
of Engle (1982) can be followed.

The Ljung-Box test jointly tests autocorrelation on specified squared residual lags with
null hypothesis of all autocorrelation functions parameters equal to zero. The test statistics
is denoted as Q∗ and described in Equation (15),

Q∗ = T (T + 2)
m∑
k=1

τ̂ 2k
T − k

∼ χ2
m (15)

where T stands for sample size, m for maximum lag and τ̂ 2k represents an estimate of
autocorrelation function on k-th lag.

For model selection usually the Schwarz’s (1978) Bayesian information criterion (denoted
as BIC) is used as proposed by Cappiello, Engle and Sheppard (2006), while paying at-
tention to complexity of the model. The BIC we use is based on log-likelihood function,
which is mathematically depicted as

BIC = −2
L

T
+
k

T
lnT (16)

where L represents log-likelihood function, T denotes number of observations and k

stands for number of parameters.

15



2.5.2 GJR GARCH

For purpose of investigating asymmetry in volatility we also employ the GJR GARCH
model of Glosten, Jaganathan and Runkle (1993).

GJR GARCH model accounts for a leverage effect, which has been widely observed in
returns of equities. The model targets at capturing different effects of positive and negat-
ive shocks (for details see Black (1976) and Christie (1982), or Campbell and Hentschel
(1992), Wu 2001). Equities are generally more sensitive to negative than to positive
shocks (Engle and Ng 1993). In other words, an unexpected negative information has
a larger impact on volatility than its positive counterpart. The model captures this effect
by taking into account asymmetry when employing an additional variable, which adjusts
volatility estimates in case of negative (positive) past error. The GJR GARCH(p, q, o) is
mathematically described in Equation (17),

ht = α0 +

p∑
i=1

αiu
2
t−i +

q∑
j=1

βjσ
2
t−j +

o∑
k=1

γku
2
t−kIt−k (17)

where It−k = 1 if ut−k < 0 and It−k = 0 otherwise. The parameters p, q and o represent
order of ARCH effect, GARCH effect and the impact of asymmetry, respectively. The
model has to comply with following conditions, which are (Glosten, Jagannathan and
Runkle 1993):

α0 > 0 (18a)

αi > 0 for i = 1, ..., p and βj > 0 for j = 1, ..., q (18b)

αi + γk > 0 for i = 1, .., p and k = 1, ..., o (18c)
p∑
i=1

αi +

q∑
j=1

βj +
1

2

o∑
k=1

γk < 1 (18d)

where Equation (18d) represents stationarity condition.

For determining the order of the model and estimation the same methodology as for
GARCH can be used.

2.6 OLS hedge ratio

Ordinary least square regression model serves as a benchmark for hedging effectiveness
in articles written by Ku, Chen and Chen (2007) or Park and Switzer (1995) and therefore
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we use it for the same purpose. It is worth to note that these authors use a single estimate,
i.e., hedge ratio does not change, which we use for in-sample testing. For out-of-sample
testing, we have decided to employ rolling estimation since it makes more sense for com-
parison with other models, which are re-estimated several times in out-of-sample testing.
The Equation (19) describes the relationship which will be estimated,

∆S = α0 + β∆F + ε (19)

where ε is an error term i.e., ε ∼ idd(0, σ2). Note that this assumption is often violated
due to heteroskedasticity (Choudhry 2009). Both ∆S and ∆F are vectors containing
returns corresponding to certain period, called window. This window is then rolled over
the out-of-sample data. The β obtained from Equation (19) serves as hedge ratio (i.e.,
h∗ = β) described in Equation (6a)).

2.7 Dynamic conditional correlation models

Within this section, we describe models, which are used for covariance modeling through-
out the paper. First, the DCC model is introduced, than its extension with GJR GARCH
(DCCA) and finally its generalization ADCC.

2.7.1 Dynamic conditional correlation

Before deriving formula for dynamic conditional correlation it is worth to prove that con-
ditional correlation of returns is equal to conditional covariance of disturbances under
assumptions proposed by Engle (2002). To prove this, let us assume the the returns of
two series follow a process described in following equations (Engle 2002),

ri,t =
√
hi,tεi,t, hi,t = V ar(ri,t|Ωt−1), i = 1, 2, t = 1, 2, .., T (20)

where hi,t stands for conditional variance of series i at time t and ε is iid(0, σ2) The
conditional correlation between two return series r1 and r2 with zero means is:

ρ1,2,t =
Cov(r1,tr2,t|Ωt−1)√

V ar(r1,t|Ωt−1)V ar(r2,t|Ωt−1)
(21)
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We follow by plugging ri,t =
√
hi,tεi,t into Equation (21) and, after cancelling out condi-

tional variances (which are known at time t), we get to:

ρ1,2,t =
Cov(ε1,tε2,t|Ωt−1)√

V ar(ε1,t|Ωt−1)V ar(ε2,t|Ωt−1)
(22)

Since variance of disturbance term is one, our denominator is equal to one and hence we
end up with Equation (23), which says that the correlation between two time series is equal
to covariance of its standardized residuals given the process described in Equation (20).

ρ1,2,t = Cov(ε1,tε2,t|Ωt−1) (23)

The main advantage of DCC model over other models such as BEKK is its relatively
simple estimation and less parameters. For purpose of deriving DCC model we first in-
troduce the Constant Conditional Correlation model of Bollerslev (1990), in following
equations,

Ht = DtRDt Dt = diag{
√
hi,t} (24)

where Ht stands for conditional covariance matrix, R is a constant correlation matrix, i
represents particular time series and Dt stands for n × n diagonal matrix. This model
assumes constant correlation and thus approximates it with unconditional correlation es-
timate.

Equation (24) serves as a decomposition of covariance matrix, where in case of the DCC
the time invariant R is replaced with time-varying correlation Rt (Engle 2002).

Ht = DtRtDt (25)

Under the DCC model of Engle (2002), the correlation is proxied with quasi-correlation
(Qt), which has to be rescaled before being plugged into Rt as otherwise it is not ensured
that its value is between −1 and 1 (Engle 2009).

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2 (26)

We further assume that the process of quasi-correlation is mean reverting and thus can be
described by following equation (Engle 2002),

Qt = Q̄(1− α− β) + α(εt−1ε
ᵀ
t−1) + βQt−1 (27)

where Q̄ is a matrix of unconditional quasi-correlations (T−1
∑T

t=1 εtε
ᵀ
t ), α and β are

parameters (scalars) to be estimated, εt−1 is a vector of standardized residuals, Qt−1 is
a quasi-correlation estimate at t − 1. The parameters α and β drive the speed of mean
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reversion and Qt is stationary and positive definite as long as α + β < 1. The quasi-
correlation estimate is obtained via correlation targeting (Engle 2009).

In order to find parameters of DCC, we first have to define the model, where we use the
specification merged from Engle (2002) and Ghalanos (2015):

rt|Ωt−1 ∼ N(0, Ht) (28a)

Ht = DtRtDt (28b)

εt = D−1
t rt (28c)

D2
t = diag{hi,t} (28d)

Qt = Q̄(1− α− β) + α(εt−1ε
ᵀ
t−1) + βQt−1 (28e)

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2 (28f)

The parameter i stands for number of series, i.e. i = 1, 2 for two time series. The para-
meters of the model are estimated using maximum likelihood estimation (MLE) in three
steps. In the first step the volatility process is described by univariate GARCH models (or
any other GARCH family models, which are covariance stationary and assume normal
distribution of errors (Engle and Shepard 2001) and in the next step the unconditional
correlation is estimated. In the last phase the parameters driving the quasi-correlation are
estimated via MLE and then the quasi-correlation is rescaled in order to obtain correlation
between−1 and 1. The first equation of the model specification assumes normal distribu-
tion of the returns, hence we can maximize the joint probability of the multivariate normal
distribution function as written below (Engle 2002):

rt|Ωt−1 ∼ N(0, Ht) (29a)

L = −1

2

T∑
t=1

(n log(2π) + log |Ht|+ rᵀtH
−1
t rt) (29b)

L = −1

2

T∑
t=1

(n log(2π) + log |DtRtDt|+ rᵀtD
−1
t R−1

t D−1
t rt) (29c)

L = −1

2

T∑
t=1

(n log(2π) + 2 log |Dt|+ log |Rt|+ εᵀtR
−1
t εt) (29d)

L = −1

2

T∑
t=1

(n log(2π) + 2 log |Dt|+ rᵀtD
−1
t D−1

t rt − εᵀt εt + log |Rt|+ εᵀtR
−1
t εt) (29e)

The function described above can be maximized with respect to its parameters, however
in order to provide easier estimation, as Engle (2002) proposes the likelihood function
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can be split into volatility and correlation part,

L(θ, φ) = Lv(θ) + Lc(θ, φ) (30a)

Lv(θ) = −1

2

T∑
t=1

n log(2π) + 2 log |Dt|+ rᵀtD
−1
t D−1

t rt (30b)

Lc(θ̂, φ) = −1

2

T∑
t=1

−εᵀt εt + log |Rt|+ εᵀtR
−1
t εt (30c)

where θ and φ are parameters of D and R, respectively. In the first step the volatility
parameters are computed, so that in next step it could be used to obtain standardized
residuals and perform estimation of dynamic conditional correlation parameters:

θ̂ = arg max{Lv(θ)} (31a)

max
φ
{Lc(θ̂, φ)} (31b)

The empirical analysis is conducted using the statistical software R with multiple pack-
ages developed for time series. For example, the parameters of quasi-correlation are es-
timated using the ‘rmgarch’ package of Alexander Ghalanos (2015) via correlation tar-
geting.

2.7.2 Dynamic conditional correlation with asymmetric GARCH

The DCC model supports using various variance models for modeling volatility of the
time series (for details, see section 2.7.1) and therefore we have decided to extend the
analysis by employing GJR GARCH, which accounts for asymmetry in variance of a
time series. In further analysis we denote this model as DCCA for simplicity.

2.7.3 Asymmetric dynamic conditional correlation

Although asymmetry in volatility has been widely studied, there has been given a little
attention to asymmetry in covariances and particularly in correlations. This was the initial
trigger of Cappiello, Engle and Sheppard (2006), who generalized DCC model of Engle
(2002).

The economic reasoning behind the asymmetry in correlations lays in time-varying risk
premium (Cappiello, Engle and Sheppard 2006). Under assumption of CAPM world the
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negative shocks lead to an increase in volatility of the assets and thus the covariance has
to be adjusted in order to keep the beta invariant.

The asymmetric dynamic conditional correlation model is described by the following
equations,

rt|Ωt−1 ∼ N(0, Ht) (32a)

Ht = DtRtDt (32b)

εt = D−1
t rt (32c)

D2
t = diag{hi,t} (32d)

Qt = (Q̄− αQ̄− βQ̄− γN̄) + αεt−1ε
ᵀ
t−1 + γnt−1n

ᵀ
t−1 + βQt−1 (32e)

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2 (32f)

where up to the third equation the specification remains the same as in case of DCC.
The only modification is in Equation 4, where parameter γ is added. The Q̄ stands for
unconditional correlation and N̄ equals T−1

∑T
t=1 ntn

ᵀ
t , where nt = I[εt < 0]◦εt (◦ stands

for Hadamard product i.e., element-wise product). The necessary and sufficient condition
for covariance matrix to be positive and semi-definite can be found in Cappiello, Engle
and Sheppard (2006).

2.8 Hedging performance measures

The models described above have to be properly compared in order to decide, which of
them leads to greatest risk reduction. For this purpose we employ two measures employed
in similar articles, those namely are Hedging effectiveness index and the Value at Risk.

2.8.1 Hedging effectiveness

Ku, Chen and Chen (2007) suggest that volatility models should be compared by variance
and thus employs the hedging effectiveness ratio of Ederington (1979), which is also used
in paper written by Chang, McAleer and Tansuchat (2011). The hedging effectiveness
index is described in following equation,

HE =
σ2
unhedged − σ2

hedged

σ2
unhedged

(33)
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where σ2
unhedged and σ2

hedged stand for variance of unhedged portfolio and variance of
hedged portfolio, respectively. The index therefore says how many percent of unhedged
portfolio variance are reduced by using the hedge.

2.8.2 Value at Risk

As another measure of portfolio risk, we employ the Value at Risk (VaR), which was de-
veloped by J. P. Morgan as part of the RiskMetricsTM. VaR as a concept lays in a quantile
function of a distribution, which can be formally written as (Eydeland and Wolyniec
2003),

Pr(∆P ≤ −V aR) = −α (34)

where ∆P stands for change in portfolio value and α for given quantile of the distribution.

The usage of VaR is suggested also by Engle (2002) for comparing hedging performance
of different models. Despite Engle used parametric VaR with underlying assumption of
normality of returns, we employ the historical VaR. The main reason for this is that it
describes the actually observed data and, although it is backward looking, it is not our
ambition to predict the portfolio risk, but rather evaluate observed risk.

For a given period, the changes in portfolio value, which are determined in Equation (6a),
are calculated. Thus a new distribution of portfolio returns is obtained. The distribution
is than ordered from smallest to highest portfolio change so that the cumulative probab-
ility density function can be created. Then the corresponding quantile of the empirical
cumulative distribution is multiplied by initial portfolio value and daily Value at Risk is
computed (for details, see Hull 2012).

PortfolioV alue× V aRT
1−α (35)

T and α stand for period and level of significance, respectively. For purpose of our ana-
lysis we use the V aR1D

0.95, i.e. daily VaR on 5% level of significance. VaR as a measure of
risk provides an answer to the question how big the loss can at maximum be in selected
time period with given probability.
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3 Data, its descriptives and sources

In empirical part of the thesis there are three commodities investigated including both
futures and spot time series. Those commodities namely are corn, gold and oil. All of the
data come from quandl.com, except for oil spot data, which were obtained from eia.gov
(website of US Energy Information Administration). The oil data correspond to US crude
oil benchmark Western Texas Intermediate (WTI).

Futures data are not continuous in nature, since there are many contracts with different
maturities. However, for purpose of the analysis a single time series is needed, there-
fore, an artificial time series had to be created. There are two key elements of continuous
futures construction (Quandl Inc. 2017) and those namely are the date of rolling and ad-
justment made to prices (for details, see for instance Masteika, Rutkauskas and Alexander
2012 ).

For the purpose of the analysis we were forced to construct the futures time series on our
own, as we were not able to find it for free. We employed the recommended approach for
economic forecasting and regression (Quandl Inc. 2017) in order to perceive economic
properties of the series. This method uses a first-day-of-the-month as the date of rolling
and the calendar-weighted rolling as the price adjustment. The technique relies on as-
sumption that the portfolio of futures contracts is rolled in last 4 days (each day 20%) of
the month before maturing month. The remaining 20% are rolled on the first day of the
month, when the contract expires. The price adjustment in this case is simply represented
by weighted average of prices of 2 consecutive contracts, where weights are the fractions
of contracts held in each contract month.

In Table 1 a simple characteristic of futures contracts can be found. With respect to
the spot prices, all the data come from the USA and specific location can be found (if
available) in Table 2.

Table 1: Futures specification

Commodity Exchange Contract Months Contract Size

Corn CBOT Mar, May, Jul, Sep, Dec 5000 bushels
Gold COMEX Jan-Dec 100 troy ounces
WTI NYMEX Jan-Dec 1000 barrels

Source: http://www.cmegroup.com/
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Table 2: Spot specification

Commodity Location

Corn Central Illinois, USA
Gold USA
WTI Cushing, Oklahoma, USA

Source: Own creation

The time series dates from 4th December 2000 to 1st September 2016, which corresponds
to almost 4000 observation (exact values for each series can be found in Table 4). In order
to provide sound solution for hedging effectiveness, we have decided to also provide out-
of-sample testing, therefore, the original dataset was split by rule of thumb – 80% of
observations was used for model development (training set), while the remaining 20%
served as a testing set:

Table 3: Number of observations in training and testing set

Training set Testing set

Corn 3144 787

Gold 3162 791

WTI 3161 791

Source: Own calculations

We follow by providing summary descriptives of log returns of all inspected commodities
in Table 4. The means of all time series are positive, but close to zero, which is as
expected. The highest mean was observed in case of gold and the smallest, on the contrary,
in case of oil and corn. Standard deviations indicate that the most dispersed returns around
the mean are those of WTI spot, where the standard deviation reached 0.025, which is
roughly double the standard deviation of gold (0.012). Higher moments indicate that
none of these series is normal, for instance, all of the series have negative skew except
for corn futures, where it is slightly positive. The highest kurtosis has been identified in
case of gold spot time series with value around 8 suggesting fat tails of the distribution.
Corn spot and futures time series on the contrary have the smallest kurtosis, with values
around 5.37 and 5.06, respectively. Histogram of each distribution and its comparison
with Gaussian distribution can be found in appendix.
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Table 4: Description of returns

Obs Mean SD Min Max Skewness Kurtosis

Corn Futures 3, 931 0.000 0.018 -0.079 0.090 0.001 5.008

Corn Spot 3, 931 0.000 0.019 -0.124 0.093 -0.134 5.376

Gold Futures 3, 953 0.000 0.012 -0.098 0.086 -0.328 7.988

Gold Spot 3, 953 0.000 0.012 -0.096 0.068 -0.282 8.100

WTI Futures 3, 952 0.000 0.023 -0.165 0.148 -0.156 6.222

WTI Spot 3, 952 0.000 0.025 -0.171 0.164 -0.109 7.483

Source: Own calculations

In Table 5 we provide the unconditional correlation between spot and futures log returns
of each of the inspected time series. We clearly see that the relationship between spot and
futures returns of gold is weaker than in case of other commodities.

Table 5: Correlations between spot and futures

Corn Gold WTI

Log differences 0.9487 0.6966 0.9159

Source: Own calculations
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4 Empirical results

Within this section, we present the results of asymmetry and hedging performance of
above specified models on corn, gold and oil (WTI) in the same order.

As described in methodology section, we start the time series analysis with formally test-
ing the stationarity using the augmented Dickey-Fuller (ADF) test with lag equal to 15.
Based on the ADF test we conclude that all of the inspected commodity prices are integ-
rated of order one. We provide the ADF test statistics in following table:

Table 6: Augmented Dickey-Fuller test statistics results

Corn Spot Corn Futures Gold Spot

Levels -1.792 -1.902 -1.300

Log returns -14.711* -14.782* -15.982*

Gold Futures WTI Spot WTI Futures

Levels -1.355 -1.547 -1.487

Log returns -16.003* -14.727* -14.390*
Source: Own calculations; *The p-value is less than 1%

We follow by looking at mean processes of the time series, where we conclude that of
all the investigated time series are found to be noise and thus the specification in Equa-
tion (32c) remains valid.

4.1 Corn

4.1.1 Corn volatility process

The first commodity we take a look at is corn, where we start by describing the volatility
process of futures and spot returns. The Ljung-Box test unveils significant linear depend-
ence in squared log returns and thus suggests that the GARCH family models may be
suitable for volatility modeling.

Although selection of the model based on BIC leads to GARCH(5,5) for both spot and fu-
tures, we rather employ GARCH(1,1), which sufficiently describes the volatility process
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while remaining parsimonious (Brooks 2008).The processes are mainly driven by lagged
volatility estimates as βF1 and βS1 reach values 0.931 and 0.936, respectively. All the para-
meters, except for intercepts, are significant. The parameter estimates are compliant with
stationarity condition as well as non-negativity constraint. Precise parameter estimates
and standard errors can be found in Table 7.

In the next step we estimate the parameters of the GJR GARCH(1,1,1), which is sub-
sequently used as an input to the DCCA and ADCC models. The asymmetric terms of
GJR GARCH models (γF1 and γS1 ) have not been found to be significant and hence we
conclude that there is no asymmetric response to negative errors in volatility, which holds
for futures and for spot as well. Again the volatility processes are mainly driven by auto-
regressive effect as βF1 and βS1 are 0.930 and 0.934, respectively. The impact of lagged
squared residuals is, on the contrary, minor when parameters αF1 and αS1 are only slightly
above zero. Both of the volatility models satisfy the stationarity and non-negativity con-
straint. The sum of the parameter estimates αF1 , βF1 and 1

2
γF1 is below unity, which holds

for parameters corresponding to spot as well. Constraints described in Section (2.5.2) are
satisfied as well. All the parameter estimates and corresponding standard errors can be
found in Table 8. The comparison of estimated volatility and observed volatility (condi-
tional standard deviations vs absolute returns) can be found in plots in appendix.

4.1.2 Dynamic conditional correlation models

In order to obtain the hedge ratio (see Equation (8)), the DCC models are estimated. For
all of the DCC based models we employ multivariate GARCH(1,1).

The first estimated model is the DCC model of Engle (2002), where we find the parameter
driving impact of lagged residuals (αF,S1 ) to be significant with value 0.064. The parameter
βF,S1 suggests that the process of correlation is mainly driven by past values of quasi-
correlation as the βF,S1 is 0.917 and significant. Note that the stationarity condition is
satisfied. Precise values of the model parameters and corresponding standard errors can
be found in the following table:
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Table 7: DCC parameters - Corn

Estimate Std. Error t value Pr(>|t|)

αF0 0.000 0.000 1.002 0.317

αF1 0.058 0.015 4.016 0.000

βF1 0.931 0.020 45.586 0.000

αS0 0.000 0.000 0.880 0.379

αS1 0.053 0.012 4.608 0.000

βS1 0.936 0.019 50.210 0.000

αF,S1 0.064 0.012 5.561 0.000

βF,S1 0.917 0.016 55.809 0.000

Source: Own calculations

As the next model we present the results of DCCA in Table 8, where as already noted in
section 4.1.1 there is no asymmetry in the second moment. The parameters αF,S1 and βF,S1

remain similar as in case of DCC model.

Table 8: DCCA parameters - Corn

Estimate Std. Error t value Pr(>|t|)

αF0 0.000 0.000 0.924 0.356

αF1 0.051 0.012 4.224 0.000

βF1 0.930 0.020 47.617 0.000

γF1 0.016 0.016 1.000 0.317

αS0 0.000 0.000 0.507 0.612

αS1 0.044 0.011 3.974 0.000

βS1 0.934 0.025 36.852 0.000

γS1 0.022 0.022 1.020 0.308

αF,S0 0.064 0.011 5.664 0.000

βF,S1 0.917 0.016 56.278 0.000

Source: Own calculations

As the last of the models applied to estimating covariance of corn spot and futures, we
provide the results of asymmetric dynamic conditional correlation model in Table 9. The
p-values (Pr) of γF1 , γS1 and γF,S1 suggest that there are no significant asymmetries in
conditional variances nor in conditional correlation.
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Table 9: ADCC parameters - Corn

Estimate Std. Error t value Pr(>|t|)

αF0 0.000 0.000 0.908 0.364

αF1 0.051 0.012 4.195 0.000

βF1 0.930 0.020 47.407 0.000

γF1 0.016 0.017 0.968 0.333

αS0 0.000 0.000 0.508 0.612

αS1 0.044 0.011 3.939 0.000

βS1 0.934 0.026 36.524 0.000

γS1 0.022 0.021 1.035 0.301

αF,S1 0.064 0.016 4.048 0.000

βF,S1 0.917 0.017 53.054 0.000

γF,S1 0.000 0.036 0.000 1.000

Source: Own calculations

Although the best model could be selected using information criterion, we rather compare
the models by its hedging performance both in-sample and out-of-sample as it is our
main goal to compare models in terms of their hedging potential (Chang, McAleer and
Tansuchat 2011).

4.1.3 In-sample hedging performance

As a benchmark for in-sample hedging performance we have decided to use unconditional
hedge ratio (denoted as OLS) (see Equation (7) for details). For model comparison we
employ the Hedging effectiveness index (HE index) and daily Value at Risk (VaR) with
underlying assumption of initial capital equal to 1000, 000 USD, which is an arbitrarily
chosen value. The results of hedging performance are presented in the following table:

Table 10: In-sample hedging performance - Corn

OLS DCC ADCC DCCA

HE index 91.917% 92.015% 92.013% 92.013%

VaR 8, 233.789 8, 045.546 8, 085.119 8, 085.119

Source: Own calculations

Based on the HE index we conclude that the hedge ratio based on the DCC model leads
to the highest variance reduction as more than 92% of the spot variance is reduced. The
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differences among HE indexes of all the models are however tiny. In terms of Value at
Risk, the DDC based hedge ratio outperforms the rest of the models with value around
2.5% less than the OLS benchmark.

Figure 1 describes the in-sample development of hedge ratio, where H DCC, H DCCA, H
ADCC, H OLS denote hedge ratio based on the DCC model, on the DCCA model, on the
ADCC model and the unconditional hedge ratio, respectively. It can be observed how the
conditional hedge ratio changes in time from values below 1 to values above 1 and returns
to its unconditional value. It is also worth to note that there are only minor differences
between each of the DCC based models.

Figure 1: Corn in-sample hedge ratio estimates
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Source: Own calculations

4.1.4 Out-of-sample hedging performance

For out-of-sample testing we employ the rolling estimation of parameters with moving
window of 5 days. We have selected 5 days as it corresponds to a business week and
the estimation still remains feasible in terms of computing capacity. The assumptions
of VaR presented in previous section are valid for out-of-sample testing as well. The
models, where rolling was applied are denoted as ‘model roll’ (for instance, OLS roll is
the unconditional hedge ratio estimate re-estimated every fifth day). The out-of-sample
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results are presented in the following table:

Table 11: Out-of-sample hedging performance - Corn

OLS DCC ADCC DCCA

HE index 81.375% 80.870% 80.858% 80.858%

VaR 6, 662.091 6, 555.777 6, 208.403 6, 208.403

OLS roll DCC roll ADCC roll DCCA roll

HE index 81.370% 80.839% 80.779% 80.779%

VaR 6, 640.860 6, 577.727 6, 198.549 6, 198.549

Source: Own calculations

The results suggest that DCC family models are not able to provide higher variance re-
duction than simple OLS models as the highest variance reduction is obtained with OLS
roll model (81.370%). Note that the differences in the HE indices are again only mar-
ginal. The highest reduction within out-of-sample testing is around 10% less than during
the in-sample testing, but this is as expected since models usually perform worse on test-
ing sets than on development sets. In terms of VaR the DCCA (also ADCC) roll model
outperforms other models as it leads to value which is around 6.5% less than in case of
OLS rolling benchmark. The out-of-sample VaR is smaller than in-sample VaR for all
the models, which may possibly be result of less extreme events within the testing sample
and shorter period.

In Figure 2 the development of hedge ratios based on rolling models is shown (Plot of
hedge ratios based on unrolled models can be found in appendix). H DCC roll, H DCCA
roll, H ADCC roll and H OLS roll represent rolling estimation of the hedge ratio based on
the DCC model, on the DCCA model, on the ADCC model and the unconditional hedge
ratio, respectively. All of the hedge ratios estimated by the DCC based models sort of
co-move with only minor differences within a range from 0.5 to 1.4. Rolling OLS hedge
ratio, on the contrary, enjoys only small changes compared to the DCC based models.
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Figure 2: Corn out-of-sample hedge ratio estimates of rolling models
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4.2 Gold

4.2.1 Volatility

We follow by analyzing the gold, where we again start by describing its volatility process.
Both of the time series exhibit significant autocorrelation in squared residuals and hence
the volatility modeling is feasible. For the same reasons as in case of corn we employ
GARCH(1,1). We have found the αF1 parameter to be insignificant, which is mainly
result of a large standard error. The rest of the parameters remains significant (except
for intercepts), while all corresponding conditions are satisfied for both futures and spot
models. Results can be found in Table 12.

The similar properties as described above also hold for the asymmetric model, where GJR
GARCH(1,1,1) is chosen for both of the time series. The parameters driving the asym-
metry (γF1 and γS1 ) in conditional volatility are not found to be statistically significant.
The condition imposed on γF1 is satisfied as the sum of αF1 and γF1 is less than 1. The
same also holds for γS1 . Results of GJR GARCH models for futures and spot time series
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are presented in Table 13.

4.2.2 Dynamic Conditional Correlation models

In next step we estimate the unconditional hedge ratio and subsequently the DCC model,
where we find parameter βF,S1 not to be significant, which suggests that the DCC model
may not be able to capture the time-varying correlation. The parameter αF,S1 , on the
contrary, remains significant. The DCC parameter estimates and corresponding standard
errors can be seen in the following table:

Table 12: DCC parameters - Gold

Estimate Std. Error t value Pr(>|t|)

αF0 0.000 0.000 0.446 0.656

αF1 0.047 0.040 1.181 0.238

βF1 0.940 0.047 20.191 0.000

αS0 0.000 0.000 1.213 0.225

αS1 0.057 0.017 3.283 0.001

βS1 0.926 0.019 48.178 0.000

αF,S1 0.075 0.018 4.157 0.000

βF,S1 0.275 0.226 1.215 0.224
Source: Own calculations

In next step we estimate the DCCA model, where similar properties as above were invest-
igated. The parameter βF,S1 still remains insignificant.
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Table 13: DCCA parameters - Gold

Estimate Std. Error t value Pr(>|t|)

αF0 0.000 0.000 0.134 0.894

αF1 0.054 0.131 0.413 0.680

βF1 0.941 0.137 6.875 0.000

γF1 -0.012 0.028 -0.437 0.662

αS0 0.000 0.000 0.961 0.337

αS1 0.062 0.017 3.561 0.000

βS1 0.927 0.024 39.284 0.000

γS1 -0.010 0.024 -0.423 0.672

αF,S1 0.074 0.018 4.027 0.000

βF,S1 0.276 0.229 1.202 0.229

Source: Own calculations

As the last model employed for spot and futures correlation of gold, we present the results
of the asymmetric dynamic conditional correlation model, where we conclude, that there
is no asymmetry in correlation (γF,S1 ).

Table 14: ADCC parameters - Gold

Estimate Std. Error t value Pr(>|t|)

αF0 0.000 0.000 0.134 0.894

αF1 0.054 0.131 0.412 0.680

βF1 0.941 0.137 6.873 0.000

γF1 -0.012 0.028 -0.437 0.662

αS0 0.000 0.000 0.951 0.342

αS1 0.062 0.017 3.553 0.000

βS1 0.927 0.024 39.362 0.000

γS1 -0.010 0.024 -0.430 0.668

αF,S1 0.074 0.034 2.209 0.027

βF,S1 0.276 0.435 0.634 0.526

γF,S1 0.000 0.086 0.000 1.000

Source: Own calculations

4.2.3 In-sample hedging performance

Hedging performance results on the development sample indicate that the DCC family
models are outperformed by the unconditional hedge ratio in terms of both the HE index
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and the VaR. The unconditional OLS model leads to highest risk reduction (around 45%
of unhedged position) and also contributes to lower VaR by around 0.5% compared to
the ADCC and DCCA models. The poor performance of dynamic conditional correlation
based models may be caused by comparatively smaller correlation, which is in case of
gold only around 70%, while both corn and WTI have correlation between spot and futures
above 90%.

Table 15: In-sample hedging performance - Gold

OLS DCC ADCC DCCA

HE index 45.801% 44.624 44.602% 44.602%

VaR 13, 512.990 13, 647.480 13, 596.340 13, 596.340

Source: Own calculations

As the model parameters suggest, there are only minor differences among the DCC family
models, which is clearly seen in Figure 3. The hedge ratio is on average slightly smal-
ler compared to corn as the values range between 0.1 and 1. Note that the hedge ratio
development appears to be quite noisy compared to the one obtained in case of corn.

Figure 3: Gold in-sample hedge ratio estimates
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4.2.4 Out-of-sample hedging performance

The highest risk reduction is obtained with the ADCC model, which performs a bit better
than the rolling OLS. In terms of VaR, the smallest value is obtained when employing
the unconditional hedge ratio estimated on development sample, but the difference is less
than 1% compared to the DCC model (the best out of the DCC based models). One can
notice higher values of the HE index, which are around one half larger than within the
sample.

Table 16: Out-of-sample hedging performance - Gold

OLS DCC ADCC DCCA

HE index 64.110% 63.534% 63.525% 63.525%
VaR 9, 151.221 9, 223.591 9, 311.795 9, 311.742

OLS roll DCC roll ADCC roll DCCA roll

HE index 64.636% 64.437% 64.657% 64.284%
VaR 9, 311.692 9, 562.350 9, 397.357 9, 549.050

Source: Own calculations

In Figure 4 we provide the development of rolling hedge ratio estimates, where it can be
seen how the ratio changes from approximately 0.4 to 1. There are only minor differ-
ences among the DCC family models and the series seems to be quite similar (in terms
of noisiness) to the one obtained in case of corn. Note how the unconditional rolled cor-
relation estimate is growing through time, which was not observed in case of corn. The
development of rolling hedge ratios can be found in the following figure:
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Figure 4: Gold out-of-sample hedge ratio rolling estimates
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4.3 Western Texas Intermediate

4.3.1 Volatility process

The analysis of WTI is started by looking at squared returns, which indicate a strong evid-
ence of volatility clustering and therefore we again employ the GARCH family models in
order to describe the volatility process. Namely, we use the univariate GARCH(1,1) and
GJR GARCH(1,1,1), which both sufficiently describe the second moment of the series.
All the parameters in both of the model types are significant except for αF0 and αS0 in
the GARCH model. The significance of γF1 and γS1 confirms the asymmetric response
of volatility to negative past errors. For all the parameter estimates and corresponding
standard errors, see Table 17 and Table 18 for GARCH and GJR GARCH, respectively.

4.3.2 Dynamic conditional correlation models

In the next step we estimate the DCC model, where we find the parameter driving impact
of lagged standardized residuals (αF,S1 ) to be insignificant. Exact values of the model
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parameters can be found in the following table:

Table 17: DCC parameters - WTI

Estimate Std. Error t value Pr(>|t|)

αF0 0.000 0.000 0.631 0.528

αF1 0.058 0.005 12.572 0.000

βF1 0.928 0.018 50.990 0.000

αS0 0.000 0.000 1.301 0.193

αS1 0.067 0.013 4.993 0.000

βS1 0.916 0.007 126.079 0.000

αF,S1 0.099 0.061 1.615 0.106

βF,S1 0.892 0.077 11.557 0.000

Source: Own calculations

We follow by estimating the DCCA model, where asymmetric parameters of volatility are
found to be significant as noted in section 4.3.1. Again the parameter αF,S1 is found to be
insignificant.

Table 18: DCCA parameters - WTI

Estimate Std. Error t value Pr(>|t|)

αF0 0.000 0.000 4.701 0.000

αF1 0.025 0.008 3.214 0.001

βF1 0.924 0.007 142.090 0.000

γF1 0.065 0.019 3.476 0.001

αS0 0.000 0.000 6.270 0.000

αS1 0.035 0.009 3.791 0.000

βS1 0.909 0.002 442.699 0.000

γS1 0.067 0.026 2.547 0.011

αF,S1 0.103 0.056 1.857 0.063

βF,S1 0.888 0.071 12.529 0.000

Source: Own calculations

As the last model we estimate the ADCC model, where significant asymmetry in correla-
tion is not found (γF,S1 ). The parameter estimates can be found in the following table:
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Table 19: ADCC parameters - WTI

Estimate Std. Error t value Pr(>|t|)

αF0 0.000 0.000 4.699 0.000

αF1 0.025 0.008 3.258 0.001

βF1 0.924 0.007 138.430 0.000

γF1 0.065 0.018 3.526 0.000

αS0 0.000 0.000 6.065 0.000

αS1 0.035 0.009 4.111 0.000

βS1 0.909 0.003 353.872 0.000

γS1 0.067 0.024 2.788 0.005

αF,S1 0.092 0.040 2.279 0.023

βF,S1 0.876 0.081 10.796 0.000

γF,S1 0.041 0.053 0.769 0.442

Source: Own calculations

4.3.3 In-sample hedging performance

The OLS model outperforms the DCC family models in terms of both HE index and VaR,
where reaches values 82.234% and 9800.760, respectively. The unconditional hedge ratio
is able to reduce the VaR by approximately 4% more than hedge ratio estimated by the
ADCC model.

Table 20: In-sample hedging performance - WTI

OLS DCC ADCC DCCA

HE index 82.234% 81.111% 81.119% 81.047%
VaR 9, 800.760 10, 249.160 10, 097.720 10, 235.500

Source: Own calculations

The hedge ratio estimates range from 0.5 to 1.8, which can be seen in Figure 5.
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Figure 5: WTI in-sample hedge ratio estimates
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4.3.4 Out-of-sample hedging performance

In terms of out-of-sample performance the unconditional OLS delivers the largest risk
reduction and also leads to the smallest VaR, which is around 7% less than the VaR of the
hedge ratio based on the DCC model.

Table 21: Out-of-sample hedging performance - WTI

OLS DCC ADCC DCCA

HE index 90.213% 89.602% 89.761% 89.735%
VaR 7, 777.112 8, 382.802 8, 498.027 8, 566.046

OLS roll DCC roll ADCC roll DCCA roll

HE index 90.207% 89.708% 89.790% 89.768%
VaR 7, 782.419 8, 557.701 8, 494.863 8, 466.193

Source: Own calculations

The development of out-of-sample hedge ratios can be found in the following figure:
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Figure 6: WTI Out-of-sample hedge ratio rolling estimates
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Conclusion

This thesis has investigated existence of asymmetries in volatility and correlation and their
impact on hedge ratio estimation and hedging effectiveness of corn, gold and crude oil.

Regarding the results of asymmetry, we have investigated that there is no asymmetric
response to volatility in case of corn and gold. The same does not hold for crude oil,
where significant asymmetry in the variances of both spot and futures returns exists. The
asymmetry in correlation has not been found to be significant in neither of the time series.

With respect to the hedging performance, we conclude that the variance reduction does
not greatly differ among employed models and thus the DCC family models may not ne-
cessarily be superior to OLS, which is consistent with Moosa (2003), Myers (1991) or
Chang, McAleer and Tansuchat (2011), who came to similar results. The Value at Risk
results, on the contrary, suggest that DCC based models, which account for asymmetry,
may notably reduce the Value at Risk as has been observed in case of corn. The same how-
ever has been rejected for gold and crude oil, where the OLS hedge ratio outperformed
the more complicated DCC family models.

Within this thesis the obtained distributions of portfolios have been studied by HE index
and VaR, thus a potential further research could focus on studying these distributions
more profoundly and possibly provide explanation why the DCC models did not lead to
higher risk reduction than the OLS based hedge ratios in general. Research could also be
extended by taking into account transaction costs.
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Appendix A

Figure A.1: Corn histogram of returns vs normal distribution
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Figure A.2: Gold histogram of returns vs normal distribution
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Figure A.3: WTI histogram of returns vs normal distribution
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Figure A.4: Corn in-sample observed vs estimated volatility GARCH
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Figure A.5: Corn in-sample observed vs estimated volatility GJR GARCH
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Figure A.6: Gold in-sample observed vs estimated volatility GARCH
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Figure A.7: Gold in-sample observed vs estimated volatility GJR GARCH
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Figure A.8: WTI in-sample observed vs estimated volatility GARCH
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Figure A.9: WTI in-sample observed vs estimated volatility GJR GARCH
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Figure A.10: Corn out-of-sample unrolled hedge ratio estimates
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Figure A.11: Gold out-of-sample unrolled hedge ratio estimates
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Figure A.12: WTI out-of-sample unrolled hedge ratio estimates
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