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Acknowledgment

I would like to thank to my supervisor prof. Ing. Josef Arlt, CSc. for his support
during my doctoral studies. My thanks belong also to prof. RNDr. Jǐŕı Witzany,
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Abstract

This thesis contributes to the field of applied statistics and financial modeling by
analyzing mathematical models used in retail credit underwriting processes. Specif-
ically, it has three goals. First, the thesis aims to challenge the performance criteria
used by established statistical approaches and propose focusing on predictive power
instead. Secondly, it compares the analytical leverage of the established and other
suggested methods according to the newly proposed criteria. Third, the thesis seeks
to develop and specify a new comprehensive profitability-based underwriting model
and critically reflect on its strengths and weaknesses.

In the first chapter I look into the area of probability of default modeling and
argue for comparing the predictive power of the models in time rather than focusing
on the random testing sample only, as typically suggested in the scholarly literature.
For this purpose I use the concept of survival analysis and the Cox model in par-
ticular, and apply it to a real Czech banking data sample alongside the commonly
used logistic regression model to compare the results using the Gini coefficient and
lift characteristics. The Cox model performs comparably on the randomly chosen
validation sample and clearly outperforms the logistic regression approach in the
predictive power.

In the second chapter, in the area of loss given default modeling I introduce two
Cox-based models, and compare their predictive power with the standard approaches
using the linear and logistic regression on a real data sample. Based on the modified
coefficient of determination, the Cox model shows better predictions.

Third chapter focuses on estimating the expected profit as an alternative to the
risk estimation itself and building on the probability of default and loss given default
models, I construct a comprehensive profitability model for fix-term retail loans un-
derwriting. The model also incorporates various related risk-adjusted revenues and
costs, allowing more precise results. Moreover, I propose four measures of profitabil-
ity, including the risk-adjusted expected internal rate of return and return on equity
and simulate the impact of the model on each of the measures.

Finally, I discuss some weaknesses of these approaches and solve the problem of
finding default or fraud concentrations in the portfolio. For this purpose, I introduce
a new statistical measure based on a pre-defined expert critical default rate and
compare the GUHA method with the classification tree method on a real data
sample.

While drawing on the comparison of different methods, this work contributes to
the debates about survival analysis models used in financial modeling and profitabil-
ity models used in credit underwriting.

Keywords: Probability of default, loss given default, profitability model, sur-
vival analysis, Cox model



Abstrakt

Tato práce přisṕıvá do oblasti aplikované statistiky a finančńıho modelováńı
analýzou matematických model̊u použ́ıvaných v procesech schvalováńı retailových
úvěr̊u. Konkrétně má tři ćıle. Za prvé, diskutuje vhodnost výkonostńıch kritéríı
už́ıvaných zavedenými statistickými postupy a navrhuje zaměřit se mı́sto toho na
śılu predikce. Za druhé, porovnává analytickou přidanou hodnotu stávaj́ıćıch a nově
navrhovaných metod podle navržených kritéríı. A třet́ım ćılem práce je potom
výstavba a detailńı specifikace rozsáhlého modelu pro odhad profitability včetně
kritické reflexe jeho silných a slabých stránek.

V prvńı kapitole pracuji v oblasti modelováńı pravděpodobnosti defaultu (selháńı
dlužńıka) a navrhuji srovnáńı predikčńı śıly model̊u v čase, mı́sto v akademické
literatuře běžně použ́ıvaného srovnáńı na náhodném testovaćım vzorku. K tomuto
účelu použ́ıvám koncept analýzy přežit́ı a Cox̊uv model, který společně s běžně
použ́ıvanou logistickou regreśı aplikuji na vzorek reálných českých bankovńıch dat a
porovnávám výsledky pomoćı Giniho koeficientu a charakteristiky lift. Na náhodném
validačńım vzorku vykazuje Cox̊uv model podobnou přesnost jako logistická regrese,
zat́ımco při porovnáńı predikčńıch schopnost́ı v čase vycháźı Cox̊uv model znatelně
lépe.

Ve druhé kapitole, zaměřené na modelováńı ztráty při defaultu (LGD), předsta-
vuji dva modely založené na Coxově regresi a na reálných datech srovnávám jejich
predikčńı śılu se standardńımi př́ıstupy lineárńı a logistické regrese. Ve srovnáńı po-
moćı modifikovaného koeficientu determinace vykazuje Cox̊uv model lepš́ı predikce.

Třet́ı kapitola se zaměřuje na odhad očekávané profitability jako alternativy
k odhad̊um rizika jako takového a stav́ı na modelech pravděpodobnosti defaultu
a ztráty při dafaultu. Zde konstruuji rozsáhlý a detailńı model profitability pro
schvalováńı retailových úvěr̊u s fixńı dobou spláceni. Do modelu vstupuj́ı také daľśı
souvisej́ıćı výnosy a náklady očǐstěné o riziko plynoućı z defaultu dlužńıka, což vede
k přesněǰśım výsledk̊um. Dále navrhuji čtyři charakteristiky profitability, včetně
rizikově očǐstěného očekávaného vnitřńıho výnosového procenta a rentability vlast-
ńıho kapitálu, a simuluji vliv tohoto modelu na každou z těchto měr.

Nakonec poukazuji na některé slabiny těchto př́ıstup̊u a řeš́ım problém nalezeńı
koncentraćı default̊u či podvod̊u v portfoliu. Proto také představuji novou stati-
stickou mı́ru založenou na předem stanované expertńı hodnotě kritické mı́ry defaultu
a srovnávám GUHA metodu s použit́ım klasifikačńıch stromů na reálném datovém
vzorku.

Pomoćı srovnáńı r̊uzných metod tato práce přisṕıvá k debatám ohledně použit́ı
model̊u analýzy přežit́ı ve finančńım modelováńı a model̊u profitability použ́ıvaných
pro schvalováńı úvěr̊u.

Kĺıčová slova: Pravděpodobnost defaultu, ztráta při defaultu, model profitabi-
lity, analýza přežit́ı, Cox̊uv model
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Introduction

In this thesis I deal with the field of consumer credit underwriting and I aim to
propose new mathematical and statistical methods to enhance the standard credit
underwriting automated scoring. Particularly, I aim to challenge the performance cri-
teria based on ex-post random testing samples,1 which is often suggested by various
researches in the literature when comparing the credit risk related models. Instead
I propose comparing the predictive power of the models on an ex-ante sample of
the most recent data. Then I seek to use this new criteria and a real Czech bank-
ing data sample to compare the standard models performance with some suggested
alternatives. Finally, I aim to construct a new comprehensive underwriting model
that would be based on an estimation of loan profitability instead of the standard
evaluation of the riskiness of the client. Such model should be described in detail,
the results simulated and compared with the standard approach and its weaknesses
treated by proposed alternative methods.

Theoretically, the thesis contributes to the scholarly literature on mathematical
modeling in finance by showing how different performance criteria can change the
outcomes of the credit risk models comparison. This opens up prospects for the so
far overlooked models to be further studied and considered as relevant alternatives
in financial modeling.

At the empirical level, the thesis explores ways how to improve the precision
of credit underwriting models in consumer finance. Moreover, it promotes and ex-
plores the concept of profitability models used in a loan approval process that can
potentially increase the companies’ profit. Finally, it solves the fraud concentrations
discovery problem, and thus helps to secure the underwriting models against fraud
attacks and other risky segments.

Before going into details about the mathematical models analyzed in this the-
sis I briefly outline the main principles and terms of the credit underwriting. In
reality the loan approval process is usually very complicated and contains a great
amount of specific conditions, calculations and sub-processes. However, with major
simplification, I could say that the main parts of the process could be the evaluation

1The testing samples are also called validation or comparison samples. In this thesis I will treat
these expressions as synonymous.
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of client’s ability to repay the loan and verification of income and other provided
information. The repayment ability is then studied from the perspective of checking
stability and sufficiency of income to cover all the expenses, and from the perspec-
tive of evaluation of the riskiness of the client – and it is the riskiness of the client
that is the key topic for this thesis.

The riskiness of the client is usually based on estimation of the probability of
default (PD) based on the client’s characteristics. Default is usually defined as a
violation of debt contract conditions, such as a lack of will or a disability to pay a loan
back. In the case of default, the creditor (e.g. a bank or other financial institution)
suffers a loss. The probability of default is then usually estimated using the logistic
regression models. The regression model, also called scoring model, assigns a score
to each client, which is then used as a key factor for automated approval or rejection
of the loan application in the process, or as one of the main inputs for the following
manual underwriting.

Even though the probability of default estimation is a simple and widely used
concept for credit underwriting, recently the more attention is paid to the models,
where not only risk, but also the whole expected loan profitability is considered for
the loan approval. I take inspiration from these concepts and aim to propose a com-
prehensive scheme consisting of several models to calculate the expected profitability
of each specific loan application in the consumer loan business.

In the modeling I often experiment with the survival analysis models. Survival
analysis is a common approach to model the time to death of biological organisms
or failure in mechanical systems – generally a time to some defined event for some
subjects. However, the time-to-event variables can be easily applied to the credit risk
modeling as well. Using these models one can estimate the time to default or the
time to recovery based on the client’s characteristics. Also using the resent censored
observations can bring some additional value in the model performance.

Throughout all the thesis and in particular for the proposition of the new meth-
ods, I build on my master theses (Rychnovský, 2009) and (Rychnovský, 2011) and
combine the research findings and theory from the cited sources with the practical
experience I gained from my professional career working in the consumer finance
business. The thesis is structured in four chapters covering four topics – the prob-
ability of default modeling, the loss given default modeling, the profitability model
concept and the fraud detection problem. Generally, in this thesis I focus on the
comparison of methods.

The first topic is the area of the probability of default modeling. In this area I
build upon our past project (Pazdera et al., 2009) that deals with the application of
the survival analysis theory to the probability of default estimation,2 and my master
thesis (Rychnovský, 2011) that describes the development process of a standard

2The project (Pazdera et al., 2009) was made on request of one of the biggest Czech banks, and
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logistic regression based scoring model. The idea of using the survival analysis models
for the probability of default estimation is not new and has been published before
by several researchers, including (Banasik et al., 1999), (Glennon and Nigro, 2005)
or already (Narain, 1992), however it is still very popular among researchers and
professionals. When comparing the performance of the survival analysis models with
the logistic regression, it is usually concluded, see e.g. (Stepanova and Thomas,
2002), (Cao et al., 2009) or (Bellotti and Crook, 2009), that the survival analysis
models perform similarly to the logistic regression on a random testing sample.

However, it is rather the predictive power of the models in time that could be
more relevant for the modelers in the financial practice. Therefore, in this thesis
I introduce an alternative performance indicator based on the predictive power of
the models and compare two methods on the real financial set of data. I aim to
compare not only the precision but also the predictive power of the standard logistic
regression model with the Cox model alternative. It is the Cox model’s ability to
work with the recent time-censored observations that gives us the motivation that
such a model could bring potential added value for prediction. Empirically, I build
both the logistic regression scoring model and the Cox regression survival model
on a set of real Czech banking data, taken from the past project (Pazdera et al.,
2009) and further adjusted by omitting the data vintages containing small number of
observations and selecting the fix-term loans only, and compare their performance on
the standard random validating sample as well as its prediction power on a specially
constructed ex-ante data sample.

The second topic deals with the loss given default modeling, where I apply sim-
ilar logic and aims as in the first topic. The loss given default (LGD) is the part
of the credit exposure that has not been recovered after the client defaulted. This
characteristic has been studied as one of the expected loss components even ear-
lier, e.g. (Asarnow and Edwards, 1995) or (Gupton et al., 2000), but it gained its
importance mainly after the new Basel II Capital Accord, see (Basel II, 2001), was
signed. After that a new wave of explanatory notes such as (Schuermann, 2004) and
models proposals like (Gupton, 2005), (Huang and Oosterlee, 2011) or (Loterman
et al., 2012) arrived.

In my master thesis (Rychnovský, 2009) I first combined the survival analysis
methodology with the LGD and introduced some new survival analysis models for
its estimation. I compared those models with other approaches using the linear
regression, logistic regression, two-step beta regression and regression trees. In that
thesis I introduced a modified weighed coefficient of determination and compared the
models on their development sample. There the survival analysis models performed
worse.

Having worked with the models further, I realized that the added value of the

even though the original seminar paper was never published, it was mentioned in several theses
and papers including (Nehrebecka et al., 2016) from the National Bank of Poland.
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proposed survival-based Cox regression models should be in the predictive power
– again due to the fact that it uses the time censored recent data. Therefore, I
continued working on this topic and introduced a way to compare the predictive
power of the models by developing it on a censored data sample and comparing
it on the ex-ante sample that was not used for development. In this case I figured
that the survival analysis models outperform the standard models in the predictive
power, which has been published as (Witzany et al., 2010) and later as (Witzany
et al., 2012). Following our publications, this idea has been further dealt with by
(Bonini and Caivano, 2013) in the Journal of Credit Risk, (Louzada et al., 2014) in
the Journal of Statistics Applications & Probability, (Belyaev et al., 2012) in the
Working Paper Series of the Czech National Bank, or (Thomas et al., 2016) in the
European Journal of Operational Research. This topic became further studied also
by (Bonini and Caivano, 2012), (Zhang and Thomas, 2012) or (Pŕıvara et al., 2014),
who come with new methods for LGD modeling.

Drawing on my previous research of (Witzany et al., 2012) and the recent aca-
demic discussions of (Thomas et al., 2016) and (Zhang and Thomas, 2012), I in-
corporated one new survival analysis model, based on the event of a full or partial
recovery, and applied it on the data set from (Witzany et al., 2012) to compare the
predictive power of the adjusted set of models. These results have been presented
as (Rychnovský, 2015).

The second chapter of this thesis therefore presents two contributions made dur-
ing my doctoral studies, which are the change of the performance criteria focusing
on the predictive power of the models rather then their comparison on the develop-
ment sample and the development of a new survival-based model to be compared
with the previous models.

The third topic promotes the importance of the profitability modeling in the
underwriting process and combines the probability of default modeling with the loss
given default modeling and various risk-adjusted revenues and costs into the above
mentioned comprehensive profitability model specifically designed for fix-term retail
loans. Here I get the theoretical inspiration from (Allen et al., 2004) and (Stein,
2005) combined with my professional experience with consumer finance products,
to build the profitability model concept. This concept uses the outcomes of the
survival analysis models and incorporates various sources of revenues and costs to
offer four profitability measures that can be used in financial practice.

The idea of a probability model is a reaction to my professional experience from
the consumer credit business, where I realized that not only the risk management,
but mainly the profit management are the key factors for a credit company. There-
fore, I take the inspiration from a simple profitability model used in practice and
various literature to create a comprehensive profitability model fitting the retail
credit management needs. This model combines the estimation of the probability of
default with several techniques to extrapolate it to all the instalments of the whole

12



loan existence, and with the estimation of the loss given default to get the expected
loss of the loan.

I enrich this concept with a variety of potential cost and revenue streams coming
from this loan leading to the risk-adjusted expected profit from providing this loan.
Moreover, I calculate four alternative profitability measures coming from this model,
that can each support the priorities of the company. Especially, the risk-adjusted
expected return on equity from a specific loan could be a really beneficial measure
on some markets – this I have not seen it implemented in practice nor suggested in
literature.

Furthermore, I run a data simulation where the profitability model with all
four suggested measures is implemented, to understand the correlation between the
measures and evaluate the impact of the whole profitability model under various
simulated data and market situations. This simulation aims to suggest that in prac-
tice such models not only expand the horizons of the loan providing companies, but
with a proper timing and good implementation they can significantly increase the
profitability of the business.

The last topic reacts on the underwriting model as such, points to some of their
weaknesses and provide a possible solution for searching for segments with high
concentration of default or fraud within the portfolio. In this task I aim to find a
proper method for identification of risky segments based on the default rate, sample
size and some expert evaluation of the default severity, as well as proposing some
methods for finding these segments within big data structures. Here I combine the
usual statistics and the GUHA method of (Hájek et al., 1966) with my experience
from the credit fraud detection. Up to my knowledge, the solution of such task has
not been published to this moment.

Further on, I run the GUHA method alongside the classification tree on a real
loan portfolio to compare the results and discus the advantages of both methods
for practical use. The chapter provides a statistical tool combined with data mining
techniques to solve a practical problem of banks and other companies from various
industries that need to identify and find some concentrations in their portfolios od
data. In my opinion and experience, for credit companies it is the timely identifi-
cation of fraud segments that enables to successfully deal with the fraud, together
with adjusting the underwriting system to prevent any further losses coming from
such pattern.
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Chapter 1

Probability of Default Modeling

In this chapter I deal with the most common task in the field of retail credit
risk – probability of default (PD) modeling – and aim to set the new performance
criteria focusing on the predictive power of the models and compare the standard
logistic regression model with the alternative of the survival-based Cox model on
the real sample of Czech banking data.

Probability of default modeling is a frequently discussed topic with various ap-
plications and comparisons of methods, including the comparison of the standard
logistic regression model with the survival analysis alternatives. It has been shown,
e.g. in (Stepanova and Thomas, 2002), that the survival analysis models have a
similar performance to the logistic regression model in the terms of its precision.

Since this topic is still up-to-date and relevant to banks and other financial
institutions managing credit risk, I decided to extend the research by comparing
the standard logistic regression model with its survival analysis alternative also on
a regionally specific Czech banking data sample. Moreover, I aim to focus on the
predictive power and compare the two models’ performance on an ex-ante validation
sample. The motivation for choosing the Cox model is mainly the fact that the
survival analysis method incorporates also the recent censored observations, and
thus can enhance the predictions.

For this chapter I use the logic of the logistic regression model and diversification
power measures described in my master thesis (Rychnovský, 2011), and the idea of
the survival analysis model together with the data for comparison from our previous
seminar project (Pazdera et al., 2009). Then I adjust the data sample by excluding
the vintages with few observations and select the fix-term loans only for the analysis.
Finally, I create two sets of development and validation samples (one for the random
testing and one for the prediction testing), implement both the models on these
adjusted samples and compare the results by the Gini and lift characteristics.
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As the research result for this thesis I present the new setup of data samples for
model predictive performance comparison, the practical application of these models
on the adjusted data and the comparison of the results in two qualitatively varying
angles – on both the standard random testing sample as well as on the ex-ante
validation sample.

1.1 Probability of Default Models

In banks and other financial companies providing retail loans, one of the basics
of the retail risk management is the risk assessment of applicants.1 This is usually
done by mathematical models developed on the company’s historical data.

The company can take a history of applicants that have an approved loan and
can observe their repayment history in time. Then they use some definition of default
– e.g. a client is called defaulted if he or she was more than 90 days past due (DPD)
on at least one of the first 12 monthly payments – to create a development sample
consisting of individual clients, their potential explanatory variables2 and a binary
target variable indicating observed defaults. Such sample is then used to develop a
precise and stable model to estimate the probability of default for new clients.

1.1.1 Standard Approaches

According to my professional experience the probability of default modeling is
most often done using the logistic regression models. In that case we need a historical
sample that is mature enough in order to observe a given repayment period after
the loan was issued. In the above mentioned example default definition of 90 DPD
on one of the first 12 payments, we are talking about loan vintages that are at least
15 months old.

Then we can take the development data sample consisting of vectors (xk, yk),
where xk is the vector of potential explanatory variables and yk, where yk = 1 in the
case of default and yk = 0 otherwise, is the target variable. Then using the logistic
regression model we can estimate the probability of default π(x) as

π(x) =
eβ
′x

1 + eβ
′x
. (1.1)

1Among others I can mention also methods of verification of the information provided by the
client, an economical model considering applicant’s income, costs and minimal living standard, as
well as calculation of provisions or collection strategies.

2Usually hundreds to thousands of categorized or standardized characteristics – data from
application form, credit bureaus, behavioral and transactional data within the bank and other
available external data.
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The parameters β are then estimated using the maximum likelihood method, see
(Lehmann and Casella, 1998) or (Van der Vaart, 2000), and tested for significance.

Here the standard modeling usually consists of several rounds of variable catego-
rizations, correlation adjustments and model building using the standard automated
selection methods (such as forward, backward or stepwise).3 The final model is then
tested on precision, stability and logic.

For more information about the logistic regression model, its parameter estima-
tion and significance testing I refer to (Agresti, 1990) and (Hosmer and Lemeshow,
2000). More practical recommendations for probability of default model building
can be then found e.g. in (Witzany, 2010).

1.1.2 Repayment Survival Model

Before defining the repayment survival model, I shortly outline the basic defini-
tions and principles of the survival analysis and the Cox model used for this task.
This summary is mainly taken from (Pazdera et al., 2009) and (Rychnovský, 2011)
and the original sources (Reisnerová, 2004), (Kalbfleisch et al., 1980), (Peto, 1972)
and (Breslow, 1974).

Survival analysis deals with modeling of the time elapsed until some particular
event occurs (it is called exit or end-point), conditional on the specific characteristics
of the subject.

Assume that X is an absolutely continuous nonnegative random variable repre-
senting the time to exit of a subject. Denote F the distribution function and f the
density of X. Then we define a hazard function (or intensity) of the subject as

λ(t) = lim
h→0+

1

h
P(t ≤ X < t+ h|X ≥ t). (1.2)

By a survivor function S(t) (also called survival function) we denote the proba-
bility that the subject will not exit until time t (will survive), i.e. S(t) = 1− F (t).
Using this relation we can rewrite the hazard function (1.2) into the form

λ(t) = lim
h→0+

F (t+ h)− F (t)

h

1

S(t)
=
f(t)

S(t)
= − d

dt
ln
(
S(t)

)
(1.3)

and a converse relation

S(t) = exp

[
−
∫ t

0

λ(u)du

]
. (1.4)

3A comparison of these methods on a simulated data can be found in (Derksen and Keselman,
1992).
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Finally, we define a cumulative hazard function as

Λ(t) =

∫ t

0

λ(u)du = − ln
(
S(t)

)
. (1.5)

Typically, the survival analysis models work with censoring, i.e. the fact that we
do not usually have complete information about our subject – whether it had exited
or not – simply because we can only observe it during a fixed time interval of length
T . During this interval there are three possibilities of a subject status to be observed:
exit at time X, no exit until time T or the subject leaving the survey at time C before
the final status could have been obtained. For more information about censoring and
parameter estimation, see (Reisnerová, 2004), (Kalbfleisch et al., 1980), (Peto, 1972)
and (Breslow, 1974),

Finally, there are several parametric and non-parametric alternative models based
on various formulas for the hazard function λ(t). In this task I use the non-parametric
Cox model as follows.

D. R. Cox in (Cox, 1972) assumed the hazard function λ(t;xi) of subject i at
time t in the form

λ(t;xi) = λ0(t) exp(x′iβ), (1.6)

where xi is the vector of characteristics of subject i and β is a vector of parameters.
The function λ0(t) is then called a baseline hazard function, independent of the
subject’s characteristics. Due to the fact that the relation

λ(t;xi)

λ(t;xj)
=

exp(x′iβ)

exp(x′jβ)
,

depends only on subjects’ characteristics, the Cox model is often called the propor-
tional hazards model. For more information about the Cox model and modeling, see
also (Therneau and Grambsch, 2000) or (Persson, 2002).

Now for the repayment survival model in this chapter, I assume that subjects are
our loan clients and exits are defaults (e.g. 90 DPD after some of their instalments).
Then we assume that every client would default at least once in a lifetime (either
before the end of the repayment schedule – this would be a real default – or after
the end of the repayment schedule – this would be a virtual default) and that the
baseline hazard function is the same for all clients, i.e. that the probabilities of
default of any two clients are proportional for all time intervals. This is a basic
assumption that is in practice usually accepted. In reality there are often patterns
present in the loan life-cycle (e.g. higher probability of default at the first payments
followed by better repayment moral) that are common for the loan portfolio and the
information about the individual applicant is usually not strong enough to aim for
modeling individual shapes of the hazard functions.

Then I can use the full set of observations and for each observation define one of
the following outcomes:
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• Default occurred in time t, for the case when the client was more than 90 DPD
after the instalment scheduled at time t – this is an observation with exit.

• Observation censored in time t, for the case when the client did not default
until time t (so called right censoring).

In this case the censoring can be called non-informative (i.e. there is no relation
with the default event), because it is only caused by the fact that the loan was issued
later, and therefore the observation window is shorter.

Under these assumptions we can use the Cox model to estimate the hazard
function, survival function and the vector of parameters to get the probability of
default of a client until time t as

πt(x) = 1− S(t,x), (1.7)

where S(t,x) is the survival function of a subject with a vector of characteristics
x at time t. Then the model can be examined for precision, logic and stability in a
very similar manner as the common scoring models.

One big advantage of the survival analysis models is the fact that it can incorpo-
rate the censored observations, and thus extend the development data sample for the
most recent observations. Secondly, the survival function can give the probability
of default for all observed times (contrary to the logistic regression approach where
only one time horizon is used for modeling).

1.2 Real Data for Modeling

For this task I use the data and its initial transformations that have been used
before for the project (Pazdera et al., 2009). It is a real data sample provided for
research purposes by one of the biggest Czech banks.

1.2.1 Data Overview

The provided data sample consists of several data files with information about
the clients (see the provided categorization in tables 1.1, 1.2 and 1.3), application
date and loan maturity, as well as the date of default according to several definitions
of default. In total there are 19,139 clients with the following default rates:

• client defaulted on any of his/her loans – 10.6% of the original sample,

• default 90 days past due on this loan – 5.5% of the original sample,

• default 180 days past due on this loan – 4.3% of the original sample.

18



Table 1.1: Full list of variables and categories – part 1

Variable Categories

Sex Female
Male

Marital status Single
Married female
Married male

Divorced
Yokefellow
Widowed

Education Basic educ.
Skilled

Voc. educ.
Voc. grad. educ.

Full sec. educ
Full sec. gen. educ.

High voc. educ.
University

Employment status (empl.since) Unemployed
Household
Retaired
Student

Employed <3M
Employed <1Y
Employed <5Y
Employed <10Y
Employed >10Y

Entrepreneur
Civil servant

Employer State
SHC state

SHC non state
Foreign corporate

Cooperative
LTC

Entrepr.himself
Entrepreneur

Other Employer
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Table 1.2: Full list of variables and categories – part 2

Variable Categories

Housing status House
Rent estate
Rent indiv.

Housing by parents
Hostel

Housing other
Repayment type Cash

Transf. same bank
Transf.

Drawback
Overdraft

Credit card Yes
No

Kind of employment Empl. non rank
Middle manager

Employed enterpr.
Employed
Manual

Freelance occup.
Student

Pensioner
Entrepreneur

Household
Telephone private Tel. priv. fix

Mobile phone priv.
No tel. priv.

Telephone at work Tel. work fix
Mobile phone work

No tel. work
Tel. does not work

Number of dependent persons No dependent person
1 dependent person
2 dependent persons
3 dependent persons
4 dependent persons

5 or more dependent persons
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Table 1.3: Full list of variables and categories – part 3

Variable Categories

Monthly income Numeric
Other income Numeric
Credit limit Numeric

Loan distribution channel 3 categories
Age 15 categories

1.2.2 Data Structure for Modeling and Comparison

Further on, I use some of the earlier performed transformations in (Pazdera et al.,
2009):

1. Cleaning the data in the sense of handling outliers.

2. Running univariate statistics on each variable in order to find out and solve
possible inconsistencies.

3. Re-categorizing nominal variables having too many categories.

4. Omitting the correlated variables, e.g. number of dependent persons or other
income.

5. Finally, calculated the variables necessary for the model (time in months, in-
dicators of default, etc.).

For the purpose of this task I additionally adjusted the sample as follows. Because
of the practical differences in the risk management between fix-term and revolving
loans I proceed with the fix-term products only.4 Furthermore, we can see from
tables 1.4 and 1.5 that the number of cases for the fix-term loans fluctuates in the
early samples and after January 2006. Therefore, to achieve a robust number of
observations for each month I cleared the data sample to contain only vintages from
the period of January 2002 to December 2005. As the sample was originally provided
in 2008, the latest observations from December 2005 are mature enough to allow the
24 month default measuring.

Thus I get a new and more homogenous sample of data that has 9,835 ob-
servations with measurable default of 90 DPD on one of the first 24 payments.5

4In my professional experience the fix-term loans (i.e. the loans with the pre-defined installment
structure, e.g. fixed monthly payments) are having a different repayment behavior and default times
than the revolving loans (such as credit cards or overdrafts).

5By the term measurable default I mean the fact that we can see whether the case defaulted
within 24 months after issuing the loan or whether the default did not occur within this time frame.

21



Table 1.4: Date of loan issuing for the whole sample (till December 2003)

Date of loan issuing Number of revolving loans Number of fix term loans
Before January 2001 6 17

January 2001 0 1
February 2001 0 1

March 2001 0 2
April 2001 0 4
May 2001 0 1
June 2001 0 4
July 2001 0 4

August 2001 0 5
September 2001 0 1
October 2001 0 4

November 2001 1 14
December 2001 1 9
January 2002 0 126
February 2002 0 150

March 2002 0 160
April 2002 0 162
May 2002 0 174
June 2002 0 136
July 2002 0 157

August 2002 4 125
September 2002 30 191
October 2002 15 205

November 2002 47 334
December 2002 18 132
January 2003 37 132
February 2003 63 145

March 2003 82 156
April 2003 81 162
May 2003 200 157
June 2003 227 151
July 2003 237 221

August 2003 169 162
September 2003 228 163
October 2003 247 207

November 2003 259 192
December 2003 177 155

Total before January 2004 2,129 4,122
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Table 1.5: Date of loan issuing for the whole sample (after January 2004)

Date of loan issuing Number of revolving loans Number of fix term loans
Before January 2004 2,129 4,122

January 2004 170 120
February 2004 203 146

March 2004 210 125
April 2004 226 195
May 2004 316 153
June 2004 255 159
July 2004 270 140

August 2004 251 120
September 2004 347 167
October 2004 304 211

November 2004 407 214
December 2004 291 168
January 2005 253 122
February 2005 317 165

March 2005 323 211
April 2005 322 490
May 2005 328 753
June 2005 286 263
July 2005 208 187

August 2005 264 300
September 2005 413 175
October 2005 211 336

November 2005 648 584
December 2005 280 276
January 2006 3 1
February 2006 1 0
Total sample 9,236 9,903
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Altogether, I get 448 defaults and, thus 4.6% default rate. Now I prepare two sets
of data samples – one for the random testing sample comparison and one for the
predictive performance comparison.

Random Sample

In the first task I divide the data into a development sample and a compari-
son sample randomly in order to develop both models on the development sample
and compare their diversification power on the independent comparison (validation)
sample. Since for the repayment survival model we use all observed defaults with the
time of default (even though the default occurred later after 24 months), I denote
it as exit in the following text. See the sample overview in table 1.6. As we can
see from this table, there are additional exits in the development sample that can
be used for the survival model building. In the comparison sample I compare the
performance on the defaults only, therefore the exits are not relevant here – thus
not shown in the table.

Table 1.6: Random sample overview

Sample Clients Defaults Default rate Exits
Development 7000 319 4.6% 500
Comparison 2835 129 4.6% —

Total 9835 448 4.6% —

Progressive Time Sample

In the second task I divide the sample by time. Imagine it is beginning of 2006 and
we are developing a scoring model. Then using the standard logistic regression model
we can only use the clients from January 2002 to December 2003 as a development
sample, whereas for the survival analysis model we can use all the time-censored
observations from 2002–2005, including the partially observed vintages 2004–2005.

This is illustrated in figure 1.1, where the area A is the development sample for
the logistic regression model, areas B and C are the additional exit observations that
can be used for the repayment survival model and area D contains the information
that is censored for both models and used for final comparison only.

This is why I divide the sample into the full vintages of 2002–2003 as the de-
velopment sample for the logistic regression model, the vintages from 2002–2005
time-censored to the date of 1 January 2006 as an development sample for the
repayment survival model and the full sample of 2004–2005 as the sample for com-
parison. For details see table 1.7. Again, in the comparison sample I compare the
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Figure 1.1: Illustration of the progressive time sample structure

performance on the defaults only, therefore the exits are not relevant here – thus
not shown in the table.

Table 1.7: Progressive time sample overview

Sample Clients Defaults Default rate Exits
Development 2002–2003 4055 215 5.3% 279
Development 2004–2005 5780 — — 79
Comparison 2004–2005 5780 233 4.0% —

Total 9835 448 4.6% —

1.3 Goodness of Fit Definition

In this section I briefly outline the basic information about the Gini coefficient
with the Somers’ d calculation method and lift characteristic, that are used for
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comparison of the rival models. The information in this section is taken from (Rych-
novský, 2011), (Somers, 1962) and (Witzany, 2017).

The idea of model diversification power is based on the ability of a scoring model
to distinguish bad clients (i.e. the clients who will default) from good clients (i.e. the
clients who will not default). Every scoring model assigns to each client a score value
(e.g. the estimated probability of default). If we then order the clients according to
their scores we get an ordering of clients from which we can see how powerful the
model really is.

1.3.1 Gini Coefficient

The Gini coefficient is usually defined using the distribution curve (also Lorenz
curve or ROC curve – from Receiver Operating Characteristic). For more informa-
tion see also (Hanley et al., 1983), (Řezáč et al., 2011) or (Witzany, 2010).

First denote S =
{
S(x),x ∈ X

}
the set of all values of a scoring function

S(x). Then for every value of score s ∈ S define the distribution function of bad
clients FB(s) as the probability that a randomly chosen bad client will have a score
lower then s; and analogically, the distribution function of good clients FG(s) as the
probability that a randomly chosen good client will have a score lower then s.

The explicit distribution functions FG(s) and FB(s) are in practice not known;
and therefore, they are usually replaced by their consistent estimates. The function
FB(s) is estimated as the ratio of bad clients with scores lower than s and all bad
clients, and the function FG(s) is estimated as the ratio of good clients with scores
lower than s and all good clients.

Then we can define the distribution curve as the connection of the set

L =
{[

FB(s),FG(s)
]
∈ R2 : s ∈ S

}
, (1.8)

with the points [0, 0] and [1, 1] (see an illustration in figure 1.2).

Now the Gini coefficient can be defined as the ratio of the oriented area between
the distribution curve and the diagonal of the square (A) and the total area above
the diagonal (A+B), thus GC = A

A+B
(see again figure 1.2).

To compute the Gini coefficient of a model, the Somers’ d statistic from (Somers,
1962) is often used. Then

d =
a− b

a+ b+ c
, (1.9)

where for B the index set of all bad clients and G the index set of all good clients
and sk the score of the k-th client, we have a =

∑
l∈B |{k : k ∈ G, sk < sl}| is the
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Figure 1.2: Distribution curve from (Rychnovský, 2011)

number of all pairs of a good and a bad client where the good client has lower score
than the bad client (i.e. number of pairs in a correct order – also called concordant);
b =

∑
l∈B |{k : k ∈ G, sk > sl}| is the number of all pairs of a good and a bad client

where the good client has higher score than the bad client (i.e. number of pairs in an
incorrect order – also called discordant), and c =

∑
l∈B |{k : k ∈ G, sk = sl}| is the

number of all pairs of a good and a bad client where the good client has the same
score as the bad client (also called irrelevant). This statistics is then used in practice
to estimate the Gini coefficient of scoring models. For more information about the
Somers’ d in categorical data analysis I refer to (Somers, 1962).

The value of the Gini coefficient is then in the interval [−1, 1], where

• GC = 1 for an ideal diversification power (i.e. a model, where all good clients
have scores lower than all bad clients),

• GC close to zero for a random model, and

• GC < 0 for a reversal model (i.e. with a contradictory classification).

Even though from the economic theory the Gini coefficient is usually in the
interval [0, 1], in the risk management the complete interval of [−1, 1] is usually
used to evaluate both good and bad models.
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1.3.2 Lift

Another characteristic used to compare the rival models is lift. For the purpose
of scoring modeling, we define the P% value of lift as the ratio of the default rate
for the P% worst cases divided by the default rate for the whole population.

Compared to the Gini coefficient, the lift is a characteristic evaluating the model
performance with the reference to one relative point only (e.g. a decile lift for P =
10). This can be used for example when we know that those P% of the worst clients
should be rejected by the model and we want to see the direct impact of such model
on the rejected population. Therefore, to evaluate the whole model, more information
is usually taken from the complete lift curve (e.g. the values for all P ∈ [5, 100]).

For more information about the distribution power measures I refer to (Řezáč
et al., 2011) or (Witzany, 2009).

1.4 Results

In this section I present the key results of the modeling and comparison of the
standard approach using the logistic regression model with the repayment survival
model on the real banking data. As mentioned earlier, I compare the results from
two points of view – on the random testing sample and on the progressive time
testing sample. All the calculations are made using SAS 9.4 and MS Excel.

Before running the models, I check all the used predictors, their categorization
and performance on my sample. This is performed on a standard set of charts with
the number of cases and default rate in all the categories of all predictors. From
figures 1.3 to 1.17 we can see the performance of individual variables.6 From these
figures we can understand the the risk of individual categories together with their
share in the portfolio, i.e. showing us the logic and giving us some indication of the
relevance to the model.

From my professional experience, I can say that from most of the predictors we
can see the standard risk behavior of the credit portfolio similar on various markets
(e.g. men are riskier then women, clients living in their own house are less risky than
the others, higher education suggests less risk and so on), some predictors are very
sensitive to the bank’s limit calculation and verification process (e.g. Credit limit or
Monthly income).

6In figure 1.7 we can see that the category Unemployed is merged with other middle risk
categories. From the professional point of view I would personally prefer the logical approach in
this case and rather put the Unemployed category together with the high risk categories, or reject
those cases at all due to the income instability.
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Here we can see an interesting phenomena that some of the predictors (e.g.
existence of a fix phone line at home or work) are quite strong in this sample, however
in reality they are loosing their significance in time and could be very weak nowadays.
Therefore, whenever there is a longer sample available, it is always important to test
the stability of the predictors in time before the real implementation.

Figure 1.3: Variable Sex – number of cases (L) and default rate (R)
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Figure 1.4: Variable Age (with undisclosed categories) – number of cases (L) and
default rate (R)

Figure 1.5: Variable Marital status – number of cases (L) and default rate (R)
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Figure 1.6: Variable Education – number of cases (L) and default rate (R)

Figure 1.7: Variable Employment status – number of cases (L) and default rate (R)
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Figure 1.8: Variable Employer – number of cases (L) and default rate (R)

Figure 1.9: Variable Housing status – number of cases (L) and default rate (R)

32



Figure 1.10: Variable Repayment type – number of cases (L) and default rate (R)

Figure 1.11: Variable Credit card – number of cases (L) and default rate (R)
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Figure 1.12: Variable Kind of employment – number of cases (L) and default rate
(R)

Figure 1.13: Variable Telephone private – number of cases (L) and default rate (R)
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Figure 1.14: Variable Telephone at work – number of cases (L) and default rate (R)

Figure 1.15: Variable Loan distribution channel (with undisclosed categories) – num-
ber of cases (L) and default rate (R)
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Figure 1.16: Variable Credit limit – number of cases (L) and default rate (R)

Figure 1.17: Variable Monthly income – number of cases (L) and default rate (R)
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1.4.1 Standard Approach

In this section I present the results of the standard approach using the logistic
regression model on both sets of samples.

Random Sample

First I run the logistic regression procedure with the stepwise predictors selection
method on the significance level 0.05 for both entry and exit on the development
data sample with 7000 observations. Then I check the results shown in tables 1.8
and 1.9, and the correlation matrix in table 1.11. As we can see from table 1.9, the
p-value for both categories of predictor distribution channel are above 0.05, however
the p-value for the whole predictor is below 0.05 as we can see from table 1.8.

Since all the correlations between different non-intercept predictors (not just
categories) are in absolute values less than 0.4 (that is generally recommended as
the acceptability threshold),7 I accept this model for comparison and calculate the
score for all clients in both samples. Finally, I evaluate the Gini coefficient and lift
for both samples.

As we can see from table 1.10, the Gini coefficient on the comparison sample
is much lower than on the development sample. This suggests that the model is
not very stable and even with higher lift I would not accept such model for real
probability of default estimation. However, for the comparison purposes I prefer the
models to be developed in a similar way and not manually adjusted.

Table 1.8: Analysis of the selected predictors of the standard approach on the random
sample

Predictor Degrees of Freedom Wald Chi-Square Pr > ChiSq
Sex 1 4.8023 0.0284

Marital status 1 31.6047 < .0001
Employment status 2 34.3346 < .0001

Employer 2 30.0245 < .0001
Housing status 1 5.5632 0.0183

Repayment type 1 27.0599 < .0001
Credit card 1 15.8031 < .0001

Telephone private 1 17.3618 < .0001
Distribution channel 2 21.7976 < .0001

7Some more information about how to work with correlated data in the credit risk modeling can
be found in (Rychnovský, 2011). For an article about modeling correlated data, see e.g. (Le Cessie
and Van Houwelingen, 1994).
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Table 1.9: Analysis of maximum likelihood estimates of the standard approach on
the random sample

Parameter Category Estimate Standard Error Pr > ChiSq
Intercept 2.0074 0.5605 0.0003

Sex 1 −0.2724 0.1243 0.0284
Marital status 1 0.7096 0.1262 < .0001

Employment status 1 −1.0609 0.1856 < .0001
Employment status 2 −0.5872 0.1414 < .0001

Employer 1 0.6176 0.1377 < .0001
Employer 2 0.7260 0.1683 < .0001

Housing status 1 0.2977 0.1262 0.0183
Repayment type 1 0.7166 0.1378 < .0001

Credit card 1 641368 0.3435 < .0001
Telephone private 1 0.5153 0.1237 < .0001

Distribution channel 1 0.0264 0.5318 0.9604
Distribution channel 2 −0.9814 0.5658 0.0828

Table 1.10: Summary of the standard approach on the random sample

Summary Development Comparison
Gini 0.51 0.39

Lift 10% 2.73 2.78

Progressive Time Sample

Secondly, I run the logistic regression procedure on the progressive time sample.
I put the stepwise selection method again on the significance level 0.05 for both
entry and exit and run it on the development data sample with 4,055 observations.
Then again I check the results shown in tables 1.12 and 1.13, and the correlation
matrix in table 1.15.

Even here all the correlations between different non-intercept predictors (not
just categories) are in absolute values less than 0.4 and I accept this model for
comparison and calculate the score for all clients in both samples. Finally, I evaluate
the Gini coefficient and lift for both samples.

As we can see from table 1.14, there is again a minor drop in the Gini coefficient
and a major drop in lift.
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Table 1.11: Analysis of correlations of the standard approach on the random sample

Par. Cat. Int. Sex M.st. E.st. E.st. Emp. Emp. H.st. Rep. C.c. T.p. D.ch. D.ch.
Int. 1.00 −0.17 −0.08 −0.16 −0.21 −0.10 −0.10 −0.06 −0.16 −0.02 −0.03 −0.93 −0.88
Sex 1 −0.17 1.00 −0.10 0.02 0.04 0.11 −0.01 0.04 0.04 −0.02 0.01 0.01 0.01

M.st. 1 −0.08 −0.10 1.00 0.07 0.08 0.03 0.04 −0.18 0.03 0.02 −0.10 0.01 0.01
E.st. 1 −0.16 0.02 0.07 1.00 0.54 0.15 0.12 0.01 −0.06 0.04 −0.01 0.02 0.01
E.st. 2 −0.21 0.04 0.08 0.54 1.00 0.05 0.13 0.00 −0.02 0.03 −0.01 0.02 0.01
Emp. 1 −0.10 0.11 0.03 0.15 0.05 1.00 0.29 0.00 0.04 −0.01 −0.03 −0.03 −0.03
Emp. 2 −0.10 −0.01 0.04 0.12 0.13 0.29 1.00 0.00 0.07 −0.01 0.01 −0.01 −0.01
H.st. 1 −0.06 0.04 −0.18 0.01 0.00 0.00 0.00 1.00 0.01 0.02 −0.10 0.00 −0.02
Rep. 1 −0.16 0.04 0.03 −0.06 −0.02 0.04 0.07 0.01 1.00 −0.08 −0.01 −0.04 0.03
C.c. 1 −0.02 −0.02 0.02 0.04 0.03 −0.01 −0.01 0.02 −0.08 1.00 0.00 0.01 0.01
T.p. 1 −0.03 0.01 −0.10 −0.01 −0.01 −0.03 0.01 −0.10 −0.01 0.00 1.00 −0.03 −0.02
D.ch. 1 −0.93 0.01 0.01 0.02 0.02 −0.03 −0.01 0.00 −0.04 0.01 −0.03 1.00 0.92
D.ch. 2 −0.88 0.01 0.01 0.01 0.01 −0.03 −0.01 −0.02 0.03 0.01 −0.02 0.92 1.00

Table 1.12: Analysis of the selected predictors of the standard approach on the
progressive time sample

Predictor Degrees of Freedom Wald Chi-Square Pr > ChiSq
Sex 1 4.1815 0.0409

Marital status 1 18.6966 < .0001
Employment status 2 28.9289 < .0001

Employer 2 23.7860 < .0001
Housing status 1 6.5490 0.0105

Telephone private 1 11.9081 0.0006
Telephone at work 1 6.9916 0.0082

Table 1.13: Analysis of maximum likelihood estimates of the standard approach on
the progressive time sample

Parameter Category Estimate Standard Error Pr > ChiSq
Intercept 2.0662 0.2868 < .0001

Sex 1 −0.3141 0.1536 0.0409
Marital status 1 0.6559 0.1517 < .0001

Employment status 1 −1.1975 0.2235 < .0001
Employment status 2 −0.5900 0.1778 0.0009

Employer 1 0.7007 0.1705 < .0001
Employer 2 0.7590 0.2080 0.0003

Housing status 1 0.3949 0.1543 0.0105
Telephone private 1 0.5033 0.1459 0.0006
Telephone at work 1 0.4720 0.1785 0.0082

Table 1.14: Summary of the standard approach on the progressive time sample

Summary 2002–2003 2004–2005
Gini 0.45 0.38

Lift 10% 3.15 1.83
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Table 1.15: Analysis of correlations of the standard approach on the progressive time
sample

Par. Cat. Int. Sex M.st. E.st. E.st. Emp. Emp. H.st. T.p. T.w.
Int. 1.00 −0.36 −0.23 −0.43 −0.61 −0.42 −0.23 −0.19 −0.26 −0.63
Sex 1 −0.36 1.00 −0.09 0.03 0.05 0.10 0.01 0.02 0.03 −0.05

M.st. 1 −0.23 −0.09 1.00 0.09 0.12 0.02 0.03 −0.14 −0.11 0.09
E.st. 1 −0.43 0.03 0.09 1.00 0.54 0.16 0.11 −0.01 −0.01 0.06
E.st. 2 −0.61 0.05 0.12 0.54 1.00 0.10 0.13 0.02 0.02 0.22
Emp. 1 −0.42 0.10 0.02 0.16 0.10 1.00 0.27 0.05 0.00 0.22
Emp. 2 −0.23 0.01 0.03 0.11 0.13 0.27 1.00 0.03 0.02 −0.01
H.st. 1 −0.19 0.02 −0.14 −0.01 0.02 0.05 0.03 1.00 −0.07 0.06
T.p. 1 −0.26 0.03 −0.11 −0.01 0.02 0.00 0.02 −0.07 1.00 0.10
T.w. 1 −0.63 −0.05 0.09 0.06 0.22 0.22 −0.01 0.06 0.10 1.00

1.4.2 Repayment Survival Model

In this section I present the results of the repayment survival model using the
nonparametric Cox model described in section 1.1.2.

Random Sample

This time I run the Cox procedure on the random sample, put the stepwise
selection method again on the significance level 0.05 for both entry and exit and run
it on the development data sample with 7000 observations and 500 exits.

In figure 1.18 we can see the estimated baseline function for the model and in
figure 1.19 the estimated survival function for the first contract in the sample as an
example. Both functions are plotted with their 90% confidence limits.

Then similarly to the logistic regression method I check the results shown in
tables 1.16 and 1.17,8 and the correlation matrix in table 1.19. Even here all the
correlations between different predictors (not just categories) are in absolute values
less than 0.4 and I accept this model for comparison and calculate the score for all
clients in both samples as described in 1.1.2. Finally, I evaluate the Gini coefficient
and lift for both samples.

As we can see from table 1.18, there is also a drop in the Gini coefficient and lift.

8As the baseline level is given by the baseline hazard function, there is no intercept in the model.

40



Figure 1.18: Baseline function for the Cox model on the random sample

Progressive Time Sample

Finally, I run the Cox procedure on the progressive time sample, put the stepwise
selection method again on the significance level 0.05 for both entry and exit and run
it on the development data sample with 9835 observations and 358 exits.

Again, in figure 1.20 we can see the estimated baseline function for the model
and in figure 1.21 the estimated survival function for the first contract in the sample
as an example. Both functions are plotted with their 90% confidence limits.

I check the results shown in tables 1.20 and 1.21, and the correlation matrix in
table 1.23. All the correlations between different predictors (not just categories) are
in absolute values less than 0.4. I accept this model for comparison and calculate
the score for all clients as described in 1.1.2. Finally, I evaluate the Gini coefficient
and lift for both vintages 2002–2003 and 2004–2005. From table 1.22, we can see the
Gini coefficient remains stable and there is a minor drop in lift.
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Figure 1.19: Survival function of the first contract on the random sample

Table 1.16: Analysis of the selected predictors of the repayment survival model on
the random sample

Predictor Degrees of Freedom Wald Chi-Square Pr > ChiSq
Sex 1 4.8385 0.0278

Marital status 1 32.7541 < .0001
Education 2 18.6069 < .0001

Employment status 2 43.7940 < .0001
Employer 2 27.2749 < .0001

Housing status 1 10.8025 0.0010
Repayment type 1 29.9899 < .0001

Credit card 1 13.3729 0.0003
Telephone private 1 14.7220 0.0001

Distribution channel 2 15.0739 0.0005
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Table 1.17: Analysis of maximum likelihood estimates of the repayment survival
model on the random sample

Parameter Category Estimate Standard Error Pr > ChiSq
Sex 1 0.20854 0.09481 0.0278

Marital status 1 −0.54307 0.09489 < .0001
Education 1 0.64284 0.17682 0.0003
Education 2 0.32907 0.19070 0.0844

Employment status 1 0.91189 0.14007 < .0001
Employment status 2 0.46189 0.10568 < .0001

Employer 1 −0.38070 0.10484 0.0003
Employer 2 −0.59314 0.12669 < .0001

Housing status 1 −0.31685 0.09640 0.0010
Repayment type 1 −0.58169 0.10622 < .0001

Credit card 1 −0.78838 0.21559 0.0003
Telephone private 1 −0.35800 0.09330 0.0001

Distribution channel 1 −0.01917 0.38219 0.9600
Distribution channel 2 0.67663 0.41522 0.1032

Table 1.18: Summary of the repayment survival model on the random sample

Summary Development Comparison
Gini 0.50 0.40

Lift 10% 2.96 2.32

Table 1.19: Analysis of correlations of the repayment survival model on the random
sample

Par. Cat. Sex M.st. Educ. Educ. E.st. E.st. Emp. Emp. H.st. Rep. C.c. T.p. D.ch. D.ch.
Sex 1 1.00 −0.10 −0.03 0.02 0.03 0.04 0.11 −0.01 0.03 0.03 −0.04 0.01 0.00 0.00

M.st. 1 −0.10 1.00 −0.01 0.02 0.08 0.09 0.01 0.04 −0.18 0.02 0.02 −0.10 0.00 0.01
Educ. 1 −0.03 −0.01 1.00 0.83 0.02 0.00 0.09 −0.02 −0.01 0.02 0.05 0.05 0.01 0.02
Educ. 2 0.02 0.02 0.83 1.00 −0.01 0.01 0.04 −0.02 −0.02 0.00 0.02 0.01 0.01 0.02
E.st. 1 0.03 0.08 0.02 −0.01 1.00 0.51 0.17 0.13 0.01 −0.04 0.05 0.00 0.03 0.01
E.st. 2 0.04 0.09 0.00 0.01 0.51 1.00 0.05 0.13 0.00 −0.02 0.04 −0.01 0.02 0.00
Emp. 1 0.11 0.01 0.09 0.04 0.17 0.05 1.00 0.30 0.00 0.03 0.00 −0.01 −0.03 −0.02
Emp. 2 −0.01 0.04 −0.02 −0.02 0.13 0.13 0.30 1.00 0.00 0.05 −0.02 0.01 −0.03 −0.02
H.st. 1 0.03 −0.18 −0.01 −0.02 0.01 0.00 0.00 0.00 1.00 0.00 0.02 −0.11 0.00 −0.02
Rep. 1 0.03 0.02 0.02 0.00 −0.04 −0.02 0.03 0.05 0.00 1.00 −0.10 −0.01 −0.04 0.04
C.c. 1 −0.04 0.02 0.05 0.02 0.05 0.04 0.00 −0.02 0.02 −0.10 1.00 0.01 0.01 0.01
T.p. 1 0.01 −0.10 0.05 0.01 0.00 −0.01 −0.01 0.01 −0.11 −0.01 0.01 1.00 −0.04 −0.02
D.ch. 1 0.00 0.00 0.01 0.01 0.03 0.02 −0.03 −0.03 0.00 −0.04 0.01 −0.04 1.00 0.90
D.ch. 2 0.00 0.01 0.02 0.02 0.01 0.00 −0.02 −0.02 −0.02 0.04 0.01 −0.02 0.90 1.00
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Figure 1.20: Baseline function for the Cox model on the progressive time sample

Figure 1.21: Survival function for the first contract in the sample as an example on
the progressive time sample
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Table 1.20: Analysis of the selected predictors of the repayment survival model on
the progressive time sample

Predictor Degrees of Freedom Wald Chi-Square Pr > ChiSq
Sex 1 8.0746 0.0045

Marital status 1 38.7425 < .0001
Employment status 2 31.1130 < .0001

Employer 2 25.2562 < .0001
Repayment type 1 16.0285 < .0001

Credit card 1 6.9649 0.0083
Telephone private 1 21.9056 < .0001

Distribution channel 2 6.1591 0.0460

Table 1.21: Analysis of maximum likelihood estimates of the repayment survival
model on the progressive time sample

Parameter Category Estimate Standard Error Pr > ChiSq
Sex 1 0.32320 0.11374 0.0045

Marital status 1 −0.69728 0.11202 < .0001
Employment status 1 0.90381 0.16398 < .0001
Employment status 2 0.44249 0.12432 0.0004

Employer 1 −0.47280 0.12316 0.0001
Employer 2 −0.64566 0.15196 < .0001

Repayment type 1 −0.51152 0.12777 < .0001
Credit card 1 −0.94965 0.35984 0.0083

Telephone private 1 −0.51026 0.10902 < .0001
Distribution channel 1 0.05390 0.58230 0.9262
Distribution channel 2 0.72095 0.63303 0.2547

Table 1.22: Summary of the repayment survival model on the progressive time sam-
ple

Summary 2002–2003 2004–2005
Gini 0.44 0.43

Lift 10% 2.71 2.42
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Table 1.23: Analysis of correlations of the repayment survival model on the progres-
sive time sample

Par. Cat. Sex M.st. E.st. E.st. Emp. Emp. Rep. C.c. T.p. D.ch. D.ch.
Sex 1 1.00 −0.08 0.04 0.04 0.12 0.00 0.04 −0.01 0.04 −0.02 −0.01

M.st. 1 −0.08 1.00 0.08 0.10 0.01 0.03 0.04 0.02 −0.15 0.00 0.01
E.st. 1 0.04 0.08 1.00 0.51 0.18 0.11 −0.04 0.04 0.00 0.04 0.02
E.st. 2 0.04 0.10 0.51 1.00 0.09 0.13 −0.03 0.03 −0.01 0.02 0.01
Emp. 1 0.12 0.01 0.18 0.09 1.00 0.30 0.02 −0.01 −0.02 −0.02 −0.01
Emp. 2 0.00 0.03 0.11 0.13 0.30 1.00 0.06 −0.02 0.01 −0.03 −0.01
Rep. 1 0.04 0.04 −0.04 −0.03 0.02 0.06 1.00 −0.06 −0.01 −0.05 0.02
C.c. 1 −0.01 0.02 0.04 0.03 −0.01 −0.02 −0.06 1.00 −0.01 0.01 0.01
T.p. 1 0.04 −0.15 0.00 −0.01 −0.02 0.01 −0.01 −0.01 1.00 −0.03 −0.02
D.ch. 1 −0.02 0.00 0.04 0.02 −0.02 −0.03 −0.05 0.01 −0.03 1.00 0.91
D.ch. 2 −0.01 0.01 0.02 0.01 −0.01 −0.01 0.02 0.01 −0.02 0.91 1.00

1.4.3 Comparison of Results

Now I compare the results of the Gini coefficient, distribution curves and lift
curves of the standard approach using the logistic regression and the proposed re-
payment survival model using the Cox model on the corresponding data samples.

Random Sample

On the random sample we can see from table 1.24 that the two models have a
very similar performance in the Gini coefficient on the development (training) and
comparison (also testing or validation) sample, with the Cox model being a little
more stable. As for the 10% lift, we can see that the Cox model performs better on
the training sample and worse on the testing sample. From both the distribution
and lift curves in figures 1.22 and 1.23 we see that the performance of the models is
slightly different but in general I’d conclude the models as similar.

Table 1.24: Comparison of models on the random sample

Summary Development Comparison

Logistic regression Gini 0.51 0.39
Cox model Gini 0.50 0.40

Logistic regression lift 10% 2.73 2.78
Cox model lift 10% 2.96 2.32
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Figure 1.22: Distribution curve comparison on the random sample

Figure 1.23: Lift curve comparison on the random sample
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Progressive Time Sample

For the progressive time sample we can see from table 1.25 that whereas the
Cox model is slightly more conservative on the 2002–2003 sample, it notably out-
performs the logistic regression on the 2004–2005 sample. This is confirmed also on
the distribution and lift curves in figures 1.24 and 1.25.

Table 1.25: Comparison of models on the progressive time sample

Summary 2002–2003 2004–2005

Logistic regression Gini 0.45 0.38
Cox model Gini 0.44 0.43

Logistic regression lift 10% 3.15 1.83
Cox model lift 10% 2.71 2.42

Figure 1.24: Distribution curve comparison on the progressive time sample
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Figure 1.25: Lift curve comparison on the progressive time sample

1.5 Conclusions

In this chapter I dealt with the probability of default modeling and aimed to set
the new performance criteria focusing on the predictive power of the models and
compare the standard logistic regression model with the alternative of the survival-
based Cox model on the real sample of Czech banking data.

I used the data and the Cox model from (Pazdera et al., 2009), I adjusted the
data to contain a relevant subset of observations for modeling and divided the sam-
ple into the standard random development and validation part, as well as performed
the newly proposed division into the development and ex-ante validation sample
specially designed to measure the predictive power of the models. Then I imple-
mented the logistic regression model alongside with the Cox model and compared
their precision and predictive power using the Gini coefficient and lift characteristics.

As we can see from section 1.4.3, both models have similar performance on the
random training and testing sample. This is in line with the existing research, e.g.
(Stepanova and Thomas, 2002), (Cao et al., 2009) or (Bellotti and Crook, 2009),
and I showed that the regional specific Czech fix-term unsecured loan banking data
make no exception.

However, if compared by the new performance criteria measuring the predictive
power of the model, the Cox model outperforms the logistic regression model in the
progressive time sample comparison, and thus shows a better predictive power in
extrapolating the last observable default vintages. This is a new result that can be
beneficial for further research in this topic, as well as for banks and credit companies.
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Here the survival analysis methodology was chosen on purpose, mainly because of
the way it can cope with time-censored data. Therefore, it can incorporate the most
recent observations into the model, and potentially improve its predictive power for
the future.

Finally, the Cox model gives us the baseline and survival function for all times.
This can be analyzed further (e.g. smoothed by a polynomial interpolation in figure
1.26) and used for a variety of additional analytical tasks including the calculation
of expected profitability introduced in chapter 3.

Figure 1.26: Baseline function with the weighted polynomial interpolation for the
Cox model on the random sample
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Chapter 2

Loss Given Default Modeling

In this chapter I concentrate on the loss given default (LGD) modeling and apply
similar logic as in the first chapter, mainly by introducing the new performance
criteria for the predictive power measuring and comparing the standard approaches
using the linear and logistic regressions with two Cox-based models on the real Czech
banking data.

This is a well discussed topic, especially after the (Basel II, 2001) regulation,
and many comparisons of methods are presented in the literature, see e.g. (Gupton
et al., 2002) or (Kim and Kim, 2006).

In my master thesis (Rychnovský, 2009) I focused on the problem of the recent
censored observations and introduced several new methods including two models
based on the survival analysis. I compared the methods with the standard approaches
of the linear and logistic regression on the real banking data. Since the comparison
was done on the development sample only, the standard linear and logistic regression
methods performed better than the new proposed approaches.

Therefore, in my further doctoral research I concentrated on comparing of the
predictive power of these methods on a time-censored data sample (similarly to
the progressive time sample of chapter 1). Also I add the Full repayment survival
model as a new model to the comparison. For this comparison I use the original data
from (Rychnovský, 2009) and re-structure them for the predictive task (shorter time
horizon, time-censored sample etc.). The comparison is then based on the modified
coefficient of determination (originally assigned as R2) introduced in (Rychnovský,
2009).

In this chapter I use the results published in (Witzany et al., 2012) and (Rych-
novský, 2015).
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2.1 Recovery Rate Models

In this section I would like to show two possible applications of the survival
analysis theory for LGD modeling – the full repayment survival model and the
currency unit survival model.1

First I introduce a little about the recovery process. In reality when a default
occurs (e.g. 90 days past due), a collection process will start. During this period
clients are contacted by the loan company, and according to their capacities, they
either pay nothing, or repay one or more payments covering a part or the whole
owed exposure. These payments are usually known as recoveries. If we now denote
the recovered part of the whole exposure as recovery rate (RR), we can express the
loss given default as

LGD = 1− RR . (2.1)

Then the problem transforms into modeling the expected clients’ recoveries in
time, denote it RR(t) conditional to clients’ characteristics.

Before starting the explanation about the models, I briefly explain the structure
of any available development sample. For the LGD modeling we can only use the
accounts, that have actually defaulted, and we can observe the recovery process for
some time. And here comes the biggest problem of the LGD or RR modeling –
the longer we want to observe the recovery process, the older data we have to use.
Therefore, if we want to model for example the recovery after 3 years, we can only
use the 3 years old defaults, since the fresh data is not fully observable (we can call
it censored). And it is mainly the dealing with the censored data which leads to the
idea of using the theory of survival analysis.

2.1.1 Standard Approaches

Standard approaches usually consider an univariate target variable such as the
recovery rate after a fixed time interval t, and model it conditional to the character-
istics of the client. The most straightforward way one can think of is using the linear
regression. Besides the already mentioned disadvantage of the old data sample, this
approach also struggles with the limitations for the target variable (since the RR
or LGD are numbers between 0 and 1 or the recovery amount between 0 and the
full exposure at default, denoted as EAD) and usually very few positive recoveries
(target more than 0).

Alternatively, one can transform the target variable into a binary target (e.g.
1 for full recovery and 0 otherwise) and use the logistic regression to estimate the

1The currency unit survival model has been already proposed in (Rychnovský, 2009).
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probability of recovery. The weakness of this approach is the fact that it doesn’t
use the full information about the partial recoveries (as all or some of them are
assigned to zero). This can be partially fixed by setting a certain positive threshold
of recovery rate and considering the weighted average of the recoveries for the case
of both target options. Then RR(t) can be computed as

RR(t) = πt RR1(t) + (1− πt) RR0(t),

where πt is the probability that the case will be recovered over the threshold, RR1(t)
is the average recovery rate of the recovered accounts and RR0(t) is the average
recovery rate of other accounts. More information about using of these methods in
LGD modeling can be found in (Rychnovský, 2009).

2.1.2 Full Repayment Survival Model

The first approach based on the survival analysis theory (shortly described in
section 1.1.2) considers observing the clients and measuring their time until they
fully repay or repay over some given threshold (e.g. 80%). Therefore, using the
terminology of survival analysis, we can say that the subjects are the clients and
exit is defined as a repayment of the exposure over the threshold. It is assumed
that every client will repay eventually and every observation without a full recovery
is considered as censored in time. Moreover, it is assumed that the baseline hazard
function is the same for all accounts. This assumption is based on the practice, where
there is usually a similar collection process for the accounts (e.g. calling, then letter,
then court etc.), and therefore the shapes of the recovery curves follow similar trends.
Finally, as the censoring is only caused by the shorter observation period since the
default, we can expect the censoring to be non-informative, i.e. unrelated with the
default event.

If we first assume the full repayment (i.e. the threshold set to 100%), using
the Cox model we get for every t the survivor function S(t), which stands for the
probability that the client will ”survive” time t, i.e. will not fully repay until time
t. Therefore, for the expected recovery rate RR(t) we can use the probability of the
full repayment in time t and get

RR(t) = 1− S(t)

and for LGD(t) directly
LGD(t) = S(t).

Similarly as for the case of the logistic regression introduced above, this model
does not take into account the fact, that for some observations the exposure was
partially recovered. Again, this can be partially fixed by considering the weighted
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average of the recoveries for the case of both target options. Then RR(t) can be
computed as

RR(t) = (1− S(t)) RR1(t) + S(t) RR0(t),

where RR1(t) is the average recovery rate of the accounts recovered over the thresh-
old, and RR0(t) is the average recovery rate of other accounts. These partial recov-
eries are also the motivation of the second approach.

2.1.3 Currency Unit Survival Model

The second survival-based model understands every currency unit (or alterna-
tively percentage) of the owed exposure at default as a subject, and its repayment
as the exit. Thus, every client is represented by a set of units and their repayment
times, fully describing the client’s repayment history. Then, for the repayed currency
units (or percentage) we observe an exit, and the rest are censored to the maximal
time of observation.

Again, it is assumed that every unit will be once repayed, the baseline hazard
functions are the same for all the units and the censoring is non-informative. Then
using the survival analysis theory we can understand the survivor function S(t) as
the probability that a currency unit with some client’s characteristics will not be
payed until time t. Then the expected recovered proportion of the client’s exposure
in time t can be expressed as

RR(t) = 1− S(t)

and thus
LGD(t) = S(t).

For this model, we can use either the individual currency units (such as 1 EUR)
or the proportions of the owed exposures (such as 1%) as subjects. Whereas the
second approach is more balanced on the client level, the first currency unit approach
can put more weight to high exposure cases (which can be preferred by financial
companies in practice).

2.2 Real Data for Modeling

In this section I shortly describe the data used for modeling and and explain the
structure of the development and comparison samples. The data transformation and
modeling is performed in SAS.
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2.2.1 Data Overview

The data sample for this research is taken from (Rychnovský, 2009) and was
kindly provided by Česká spořitelna, a.s. It is a database of 4,000 defaulted accounts
with the following properties:

• It is a homogenous product from a non-secured retail business.

• There is some unspecified definition of default identical for the whole portfolio.

• There was an unified collection process for all the accounts.

• For each account there is the history of net recoveries – all discounted by time
and collection costs.

• For each account there is a set of characteristics x = (x1, . . . , x8)′, which are
assumed to have predictive power. Here x4 is categorical and the rest are
numerical (presumably after some transformation).2

The modeling is done on the 26 month horizon. For the accounts where the full
collection history up to 26 months can be observed, the cumulative recoveries are
summarized in figure 2.1. As we can see from the graph, the recoveries of some
accounts are greater than 1, which means that more than the owed amount was
actually recovered in the collection process (due to paid collection fees etc.). On the
other hand, some recoveries are negative, which could have been caused by some
additional collection costs assigned to cases with small or no recoveries.

All the predictors are then examined to be used for the model. In figure 2.2 there
is an example of the first numerical predictor that has been cut into 11 bins according
to their values to check the relation with the recovery rate. From this figure we can
assume that the suggested use as the numerical predictor is not contra-intuitive.

2.2.2 Data Structure for Modeling and Comparison

First I show the structure of data provided in the given sample. There is a
time interval of months coded as 162–220 (without a real month reference) with a
classical triangle structure – for the first month 162 we can observe the full history
of 58 months, whereas for the last month we have no time to observe.

2It is not the aim of this work to further categorize or optimize the set of predictors or interpret
the results (which even couldn’t be responsibly done since no information about the meaning of
the predictors is provided). Therefore, all of the predictors are used for the models without any
transformation. The numerical predictors are designed in the way that enables their direct use in
the model – this can be illustrated on the first predictor in figure 2.2.
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Figure 2.1: Dependence of recovery on month after default

Due to the sample size of our data, the 26 months recovery have been chosen
for comparison. Therefore, we can only observe the full recovery for the vintages
162–194. See figure 2.3 for reference.

As I want to compare the predictive power of the models, I have to shorten the
period for modeling and leave some data vintages for out-of-sample ex-ante pre-
diction performance testing. Similar as in the progressive time sample construction
in the first chapter I assume that only the events happening before month 194 are
observable for the model development.

With that assumption I have the full history of vintages 162–168 (I denote this
area as D1) and censored data of vintages 169–194 (I denote this area as D2). The
rest of the vintages 169–194 with observations after month 194 (denoted as area D3)
is left for comparison of the models. For more illustration about the data structure
I again refer to figure 2.3.

2.3 Goodness of Fit Definition

Now I describe a measure that will be used for the comparison of the models.
Since in this case all the binary variables are auxiliary and the original target variable
recovery rate is real (not binary), I don’t use the Gini coefficient or lift characteristics
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Figure 2.2: The number of cases and average recovery rate after 26 months for 11
bins of the first numerical characteristic

introduced in chapter 1. Instead to compare the results I use the modified coefficient
of determination (MCD) introduced as R2 in (Rychnovský, 2009).

2.3.1 Modified Coefficient of Determination

Each of the introduced models is developed on the data sample of D1 and D2 (D1
for the linear and logistic regression and D1+D2 for the survival models), and the
recovery after 26 months is estimated for each account in vintages 162–194. Then I
can compare the estimates with the real values using the weighted MCD defined as

MCD = 1−
∑n

i=1wi
(

RR(26)i − R̂R(26)i
)2∑n

i=1wi
(

RR(26)i − RR(26)pool
)2 , (2.2)

where

RR(26)pool =
n∑
i=1

wi RR(26)i

is the weighted average of RR(26)i and

wi =
EADi∑n
k=1 EADk

are the weights corresponding to the exposure at defaults (EAD) for individual cases;
EADi is the unpaid principle of the i-th client at the moment of default.
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Figure 2.3: Triangle data and its structure for model development

The above defined MCD measure is usually in the interval [0, 1] for the models
that are performing at least as well as the weighted average constant RR(26)pool,

however it can also be negative if the model performs even worse than the RR(26)pool
constant. The higher value of MCD, the more precise the model is on the given
sample.

In this comparison I decided to use the weighted characteristic MCD to best
simulate the needs of the credit companies that are more focused on the higher
volume cases.3 Then for each model I compute the weighted MCD separately on the
area of known (development) recoveries D1, on the area of future (out-of-sample)
recoveries D3 and the whole available data together D1+D3.

2.4 Results

In this section I compare the results of the respective models. Since the MCD is
a weighed characteristic, I use the weighted linear and logistic regression models.

3The higher exposure at default the higher loss the company can suffer from. Also the overall
loss for the company is calculated as the sum of all losses, i.e. the weighted average of LGDs
multiplied by the total exposure at default.
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2.4.1 Linear Regression Model

For the linear regression model (weighted by the exposures) only the data of D1
is used for model development. Then the model in the form

RR(26) = β0 + β′x,

where β0 is the intercept of the model and β is the vector of parameter estimates, is
used to estimate the recoveries in the groups D1 and D3. The values of the MCD is
summarized in table 2.1. We can see that the MCD is highest for the development
sample and then rapidly decreases for the prediction.

Table 2.1: Characteristics of the linear regression model

D1 N MCD D3 N MCD D1+D3 N MCD
600 0.1621 1735 0.0064 2335 0.0558

2.4.2 Logistic Regression Model

The next tested approach for the recovery modeling is the weighted logistic
regression model. The accounts from the development area D1 are divided into two
groups according to their recovery rate (e.g. less than 0.1 and more then 0.1), and
the probability π(x) that an account with characteristics x will belong to the later
category is modeled using the weighted logistic regression. Then for all accounts
from D1 and D3 I compute the estimated recovery as

RR(x) = π(x) RR1 +(1− π(x)) RR0,

where RR0 is the weighted average recovery in the first group and RR1 is the
weighted average recovery in the second group (both computed on the D1 sample).

Since it is not clear what threshold would be optimal for using, I decided to try
11 options from 0 to 1 recovery rate values. Altogether, 11 models are computed
with different values of the thresholds dividing the accounts to the recovered and
non-recovered categories (see table 2.2). The results of all models can be found in
table 2.3. We can see that the bound 0.1 has the best performance on D1+D3.

2.4.3 Full Repayment Survival Model

For the full repayment survival model introduced in section 2.1.2 I use all the
accounts from D1 and D2 (i.e. censored by the observation time of 194) for de-
velopment. Again I look for the optimal threshold to divide the accounts into two
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Table 2.2: Number of cases for the logistic regression model

Threshold Total (N) Number of Non-Recovered (0) Number of Recovered (1)

0 600 129 471
0.1 600 162 438
0.2 600 185 415
0.3 600 211 389
0.4 600 229 371
0.5 600 345 355
0.6 600 267 333
0.7 600 274 326
0.8 600 299 301
0.9 600 340 260
1 600 426 174

Table 2.3: Characteristics of the logistic regression models

Threshold D1 N MCD D3 N MCD D1+D3 N MCD

0 600 0.1249 1735 0.0205 2335 0.0562
0.1 600 0.1423 1735 0.0356 2335 0.0718
0.2 600 0.1510 1735 0.0116 2335 0.0566
0.3 600 0.1510 1735 −0.0253 2335 0.0297
0.4 600 0.1591 1735 −0.0055 2335 0.0463
0.5 600 0.1529 1735 0.0038 2335 0.0514
0.6 600 0.1512 1735 0.0117 2335 0.0567
0.7 600 0.1490 1735 0.0040 2335 0.0505
0.8 600 0.1431 1735 0.0216 2335 0.0618
0.9 600 0.1261 1735 −0.0008 2335 0.0410
1 600 0.0344 1735 0.0113 2335 0.0256

groups according to their recovery rate (e.g. less than 0.1 and more than 0.1), and
the probability that an account will belong to the later category is understood as
1−S(x, 26), where S(x, 26) is the value of the survival function of an account with
characteristics x in time 26. Then for all accounts from D1 and D3 I compute the
estimated recovery as

RR(x) = (1− S(x, 26)) RR1 +S(x, 26) RR0,

where RR0 is the weighted average recovery after 26 months in the first group and
RR1 is the weighted average recovery after 26 months in the second group (both
computed on the D1 sample) – i.e. the same values as for the logistic regression
model.

Again, 11 models are computed with different values of thresholds dividing the
accounts to the recovered and non-recovered categories. The results of all models
can be found in table 2.4. Same as for the logistic model, the bound 0.1 has the
best performance on D1+D3. Moreover, in figure 2.4 we can see an example of the
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survival function for the first account in the selection, and in figure 2.5 there is the
estimated baseline hazard function of the corresponding model.4

Table 2.4: Characteristics of the full repayment survival model

Threshold D1 N MCD D3 N MCD D1+D3 N MCD

0 600 0.0747 1735 0.0606 2335 0.0721
0.1 600 0.1012 1735 0.1355 2335 0.1336
0.2 600 0.0972 1735 0.1334 2335 0.1310
0.3 600 0.0925 1735 0.1091 2335 0.1121
0.4 600 0.0983 1735 0.0988 2335 0.1062
0.5 600 0.0922 1735 0.1024 2335 0.1071
0.6 600 0.0872 1735 0.1021 2335 0.1056
0.7 600 0.0874 1735 0.0994 2335 0.1037
0.8 600 0.0733 1735 0.0885 2335 0.0921
0.9 600 0.0668 1735 0.0792 2335 0.0836
1 600 0.0324 1735 0.0248 2335 0.0349

Figure 2.4: Estimated survivor function for the first account in the selection in the
full repayment survival model

4Here we see a peak at 24 months that could be potentially connected to some special collection
action.
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Figure 2.5: Estimated baseline hazard function in the full repayment survival model

2.4.4 Currency Unit Survival Model

The last tested model is the currency unit survival model introduced in section
2.1.3. Again, this model is developed on the full data of D1 and D2. In this model
I observe the life cycle of every 100 CZK of the exposure as a subject. Then the
survivor function S(x, 26) is interpreted as the probability that a particular amount
of money (100 CZK) of an account with characteristics x will survive 26 months.
Therefore, 1−S(x, 26) is the expected recovery rate after 26 months of such account
with characteristics x.

Again the MCD can be found in table 2.5. In figure 2.6 we can see an example of
the survivor function for the first account in the selection and in figure 2.7 there is the
estimated baseline hazard function. Even here we can see a very good performance
on the D1+D3 area.

Table 2.5: Characteristics of the currency unit survival model

D1 N MCD D3 N MCD D1+D3 N MCD
600 0.0987 1735 0.1202 2335 0.1218
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Figure 2.6: Estimated survivor function for the first account in the selection in the
currency unit survival model

2.4.5 Comparison of Results

In table 2.6 we can find the comparison of the four tested models. We can see
that for the estimation on the development data D1 the standard approaches of the
linear and logistic regression models reach better results than the survival models.
Here the linear regression performs a little better than the logistic regression (even
when we take into account the best model on D1 with MCD = 0.1591).

However, when we compare the predictive power of the models in the ex-ante
sample D3, we see that the additional information contained in the censored area
D2 brought substantially better results to the survival models. Particularly the full
repayment survival model with the bound of 0.1 seems very useful for this type of
data.
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Figure 2.7: Estimated baseline hazard function in the currency unit survival model

Table 2.6: Comparison of the tested models

Model MCD(D1) MCD(D3) MCD(D1+D3)
Linear regression 0.1621 0.0064 0.0558

Logistic regression (0.1) 0.1423 0.0356 0.0718
Full repayment survival model (0.1) 0.1012 0.1355 0.1336

Currency unit survival model 0.0987 0.1202 0.1218

2.5 Conclusions

In this chapter I aimed to introduce the new performance criteria for measuring
the predictive power of loss given default models and compare the standard ap-
proaches using the linear and logistic regressions with two Cox-based models on the
real Czech banking data.

For this chapter I used the standard linear and logistic models, as well as the
Currency unit survival model introduced already in (Rychnovský, 2009) and added
a newly proposed Full repayment survival model to the set. Then I re-structured the
original real data sample from (Rychnovský, 2009), shortened the time horizon for
prediction and divided the sample into the development sample and a time-censored
ex-ante sample for prediction. Finally, I applied all the models to this data and
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compared their predictive power.

When compared on the development sample, the linear and logistic regression
perform better than the survival analysis models – which is in line with the results
from (Rychnovský, 2009). However when comparing the predictive power of the
models on the time-censored sample, the new approaches clearly outperform the
standard models in the terms the used goodness of fit measure.

Therefore, I believe that there is a good potential for further research and prac-
tical application in banks and financial institutions creating their own LGD models
to decrease the capital requirement.

Moreover, both survival models give us formulas to compute the expected re-
covery for any time t within the observed period and thus a flexible information
about the whole payment perspective. Seeing the whole recovery performance of the
case in time can be used in practice to better understand the collection process for
various accounts.

In this work I took the nonparametric Cox model as an example of widely used
survival models; however, a parametric alternative (such as the Accelerated Failure
Time (AFT) model) can be used instead. For more information about parametric
models one can refer to (Kalbfleisch et al., 1980).
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Chapter 3

Profitability Modeling

In this chapter I aim to use the models described in the previous chapters and
construct a new comprehensive underwriting model that would be based on an
estimation of loan profitability instead of the standard evaluation of the riskiness of
the client. This idea is based mainly on (Allen et al., 2004) and (Stein, 2005) and
my experience from the financial sector.

Therefore, the aim of this chapter is to generalize and describe the existing
approaches to profitability modeling and derive the formulas needed for their appli-
cation, as well as to propose the survival analysis models from chapters 1 and 2 to
provide the most relevant inputs for the model.

Furthermore, I propose several more revenue streams and allocated costs to be
incorporated in the model and increase the precision of the expected profitability
estimation. Finally, I use the data set and results from chapter 1 to simulate the
differences of using these profitability models compared to the standard probability
of default model.

3.1 Introduction

In chapter 1 I discussed some models that aim to estimate the probability of
default of applicants and compute the score of each client in order to evaluate his
or her riskiness. Then the clients are often approved or rejected based on this score.
However, is the probability of default the key criteria for approval?

Imagine a situation when there are two loan applicants with the following char-
acteristics (see figure 3.1). Client A has the estimated probability of default at 5%
and is applying for a 12 months loan with interest rate of 20%, whereas client B has
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the estimated probability of default also at 5% and is applying for a 24 months loan
with interest rate of 30%. Then which client should the company prefer?

Figure 3.1: Example of two applicants with the same probability of default

Strictly from the probability of default point of view, the two clients are indif-
ferent. However, from the information provided, it is likely that the second client
would pay more interest and thus bring more profit to the company. Though, how
would the situation change, if the first client is willing to take an insurance product
or if the funding cost is different for the two clients (e.g. happening on two different
markets)?

This is a motivation for building a complex profitability model that incorporates
several more clients’ and business’ inputs to calculate the expected profitability
from providing a loan to an applicant. Such a model can also serve as an engine for
calculation of a personalized interest rate offer (satisfying company’s profitability
requirement) based on client’s characteristics.1

In the following sections, I introduce the key components of the profitability
model together with some characteristics for profitability evaluation.

3.2 Model Components

First I explain a little bit about the loan installment structure and the connected
formulas, and then I already focus on the profitability model, its components and
the topics of discounting and funding.

1This is called dynamic scoring and it is in practice often done by pre-defined combinations of
probability of default and a corresponding interest rate range. However, such approach often does
not incorporate other factors.
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3.2.1 Loan Instalment Structure

For the use of this chapter I assume a loan with a constant interest rate, fix term
and fix regular payments (e.g. monthly or quarterly) at the end of each period (also
called ordinary annuities). Even though my assumptions about the loan installment
structure are somehow standard on the market and their formulas are available in
common financial mathematical handbooks, I prefer to derive the formulas myself in
the way that can be mostly replicated even though the installment structure varies
for specific cases and corresponding formulas are not available. In practice it indeed
often happens that some advanced loan characteristics are not standard and it is
not possible to find such formulas in the textbooks.

I use the following denotations:

• T is the term of the loan,

• A is the ordinary annuity of the loan covering the interest and principal part,

• i is the interest rate corresponding to the time interval between two consecutive
payments (e.g. one twelfth of an annual rate for monthly installments),

• It is the interest part of the t-th installment,

• Pt is the principal part of the t-th installment,

• Ut is the unpaid principal after t-th installment, thus U0 is the initial loan
value and UT = 0,

• F is the fix amount of monthly fees connected with the loan servicing, inde-
pendent of all other components.

Then I have It + Pt = A for all t ∈ {1, 2, . . . , T} and Ut =
∑T

k=t+1 Pk for all
t ∈ {0, 1, . . . , T − 1}. Now I derive some more formulas important for the following
sections.

First I need to prove that

Pt = A
1

(1 + i)T−t+1
,∀t ∈ {1, 2, . . . , T}. (3.1)

This corresponds to the fact that using the given interest rate i the future values
of the principal parts of all installments are equal. This can be easily shown by
induction:
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1. For t = T I take the equation PT + IT = A and get

PT = A− IT
= A− iUT−1
= A− iPT
= A

1

1 + i
.

2. Now assume that

Pk = A
1

(1 + i)T−k+1
,∀k ∈ {t, t+ 1, . . . , T},

and for Pt−1 I get

Pt−1 = A− It−1
= A− iUt−2

= A− i
T∑

k=t−1

Pk

= A− iPt−1 − i
T∑
k=t

Pk

= A− iPt−1 − i
T∑
k=t

A
1

(1 + i)T−k+1

= A− iPt−1 − A
i

(1 + i)

T−t∑
k=0

(
1

1 + i

)k
= A− iPt−1 − A

i

(1 + i)

1−
(

1
1+i

)T−t+1

1−
(

1
1+i

)
= A− iPt−1 − A

i

(1 + i)

1−
(

1
1+i

)T−t+1

i
1+i

= A− iPt−1 − A
(

1− 1

(1 + i)T−t+1

)
= A

1

(1 + i)

1

(1 + i)T−t+1

= A
1

(1 + i)T−(t−1)+1
.

Then using the same logic I get

Ut = A
(1 + i)T−t − 1

i(1 + i)T−t
,∀t ∈ {0, 1, . . . , T}, (3.2)
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because

Ut =
T∑

k=t+1

Pk

=
T∑

k=t+1

A
1

(1 + i)T−k+1

= A
1

(1 + i)

T−t−1∑
k=0

(
1

1 + i

)k
= A

1

(1 + i)

1−
(

1
1+i

)T−t
1−

(
1

1+i

)
= A

1

(1 + i)

1−
(

1
1+i

)T−t
i

1+i

= A
1

i

(
1− 1

(1 + i)T−t

)
= A

(1 + i)T−t − 1

i(1 + i)T−t
.

Also, because It + Pt = A, I get

It = A
(1 + i)T−t+1 − 1

(1 + i)T−t+1
,∀t ∈ {1, 2, . . . , T}. (3.3)

Finally using Formula (3.2) for t = 0, I get the annuity formula based on the
loan amount U0 and interest rate i as

A = U0
i(1 + i)T

(1 + i)T − 1
. (3.4)

In figure 3.2 we can see an example of a 10.000 CZK loan with 24 monthly
payments, interest rate 18% p.a. and an additional fix monthly fee of 50 CZK.
The total monthly payment of such loan is approx. 550 CZK and consists of the
decreasing interest part It, the increasing principal part Pt and the fix fee F . On the
right axis we can see the decreasing unpaid principal Ut.

3.2.2 Profit Model Components

For the purpose of this chapter I use the term expected absolute profit of a loan as
the expected value of profit that can a loan providing institution get from providing
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Figure 3.2: Example of a loan installment structure

a loan with specific characteristics (such as loan amount, term, interest rate, fee
etc.) to a specific customer with given characteristics (such as application data,
behavioral data, credit bureau data etc.). Only loans with a constant interest rate,
fix term and fix regular payments at the end of each period are considered.

Then the expected absolute profit (EAP) can be simplified as the combination
of the expected revenue (ER), expected loss (EL) and expected costs (EC) as

EAP = ER−EL−EC . (3.5)

3.2.3 Discounting

Now I denote d the discount rate corresponding to the time interval between
two consecutive payments. Then any future cash flow (including the expected cash
flows) can be discounted to its present value using the discount factor as

PV =
∞∑
t=1

CFt
(1 + d)t

, (3.6)

where PV is the present value of the expected future cash flows CFi in times i,
i ∈ {1, 2, . . . }.

Even though this is an elementary financial mathematics theory, it is in reality
quite an interesting topic to set a proper discount rate for this task. Especially when
we consider the tight connection with the cost of funds and other characteristics
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introduced in later chapters. More information about discount rates and connected
topics can be found in (Ho and Lee, 2004), (Homer and Sylla, 2011) and (Hull,
2009b).

3.2.4 Funding model

The last thing that should be set up before going into details about the profit
components, is the funding model. In my model I assume that all the money issued
as the loan amount are coming from two sources of investors:

1. Shareholders – put the capital into the company and require revenues in re-
turn. The minimum revenue corresponding to the time interval between two
consecutive payments I denote iS.

2. Funding partners – lend their money to the company and expect an interest
iF corresponding to the time interval between two consecutive payments.

For simplicity I assume that all the money is utilized (for the capital) or borrowed
(for the funds) on a revolving basis.2 This means that after each payment of the
customer, the principal part of this payment is immediately repaid to the investors.
Also if the event of default happens, the remaining principal is immediately repaid
and accounted as a loss. Interest is paid regularly every period.

3.3 Expected Loss

For calculation of the expected loss I combine the methods discussed in chapters
1 and 2. If I denote πt the estimated probability of default on the t-th payment
and rt the expected recovery rate after this default, then the present value of the
expected loss can be expressed as

EL =
T∑
t=1

πt(1− rt)
Ut−1

(1 + d)t
, (3.7)

i.e. as the sum of the unrecovered parts of the unpaid principals multiplied by the
probabilities that such default happens, discounted to the time of loan providing.
This is corresponding to the fact that in the case of default, the loan company has
to repay all the unpaid principal of the loan, and this value is discounted to the time

2This is in reality substituted by the fact that loan companies often have a big and well planned
loan portfolio, so as these expected revenues and losses are mostly compensated by a planned new
business.
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of loan issuing. Later the company may get some recoveries from the customer, that
are again discounted with the same discount rate.

The definition of default for the probability of default estimation can be for
example 90 to 180 days past due and has to be identical with the definition of
default for the recovery estimation. In this thesis I work with 90 days definition of
default.

3.3.1 Vector of Default Probabilities

The formula (3.7) contains a vector of probabilities of default for individual
payments. Therefore, now we need for each client to estimate not one value of
probability of default, but a vector of T values – one for each payment. Here the
most straightforward method would be the application of the survival analysis model
from chapter 1, however I also present some alternatives when using the standard
logistic regression model.

When using the logistic regression model, of course, we could have T scoring
functions estimating defaults on T different payments, but due to the fact that those
scoring models would have distinct data samples for defaulted clients,3 there might
not be enough observations for model development. Moreover, it would be quite
complex to maintain so many scoring functions. Therefore, several alternatives of
extrapolation of several payment defaults to the whole installment structure are
presented.

These concepts are not new and I have seen a specific combination of one constant
interval with the exponentially distributed tail in practice. Therefore, the aim of this
section is rather to generalize the existing models (e.g. by extrapolation from the
constant intervals to the curve intervals or general estimation of the exponential tail
in the following subsections), mainly to derive the specific formulas for these models
and combine them with some practical hints based on my financial practice.

Finally, as new methods in this concept, I propose the log-normal model extrap-
olation and the method based on the survival analysis results.

Constant Intervals

The first proposed solution is to analyze the portfolio default rate on individual
payments and combine those that seem to have similar probability of default. Then

3A client usually defaults 90 or more days past due on one payment only, because the contract
is usually terminated in case of such default.
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the PDs can be assumed to be constant in these intervals and modeled by the
standard logistic regression models. In the case of figure 3.3 we could end up with
for example three scoring functions – one for the first payment default, one for the
second to fifth payment default and one for sixth to twenty fourth payment default.
This example is not very far from the practical situation, because in practice it is
sometimes the case that the first one or two payment defaults are higher due to the
fraud or no intention to pay the loan back at all.

Figure 3.3: Example analysis of portfolio default rates on individual payments

Formally, I assume a positive random variable X representing the time of default.
Then I say that the default occurred on t-th payment if X ∈ (t − 1, t〉. Then for
s < t we can develop a scoring function for estimating πs:t the probability that a
default occurred between the s-th and t-th payment, i.e. P(X ∈ (s − 1, t〉) and for
all k ∈ {s, s+ 1, . . . , t} set

πk =
πs:t

t− s+ 1
.

This approach is easy to understand and compute, but in reality the model
can be quite weak. The reason is that usually there are similar factors to affect
the probability of default on late payments as those affecting the default on early
payments, thus the defaults occurring before the s-th payment considered as non-
defaults could weaken the model.

Therefore, I recommend to rather model the probability that the default occurs
between the s-th and t-th payment given the fact that it did not occur before the
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s-th payment, i.e. estimating π∗s:t as

π∗s:t = P
(
X ∈ (s− 1, t〉|X > s− 1

)
.

This can be achieved by an easy transformation, that all the observation with a
default occurring before the s-th payment are removed from the sample. Thus we
get a condition fulfilled for all the observations and we can model the probability
that the default occurs between the s-th and t-th payment on this adjusted sample.

Now from the definition of conditional probability we get

P
(
X ∈ (s− 1, t〉|X > s− 1

)
=

P
(
X ∈ (s− 1, t〉, X > s− 1

)
P(X > s− 1)

=
P
(
X ∈ (s− 1, t〉

)
1− P(X ≤ s− 1)

,

which gives us a recurrent formula

πs:t = (1− π1:s−1)π∗s:t, (3.8)

that can be applied consecutively for any sequence t1 < t2 < · · · < tk < tk+1. Finally,
for any t ∈ {tk, tk + 1, . . . , tk+1} we get

πt =
πtk:tk+1

tk+1 − tk + 1
. (3.9)

Curve Intervals

In the previous section I assumed the probability of default of individual pay-
ments in a given interval to be constant. However, this assumption can be generalized
to other curves as well. In general, various curves can be used for this concept to
set the shape of the probability of default values; however, probably one of the most
convenient approaches could be to estimate the probability of default on two pay-
ments (or some constant intervals) and connect them with a straight line. Formally
assume that for any s′ ≤ s < k ≤ k′ the probabilities πs′:s and πk:k′ are estimated by
the constant interval method and thus the values of πs and πk are computed using
formula (3.9). Then for any t ∈ 〈s, k〉 the probability of default on t-th payment can
be estimated as

πt = πs +
t− s
k − s

(πk − πs). (3.10)

Exponentially Distributed Tail

The first method assumed the probabilities to be constant in given intervals till
the end of the loan. This method is often used for its simplicity; however, for high
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probabilities of default and a very long term it can happen that this extrapolation
for the later payments can lead to the fact that the sum of default probabilities can
be greater than one, which is not mathematically correct.

With the curve intervals the situation can be different, but it can also happen
that the sum of probabilities will be greater than one or some probabilities will be
out of the interval 〈0, 1〉 (e.g. when using a non-constant line).

This problem can be solved by the operation that the tail of this probability
vector (i.e. the probabilities πt for all t greater than some given s) is approximated
using a tail of some probability distribution. Generally, based on the shape of the
observed probability distribution, many distributions can be used for this purpose.
The process of computing the parameters of the distribution based on a set of
estimated probability values followed by a derivation of the formulas for individual
probabilities would be similar, so I use exponential distribution as an example.

Exponential distribution with parameter λ can be defined by its cumulative
distribution function

FE(x, λ) =

{
1− e−λx, if x ≥ 0,

0, if x < 0.

A well known property of the exponential distribution is its memorylessness, that
in this case leads to the proportionality of the consecutive probabilities of defaults.
This I demonstrate at the end of this section.

Now I assume that the probabilities of default π1, π2, . . . , πs are estimated using
the constant or curve interval method4 and my aim is to find an infinite default
probability sequence πs+1, πs+2, . . . so as

∞∑
k=1

πk = 1.

To compute the parameter λ of the exponential distribution, we need one prob-
ability of default to be estimated from the data. For some t > s we can estimate the
conditional probability that the default occurs between time s + 1 and t, provided
that it did not occur until time s, i.e. π∗s+1:t.

First I compute π1:s as

π1:s =
s∑

k=1

πk (3.11)

4In this case I consider s = 1 (i.e. only the probability of first payment default) or even s = 0
(i.e. no probabilities estimated and π0 = 0) as a special case.
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and π1:t as

π1:t = P(X ≤ t)

= P
(
X ≤ t,X ≤ s

)
+ P

(
X ≤ t,X > s

)
= P(X ≤ s) + P(X > s)P

(
X ≤ t|X > s

)
= π1:s + (1− π1:s)π∗s+1:t. (3.12)

Then I assume that the random variable (X − s) has exponential distribution
with parameter λ, i.e. for every x > s we get

P
(
X ≤ x|X > s

)
= 1− e−λ(x−s). (3.13)

To get the formula for λ I first evaluate the exponential part of the distribution
function in the terms of π1:s and π1:t from formulas (3.11) and (3.12),

e−λ(t−s) = P
(
X > t|X > s

)
=

P
(
X > t,X > s

)
P(x > s)

=
P(x > t)

P(x > s)

=
1− π1:t
1− π1:s

.

and then solving the equation above I get the formula for λ as

λ = − 1

t− s
ln

(
1− π1:t
1− π1:s

)
. (3.14)

Similar formula as (3.14) can be also obtained by solving the equation for π∗s+1:t

from expression (3.13). Then λ can be computed directly from the estimated value
of π∗s+1:t as

λ = − 1

t− s
ln
(
1− π∗s+1:t

)
. (3.15)

Finally, for every x > s I evaluate the probability of default on x-th payment as

πx = P
(
X ∈ (x− 1, x〉

)
= P

(
X ∈ (x− 1, x〉, x > s

)
+ P

(
X ∈ (x− 1, x〉, x ≤ s

)
= P(X > s)P

(
X ∈ (x− 1, x〉|x > s

)
=

(
1− P(X ≤ s)

)[
P
(
X ≤ x|x > s

)
− P

(
X ≤ x− 1|x > s

)]
= (1− π1:s)

(
e−λ(x−s−1) − e−λ(x−s)

)
. (3.16)
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This provides a practical guidance for approximating the tail of the probability
distribution by exponential distribution. For a tail of πs+1, πs+2, . . . , we take several
of the first payments (e.g. 6 to 24), where we are still able to observe enough defaults
in our sample (ideally more than 300), use a scoring model (incl. logistic regression
models) to estimate π∗s+1:t, and use formulas (3.11), (3.12) and (3.14) to estimate
the parameter λ. Then all the probabilities πs+1, πs+2, . . . can be approximated by
formula (3.16). These probabilities then fulfill the conditions given by the estimate
of π∗s+1:t (i.e. the computed conditional probability of default will be equal to π∗s+1:t).
Moreover, the sum of all default probabilities will be equal to one.

If I now come back to the above mentioned proportionality of consequent prob-
abilities of default. I can show that for every k > s the proportion of probabilities
πk and πk+1 is constant. Using formula (3.16) I get

πk
πk+1

=
(1− π1:s)

(
e−λ(k−s−1) − e−λ(k−s)

)
(1− π1:s) (e−λ(k−s) − e−λ(k−s+1))

=
e−λ(k−s−1) − e−λ(k−s)

e−λ(k−s) − e−λ(k−s+1)

=
eλ − 1

1− e−λ
= eλ.

This is a useful property of this distribution that is easy to understand and can
serve for checking or computation purposes.

Finally, I take the above mentioned example of three intervals and demonstrate
the difference between the constant interval tail and the exponentially distributed
tail. Assume that there is a set of three logistic regression based scoring models
that are used to create the vector of default probabilities. The first model estimates
the probability of default on the first payment, π1; the second model estimates the
probability of default on the second to fifth payment, given there was no default
on the first payment, π∗2:5, and the third model estimates the probability of default
on the sixth to twenty-fourth payment, given there was no default on the first five
payments, π∗6:24.

Then, as an example, for a specific client we estimate π1 = 10%, π∗2:5 = 20%
and π∗6:24 = 70%. Then using formulas (3.8), (3.11), (3.12) I get π2:5

.
= 18%, π1:5

.
=

28% and π1:24
.
= 78%. Calculating λ from (3.14) I get λ

.
= 0.063. Finally, using

formulas (3.9) and (3.16) I compute the probability vector for this specific client
according to both approaches. In figure 3.4 we can see the estimated values of default
probability vectors for a 60 months loan. On this extreme example we can see that
the probability of default for the constant approximation sums to more than one for
this loan.

In this example the probabilities of default are chosen very high to demonstrate
the differences between these two approaches. In reality the probabilities of default
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Figure 3.4: Comparison of constant and exponential probability vector approxima-
tions

are much lower and the two approaches give more similar results. Moreover, depend-
ing on the real shape of the portfolio default distribution the constant approach can
be even better (especially for low values of probability of default and short terms),
or one can use other probability distributions better fitting the observed shape of
defaults.

Log-Normally Distributed Tail

As an alternative to the exponential distribution also the log-normal distribution
can be used to extrapolate the tail probabilities.

We say that a positive random variableX is log-normally distributed with param-
eters µ and σ if its logarithm ln(X) follows the normal distribution with parameters
µ and σ. Then the distribution function of X is

FLN(x, µ, σ) = Φ

(
ln(x)− µ

σ

)
, (3.17)

where Φ(x) is the distribution function of the standard normal distribution.

Then similarly as for the exponential distribution, we assume that the random
variable (X − s) has the log-normal distribution with parameters µ and σ and for
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every x > s we get

P
(
X ≤ x|X > s

)
= Φ

(
ln(x− s)− µ

σ

)
. (3.18)

Since the log-normal distribution has two parameters, we need to use two esti-
mates of probabilities π∗s+1:t and π∗s+1:u and solve the set of equations

π∗s+1:t = Φ

(
ln(t− s)− µ

σ

)
,

π∗s+1:u = Φ

(
ln(u− s)− µ

σ

)
.

This way we get the parameter σ as

σ =
ln(u− s)− ln(t− s)

Φ−1
(
π∗s+1:u

)
− Φ−1

(
π∗s+1:t

) (3.19)

and µ then as
µ = ln(t− s)− σΦ−1

(
π∗s+1:t

)
. (3.20)

Then again, for every x > s the probability of default on x-th payment can be
calculated using the expression

πx =
(
1− P(X ≤ s)

)[
P
(
X ≤ x|x > s

)
− P

(
X ≤ x− 1|x > s

)]
,

and thus

πx = (1− π1:s)
[
Φ

(
ln(x− s)− µ

σ

)
− Φ

(
ln(x− s− 1)− µ

σ

)]
(3.21)

for x > s+ 1, and

πx = (1− π1:s)Φ
(

ln(x− s)− µ
σ

)
(3.22)

for x = s+ 1.

If I now come back to the example from the previous section, where for a specific
client we had π1 = 10%, π∗2:5 = 20% and π∗6:24 = 70%, I can calculate π∗2:24

.
= 76%

using the alternation of formula (3.12) in the form

π∗s+1:t =
π1:t − π1:s
1− π1:s

. (3.23)

Then using formulas (3.19) and (3.20) I get the parameters µ
.
= 2.337 and

σ
.
= 1.130, and using (3.21) and (3.22) the probability vector for this client. In

figure 3.5 we can see the estimated values compared with the constant intervals and
exponential tail.
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Figure 3.5: Comparison of log-normal probability vector approximation with the
exponential and constant approach

Specific estimate

In the previous sections I dealt with several approaches to extrapolate the results
of the logistic regression-based scoring functions to all the payments. However, as
shown in chapter 1, there are methods that can estimate the probability of default
of a specific client for every single payment from the observed sample.

If I take the repayment survival model introduced in section 1.1.2, I can get the
vector of default probabilities directly from (1.7) as

πt = S(t− 1)− S(t). (3.24)

This is one of the useful advantages of applying the Cox model for the default
modeling. Not only it gives similar performance and apparently better predictions
than the logistic regression model (see section 1.5),5 it also gives the estimation for
default on individual payments, that can be used in a profitability model. This can
bring the additional dimension needed in the profitability model, and thus simplify
the probability vector computations and enhance the model precision.

However, from the non-parametric Cox model we only get the estimation of prob-
abilities of default for the times observed in the development sample, and then some

5This depends on the real default distribution.
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parametric extrapolation needs to be done as well (e.g. using constant, exponential
distribution or log-normal distribution from the previous sections).

To solve this problem, based on the default distribution, any parametric alter-
native can be used as well. Then for example the AFT (accelerated failure time)
model assuming a log-normal distribution can be fitted from the data directly. A
comparison of the AFT and Cox models can be found in (Pazdera et al., 2009).

3.3.2 Recoveries

In this section I come back to the equation (3.7) and explore a little more about
the recovery rates rt. For a specific client we need to estimate the after-default
recovery in case the default happens. This is not only client specific but also depends
on the payment when the default occurred. Similarly as for the probability of default
estimation, in some portfolios there is a concentration of frauds and unwilling to pay
the loan back, that usually leads to default on the first one or two payments and
low recovery after that.

By the recovery rate rt in the terms of the profitability model (3.5) I mean all the
cash flows (CF) received from the customer after the default occurred, discounted
to the time of default and divided by the unpaid principal at the time of default,
i.e.

rt =
1

Ut−1

∞∑
k=0

CFt+k
(1 + d)k

. (3.25)

For simplicity, I do not distinguish the principal, interest, fee and other payments
that can occur during the collection process after default. This way I avoid using
separate models for recovery of these components. This can be quite complicated
due to the pairing algorithm that is based on the contract.6 This way it can easily
happen that a fully recovered loan would have recovery over one. This is in line with
the way I defined the expected revenue in section 3.4, where I do not consider any
interest and fees recoveies after default (since those are considered here).

I make one more remark about the recovery horizon. As per the definition in
(3.25) I formally consider all the future recoveries without any time limitation. How-
ever, in reality our data sample is limited and in fact there are usually negligible
recoveries after several years. Also the discount factor plays a role and the very late
recoveries have a low impact on the total recovery rate. Therefore, in practice we can

6If the client pays some amount of money during the collection process, we would need to
know exactly which debt transaction this money is paired to. Sometimes this algorithm is quite
complicated (e.g. first it should be paired to the principal of the oldest unpaid installment, then to
the interest and fees of this installment, then the same for the second oldest installment up to the
full amount of the debt and penalties after the contract termination, late fees, late interest etc.).
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take some relevant recovery horizon (usually 2–5 years) and consider the recovery
process finished. Then we can either take a conservative approach and assume there
are no more recoveries after this horizon, or we can make an expert estimate about
the rate of future recoveries.

Portfolio Segments

The easiest way to estimate the recovery rate coefficients is to find the most
relevant predictors (usually 1–3), cut the portfolio into several segments based on
these predictors, and analyze the recovery rate separately for each segment. Then
the estimated recovery rate for a given client on a given payment would be taken as
the recovery rate of the corresponding segment.

Although this approach is not very scientific, it is from my experience sometimes
used due to its simplicity and a lack of data.7 As mentioned earlier, the payment
number when the default occurred, should be considered as one of the predictors for
segmentation.

When the segmentation is done, one can look at the recovery rate of individual
segment vintages and make an expert estimation of the expected recovery in the
infinite time. Another option is to suggest a curve that can be fitted to the observed
data and can help with the recovery prediction. Even here the homogeneity of the
recovery process needs to be fulfilled.

In my master thesis (Rychnovský, 2009) I applied some methods on the pool of
recovery data, in order to estimate the recovery rate of the whole data sample.8 One
of the methods was to parameterize the recoveries using the following curve,

rt = µ̌
1− ν̌t

1− ν̌T
, (3.26)

where µ̌ a ν̌ are parameters.

Then I applied this curve on the pool of data for T = 36 months and used
the weighted least squares method to estimate the parameters. In figure 3.6 we can
see the cumulative recoveries of the whole pool together with the curve (3.26) with
T = 36, µ̌ = 0.535 and ν̌ = 0.914.

7For a good recovery model the data sample needs to be very long (i.e. the defaults happening
long time ago) and the collection process should be homogenous (i.e. not changing in time). These
are conditions that are not so easy to satisfy, especially for institutions with short data history or
dynamic processes.

8It was the same data sample as the one used in chapter 2.
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Figure 3.6: Recovery curve estimation for T = 36 using the model (3.26) from
(Rychnovský, 2009)

Recovery Models

When we have a qualifying data sample with long history and homogenous col-
lection process, we can use one of the recovery rate models described in chapter 2.
For this purpose we can even use the number of payments before default as one of
the predictors, or a stratification condition for the data sample.

Thus for a specific client we can estimate the recovery rate corresponding to
every payment of the loan. Again, some reasonable time horizon has to be set and
the ultimate recovery needs to be expertly adjusted.

This is one of the most straightforward applications of the recovery models de-
scribed in chapter 2. Here the performance of the recovery model affects the total
performance of the whole profitability model. Therefore, any improvement in the
model accuracy, stability or prediction power (such as the application of the sur-
vival analysis model presented in this thesis) brings a direct benefit into a company’s
underwriting system and thus the profit of the company.

Insurance

There is a variety of insurance products on the market intending to cover the
customer’s expenses in case a pre-defined unfortunate event happens. Often these
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insurance products are sold together with the provided loan and intend to cover the
loan payments in the case of death, injury or employment loss.

Not only the existence of the insurance needs to be considered in the expected
revenue stream (since when sold as a byproduct with the loan it brings additional
revenue), it can also affect the recovery for the insured customers.

Depending on the penetration of the insurance in our sample, the payout con-
ditions and the length of the sample history, I propose several ways to work with
insurance. If the history is sufficient, it is in my opinion best to use the insurance
as one of the predictors for the probability model or segmentation and get the real
payoff impact from the data directly. Then there is no need for further adjustments.

On the other hand, if the history of the product is insufficient, we can estimate the
payoff probability of the insured customer – either by a probability model (e.g. using
the logistic regression), or by a constant that we get from the historical data (either
from our institution or from the insurance company), or by an expert estimation. In
this case, the adjusted recovery rate for the insured customers can be calculated as

rt = κa+ (1− κ)r∗t ,

where κ is the probability of the insurance payoff, a is the recovery rate value in the
case of insurance payoff (e.g. 120%, covering the principal and interest debt of the
customer) and r∗t is the original recovery rate without considering insurance.

3.4 Expected Revenue

Compared to the estimation of the expected loss, the expected revenue part
is much more deterministic. I take the loan repayment structure from section 3.2.1
and express the expected part of the interest, fees and insurance using the estimated
probabilities of default on individual payments. As mentioned already, the recovery
part of the interest, fees and insurance is included in the recovery rate model and
propagated to the expected loss calculation.

Therefore, for the purpose of the expected revenue, only revenues of non-defaulted
payments should be considered. Furthermore, it follows that after a defaulted pay-
ment there are no revenues as well, since the case is already in the collection process
and all additional interest, fees etc. are included in the recovery calculation as well.
Therefore, the revenue is only considered if there was no default up to and including
the corresponding payment.

I remind that the default can happen only once, the events are distinct and the
probability that the event did not happen up to and including the t-th payment can
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be expressed as

P(X > t) = 1− π1:t = 1−
t∑

k=1

πk.

Even though the expected revenue can consist of various components, for the
purpose of this model, I simplify it as

ER = ERI + ERF + ERC + ERN , (3.27)

where ERI is the expected interest profit, ERF is the expected profit from fees,
ERC is the expected profit from commission and ERN is the expected profit from
insurance. All these components are to be discounted appropriately.

3.4.1 Interest

Taking into account the interest part of each payment expressed in (3.3), I can
compute the expected interest revenue ERI as

ERI =
T∑
t=1

(
1−

t∑
k=1

πk

)
It

(1 + d)t
.

Using the formula for interest of t-th payment, It = iUt−1, this can also be written
as

ERI =
T∑
t=1

(
1−

t∑
k=1

πk

)
iUt−1

(1 + d)t
.

3.4.2 Fees

Since fees are considered to be constant payments F for the services connected
with the loan, the expected revenue from the fees can be expressed as

ERF =
T∑
t=1

(
1−

t∑
k=1

πk

)
F

(1 + d)t
.

3.4.3 Commission

By a commission I mean the commission the loan company gets for providing a
loan. For example when we are talking about consumer loans provided for buying
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certain goods, the retailer can give a commission to the loan company to offset a
lower interest of the loan.9

The commission is often a one-off payment directly after the sales. Thus, there
is no discounting and no default losses connected, and especially in high interest or
risky markets this kind of a certain revenue can significantly improve the profitability
of the loan.

The commission can be either fixed C or for example defined as a percentage c
of product price or a loan amount. Then we get

ERC = C + cU0.

3.4.4 Insurance

The last mentioned revenue component is insurance. Loan companies often sell
insurance products alongside with loans and get a brokerage for the sales. Again, the
product can be designed in various ways, where in my experience the most common
are:

1. Charging a one-off brokerage at the beginning of the loan.

2. Charging a fix or unpaid principal based brokerage together with each pay-
ment.

3. Charging a one-off brokerage together with charging all the insurance fees to
the customer at once at the beginning of the loan, usually by adding it to the
credit amount (and therefore charging additional interest from it).

Either way, if I denote the N0 the one-off brokerage at the beginning of the loan
and Nt the insurance revenue from the t-th payment, I can express the expected
revenue from the insurance as

ERN = N0 +
T∑
t=1

(
1−

t∑
k=1

πk

)
Nt

(1 + d)t
.

3.5 Expected Costs

The last profit component in my model is the expected costs. Again, there are
various costs that could be included in the model and their importance will always

9This is often the case when seeing zero interest loans or a cheaper product price when purchased
with a loan.
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depend on the business specifics. Generally, I divide the expected costs into the
expected fix costs ECF , expected variable costs ECV , expected time dependent costs
ECT and expected collection costs ECC as

EC = ECF + ECV + ECT + ECC . (3.28)

3.5.1 Fix Costs

By the fix costs I mean all the costs connected to the loan providing business
that are not directly allocated to a specific loan or a collection activity (e.g. office
rental costs, personal expenses except loan selling incentives, costs of technology
etc.).

From the microeconomic point of view these costs should not be considered in
the decision about an individual loan providing, since for profit optimization we
should consider only marginal revenue and marginal cost of the tranche. Then the
fix cost optimization is a separate task for the finance department. Even though
some managers might disagree, for the purpose of this model I set

ECF = 0.

3.5.2 Variable Costs

By the variable costs I mean all the one-off costs at the beginning of the loan
connected with issuing of the loan. It can include any absolute or relative commis-
sions for the loan seller, retailer, costs for contracts postage etc. If I denote all these
absolute costs as V and relative costs of the loan amount as v, I can put

ECV = V + vU0.

3.5.3 Time Dependent Costs

Apart of the fix costs and the one-off variable costs, there are further costs
connected with the duration of the loan or amount of the borrowed money. As an
example I can mention a servicing cost s that I count for every period that the
loan is not defaulted (after default I assume the collection cost mentioned in the
next section), and the cost of funds that the company needs to pay to the investors
providing the funding of the loan. This is assumed to be the minimal required revenue
of the shareholders iS and the interest rate iF that the company pays to the funding
partners. If a default occurs, I assume that the money is paid back immediately as
the default losses.
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Furthermore, I assume that ρ is a constant ratio of capital in the loan principal.10

Then using the servicing cost s and the total funding interest rate ρiS + (1− ρ)iF ,
both only in the case of no default, I can evaluate the expected time dependent costs
as

ECT =
T∑
t=1

(
1−

t∑
k=1

πk

)
s+

(
ρiS + (1− ρ)iF

)
Ut−1

(1 + d)t
.

3.5.4 Collection Costs

Finally, by the collection costs I mean the costs that need to be paid in the case
that the client defaults. These cost should cover all the unit costs Γ, like costs of
phone calls, postage, time of the operators etc, as well as the costs connected with
the unpaid principal of the loan, like court fees, executory fees etc. For simplicity
I assume it to be a percentage γ from the unpaid principal at the time of default.
Then the collection costs can be expressed as

ECC =
T∑
t=1

πt
Γ + γUt−1
(1 + d)t

.

3.6 Expected Profit

Coming back to the expected absolute profit formula (3.5) I combine the formulas
in the previous sections to the final expression

EAP = C +N0 − V + (c− v)U0 + (3.29)

+
T∑
t=1

(
1−

t∑
k=1

πk

)
F +Nt − s+

(
i− ρiS − (1− ρ)iF

)
Ut−1

(1 + d)t
+

+
T∑
t=1

πt
−Γ− (1− rt + γ)Ut−1

(1 + d)t
,

where πt and rt are properly modeled values of the probability of default and recovery
rate of the customer on each payment, considering possible insurance payoff.

Now putting aside any other manual activities (like documents checking, em-
ployment verification, manual underwriting etc.), with the expected absolute profit
formula (3.29) one can setup the automated underwriting system as

10The minimal proportion of the capital can by required by the funding partner and is usually
required by the regulation.
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• If EAP > 0 then APPROVE.

• If EAP ≤ 0 then REJECT.

This means that the company approves all loans that are expected to bring
profit, and reject all loans that are expected to make losses. Strictly speaking, this is
a mathematically correct approach to maximize the expected profit of the company
from the loan providing business.

However, in the real business many more aspects are usually considered (e.g.
imperfection of the model, overall company strategy and risk appetite or an increased
requirement on the profitability of the business) that lead to the fact that one needs
to set a threshold for the approval or rejection other than zero profit.11

In this case I start questioning the above defined expected absolute profit to be
the only and correct measure for approval and rejection. Therefore, I provide also
several alternatives to be considered.

3.6.1 Absolute Profit

The EAP characteristics from formula (3.29) answers the question what is the
absolute amount of the risk adjusted profit the company gets from providing this
loan. In my opinion, this characteristics should be considered for the companies,
where funding is no limitation and a big issue is attracting new customers. Then
using EAP maximizes the absolute profit from each customer.

3.6.2 Relative Profit

By the expected relative profit I mean the expected absolute profit divided by
the original loan amount, i.e.

ERP =
EAP

U0

. (3.30)

I would suggest using this approach for the cases when there is a limitation
of funding and the company wants to maximize the profit coming from providing
one currency unit in a loan for customers in the present time, i.e. not considering
repeated loans.

11For example negative, if a company strategy is to achieve a high market share in a short time
and is willing to do some unprofitable business to serve more customers; or positive, if an economic
crisis is expected.
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3.6.3 Internal Rate of Return

Whereas the absolute and relative profit characteristics are taken purely from the
perspective of the loan providing company, the internal rate of return is a character-
istic that should be considered in the case of investing the company’s own money.
Therefore, I consider the net present value (NPV) and the internal rate of return
(IRR) of such investment. More information about investment metrics can be found
e.g. in (Promislow, 2014).

If I look at the provided loan as an investment of U0 at the time t = 0, I can
rearrange the formula (3.29) in the form of the risk-adjusted net present value (NPV)
as a function of discount rate δ.

The NPV formula should consist of the negative value of the initial investment
U0 and the expected value of all the future cash flows between the company and the
customer. In this case I do not need to distinguish the interest part and the principal
part, but simply replace it by the annuity A, that is paid in the case of no default
occurring before the payment, and the recovery amount rtUt−1, that is recovered in
the case of default. Also the cost of funding part is excluded.

Then the risk-adjusted expected net present value of the loan with discount rate
δ can be computed as

NPV(δ) = −U0 + C +N0 − V + (c− v)U0 + (3.31)

+
T∑
t=1

(
1−

t∑
k=1

πk

)
F +Nt − s+ A

(1 + δ)t
+

+
T∑
t=1

πt
−Γ + (rt − γ)Ut−1

(1 + δ)t
.

Finally, the risk-adjusted expected return on investment corresponding to the
time interval between two payments, is the value of the discount rate δ that solves
the equation

NPV(δ) = 0. (3.32)

This equation is usually solved numerically by the bisection method or the
Newton-Raphson method (see e.g. in (Brandimarte, 2003), (Ypma, 1995) or (Ver-
beke and Cools, 1995)). In some cases the equation might have more than one solu-
tion and the convergence algorithm must be slightly adjusted (see e.g. (Cannaday
et al., 1986), (Flemming and Wright, 1971) or (Colwell, 1995)).

The risk-adjusted expected internal rate of return is a characteristic I would
suggest using in the situation when the company is in the position of the only
investor, there is no strict limitation of the clients or capital and the company wants
to achieve best return of their investment.
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3.6.4 Return on Equity

The last characteristic I propose, is the risk-adjusted expected return on equity
(ROE) from this particular loan, corresponding to one period. This characteristics
is very similar to the above specified internal rate of return, just assumes that the
equity is only used to cover a specific part of the loan amount.

Similarly as in section 3.5.3 I assume that a proportion ρ of the loan amount is
covered by the equity from the shareholders and the rest of the loan amount, i.e.
(1− ρ)U0, is funded from some external sources with interest rate iF . In this case I
change in formula (3.31) the initial investment to ρU0.

Now I need to calculate the interest and principal repayments of the funding.
Here I consider two alternatives. First alternative is a standard loan from the funding
partner with the loan value (1−ρ)U0, term T and interest iF . Then independently of
the client’s behavior, the company needs to repay every time interval a fixed annuity
A(1−ρ)U0,T,iF , that is calculated as

A(1−ρ)U0,T,iF = (1− ρ)U0
iF (1 + iF )T

(1 + iF )T − 1

and the final NPV formula can be expressed as

NPV(δ) = −ρU0 + C +N0 − V + (c− v)U0 + (3.33)

+
T∑
t=1

(
1−

t∑
k=1

πk

)
F +Nt − s+ A

(1 + δ)t
+

+
T∑
t=1

πt
−Γ + (rt − γ)Ut−1

(1 + δ)t
−

−
T∑
t=1

(1− ρ)U0

(1 + δ)t
iF (1 + iF )T

(1 + iF )T − 1
.

The second alternative is the funding scheme described in section 3.2.4, i.e. a
revolving loan with the initial loan amount of (1 − ρ)U0 and interest rate iF . This
loan is paid according to client’s repayment. This means that every time period t
when the client repays the principal part of the loan Pt, the company will repay the
appropriate part of the principal (1 − ρ)Pt to the funding partner, together with
the interest payment iF (1− ρ)Ut−1 corresponding to the period. This happens only
if the client has not defaulted up to this payment. On the other hand, if the client
defaults on t-th payment, all the remaining principle of (1−ρ)Ut−1 is repaid at once,
together with the corresponding interest iF (1− ρ)Ut−1.
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Then the NPV formula changes to the form

NPV(δ) = −ρU0 + C +N0 − V + (c− v)U0 +

+
T∑
t=1

(
1−

t∑
k=1

πk

)
F +Nt − s+ A

(1 + δ)t
+

+
T∑
t=1

πt
−Γ + (rt − γ)Ut−1

(1 + δ)t
−

−
T∑
t=1

(
1−

t∑
k=1

πk

)
iF (1− ρ)Ut−1 + (1− ρ)Pt

(1 + δ)t
−

−
T∑
t=1

πt
(1 + iF )(1− ρ)Ut−1

(1 + δ)t
,

that can be re-arranged as

NPV(δ) = −ρU0 + C +N0 − V + (c− v)U0 + (3.34)

+
T∑
t=1

(
1−

t∑
k=1

πk

)
F +Nt − s+ A− iF (1− ρ)Ut−1 − (1− ρ)Pt

(1 + δ)t
+

+
T∑
t=1

πt
−Γ + (rt − γ − (1− ρ)− iF (1− ρ))Ut−1

(1 + δ)t
.

Finally, based on the funding model, the NPV of (3.33) or (3.34) can be set to
zero and the root of this equation I take as the final risk-adjusted expected return
on equity from this particular loan, corresponding to one period. Same as for the
IRR, this equation is usually solved numerically and the proper solution needs to
be selected.

I would suggest using this characteristic in the situation, when there are no strict
limitations on the number of clients or funding, and our main priority is to maximize
the shareholders’ return on equity.

3.7 Data Simulation

In this section I aim to implement the proposed profitability models on the
sample of banking data to simulate the impact of the profitability model. There are
no complete banking data available for this research, so I decided to use the data
sample from chapter 1 and simulate the values that are not known. Even though
this approach will not give the fully authentic results for this sample, it enables me
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to illustrate the impact and simulate the sensitivity on two different settings of the
values.

Therefore, since some of the key characteristics are not provided in the sample, I
simulate the potential values and calculate the profitability of every single loan. Then
I simulate the automated approval process based on the probability of default (PD)
as well as on the four profitability measures (EAP, ERP, IRR, ROE) introduced in
the previous section. Finally, I compare the methods and show the sensitivity on
some of these parameters. The whole model is implemented in MS Excel.

3.7.1 Data Overview and Sample Preparation

For the purpose of this analysis I take the comparison random sample of 2,835
clients from chapter 1 together with the variable ID as the identifier, credit limit
indicating the credit amount of the particular loan, variable effect indicating the
month when the loan was issued and variable maturity indicating the month of loan
maturity (all the selected loans in this sample have a fixed end). For all of these
clients I also use the Cox estimations of the survival probabilities for all times.

For all of the loans I calculate the term in months and limit it to maximum of
72 months (there were a few outliers). Thus I get a sample of 2,835 loans with the
loan value U0, term T and the probability of default estimations by the Cox model.

3.7.2 Estimation of the Vector of Default Probabilities

Now I need to set the default probability vectors for individual payments of
each client. Since in this sample the Cox model gives relevant individual survival
probability estimations only up to about 48 months (due to a low number of obser-
vations defaulting in higher terms), I need to extrapolate the probability vector to
the maximum term (i.e. up to 72 months for some loans).

For this purpose, I use the value of the survival function for 48 and 60 months
to estimate the parameter λ of the exponential distribution for each loan. Then the
probabilities of default for individual payments are calculated as

πt = S(t− 1)− S(t), for t ∈ {1, 2, . . . , 48},

and
πt = S(48)

(
e−λ(t−49) − e−λ(t−48)

)
, for t ∈ {49, 50, . . . , 72}.

In figure 3.7 we can see the vectors of default probabilities for the first three
loans in the sample.
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Figure 3.7: Vectors of default probabilities for the first three loans in the sample

3.7.3 Simulation of Characteristics

Now I need to simulate the rest of inputs for the profitability model. First I
simulate all the values to be the same for all clients and then I simulate some
progression in the interest rate i and the capital share ρ. Also I assume that some
of the clients took the insurance with monthly payment N .

Similar Loan Characteristics

All the loans in the sample have the real loan value and term, together with the
personalized estimated probability of default. However, the following parameters I
set the same for the whole portfolio,

• i = 0.8% – interest rate 0.8% per month (9.6% p.a.),

• F = 10 – fee charge 10 CZK per month,

• N = 0 – zero insurance income,

• C = 0 – zero commission from retailer,

• c = 0% – zero commission from retailer,

• V = 200 – variable cost 200 CZK per approved contract,
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• v = 0.5% – variable cost 0.5% of approved credit amount,

• s = 50 – servicing cost 50 CZK per month,

• iF = 0.1% – funding interest 0.1% per month (1.2% p.a.),

• iS = 1% – shareholders’ interest 1% per month (12% p.a.),

• ρ = 10% – share of capital 10% of the principal amount,

• Γ = 500 – collection cost 500 CZK in case of default,

• γ = 1% – collection cost 1% of unpaid principle in case of default,

• d = 0.1% – discount rate 0.1% per month (1.2% p.a.).

Now I am able to calculate the loan annuity A, outstanding principle structure Ut,
principle payment structure Pt, as well as all the profitability measures EAP, ERP,
IRR and ROE for each loan.12 In figure 3.8 we can see the relation between the
probability of default and the expected relative profit for this simulation. As we can
see from this chart, there is a visible negative correlation of these two measures (i.e.
the higher probability of default, the lower expected relative profit). The Pearson
correlation coefficient of this pair is −0.60. Given the equal simulated values, this is
in line with my expectation and it suggests that the simulation works as expected.

In table 3.1 we can see the correlations of all the characteristics that can be used
for approval or rejection of the loans. As we can see from the table, the characteristics
IRR and ROE are fairly similar in this comparison.

Table 3.1: Pearson correlation structure in the similar loan characteristics simulation

Pearson PD EAP ERP IRR ROE

PD 1.00 −0.43 −0.60 −0.65 −0.65
EAP −0.43 1.00 0.71 0.71 0.72
ERP −0.60 0.71 1.00 0.90 0.90
IRR −0.65 0.71 0.90 1.00 0.99
ROE −0.65 0.72 0.90 0.99 1.00

Progressive Loan Characteristics

As an alternative to the similar loan characteristics approach I simulate the
progressive risk-based pricing, which is closer to the market standard in the Czech
Republic. In this approach I assume that the loan interest rate and the capital ratio
are functions of the risk estimation of the client (particularly the probability of

12For calculation of IRR and ROE I use a simple macro in Visual Basic.
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Figure 3.8: Relation between the probability of default and the expected relative
profit for the similar loan characteristics simulation

default on the first 24 months) and approximately one third of the clients would
take insurance.

Therefore, I keep the values as for the similar loan characteristics simulation,
just change i, ρ and N as follows,

• i = 4%+π1:24
12

– interest rate as a function of the estimated probability of default
of the specific client,

• N =

{
200, if ID mod 3 = 0,

0, if ID mod 3 6= 0.
– insurance payment of 200 CZK monthly for

one third of clients and no payment for the rest.

• ρ = 2.4% + π1:24 – share of capital as a function of the estimated probability
of default of the specific client.

Now I again calculate the loan annuity A, outstanding principle structure Ut,
principle payment structure Pt, as well as all the profitability measures EAP, ERP,
IRR and ROE for each loan.
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For comparison, in picture 3.9 we can again see the relation between the proba-
bility of default and the expected relative profit for this simulation. Here the char-
acteristics show a slightly positive correlation (i.e. the higher probability of default,
the higher expected relative profit) and the Pearson correlation coefficient of this
pair is 0.28. This is mainly connected to the fact that the higher default probabilities
are associated with higher interest rates in this simulation.

In table 3.2 we can again see the correlations of all the characteristics. As we can
see from the comparisons of tables 3.1 and 3.2, with the progressive simulation the
characteristics are generally less correlated.

Figure 3.9: Relation between the probability of default and the expected relative
profit for the progressive loan characteristics simulation

Table 3.2: Pearson correlation structure in the progressive loan characteristics sim-
ulation

Pearson PD EAP ERP IRR ROE

PD 1.00 0.30 0.28 0.32 −0.12
EAP 0.30 1.00 0.59 0.44 0.35
ERP 0.28 0.59 1.00 0.87 0.75
IRR 0.32 0.44 0.87 1.00 0.85
ROE −0.12 0.35 0.75 0.85 1.00
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3.7.4 Approval Process Simulation

In this section I simulate the automated underwriting process and compare its
results when using different characteristics as the driver for approval decision. With
all the characteristics calculated, the simulation is done in the way that it is assumed
that the current approval process is approving 75% of applicants based on their
probability of default, and the alternatives should be approving either the same
number of applicants, or similar volume of loans based on individual profitability
measures.13

Then for each of the measures I compute one threshold, such as 75% of applicants
have the expected value of this measure over the threshold and are assumed to be
approved. In this case the threshold is actually given by the upper quartile of all the
values of this measure in the sample. Then I compute a second threshold, such as
the total loan volume of the approved customers is similar to the volume of the 75%
of clients approved by the probability of default. In this case such value is found
numerically by a simple macro.

Then for all of the characteristics and both schemes I know which specific clients
are assumed to be approved and which are rejected, so I am able to easily com-
pute the key expected business, profitability and risk characteristics of the approved
portfolio, which are

• approved volume (apr. volume);

• number of approved applications (num. apr.);

• average probability of default of the approved clients (avg. PD);

• average probability of default of the approved clients weighted by the loan
amounts (avg. vol. PD);

• average expected absolute profit of the approved clients (avg. EAP);

• total expected absolute profit of the approved clients (sum. EAP);

• average expected relative profit of the approved clients (avg. ERP);

• average expected relative profit of the approved clients weighted by the loan
amounts (avg. vol. ERP);

• average internal rate of return of the approved clients (avg. IRR);

13Similar approval process simulations are often done in financial practice, whenever there is a
change in the underwriting model or process. In this case I simulate the impact of the change of
the whole underwriting model under the assumption of the same approved number of clients or
the same volume. Of course, in reality the real approved volume could be adjusted before the real
implementation based on the results.
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• average internal rate of return of the approved clients weighted by the loan
amounts (avg. vol. IRR);

• average return of equity of the approved clients (avg. ROE);

• average return of equity of the approved clients weighted by the loan amounts
(avg. vol. ROE).

Similar Loan Characteristics

First for the case of the similar loan characteristics simulation the results are
summarized in table 3.3 for the case of approving similar number of cases and in
table 3.4 for the case of similar approved volume.

Table 3.3: Results of the similar loan characteristics simulation and similar number
of approved clients

Method PD EAP ERP IRR ROE

Q75 6.55% 751 2.14% 0.29% 1.95%
Apr. volume 130,722,330 148,914,232 147,462,032 147,185,232 146,668,232
Num. apr. 2,124 2,126 2,126 2,124 2,126
Avg. PD 3.29% 4.13% 4.02% 3.93% 3.92%

Avg. vol. PD 3.22% 4.17% 4.09% 4.01% 3.98%
Avg. EAP 6,559 7,198 7,190 7,186 7,175
Sum. EAP 13,930,454 15,303,190 15,286,101 15,262,184 15,253,516
Avg. ERP 8.47% 9.60% 9.61% 9.60% 9.60%

Avg. vol. ERP 10.66% 10.28% 10.37% 10.37% 10.40%
Avg. IRR 0.48% 0.51% 0.51% 0.51% 0.51%

Avg. vol. IRR 0.55% 0.53% 0.54% 0.54% 0.54%
Avg. ROE 3.81% 4.10% 4.11% 4.12% 4.12%

Avg. vol. ROE 4.45% 4.31% 4.34% 4.34% 4.35%

As we can see from table 3.3, when using the profitability measures for approval,
the risk of the portfolio generally rises (measured by the avg. PD or avg. vol. PD),
but the volume and profitability of the business rise as well (except for the Avg.
vol. IRR). Moreover, we can see that the use of each characteristic maximizes the
its average value on the approved portfolio (and Sum. EAP respectively).

On the other hand, when we simulate the approved volume to be on the same level
as for the PD approval (results in table 3.4), the number of approved cases decreases
and the measures optimize their weighted average (and Avg. EAP respectively). For
example when using the ERP measure, we can conclude that this approach can bring
a relative increase of 5.4% in the expected relative profitability of the business (as
11.24%/10.66% = 1.0544).
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Table 3.4: Results of the similar loan characteristics simulation and similar approved
volume

Method PD EAP ERP IRR ROE

Q75 6.55% 2 745 4.79% 0.39% 2.93%
Apr. volume 130,722,330 130,722,456 130,801,178 130,787,018 130,750,018
Num. apr. 2,124 1,703 1,793 1,791 1,808
Avg. PD 3.29% 3.80% 3.65% 3.40% 3.40%

Avg. vol. PD 3.22% 3.90% 3.70% 3.50% 3.49%
Avg. EAP 6,559 8,570 8,196 8,134 8,068
Sum. EAP 13,930,454 14,594,614 14,695,586 14,567,706 14,587,449
Avg. ERP 8.47% 10.93% 10.75% 10.63% 10.60%

Avg. vol. ERP 10.66% 11.16% 11.24% 11.14% 11.16%
Avg. IRR 0.48% 0.54% 0.54% 0.54% 0.54%

Avg. vol. IRR 0.55% 0.56% 0.56% 0.56% 0.56%
Avg. ROE 3.81% 4.42% 4.38% 4.42% 4.40%

Avg. vol. ROE 4.45% 4.53% 4.55% 4.58% 4.58%

Progressive Loan Characteristics

Now for the case of the progressive loan characteristics simulation the results are
summarized in table 3.5 for the case of approving similar number of cases and in
table 3.6 for the case of similar approved volume.

Table 3.5: Results of the progressive loan characteristics simulation and similar num-
ber of approved clients

Method PD EAP ERP IRR ROE

Q75 6.55% 1,945 4.02% 0.30% 3.81%
Apr. volume 130,722,330 147,141,936 143,330,853 143,144,242 148,097,682
Num. apr. 2,124 2,126 2,126 2,124 2,126
Avg. PD 3.29% 5.53% 5.73% 5.91% 5.34%

Avg. vol. PD 3.22% 5.24% 5.41% 5.51% 5.13%
Avg. EAP 6,952 10,475 10,429 10,384 10,459
Sum. EAP 14,766,331 22,270,030 22,171,502 22,055,569 22,235,567
Avg. ERP 11.46% 17.90% 17.96% 17.88% 17.80%

Avg. vol. ERP 11.30% 15.14% 15.47% 15.41% 15.01%
Avg. IRR 0.57% 0.81% 0.82% 0.82% 0.81%

Avg. vol. IRR 0.54% 0.68% 0.69% 0.70% 0.68%
Avg. ROE 6.94% 8.23% 8.19% 8.15% 8.24%

Avg. vol. ROE 6.74% 7.11% 7.16% 7.15% 7.10%

From this comparison we can see a much higher differentiation of the outcome
portfolio characteristics. Here both the risk and profitabilities increase substantially
when using the profitability measures.

To compare with the first example, when again using the ERP measure to ap-

101



Table 3.6: Results of the progressive loan characteristics simulation and similar ap-
proved volume

Method PD EAP ERP IRR ROE

Q75 6.55% 3,437 5.09% 0.33% 4.34%
Apr. volume 130,722,330 130,742,819 130,748,422 130,961,742 130,821,602
Num. apr. 2,124 1,795 1,932 1,947 1,783
Avg. PD 3.29% 5.78% 5.96% 6.18% 5.55%

Avg. vol. PD 3.22% 5.44% 5.66% 5.81% 5.29%
Avg. EAP 6,952 11,919 11,177 11,016 11,911
Sum. EAP 14,766,331 21,394,748 21,593,532 21,448,993 21,238,048
Avg. ERP 11.46% 20.07% 19.30% 19.07% 20.04%

Avg. vol. ERP 11.30% 16.36% 16.52% 16.38% 16.23%
Avg. IRR 0.57% 0.87% 0.86% 0.87% 0.89%

Avg. vol. IRR 0.54% 0.72% 0.73% 0.73% 0.72%
Avg. ROE 6.94% 8.70% 8.58% 8.51% 9.04%

Avg. vol. ROE 6.74% 7.41% 7.40% 7.37% 7.50%

prove a similar volume of loans, we can conclude that this approach can bring a
relative increase of 46.2% in the expected relative profitability of the business. On
the other hand the portfolio risk would increase 75.8%. This is mainly connected to
fact that the risk based pricing was set in the way that the most risky clients got
such interest rate that they become more profitable than the low risk clients (this
follows from the negative correlation).

However, from this comparison we can see that for specific market conditions
the difference between risk and profitability of loans can be big and a profitability
based underwriting model can bring a substantial increase of loan profitability. Here
it is important to note that the situation is more complicated in the real business
and any potential implementation of such model needs to be well evaluated based
on various business aspects.

3.8 Conclusions

The aim of this chapter was to create a complex model that estimates the prof-
itability of every single consumer loan in the approval process, based on the clients’
and loans’ characteristics. For this model I suggest four profitability measures that
can be used for the approval decision and simulate the outcome of the approval
process based on these measures.

I believe that these simulations in the consumer loan area contribute to the re-
cent research about profitability models. Moreover, the specifically derived formulas
simplify the implementation of such model and enable the loan providing companies
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to optimize the expected profit from the customer base instead of just minimizing
the risk. Such an approach can bring additional profitability for the loan providing
company as well as for its shareholders.

For the model building I used a lot of inspiration from my experience in the
consumer loan business and managed to combine it with my research in the prob-
ability of default estimation and recovery rate modeling. Especially the Cox model
used in the probability of default modeling enables to estimate the probability of
default of a specific customer on every payment, which is one of the key inputs of
the profitability model.

I took the basic idea of the profitability models described in (Allen et al., 2004)
and (Stein, 2005), explored the theory and applied its logic into the consumer loan
scheme that I know from my professional experience. I derived all the formulas in this
chapter and incorporated several other potential costs and revenue streams. Then
I defined four profitability measures and assessed them for practical use. Finally, I
constructed a data analysis where I compared the performance of the profitability
model with the standard risk based approval approach. Even though the data was
partially simulated, the analysis shows that the profitability model brings an addi-
tional profit to the company, especially under some specific market conditions. On
the other hand the risk of the portfolio rises as well, which needs to be well evaluated
before such approach is used.

In the real business, these profitability measures can be used when the system is
automatically deciding about the approval or rejection of an existing loan applica-
tion; however, often the system is just pre-approving some applications and deciding
about their further approval process. One of modern trends is then a dynamic cal-
culation of the loan interest rate based on clients’ characteristics, where this interest
rate is then offered to the client. This is called dynamic scoring or dynamic pricing,
and it can be done either after a specific loan application, or continuously calculated
for the whole existing customer portfolio.

With this profitability model, the use of dynamic pricing is very straightforward.
The loan providing company can set a minimal or optimal value of any chosen
profitability measure, and the corresponding interest rate can be computed auto-
matically. Then clients can get their tailor-made interest rate immediately after the
loan application.

This approach can be further enhanced by considering other potential inputs for
the model. One potential input to be considered can be estimation of the probability
of early repayment, that can decrease the expected revenue quite significantly. An-
other improvement can be a calculation of the expected revenues from future loans
of the customers. This is called cross selling and it is quite common that the com-
pany is willing to sacrifice some profit in the first loan (e.g. by a decreased pricing)
to get more profit from the cross sell loans. Finally, this presented approach only

103



works with the expected characteristics and not the full distribution of the potential
outcomes. By considering the full distribution (often assumed to be normal) one
could get to the value at risk approach, i.e. estimation of profit with a confidence
level. Such approach is used for example in (Crouhy et al., 2000).
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Chapter 4

Default Concentrations Discovery

In this chapter I aim to discuss some of the weaknesses of the scoring and prof-
itability models described in the previous chapters and propose alternative methods
that can partially treat the consequences of these weaknesses. Consequently, I also
aim to solve the fraud discovery problem from the credit risk practice. My solution
consists of two main parts – first I define a measure that in my opinion best distin-
guishes the fraudulent segments, and second I discuss and compare several methods
for finding such segments in a big portfolio of data.

When using the models of the previous chapters, one could get under impression
that such comprehensive models will maximize the profit and prevent the company
from all potential losses. This is in reality not true and many more further actions
need to be taken to discover default concentrations in the portfolio and prevent
various forms of individual or organized fraud.

In the financial practice this fraud monitoring and prevention scheme is stan-
dardly based on a set of one-dimensional or two-dimensional analyses or reports.
However, these simple conditions are often unable to discover a more complicated
fraud pattern and more advanced data mining methods are needed. In the schol-
arly literature, this topic is usually neglected and up to my knowledge, there are no
publications solving this particular problem.

In this chapter I aim to define three default severity measures, that can be used
to identify severe default concentrations, and discuss several approaches to find these
concentrations in a big data set. Finally, two methods are compared on a sample of
real financial data.
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4.1 Introduction

If we shortly have a look at how the risk or profit of the client is evaluated by
the models, we can see that most of the model setup is based on the statistics and
expected values. Specifically, a scoring function combines the risk characteristics of
the clients to compute the score – then for example according to figures 1.4, 1.5
and 1.6 we can conclude that a highly educated middle-aged married person will
have statistically a very low risk, but does is mean there cannot be any default
concentrations in some region or product?

The statistics of the scoring models works well on the whole portfolio; however, it
can easily happen that a relatively small segment of the portfolio will not be reflected
by the scoring model, even if it is already in the scoring development sample. This
could be illustrated by the fact that even if this segment with very high delinquency
is discovered and a binary segment indicator is created, this predictor would have
a very low Gini value due to the low number of observations in the risky category.
This also means that such a predictor will not be selected to the final model, because
the Wald tests would not reject the null hypothesis.

Moreover, in reality it can happen that there is an organized group of applicants
that uses the weaknesses of the underwriting scheme and intentionally provide the
application data in the way that it increases the chance of approval or increases the
credit amount the company is willing to lend (e.g. by providing fake information that
is difficult to verify, or by increasing the expected profit by a higher interest rate or
an insurance). This is considered as a fraud behavior and it is often connected with
high delinquencies of this group (either because of repayment problems or because
of no intention to pay at all). And vice versa, a very high concentration of default
often points to a fraud activity.

This is the main motivation for this chapter. Whereas the underwriting pro-
cess, based on the models from the previous chapters and other manual activities,
focuses on revealing fraudulent and insolvent clients prior approval to reject their
loan application in time, there are other processes more oriented to discover fraud
patterns and default concentrations after the loans are issued. For this purpose,
clients’ delinquencies are measured on daily basis, and concentrations on the most
important dimensions (such as products, regions, branch offices, credit agents etc.)
are reported by automated alarm systems.

However, in reality fraud schemes can be very sophisticated to avoid these basic
concentration triggers, and the fraud is thus not detected by the alert system. More-
over, in a big portfolio the delinquency level can be “diluted” by a large number
of good clients in the same category.1 Therefore, one would like to find a method

1As an example, imagine there is a fraud attack on one specific branch office for a particular
product. However, since this branch office has a big portfolio of clients and products, the overall
delinquency level of the office is not that high, and thus does not activate the concentration trigger.
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to identify specific segments of the portfolio (represented by various combinations
of clients’ and products’ characteristics) with very high level of delinquency (i.e. a
probable concentration of fraud).

This is an uneasy task that consists of two main questions. First, how to distin-
guish the high default rate segments. And second, how to systematically search and
find them.

Before answering the questions, I make the following denotations in the four-fold
table 4.1 defined by the investigated segment and the number of defaults. In this
table a is the number of defaults in the segment, b is the number of non-defaults in
the segment, c is the number of defaults outside of the segment, and d is the number
of non-defaults outside of the segment. Then k = a + c, l = b + d, r = a + b and
s = c+ d are the marginal sums and n = a+ b+ c+ d is the total number of cases.
Then obviously a

r
is the default rate of the segment and k

n
is the default rate of the

whole portfolio.

Table 4.1: Four-fold table for segments

Segmentation Number of defaults Number of non-defaults Total
Segment a b r

The rest of portfolio c d s
Total k l n

4.2 Default Severity Measures

In this section I aim to solve the first question and provide some techniques
to recognize the segments with high default rate and possible fraud. The problem
is that the segments are generally small and a simple default rate is not sufficient
(obviously, if we observe 100% default rate on one observation, we cannot conclude
that there is a significant fraud). Therefore, I propose several alternatives combining
the default rate with the number of cases.

4.2.1 Basic Trigger

The simplest and most understandable way of selecting the severe segments is a
trigger based on the default rate and the number of cases, i.e. fulfill the trigger if

a

r
> q1 and r > q2,

or alternatively
a

r
> q1 and a > q3,
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where q1, q2 and q3 are some pre-set constants.

The logic of this trigger is based on the fact that the higher default rate in a
segment the more serious default or fraud we observe; combined with the requirement
for a minimal sample size, where the default rate is giving us reliable information.2

Moreover, the more default cases in the segment, the higher loss can be potentially
cured.

This is a very easy and well understandable trigger. On the other hand, I discuss
some disadvantages as well. Apart from the fact that this trigger cannot order the
data by fraud severity (i.e. there is no difference between 30% default rate on a
1,000 and a 10,000 segment), it is not even guaranteed that the triggered segments
are really the most relevant in the portfolio. I illustrate this by an example. Assume
that I define a trigger as q1 = 10% default rate with at least q3 = 10 defaults. Then
a segment of 10 defaults out of 100 observations is triggered, whereas a segment
with 9 observations and all of them defaults is not. From the rational point of view
I would expect that a segment with 9 observations where all of them defaulted is
more suspicious than the first segment.

Even though more advanced measures are introduced in the following sections,
the basic trigger is very often used in practice for its simplicity and understandability
for all the people involved in the system.

4.2.2 χ2 and Fisher’s Factorial Tests

In most of the common statistics textbooks, e.g. (Anděl, 2007), we can find the
χ2 independence test’s variant for a four-fold table, that can be applied to table
4.1. It uses the fact that for i.i.d. random variables the following formulas have
asymptotically the χ2

1 distribution,

χ2 = n
(n11n22 − n12n21)

2

n1·n2·n·1n·2
∼ χ2

1,

which can be rewritten in my denotation as

χ2 = n
(ad− bc)2

rskl
∼ χ2

1.

Then it is required that all of the theoretical frequencies
ni·n·j
n

are greater than 5. For
the cases when this condition is not fulfilled, one can use the Fisher’s exact factorial
test as an alternative, see (Anděl, 2007).

2As the matter of fact many business analysts in practice actually use the default rate only
for the severity identification, but if the observation is done on an insufficient number of cases the
outcomes might be misleading.
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For both of these tests we can understand the p-value of the test as some kind of
significance score and then order the data by this score to select the most significant
segments for investigation. Alternatively, we can construct a trigger as

p-valχ2 < q4,

where q4 is a pre-set constant.

These tests can now solve some of the problems of the basic trigger; however,
the property of these tests is that they test the significance of the difference of the
segment’s default rate comparing to the overall data, which does not necessarily
mean a higher proportion of fraud. As an example we can take the credit amount
predictor with two categories (lower amount and higher amount) of similar category
size. Then in the data we can observe that the default rate of the higher amount
category is slightly higher compared to the overall portfolio. Then due to the fact
that both categories have a high number of observations, the difference is very
significant and the p-value of the test is small. However, this slight difference of
default rate is natural (can be caused by people having problems to repay higher
payments connected to higher credit amounts) and does not suggest a fraud presence
at all. This is the motivation for constructing the following test.

4.2.3 Expert Binomial Test

For this test I incorporate an expert evaluation of the fraud severity level and
combine it with a statistical test. The merit of this test is as follows. An expert sets
a value f to be a fraud rate or fraud threshold, i.e. such a value that any segment
with default rate significantly exceeding this threshold will be considered as affected
by fraud. This fraud rate has to be reflecting the portfolio characteristics (e.g. three
times of the portfolio average) and the purpose of the particular analysis.

Additionally, I assume that if there is no fraud in the segment (i.e. the segment
default rate is lower or equal to f), then the defaults happen independently with
probability p. With this assumption, for a segment with an observed default rate
ps > f I try to evaluate the probability that this segment is affected by fraud.

More rigorously, I construct a statistical test with H0 : p = f and alternative
HA : p > f . Then if a is the number of defaults and r is the number of observations in
the segment, I use the assumptions introduced in the previous paragraph to compute
the p-value of the test. Under the null hypothesis I know that the defaults in the
segment follow the binomial distribution with parameters f and r, Bi(f, r). Then the
p-value of his test is the probability that such or worse situation happens under the
null hypothesis (by accident), i.e. that under the null hypothesis there will happen
at least a defaults out of r events. Then using the binomial distribution the p-value
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can be computed as

p-val =
r∑
i=a

(
r

i

)
f i(1− f)r−i.

Here the p-value could be interpreted as the probability that such high default
rate in the segment happened by accident. Therefore, the lower the p-value the more
significant fraud suspicion we have. Then with the above definition we can interpret
1 − p-val as the probability that the segment is affected by fraud. Based on the
p-value we can again construct a trigger

p-valf < q5,

where q5 is a pre-set constant.

With this measure we can again construct the significance score and order the
segments by their relevance (unlike with the basic trigger), we do not have any
requirements on the sample size (unlike with the four-fold table χ2 test), and we
define our own fraud rate to prevent triggering small differences in default rate on
very big segments (unlike with the χ2 test and Fisher’s factorial test). Moreover, the
p-value is simple to be computed in MS Excel on any sample of data.3 On the other
hand, in practice, the statistical tests and their p-values are more complicated and
their usage can cause some interpretation difficulties (unlike with the basic trigger).
Anyway, I personally consider this method to be the most relevant for the fraud or
default concentrations discovery purpose.

4.3 Severe Segments Finding Method

In this section I describe a practical method that can be used for finding the
segments with fraud or default concentrations and discuss its differences to other
methods commonly used methods. Usually, the input for this task can be a table
(e.g. in Excel or database) with a list of clients or loans in rows and a lot of catego-
rized characteristics in columns. Moreover, for every client or loan there is a default
indicator (e.g. 1 if the client defaulted on one of the first payments for more than
30 days past due, or 0 otherwise).

Then all segments are created as various combinations of the characteristics’
categories. For each segment se can see the number of cases, the number of defaults
and the segment’s default rate. Then we can use the default severity measures from
the previous section to decide, whether an evaluated segment satisfies the trigger
and should be investigated or not.

3The p-value can be expressed by the formula 1 - BINOMDIST(a,r,f,TRUE) +

BINOMDIST(a,r,f,FALSE).
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Now one could try to look for the affected segments manually, use some heuristic
method like decision trees, or take advantage of some data mining tools. As this is
a special case of supervised learning or anomaly detection, some kind of big data
methods can be used. From the great variety of data mining tools (see e.g. (Fayyad
et al., 1996), (Witten and Frank, 2005) or (Han et al., 2011)) I use the GUHA
method in association analysis, that I shortly describe bellow. For more information
about the big data topic I refer to (Baesens, 2014), (Mayer-Schonberger and Cukier,
2013), (Zikopoulos et al., 2011).

4.3.1 GUHA Method Introduction

In this section I briefly describe the logic of the association analysis based on the
General Unary Hypotheses Automaton Method (GUHA). Most information about
this method and the used terminology is taken from (Rauch and Šimůnek, 2005a),
(Rauch and Šimůnek, 2005b) and the manuals to the LISP Miner software.

GUHA is originally a Czech data mining method introduced in (Hájek et al.,
1966). Its aim is to systematically formulate all hypotheses of a suggested structure
and evaluate them using a given data sample and a pre-defined trigger condition.
The hypotheses or association rules are expressions of the form X −→ Y , where
the fulfillment of the condition X (also called antecedent) tends to the result Y
(also called succedent). From all the hypotheses only the rules with required support
(i.e. number of cases of such property) and confidence (the percentage of cases of
property X leading to result Y ) are chosen to the final output.

More specifically, the four-fold table 4.1 can be now written in the form of table
4.2. Then a is the support and a

r
is the confidence of the association rule X −→ Y .

Table 4.2: Four-fold table for GUHA method

Attribute Y ¬Y Total
X a b r
¬X c d s

Total k l n

Then if we define the minimum required support and minimum required con-
fidence, the method filters only those segments fulfilling this condition. Specific
implementations of the GUHA method allow other conditions as well.

The GUHA method is based on the principle that all the relevant segments of
data are systematically evaluated – “all” in the meaning that no segment fulfilling
the trigger condition is omitted, and “relevant” in the meaning that the algorithm
is optimized to skip the creation of segments that cannot possibly fulfill the trigger
condition (e.g. the segment is already too small or has too few defaults that it makes
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no sense to split it according to any further categories). Moreover the method can
usually work with big data samples exploring millions of hypotheses.

4.3.2 Use in Fraud Discovery

The GUHA method thus gives us a good framework to discover default con-
centrations (possible fraud) hidden in some smaller segments of the data. For the
succedent attribute we take default indicated from the data sample and for the an-
tecedent attributes X we take all possible combinations of predictors up to some
limitation (e.g. no more than 4 predictors to be combined in the same hypothesis).

The GUHA method is implemented for example in the 4ft-Miner procedure of
the LISP-Miner software4 developed at the University of Economics in Prague.

The LISP-Miner software allows the user to define additional settings of the task
including various modifications of the trigger conditions, ways to combine and merge
the predictors’ categories (e.g. combine only the neighboring categories of ordinal
predictors etc.). Moreover, any follow-up tasks can be done in MS Excel, including
ordering by the significance score based on the p-value of the expert binomial test.

4.3.3 Theoretical Difference to Other Methods

Now what makes this method different from the more commonly used methods
such as discrimination analysis, logistic regression or decision trees? Mainly it is the
fact that these methods are designed to work well on the whole sample and thus
use the strongest predictors in the terms of the overall discrimination power (often
represented by the Gini or lift characteristics). As an example, we can say that
the predictor gender would be selected to the scoring model, whereas the predictor
of business branch name wouldn’t (since it can have thousands of small categories
quite impossible to categorize into bigger reasonable segments). Moreover, for many
models the predictors are not easily combined and selected combinations have to be
driven manually.

From the perspective of finding the interesting ”outlying” segments, a good help
can be expected from the decision (also regression or classification) tree model, where
there are small segments found in the leaves. However, the regression three algorithm
is a heuristic method growing the tree according some predefined measure, and thus
cannot check all possible combinations (as the GUHA method does). Therefore, it
can happen that the tree is right in the root divided into several branches according
to some strong predictor (e.g. the gender, mentioned above) and a significant fraud

4More information can be found at http://lispminer.vse.cz.
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segment (which can be independent on that predictor) is then cut into smaller pieces
that are not significant anymore (due to their size).

On the other hand, for the practical use, the decision three method gives us a
distinct set of segments that are easily evaluated, whereas the GUHA methods gives
us the full set of all possible overlapping segments that we need to analyze further.
In the next section I present a practical comparison of the GUHA method with the
classification three on the real financial data.

4.4 Data Analysis

In this section I aim to compare the GUHA method with the classification tree
model on a real financial data sample. The data for this purpose is provided by
a financial company operating on a foreign consumer finance market. Some of the
original characteristics’ labels are not provided to prevent the company’s know-how.
Therefore, I will treated them as undisclosed.

4.4.1 Data Structure

The provided sample contains the data about 161,786 approved loans, where for
each loan we have the target variable defining the default for this task as 30 days
past due on the first payment and 18 categorized predictors. This sample contains
5,328 defaults representing 3.3% default rate. Any missing data is categorized as a
special category. See table 4.3 for details.

4.4.2 Comparison of Methods

On this data sample I run the GUHA method and the classification tree to find
the default concentrations.

GUHA Method

For this comparison I used the GUHA method implemented in the 4ft-Miner
procedure of the LISP-Miner software. For the purpose of this analysis, the LISP-
Miner was set to try all the possible combinations of 1–4 out of the 18 predictors.5

5I need to limit the number of predictors to set the range of the task. The used combination of
up to 4 predictors seems most relevant given the sample size and interpretability of the results.
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Table 4.3: Data structure

Predictor Number of categories
Age 9

Credit amount 9
Distribution channel 2

Down payment 6
Family state 3
Goods type 6
House type 5

Income 7
Insurance 2

Price 9
Region 29
Term 9

Undisclosed predictor 1 2
Undisclosed predictor 2 2
Undisclosed predictor 3 5
Undisclosed predictor 4 2
Undisclosed predictor 5 3
Undisclosed predictor 6 2

All 18 predictors 112

Then the model evaluated 4,047 combinations of predictors with over 900,000
relevant hypotheses and returned 5,467 segments with the required confidence of
10 defaults and support at the level of 10% (i.e. about three times the portfolio
average). The whole task took 16 minutes on a common laptop.

Classification Tree

For this comparison I used the classification tree method implemented in the
HPSPLIT procedure of SAS 9.4., where I selected the maximum tree depth 4 (to be
in line with 1–4 predictors in the GUHA method), the maximum number of children
per node 30 (to enable the split to individual regions) and the decrease in entropy
as the splitting criterion.

This task took about 30 seconds in SAS on a common laptop. The result was a
tree with 4 levels, 770 nodes and 3,178 leaves. Among these leaves and nodes there
were 30 segments with the required confidence of 10 defaults and 10% support.
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Comparison

I exported the outputs of both methods for further evaluation in MS Excel, were
I also computed the p-value of the binomial trigger with the fraud rate f = 10% to
identify the most relevant segments.

The two most relevant segments from the classification tree analysis contained

• 49 defaults from 91 cases, i.e. 54% default rate with the binomial test p-value
about 1.9 · 10−25 and

• 79 defaults from 235 cases, i.e. 34% default rate with the binomial test p-value
about 5.8 · 10−23.

When I searched for these segments in the GUHA analysis output, these were found
as the fifth and the tenth most relevant segments.

On the other hand, when analyzing the most relevant segment of the GUHA
method containing

• 99 defaults from 229 cases, i.e. 43% default rate with the binomial test p-value
about 6.3 · 10−39,

I found out that such segment was not directly found by the classification tree
method; however, 98 of these 99 defaults were actually included in the first two
classification tree segments shown above. Therefore, I conclude that the most severe
fraud pattern was identified by both methods.

Whereas the GUHA method identified the fraud pattern more precisely and
with a proper setting of the selection and category combining criteria it can give us
a comprehensive and “assuring” information about all the possible fraud patterns in
the portfolio, the classification tree method runs much faster and provides cleaner
output organized in distinct leaves.

From the results several important patterns were identified – such as a specific
combination of the region, credit amount category, down payment and goods type.
This was an example where a hidden factor (or fraud pattern) was found by com-
bining the predictors’ categories, even though it was not directly included in the set
of predictors.
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4.5 Conclusions

The aim of this chapter was to react on the probability-of-default-based scoring
models and profitability models described in this thesis, discuss their weaknesses, and
propose some tools to identify default concentrations and potential fraud patterns in
big portfolios of data. Once those concentrations are found, the underwriting process
can be adjusted to prevent further losses.

For this purpose I define several measures that can be used for evaluation of the
significance of the default rate in each segment. Here the definition and use of the
expert binomial test for the purpose of default concentration identification I consider
as novel according to the studied literature.

Then for the task of finding the segments with default concentrations, robust
data mining tools can bring more reliable results than the classical approaches of
the discrimination analysis, logistic regression or decision trees. Here the GUHA
method has been shortly described as a representant of the supervised machine
learning techniques, and the LISP-Miner as a convenient free-ware software where
this method is implemented. Moreover, some conceptual differences to the classical
approaches have been discussed.

Finally, the GUHA method and the classification tree method were applied on
a sample set of financial data, where both methods managed to discover suspicious
default concentrations. Comparing these two methods the modeler needs to choose
between the GUHA method’s assurance that really all the potential segments are
discovered, and speed and simplicity of the classification tree.

From my professional experience the problem of fraud discovery is a very impor-
tant and closely watched topic for all credit providing institutions, and all innova-
tions, tools and results that positively affect the fraud prevention mechanisms are
well accepted.
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Conclusions

In this thesis I aimed to propose new mathematical and statistical methods to
enhance the standard credit underwriting automated scoring. Particularly, I sought
to challenge the performance criteria based on the ex-post random testing samples
and proposed comparing the predictive power of the models on an ex-ante sample of
the most recent data instead. Then I wanted to use this new criteria and a real Czech
banking data sample to compare the standard models performance with some sug-
gested alternatives. Finally, I aimed to construct a new comprehensive underwriting
model that would be based on an estimation of loan profitability instead of the stan-
dard evaluation of the riskiness of the client. Such model should have been described
in detail, the results simulated and compared with the standard approach and its
weaknesses treated by proposed alternative methods.

In the first chapter I dealt with the probability of default modeling and set
the new performance criteria focusing on the predictive power of the models, and
compared the standard logistic regression model with the alternative of the survival-
based Cox model on the real sample of Czech banking data. Based on this comparison
I concluded that in this sample both models have similar performance on the random
training and testing sample, which is in line with the existing research of (Stepanova
and Thomas, 2002), (Cao et al., 2009) or (Bellotti and Crook, 2009); however, if
compared by the new performance criteria measuring the predictive power of the
model, the Cox model notably outperforms the logistic regression model. This is a
new result contributing to the academic debate and showing the Cox model in the
new light.

In the second chapter I introduced similar logic as in the first chapter and ap-
plied the new performance criteria for measuring the predictive power of loss given
default models. Again, I compared the standard approaches using the linear and lo-
gistic regressions with one existing and one new Cox-based model on the real Czech
banking data. Even this time, when comparing the predictive power of the models
on the time-censored sample, the new approaches clearly outperform the standard
models in the terms the used goodness of fit measure. Therefore, I believe that there
is a good potential for further research as well as for practical application in banks
and financial institutions creating their own LGD models to decrease the capital
requirement.
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The red thread of this thesis was then the creation of the comprehensive under-
writing model that estimates the profitability of every single consumer loan in the
approval process, based on the clients’ and loans’ characteristics. For this model, in-
spired by (Stein, 2005) and (Allen et al., 2004), I derived all the formulas, suggested
several alternatives for the probability of default on individual payments estimation
(including the straightforward application of the Cox-based models from the first
two chapters) and enriched the concept for multiple potential costs and revenue
streams that are important in the business. Moreover, I calculated four alternative
profitability measures coming from this model, that can each support the priori-
ties of the company. Especially, the risk-adjusted expected return on equity from a
specific loan could be a really beneficial measure on some markets, and I have not
seen it implemented in practice nor suggested in literature. Finally, to simulate the
impact and compare the new model with the standard risk-based approach, I con-
ducted a data analysis, where I compared the performance of the profitability model
with the standard risk-based approval model calculating and comparing various risk
and profitability characteristics. In this simulation it was shown that under specific
market situations the difference between various performance criteria can be crucial
and the choice of the right model for the right criteria is substantial. Particularly,
when optimizing the expected profitability, the new model brings a significant added
value.

Finally, in the last chapter I reacted to the probability-of-default-based scoring
models and profitability models described in this thesis, discussed their weaknesses,
and proposed some tools designed to treat them by identifying default concentrations
and potential fraud patterns in big portfolios of data. For this purpose I defined
several measures that can be used for the evaluation of significance of the default rate
in each segment, where the definition and use of the expert binomial test and trigger
I consider as best fitting the needs of this task and novel according to the studied
literature. Also, I discussed several methods for the fraud or default concentration
search. Finally, I compared the GUHA method with the classification tree model on
the real financial data sample.

By the definition of the new performance criteria, the thesis sought to contribute
to the scholarly debates on mathematical modeling in finance and showed how this
new criteria can change the outcomes of the probability of default and the loss
given default models comparisons. This paves the way for further research to study
the strengths and weaknesses of the survival analysis models and apply it to a
broader variety of financial data to test the robustness of the claim. Furthermore,
by constructing a comprehensive analytical framework for modeling the loan-cycle
and default structure, the thesis offered an innovative way of operationalizing the
concept of profitability modeling. Last but not least, the thesis identifies a common
problem of regression-based models which is the inability to address concentrated
outliers and provides a solution in the area of default concentration discovery.

Apart from the academic contributions, the thesis points out to the advanced
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predictive power of the survival-based models used for probability of default model-
ing and provides a new model for loss given default modeling with better predictive
power. Together with the specific description of the profitability model and inno-
vations in the field of fraud and default concentration discovery, the application of
this research can prevent substantial losses and bring added profit to the financial
companies. In effect, such improvements might enable more personalized approach
and lower interest rates in the consumer finance industry as a whole.

As the main directions for further research I see the testing and comparison of
all the models on multiple data samples (both real and simulated) to be able to
draw more general conclusions about the out-performance of the models. Moreover,
the prediction horizons should be extended on the real data to understand the
stability of such models in time. Finally, a big potential for any further research
I personally see in the direction of the proper evaluation of the whole loan profit
probability distribution, not only the expected value as is done in this model. This is
a very complex task that involves mainly a proper model to capture the correlation
structure in the client portfolio. Even though this approach is more important for
evaluation of financial derivatives, see e.g. (Hull, 2009a), (Embrechts et al., 2002)
or (Rychnovský, 2012), I believe that similar ideas can be applied to retail risk
modeling as well.
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