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FAKULTA FINANCÍ A ÚČETNICTVÍ
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Abstrakt

V této diplomové práci se věnujeme analýze schopnosti takzvaných Long Short-Term Mem-
ory neuronovych sı́ti předpovědet náhodně vybrané finančnı́ časové řady dostupné na webu
Yahoo!Finance. Nejprve jsme určili pět nejvhodnějšı́ch modelů LSTM, které byly použity
pro předpovědi 150 finančnı́ch časových řad z různých odvětvı́. Poté jsme z nich vypočı́tali
statistické ukazatele týkajı́cı́ se predikovatelnosti časových řad - Hurstov koeficient, met-
rická entropie a největšı́ Lyapunov exponent. Nakonec pomoci jednoduché regresnı́ analýzy
a korelačnı́ch koeficientů se snažı́me určit vztah mezi kvalitou předpovědi reprezentovanou
průměrným RMSE a statistikami vztahujı́cı́ se k predikovatelnosti časových řad s následným
porovnánı́m s teoretickými předpoklady.

Abstract

This diploma thesis is devoted to the analysis of the Long Short-Term Memory neural
networks performance in prediction of randomly selected financial time series from Ya-
hoo!Finance. Firstly, we determined five most precise LSTM models used for predictions of
150 financial time series of stocks from various industries. Then we calculated the statisti-
cal measures related to the time series predictability - the Hurst Coefficient, Metric Entropy
and the largest Lyapunov Exponent. By estimation of the simple regression lines and the
correlation coefficients we try to determine possible relationship between the quality of pre-
diction represented by the average RMSE and each of the statistics related to the time series
predictability with the consequent comparison with the theoretical assumptions.
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Introduction

The idea of forecasting the future events is merely as old as humankind existence. In case
of financial time series of stock prices the things are quite difficult - they are non-linear,
non-stationary and because their values change with high frequency, they exhibit a high
volatility and irregularity with consequent negligible effect of seasonal changes, such that
their log returns are used for statistical analysis. Besides using a wide-spread Box-Jenkins
Methodology to a time series modelling, where a time series is considered a realization of the
underlying stochastic process, recently also the artificial neural networks have been applied
to model and to forecast their values which appear to be more appropriate for non-stationary
time series forecasting. Furthermore, the time series predictability depends on the presence
of memory in form of trends, how fast the information in time series decays and on the
level of its chaotic behavior. These factors can be quantified by statistical measures which
originate from the Chaos Theory.

In summary, the goal of this diploma thesis is to examine the forecasting performance of
the Long Short-Time Memory neural networks applied on 150 randomly selected time series
of stock prices log returns from Yahoo!Finance using an average RMSE, and its comparison
to the measures linked to the predictability of the time series, namely Hurst coefficient, Met-
ric entropy and the largest Lyapunov exponent, to find any statistical relationship between
them. To secure the comparability we used five most precise neural network models chosen
on small sample of various stocks. Furthermore, the whole process is automatized and pro-
grammed in Python programming language with the script provided in the Appendix of this
thesis and containing the basic functions.

The diploma thesis consists of five chapters. We briefly describe time series most im-
portant characteristics and measures related to their predictability in chapter one. Then in
the second chapter the brief introduction to the artificial neural networks is provided. The
third chapter provides an overview of the methodology we used, with an emphasis given
also to the technical details. The fourth chapter is about presenting the results in form of
tables, heatmaps, graphs with additional comments. Finally, we comprise our results with
some explanations in Conclusion part and give the reader some implications for the further
study.
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Chapter 1

General Introduction to the Time Series

This chapter is devoted to the fundamentals of the univariate time series, which mathemat-
ical apparatus and terminology used applies also to the financial time series. In addition,
the second part gives some insight into various measurements related to the time series pre-
dictability.

1.1 Time Series Basic Characteristics

Many processes in the world generate measurable data such a temperature, unemployment
rate, stock prices or number of sunspots, which can be recorded at equally spaced time
intervals. Then this sequence of measurements of some quantifiable variable made at regular
time intervals is called the univariate time series.1 According to the time interval length we
distinguish between two groups of time series: [1]

1. Short-term time series - observations are made in less than one-year time intervals,
e.g. quarterly, weekly, daily time series

2. Long-term time series - observations are made in time intervals with length of one
year or more, e.g. yearly time series

In economics, a term time series means the sequence of some specific thematically and
spatially defined economic variable or index that is chronologically ordered from the past to
present. A common notation of the time series is yt , t = 1, ..,T or Y = {yt ,1, ..,T}. Note that
we do not have to necessary deal with the time series of a measurable variable but also with
any index or calculated economic variable based on actual observed economic variables.
Another distinction of time series is based on the nature of tracked variable:

1In this thesis we do not deal with the multivariable time series, i.e. time series of more than one variable,
that are a vector of m univariate time series Yt = (y1t , t2t , ..,ymt)

T .[2]

– 2 –
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1. Interval time series - or flow time series, the values depend on the time interval
length, e.g. GDP per year

2. Instantaneous time series - or stock time series, represent the values monitored in
certain moments, e.g. closing stock price

3. Derived time series - time series of some characteristic that is derived or calculated
from the observed values, e.g. daily average stock price

Furthermore, we can divide the time series into stationary and non-stationary. This divi-
sion is very important because most methods for modelling and describing the time series
assume that the working series, i.e. time series which we apply the chosen method on, is
(approximately) stationary. The reason is that the stationary time series are easy to model
and predict because their properties remain constant in time. The weakly stationary (or
covariance-stationary) time series must satisfy three requirements: [3]

1. E(yt) = µ,∀t ∈ T - constant mean

2. Var(yt) = σ2 < ∞,∀t ∈ T - constant variance

3. Cov(yt ,yt−k) = γk,∀t,k ∈ T - autocorrelation depends only on the interval k between
two observations, not on time itself

The stationary processes have the mean reverting property which means that the time series
fluctuate around a long-term mean value, and in case of an infinite time series the mean
value would be crossed infinite times.

However, the real financial time series are far from being stationary processes. Fortu-
nately, there are several ways or techniques of transforming the non-stationary time series
into stationary ones. Then after applying the statistical forecasting methods on the station-
arized time series, we can also obtain the models of the original time series by reversing the
mathematical transformation. [4], [5]

• Differencing the time series - new differenced time series is a set of changes between
two consecutive values: y‘

t = yt − yt−1 and has T − 1 observations. Appropriate for
the time series with a stochastic trend (variance is not constant) which are also called
a difference-stationary.

• De-trending the time series - used for the time series with an evident deterministic
trend (mean is not constant) where we firstly remove a trend via regression fit, and
then model the residuals. Such time series are called a trend-stationary.
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• Logaritmization - used for the time series which values increase exponentially (vari-
ance is non-constant). By taking the logarithm of the values the variance might be
stabilized.

There are several ways of deciding whether time series is stationary or not:

• Graphical analysis - time series with evident trend or some irregular patterns are
non-stationary

• Plot of the autocorrelation function - for non-stationary time series the ACF declines
slowly and some values cross threshold. Used together with the partial autocorrelation
function (PACF). 2

• Unit-root tests - test the presence of the unit-root in the time series (I(1) process),
i.e. the stochastic trend. The common one is the Augumented Dickey-Fuller test with
following hypotheses: [7]

H0 : yt is I(1), i.e. difference stationary

H1 : yt is I(0), i.e. stationary or trend stationary

Figure 1.1: Collage of the non-stationary time series plot and corresponding ACF plot.
(Author’s own work)

2PACF indicates only a direct correlation between the values Yt ,Yt−k conditional on the values between t
and t− k. [6]
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The goal of the time series analysis is to know the generating process through mathematical
or statistical models. The process itself can be either linear or non-linear. Many real-life
processes are actually non-linear, even though many time series models widely used are
only linear. The linear process is defined as a stochastic process 3 (yt , t ∈ T ) that is for every
t ∈ T : [8]

yt =
∞

∑
j=0

a jεt− j, (1.1)

where a0=1 and εt is for every t ∈ T independent and identically distributed with E(εt)=0,
E(ε2

t ) < ∞ and ∑
∞
j=0 ‖a j‖ < ∞. Then the non-linear process is any stochastic process that

is not linear, hence it displays the behaviour such that time-changing variance, asymmetric
cycles, higher-moment structures etc. that cannot be modeled by any linear processes.

1.2 Predictability of Time Series

Prediction of time series basically means to make a forecast about its future values based
on the historical ones. The real-world financial time series are assumed to be nonlinear
which means that their behaviour cannot be expressed as the linear combination of any linear
process and even a small change in parameters can cause a huge change in the behaviour.
There are two approaches how to describe this phenomena, either they are stochastic or
deterministic with presence of the chaos.

If the financial time series are assumed to be generated by the stochastic (random) pro-
cess, their randomness has some properties like the probability distribution etc. and, as
already mentioned, can be either stationary - if their properties do not change with time, or
non-stationary - if the properties of the stochastic process change in time. Another approach
assumes that time series can be deterministic with presence of chaos, and as a result, the
time series might appear to be random even though they are governed by some nonlinear
deterministic equation. Note that chaos is defined as irregular longterm behaviour that de-
pends on the initial conditions. Then they can be possibly predictable in the short term but
in the long term they appear to be stochastic. [10]

1.2.1 Hurst Coefficient

Now we take a look at the so-called Hurst coefficient (or exponent) which is used to measure
the predictability of the time series. Originally, it was developed by the British hydrologist
Harold E. Hurst to model the water level of Nile river for appropriate building of the Asuan

3Stochastic process is the temporally ordered series of the random variables {y(s, t),s ∈ S, t ∈ T} , where S
is the sample space and T is index series usually assumed to be a series of integers, i.e. T = {0,±1,±2, . . .}.
Simply said, it is impossible to predict the future values with 100% probability. [9]
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water reservoir. Several years later, the mathematician Benoit Mandelbrot continued with
the Hurst’s work and introduced the term Generalized Hurst Exponent as a measure of long-
term memory of a time series, i.e. how much are trends persistent over time.

Furthermore, he characterized two effects that describe the long-term memory of the
time series. The first one is called the Joseph effect occurs when the movements in the time
series are actually part of a long-term trend. The second one is called the Noah effect and
means the tendency of time series to change in unexpected way. [11]

According to a value of the Hurst exponent there are three types of the time series:

1. H < 0.5 - Anti-persistent time series - mean-reverting time series: because the values
have tendency to return back to long-term mean, a decrease will be most probably
followed by the increase and vice versa

2. H = 0.5 - Random walk time series - the observations are not correlated, so the
probability that the future value will increase is the same as it will go down

3. H > 0.5 - Persistent time series - in the short term the values have tendency to
continue in the same behaviour, i.e. if the values increase, then the future values will
increase as well in the short term and vice versa

The Hurst coefficient is formally defined as follows:[12]

E

[
R(n)
S(n)

]
=CnH ,n→ ∞, (1.2)

where the left hand side means the expected value of the rescaled range after dividing the
whole time series of length N into n small subseries of length i, i.e. X = {xi,1, ..,n}, with
S(n) being the set of standard deviations of n subsets of size i, C is arbitrary constant and
R(n) means the range - the set of differences between the maximum and minimum for n

subsets of size i:

R(n) = max(xi, i = 1,2, ...,n)−min(xi, i = 1,2, ...,n) (1.3)

In reality, we deal with the finite number of subsets n, hence, at first, we calculate the
expected value for the whole time series which is the average value of all sub-results of all
small parts given by initial dividing, therefore:

E

[
R(i)
S(i)

]
=CiH , (1.4)

log

(
E

[
R(i)
S(i)

])
= log(C)+Hlog(i). (1.5)
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From equation (1.5) is evident that the Hurst coefficient H can be estimated as the slope
of the least squares fit if we have several values of i. This approach is called the Rescaled
Range Analysis (R/S analysis) since it includes computing of the rescaled range. Note that
this approach can be applied to the stationary time series only and , unfortunately, does not
show very good computational convergence.

Another frequent estimation method is called the Detrended Fluctuation Analysis (DFA)
which unlike the R/S analysis can deal with the non-stationarity. This method was originally
created to study the long-range power-law correlations in DNA sequences. Now it is seen
useful for application to any nonstationary time series. The calculation algorithm can be
briefly described as follows - assume we have time series with N observations. At first we
integrate it and then divide it into equaly-sized non-overlaping subperiod of length n. In
every subsample we find a local trend by the least squares method, usually a polynomial fit
of some order to properly fit the data. After that the integrated time series is detrended by
subtracting the local trend in each subperiod, so that we can calculate the root- mean-square
fluctuation of this integrated and detrended time series also called the scaling function F(n):

F(n) =

√√√√ 1
N

N

∑
k=1

(y(k)− yn(k))2. (1.6)

Because this calculation is repeated over all time scales that are represented by the box size
n, we find the relationship between the F(n) and this box size n. Note that typically the
relationship is increasing and takes the following form:

F(n) =CnHF , (1.7)

where HF is in this case the Hurst scaling exponent. By plotting it on a log-log plot one
may spot the presence of a so-called power law scaling 4. Hence the fluctuations can be
characterized by the slope of the straight line between logF(n) and log(n) which gives the
value of the Hurst scaling exponent. [13]

Because DFA analysis can be applied both on the non-stationary and stationary time
series, the Hurst scaling exponent can have greater value than one and relates to the classical
Hurst exponent as follows: [15]

H =

HF if time series is stationary

HF −1 if time series is non-stationary

4 The power law represents a type of regularities found in many economics phenomena, and has the form
of Y = kXα , where X,Y are the observed variables, k is some constant and α is the power law exponent. [14]
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Hence it behaves the same way as the classical Hurst exponent for stationary time series,
but not for the non-stationary cases, so scaling Hurst exponent brings another classification
of time series: [16]

1. HF ≈ 1 - 1/f noise or pink noise - exhibits the self-similarity and its power is inversely
proportional to the density

2. HF > 1 - non-stationary random walk

3. HF ≈ 1.5 - Brown noise - generated by cummulation of the increments of the station-
ary white noise (it is an integral of the white noise)

1.2.2 Lyapunov Exponent

Non-linear time series dynamics can be characterized by its chaotic behaviour. The chaos is
typically characterized by the fact that tiny variations in the initial conditions can cause dra-
matic variations in the state of system after some time. Hence if we have two neighbouring
system’s states those initial conditions differ in a tiny size, e.g. due to small disturbations,
after some time they diverge exponentially. To quantify the level of divergence of two neigh-
bouring states in chaotic dynamic system, i.e. how much chaotic the time series is, we use
the Lyapunov exponent (or the Lyapunov characteristic exponent). In general, the Lyapunov
exponent of a dynamical system characterizes the rate of separation of the initially infinites-
imally close points that create the so-called orbits (trajectories in phase space) due to some
system of equations. Note that we can use n Lyapunov exponents for general n-dimensional
system, but in this thesis we consider, for obvious reasons, one-dimensional system - time
series, thus we deal with a single Lyapunov exponent. Let us assume two orbits in phase
space with initial (at time zero) separation δZ0. Their divergence can be quantified as: [17]

δZ(t)≈ eλ t |δZ0| , (1.8)

where λ is the Lyapunov exponent. To asses the predictability of dynamical system we
define so-called Maximal Lyapunov exponent considering t→ ∞:

λ = lim
δZ0→0

1
t

ln
|δZ(t)|
|δZ0|

. (1.9)

Then the Maximal Lyapunov exponent can be used to asses the stability of the system that
is related to its predictability, that is defined as its inverse value. According to the sign of
the Lyapunov exponent there are three possibilities. [18], [19], [20]

1. λ > 0 - Chaotic system - the more positive λ is, the shorter period can be predicted,
i.e.the prediction power diminishes more rapidly
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2. λ = 0 - Marginally stable orbit - some kind of steady state orbit

3. λ < 0 - Stable periodic orbit - the more negative λ , the greater the stability

1.2.3 Metric Entropy

In general, the financial time series can be non-stationary either due to the high level of vari-
ability or the due to presence of many irregularities in time series or both. The former case
(variation) does not usually cause the unpredictability unlike the latter one - the presence
of the irregularities has a huge impact of predictability. To measure the impact of irregu-
larities we use the Metric entropy (Kolmogorov - Sinai entropy) which originates from the
information theory.5 Hence the Metric entropy ca be used to measure the rate of lost of pre-
dictability because it is proportional to the loss of information. In other words, information
is the removal of uncertainty, and thereby loss of information leads to the higher values of
entropy. In our case, when time series is a stream of numbers given by past observations,
the Metric entropy provides the answer about how far into future we can make a predic-
tion with given information. Theoretical definition is beyond the scope of this thesis but for
illustrative purposes we show some basic steps of its derivation

The Metric entropy is derived from the entropy of partition Q = {Q1, ...,Qk) given by
dividing the observation into k pair-wise disjoint pieces: [22]

H(Q) =−
k

∑
m=1

µ(Qm) ln µ(Qm). (1.10)

The Metric entropy is defined as the supremum of the rate of change of entropy if we do
the finer partitioning at each iteration or time step over all choices of the initial partition Q0

indicated as intersection
∨N

n=0 T−nQ.

K(T,Q) = lim
N→∞ N

H(
N∨

n=0

T−nQ), (1.11)

K(T ) = sup
Q

H(T,Q). (1.12)

For continuous system, the Metric entropy has units of inverse time, and for discrete systems
has units of inverse iteration. It is always non-negative and the bigger values mean the less
accurate prediction is possible. Generally, according to the value of the Metric entropy we
differentiate between three types of system: [10]

5Note that term the entropy has actually its origin in thermodynamics where it quantifies the level of
disorder and uncertainty of the dynamical system.



Chapter 1. General Introduction to the Time Series 10

1. K = ∞ - Random system - system cannot be predicted at all, even one-step prediction
is not possible

2. 0 < K < ∞ - Partially predictable but chaotic system - the lower values, the more
predictable system

3. K = 0 - Periodic/non-chaotic system - all the information can be predicted

However, this theoretical definition is related to the infinite data series with other characteris-
tics like inifinitely accurate precision and resolution etc. For practical purposes, where time
series data are finite, with specific sampling rate and limited resolution, the so-called Ap-
proximate Entropy Method is used to calculate the metric entropy without using big amount
of data or alternatively the Sample Entropy Method. [21]

The Approximate entropy is, simply said, the value of the negative natural logarithm
of the conditional probability that a short subsample of data with some specific pattern is
similarly repeated during the time series. Hence it characterizes the amount of regularities
or irregularities of fluctuations in time series which is related to the predictability or unpre-
dictability of time series, i.e. small Approximate entropy means that time series contains
a lot of similar patterns and vice versa. In addition, the Approximate entropy can measure
Gaussianity of distribution in a way that it has a theoretical maximum for random Gaussian
process, so the possible deviations can indicate the lack of Gaussianity.

On the other hand, the Sample entropy is the negative natural logarithm of the empirical
conditional probability that two sequences which are similar for so-called embedded dimen-
sion points are similar at the following point expect for the self-matches. The interpretation
is the same as for the Approximate entropy.

However, the Approximate entropy method has its disadvantages like higher sensitivity
to bias in short time series, and the computationally slower algorithm. Fortunately, the
Sample entropy can solve these issues because it was found out that the Sample entropy can
preserve relative consistency more frequently than the Approximate entropy, and it is more
robust. On the other hand, the Approximate entropy is more similar to the definition of the
Shannon’s definition of information entropy.

Although the Sample entropy can be used on the non-stationary data we must pay at-
tention to the calculation, especially when spikes are present because they can increase the
variance and the bias the results. Note that the Sample and Approximate entropy are very
sensitive to the presence of spikes. This problem can be addressed by removing these spikes
from the time series by some sensible algorithm, bu in this thesis we do not have to deal
with this issue. [23]



Chapter 2

The Artificial Neural Networks

2.1 Theoretical View of the Artificial Neural Networks

In present, we are used to the powerful capabilities of the computers which software is noth-
ing but the long sequence of well chosen and structured commands called the algorithm.
The traditional algorithmic approach is powerful in solving mathematical problems or tasks
that can be easily algorithmized. However, some tasks, viewed as simple from the perspec-
tive of the human being, like facial recognition or language processing are very difficult to
programme, i.e. the code for these task would be extremely complex. Fortunately, we can
try to mimic the processes how the human mind works, and thereby create the artificial neu-
ral networks (ANN) to deal with these problems. Although it is not certainly proven that the
ANN works the same way as a human brain does, but it certainly draws some inspiration
from it, like the fact that brain can learn from the experience.

Figure 2.1: A schematic image of human neuron. (Credit wpclipart.com webpage)

The basic element of the human brain is the neuron (depicted on the figure 2.1) consisting of
a nucleus, a large number of dendrites (up to 200 000 but 10 000 typically) that collect the
input signals and one axon that sends the output to the another neurons via several boutons.

– 11 –
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The information is carried via electrochemical pathways and if the collected inputs (electri-
cal signals from dendrites) are greater than some so-called firing threshold, the neuron sends
the electrical impulse to the other neurons, i.e fires the impulse. These interconnected neu-
rons create the neural network resided in our brains which consists of the neurons and their
connection - synapses and are responsible for the power of the human brain. The estimated
number of the neurons in the human brain is about 100 billion and number of synapses is
about 100 trillion.

There are three concepts that can describe the behaviour of the human brain. First one is
the concept of the connection strengths between the neurons which are responsible for the
storing the information. New experience or repetitive stimuli lead to change of the connec-
tion strengths, thus some synapses are reinforced, some are created and some disappear. The
second one is the fact that the neuron is either excitatory, which increases the firing rate, or
inhibitory which decreases the firing rate. The level of excitation or inhibition is positively
related to the connection strength. The third one is the concept of so-called transfer function
which determines how the firing rate depends on the input, e.g. neuron can take a sum of its
input or something completely different. [24]

Figure 2.2: A model of the artificial neuron. (Credit innoarchitech.com webpage)

The artificial neural networks try to capture only the basic characteristics of the biological
neural networks because the real neurons are in fact more complicated, and like in the case
of the biological neural networks the power of the ANN comes from the massive parallel
information processing after the ANN was trained for the specific problem. The general
model of the artificial neuron is depicted on figure 2.2. Each neuron has several inputs
which are weighted individually and then are, in the simplest case, just summed together
and passed into the activation function which converts the net input into output. There are
many activation functions, depending on the neural network type, for example step function
that creates output of 1 if the net input is higher than a specific threshold and 0 otherwise,
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or normalized sigmoid activation function that is bounded to all values between 0 and 1 for
all real numbers etc.[25]

Weights of connections between neurons are stored in a matrix w, where wi j denotes
weight of the connection from neuron i to neuron j. Every neuron/unit j has a potential p j

which is calculated as weighted sum of all of its N inputs neurons stored in the vector x and
the overall bias (also known as threshold unit) is usually represented as an extra input unit
whose activation always equals one. The output is then: [28]

out put = f (p j) = f (w∗ x+b), (2.1)

where f is some activation function. The most often used activation function is so-called
sigmoid (logistic) function depicted on the figure 2.3, which can be defined as:

σ(z) =
1

1+ exp−z , (2.2)

so if we use the sigmoid function, the output is in our case:

out put =
1

1+ exp−w∗x−b . (2.3)

Figure 2.3: A sigmoid activation function. (Credit ml4a.github.io webpage)

The interconnected artificial neurons create the artificial neural networks. Although there are
many different architectures of the ANN, the most of them has the basic structure depicted
on the figure 2.4. The ANN consists of set of input nodes which take the inputs, one or more
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layers of the hidden nodes and the output nodes which provide us with the output. Note that
there can be any number of nodes per layer (depending on the input data and given problem)
and the issue of choosing the proper number of nodes and layers is crucial in optimizing the
neural network. The information from the input nodes can flow in one way or both ways
depending on the architecture, and is represented as activation values in each node meaning
that the greater activation means higher value. Then each neuron passes the activation value
on the next node according to the connection strengths and transfer function. [26]

Figure 2.4: A general model of the artificial neural network. (Credit texample.net webpage)

2.2 Types of the Artificial Neural Networks

In the relevant literature, one may find a huge number of various neural network types, but
the two most common types are: [33]

• Feed-forward neural network - The simplest type of the ANN consisting of the
perceptrons in several layers where the information flows in one direction only - from
the input node throughout several hidden nodes (if any) to the output nodes. There
are no cycles or loops present in this type of the ANN. In case of the single layer
feed-forward neural networks, only linear functions can be approximated, but on the
other hand, the linearity causes the learning algorithm to converge to the optimal
solution.

In reality, the multi-layer feed-forward neural networks are usually used. They consist
of the input nodes, output nodes and at least one hidden layer. The hidden layer
receives inputs form the layer in the previous level, i.e. the first hidden layer is fed by
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the information from the input layer, the second hidden layer receives the inputs from
the first hidden layer etc., and send the outputs to the layer in the next level. Note that
there are no connections between the nodes within one layer. The schematic image of
such multi-layer feedforward neural network is depicted on the figure below.

Figure 2.5: The feed-forward neural network with two hidden layers. (Credit mql5.com
webpage)

• Recurrent neural network - As opposed to the feed-forward neural networks, in the
recurrent neural networks a bi-directional flow of data in a form of directed cycles is
possible, e.g. the hidden unit can be connected with itself over a weighted connection
or the with the input units or output units can be connected to the hidden units etc.
Hence, it can be viewed as a sequence of the multiple copies of the same network as
depicted on the figure 2.6. This fact allows the recurrent neural network to exhibit a
dynamic temporal behaviour via its internal memory due to the recurrent connections,
and thereby it is capable of learning the relationship between the sequence of the in-
puts. Thus the recurrent neural networks are appropriate for the time series forecasts.

The most well known recurrent neural networks types are, for instance the Jordan
networks (the activation values from the output units in the output layer are fed back
to the input layer to the extra set of the input state units), the Elman networks (the
activation values from the hidden units in the hidden layer are fed back to the input
layer to the extra set of the input context units), and even theoretical concepts like the
Hopfield network (or auto-associator network which consists of the set of mutually
interconnected neurons that update their activation values independently of each other
and in asynchronous manner, so all units/neurons are both input and output neurons).
For the purpose of this thesis we use the special type of the recurrent neural networks
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called the Long Short-term Memory network (LSTM), which is able to preserve the
error term backpropagated through layers and time, and it is described in the section
2.4.

Figure 2.6: The recurrent neural network. (Credit mattmoocar.me webpage)

Apart from that, there are four more types of the ANNs. [29]

• Radial basis function neural network - this kind of the ANN gained its name from
the type of an activation function used - the radial basis function1, typically Gaus-
sian, which is nonlinear. The output is then the linear combination of the radial basis
activation function of the inputs.

• Kohonen self organizing neural network - due to its self organizing mechanism it
applies a different type of learning from the inputs that is so-called competitive learn-
ing approach (in contrast to the error minimization approach) without a supervision.
They are used for visualization of high-dimensional data in lower dimensional spaces,
mostly two, or for describing the hidden structures in some unlabeled data. The inputs
are represented in such manner that a topological relationship is maintained within the
network, hence they are sometimes named as Kohonen maps.

• Modular neural network - it is a complex of several independent neural networks,
which receive independent inputs and perform the sub-tasks which contribute to the

1The radial basis function f (x) is a function that depends on the distance from a certain point of origin c,
i.e. f (x) = f (‖x−c‖) and is radially symmetric about that origin. The norm is usually the Euclidean distance,
even though the other types of norm can be used. [34]
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task of the whole neural network. They are moderated by an intermediary which
adopts the received inputs from each of these individual ANNs, performs their pro-
cessing and eventually generates the final output for the modular neural network.

• Physical neural network - as opposed to the other types of the ANNs that use soft-
ware only, this type is based on the hardware capabilities to create a physical structure
imitating the neuron. Specifically, the neural synapse is created by the electrically ad-
justable resistance material. Although the neurons and their synapses are of physical
origin, the whole network is emulated by the software.

2.3 Learning of the Neural Networks

As we have already mentioned, the ANN posses the ability to learn from experience. Al-
though this learning process was inspired by the biological nervous systems, one has to point
out that unlike the humans, the ANN has no perception about what it is learning, it just learns
how to solve given problem based on the learning. Thus the process of learning can be de-
fined as an improvement of performance at a given task with experience. The ANN learns
by adjusting (strengthening or weakening) the connection strengths - their weights between
the neurons which mimics the altering of the synapses in the human brain. The goal of the
learning is to find a set of weight matrices that should map any input to a correct output
based on the training sample. [27]

There are several different types of algorithms used for the ANN training, three most
important ones are:

• Supervised Learning - during the training we provide the ANN with the set of inputs
and their desired target outputs. Then we compare the actual output with target output
and calculate the error as a difference between them. The corrections of the weights
are then made in such manner that we want to minimize this error term.

• Unsupervised Learning - we provide the ANN only with the set of the inputs and
let the ANN to find some meaningful pattern in the input data without any additional
feedback (we do not have any target output). It is widely used in data mining and
recommendation algorithms to predict the preferences.

• Reinforcement Learning - it is somehow similar to the supervised learning that we
have some feedback, but instead of the set of target output there is a reward based on
the ANN performance. The goal is to maximize the reward the ANN receives through
trial and error. It resembles the learning patterns found in nature, e.g. animal must
take a certain actions in order to receive food etc.
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The learning method used mostly for supervised ANN training is called the backpropagation
included in the gradient descent algorithm for minimization of the error term in the so-called
cost (or loss) function of two variables - weights and biases: [28]

C(w,b)≡ 1
2n ∑

x
‖y(x)−a‖2, (2.4)

where ‖y(x)− a‖ is the difference between desired output and actual output and n is the
total number of training inputs. The goal is to minimize this cost function, i.e. to find such
set of weights and biases such that C(w,b)≈ 0. The gradient descent algorithm is based on
the fact that C(w,b) decreases fastest if the set (w,b) moves in the direction of the negative
gradient of C(w,b).

Now let us the simplify our problem and assume that we have cost function for some
general wl,k and bk. Then the change of the cost function is:

∆C ≈ ∂C
∂wl,k

∆wl,k +
∂C
∂bk

∆bk, (2.5)

∆C ≈ ∇C ∗∆(w,b), (2.6)

where the gradient vector of the cost function is:

∇C ≡
(

∂C
∂wl,k

,
∂C
∂bk

)T
. (2.7)

The goal of backpropagation is to calculate the partial derivatives of the cost function C(w,b)

present in the gradient equation with respect to any weight w or bias b. It gained its name
from the fact that the error terms are computed backwards from the output layer back to the
input one. Then these error terms are used to calculate the gradient vectors and to adjust the
weights in order to minimize the cost function.

In case of the recurrent neural networks the method of backpropagation is slightly altered
due to the nature of the RNN to the so-called BackPropagation Through Time algorithm.
The recurrent neural network can be viewed as an unfolded sequence of layers in feed-
forward neural network. Hence we calculate the gradients of the multi-layer feed-forward
network with a fixed number of layers such that the activations in each layer represent the
activations of the recurrent neural network at time step t so that the activation for time t = 0
is at the highest layer. The activations themselves are calculated using the activations from
the layer one step below, i.e. at time t = 1, and in synchronous way. [30]

While training the RNNs one may run into two problems - exploding and vanishing
gradients. Recall that our learning algorithm is based on decreasing the error-term but if
we cannot adjust the weights properly such that the gradient diminishes, the neural network
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would have difficulties to be properly trained. It is actually very easy for the RNNs that the
gradient suddenly explodes - rapidly increases, or vanishes - rapidly diminishes because the
layers in the unfolded RNN are related through a multiplication, so the overall gradient is a
sum of the products of partial derivatives assigned to each time step. [31]

Figure 2.7: The RNN as a unfolded copies of the same neural network. (Credit wildml.com
webpage)

To get some mathematical insight into the problem, assume we have already summed up the
gradient at each time step in RNN depicted on the figure 2.7 above:

∂C
∂w

= ∑
t

∂Ct

∂w
, (2.8)

and each temporal contribution is a sum of the product of partial derivatives obtained through
chain rule of derivation because each output yt depends on hidden state at time t which is
calculated as some function of previous hidden state and current input:

∂Ct

∂w
=

t

∑
k=1

∂Ct

∂yt

∂yt

∂ st

∂ st

∂ sk

∂ sk

∂w
. (2.9)

We just added up every temporal contribution to the overall gradient because the weight w is
used in partial derivative for each time step up to the output yt . After some algebra presented
in (Razvan Pascanu et. al 2012 [32]) and simplifying we obtain the following condition:

‖ ∂ st

∂ sk
‖ ≤ η

t−k, (2.10)

thus when t− k is large the gradient diminishes exponentialy to 0 for η < 1, and for η > 1
the gradient rises exponentially to infinity.
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2.4 Using the Neural Networks for Time Series Prediction

In general, a real time series prediction is difficult because of a presence of temporal depen-
dence between the observations. The financial time series are mostly forecasted by applying
the Box-Jenkins method in form of linear ARMA models (or their modifications) because
of their simplicity and the fact that they might be effective on the most of the problems.
However, they have a few limitations: [35]

• Focus on the linear relationships - many real-world time series might be non-linear
and chaotic

• Assume a fixed temporal dependence - the relationship between observations might
vary with time

• Applied to stationary time series - we often find a real-world time series non-
stationary, so they must be stationarized before the ARMA model is to be used

• Used with complete data only - time series may often suffer from missing data

To tackle these limitations the artificial neural networks are used due to their ability to ap-
proximate any mapping function from inputs to outputs. They have several advantages
regarding the time series predictions:[36]

• Can handle the non-linearity - the ANNs can approximate any non-linear function

• Make no stationarity assumptions - the ANNs can be applied directly on the non-
stationary time series

• Require minimal data preprocessing - using the traditional approach we must iden-
tify trends, seasonal and cyclical patterns found in the stationary time series

• Can cope with missing data - the ANNs can learn the patterns even from incomplete
dataset

There are many ANNs models that can be used for predictions of the time series, e.g. feed-
forward neural networks, recurrent neural networks, radial basis functions neural networks
etc. Although the feed-forward neural networks are the mostly used type of the ANNs,
their mapping function is static, so the temporal dependence is ought to be specified while
designing the appropriate model. On the other hand, the RNNs are able to learn not only the
mapping function from inputs to outputs, but also the mapping function for the inputs over
time to the outputs, i.e. they can learn the temporal dependence from the given data. For
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that reason in this thesis we focus on the special case of the recurrent neural network model
called Long Short-Term Memory network.

Long Short-Term Memory networks - introduced in 1997 by Hochreiter and Schmid-
huber as the special type of the RNN that should reduce the vanishing gradient problem.
They are able to learn both short-term and long-term dependencies in the data. Similarly
to the basic RNN architecture, the LSTM networks contain the sequence of self-repeating
modules due to the loops, but these modules or memory blocks are quite different in this
case. The memory block consists of four basic parts - a gated cell that contains the infor-
mation about the temporal state of the network outside of the RNN flow, an input gate that
decides what information should be stored in the cell state, an output gate that decides what
should be an output, and a forget gate that decides what information should be forgotten
(disappear).

Figure 2.8: A diagram of LSTM cell. (Credit adventuresinmachinelearning.com webpage)

The behaviour of these three multiplicative gates is similar to the neural network nodes in
sense that they serve to control the information flow to the memory gated cell using the
weights that are subject to the RNN learning. Each gate consist of a simple neural sigmoid
layer, so each of them outputs a value between 0 and 1. In case of updating the cell state to
the new value, we combine the value from the input sigmoid layer, which defines what to
update, without the information defined in the forget gate, with a tanh layer that produces
the vector of candidate cell values. The final output is generated similarly, i.e. at first the
output sigmoidal layer defines what to output (what parts of the cell state) and then it is
multiplied by the cell state transformed by tanh layer. [37]
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Methodology

This chapter is devoted to the methods of obtaining data, their manipulation and their final
processing, i.e. it describes the process of how we obtained the results from time series data.

3.1 Process Description

To achieve the goals of this thesis we had to calculate the statistics describing the predictabil-
ity, and apply the neural networks on 150 time series of stock prices. For obvious reasons, it
was rational to automatize this process using some programming. We chose to programme
the whole process in Python language (Anaconda distribution of Python version 3.6.1, Ana-
conda version 4.4.0), using mostly the data science libraries Pandas, Numpy, Nolds, Keras
and TensorFlow. The algorithm consists of several steps:

1. Download the time series of stock prices from Yahoo!Finance server using Python
package pandas-datareader included in library Pandas, and convert them into daily
log returns.

2. Divide the sample into training and testing sub-sample to train, and then generate and
asses the chosen LSTM performance by RMSE measure.

3. Calculate the statistics concerning the predictability of time series using the Nolds
library: Hurst exponent (R/S and DFA method), Lyapunov exponent, Sample entropy.

4. Save the results of both the LSTM results and predictability statistics calculations to
an Excel file.

For better illustration of the process for a single time series, a flowchart is depicted on the
next page.

– 22 –
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Figure 3.1: The process flowchart for generating the results from a single time series. (Au-
thor’s own work.)
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3.2 Data Sources

The only source of the financial data is the Yahoo!Finance website accessed via Python
package pandas-datareader that is able to download the data specified by the ticker symbol.
For the more information visit the pandas-datareader documentation webpage.

Because we used the Python script to automatize the whole process, we could easily
download a huge number of various time series from different industries to generate the
ANN and to calculate the statistics related to the predictability. The only thing we hae to do
was to write the list of the tickers into script and then the algorithm did the rest of the job.
However, pandas-datareader needs a stable internet connection, so sometimes it might occur
that it cannot reach the Yahoo!Finance server and the whole script just stops, and then one
needs to know what was the last ticker successfully handled, so he or she can continue with
the next one. To alleviate this possible inconvenience, the script prints out the name of the
successfully downloaded ticker, and furthermore, we suggest not to use too many tickers at
once for easier orientation.

Data acquired from the Yahoo!Finance have a form of time series organized in a table
with six columns (pandas DataFrame), namely opening daily price, the highest price, the
lowest price, closing price, the adjusted closing price and the volume as depicted below. It
does not count an indexing column Date as an actual column. Then we just had to extract
the daily adjusted closing price from the fifth column and transform it to their log returns
which is our working time series.

Figure 3.2: Data obtained from Yahoo!Finance. (Author’s own work.)

The fact that we did not used the prices but their log returns has some theoretic reasons.
Firstly, an one-period log return is defined as: [38]

rt = log(Pt)− log(Pt−1) = log
Pt

Pt
= log(1+Rt), (3.1)

where we consider a logarithm with a natural base and Rt is the gross one-period return.
The log returns of the financial stocks are said to follow some well-known properties which
make their statistical analysis much easier: [39]

https://finance.yahoo.com/
https://pandas-datareader.readthedocs.io/en/latest/
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• Stationarity - the asset prices are often non-stationary, but their log returns fluctuate
around some constant level, i.e. their sample mean is close to zero

• Asymmetric distribution - the log returns distribution is symmetric- negatively skewed
with heavy tails

• Volatility clustering - the large changes of prices both positive and negative occur in
clusters

• Aggregational Gaussianity - the log returns are time additive, i.e. a return over n days
in an aggregation of n one-period returns, and due to Central Limit Theorem for a
large time horizons they converge to the normal distribution

• Long-range dependence - the serial autocorrelations are tiny, but on the other hand
the absolute values or squares of returns for a large number of lags indicate some
significant autocorrelation

3.3 Artificial Neural Networks Generation and Tuning

In this section we describe how the artificial neural networks we used were constructed.
Since in this thesis we deal with a numerous time series, we want to obtain a comparable
data through use of several artificial neural network that are, obviously, trained on each of
time series. Even a common sense would tell us that for different time series one should
find a different most appropriate LSTM, i.e. the LSTM with different architecture. For
instance, the LSTM with four LSTM memory blocks could perform better at predicting the
time series of one stock than another one that could be better predicted by the LSTM with
just two LSTM memory blocks. Since our goal is to have comparable and standardized
results, we seek for five most precise LSTM networks that could be effectively applied on
all our data, and then their RMSE can be averaged .

To design five the most precise LSTMs we chose eight representative stocks from differ-
ent industries (chosen by rule of thumb) and then trained the ANN with different parameters,
namely number of LSTM memory blocks and the number of learning epochs. As a results
we got the heatmaps for each stock of how the RMSE changes for LSTM memory blocks
ranging from two to ten, and epochs ranging from three to fifteen. The interval was chosen
by rule of thumb respecting the fact that our final LSTM should not be a computationally
intensive. Then we picked five best LSTM model according to the smallest average RMSE.

The programming of our artificial neural network that is actually a so-called Long Short-
Term Memory network type was inspired by the Machine Learning Mastery website. For
generating a LSTM network we used a Python deep learning library Keras which extensive

https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
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documentation is available online. The idea is that the prediction of the time series is treated
as a regression problem, thus we trained the neural network to predict the successive value
from the information obtained from the recent values.

At first, we extracted our data from downloaded pandas DataFrame into NumPy array
with integer values and converted them into floating values and then we continued with the
preprocessing the data. It is a common practice that the input values should be normalized
because real data are mostly distant from each other. And because the common activation
functions such as sigmoid, hyperbolic tangent and gaussian produce result that ranges be-
tween [0,1] or [−1,1], it should be important to normalize the values to that range. The com-
mon normalization approach is so-called Min-Max Normalization according to the equation
below. [40] For doing that we just used the preprocessing class from the scikit-learn library
called MinMaxScaler. Furthermore, we divided our dataset into training and testing sample.

y =
x−min(x)

max(x)−min(x)
. (3.2)

To grant the reproductibility of our results we set he specific seed numbers value in the
script, so it always starts generating the pseudo-random numbers from the same seed. To
define a regression problem we used a function called create dataset which (obviously)
creates a new dataset with the columns X1−Xn according to the window size and output Y

that are gradually lagged by one period while taking two arguments as inputs: dataset which
are the downloaded data and the look back parameter which describes the number of lags
(previous time steps) to use an inputs for forecasting the next time period. Then the lagged
recent inputs X1−Xn were used to predict the next period output value of Y . However, we
did not treat the past observations as the separate inputs, but rather as time steps of one input
feature. In addition, while using the Keras for LSTM generating, the input data should be
in a specific form of [samples, timesteps, f eatures]. This can be done be using a function
numpy.reshape(). In our case we reshaped the dataset in a way that the feature dimension
was 1 and the columns were the time steps dimension.

The LSTM network was then designed using these parameters: number of LSTM mem-
ory units/blocks in a hidden layer and the number of epochs. We did not change the default
setting of one input in visible layer and one output. Also we used a sigmoid activation
function for the LSTM blocks and linear activation function for output layer. Note that we
designed the neural networks with only a single hidden LSTM layer.

After fitting a model, we estimated its performance by using a RMSE measure, both for
the train and test sample. Finally, we made a forecast both the train and test sample and
plotted them to get some visual overview of the model. The original data are in blue, the
forecast for the training sample is in green, and for the testing sample is in red.

https://keras.io/
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To find the optimal modesls of LSTM we chose eight representative stocks from different
industries and train the LSTM network with different configuration to see which one pro-
vides us with the lowest average RMSE. The RMSE is simply defined as the square root
of the mean square error where error terms or residuals are simply differences between the
actually observed values and the values predicted by a model:[41]

RMSE =

√
∑

n
i=1(yobs,i− ymodel,i)2

n
. (3.3)

Sometimes we need to calculate the average RMSE from several samples. To do so, the
average RMSE for the whole population P consisting of k sub-populations n j is calculated
a little bit differently than classical (unweighted) average.

RMSE =

√
∑

P
i=1(Yobs,i−Ymodel,i)2

P
=

√√√√∑
k
j=1 ∑

n j
i=1(yobs,i, j− ymodel,i, j)2

∑
k
j=1 n j

, (3.4)

and using the equation 3.2 we get:

RMSE =

√√√√∑
k
j=1 RMSE2

j n j

∑
k
j=1 n j

. (3.5)

3.4 Calculation of the Predictability Statistics

The calculations were made using a Python library (based on NumPy) called Nolds which
is capable of calculating the non-linear measures for dynamical systems based on one-
dimensional time series. It is not usually implemented in Pandas library of Anaconda distri-
bution, so it has to be downloaded and installed from the python package index, specifically
Nolds package is available on this website where is also link to its documentation with
further description.

3.4.1 Hurst Coefficient Estimation

Recall that for Hurst exponent (or coefficient) estimation we can use two approaches de-
scribed in Section 1.2.1 that are rescaled range (R/S) and the detrended fluctuation analy-
sis (DFA). These two approaches are also implemented in Nolds package with commands
nolds.hurst rs(data) and nolds.d f a(data,order = 2, f it = ′RANSAC′). Note that these
commands can use more optional parameters, but for our work we need only a single pa-
rameter data and DFA methods uses the polynomial order of two for detrending procedure.
Furthermore, we used the RANSAC 1 fitting algorithm that seemed to give us more precise

1Stands for RANdom SAmple Consensus which is an iterative method that is robust in estimating param-
eters of a mathematical model from a set of data containing outliers.[43]

https://pypi.python.org/pypi/nolds/
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results but it must have been rerun several times because sometimes it could not cope with
calculation of fit, so we used its average values from several runs.

The algorithm nolds.hurst rs(data) returns a classical Hurst coefficient/exponent in
range between 0 and 1. However, time series used must be stationary which was attained by
using the log returns of stock prices.

On the other hand, the algorithm nolds.d f a(data) can be applied also on the non-
stationary time series, hence it is more versatile. The output value can be compared to
the value of the Hurst coefficient gained by the former algorithm simply as H=DFA, if the
process is stationary and H=DFA-1 for non-stationary process. The values should be similar
but hardly identical due to different algorithm.

3.4.2 Lyapunov Exponent Estimation

The largest Lyapunov exponent was estimated by the algorithm of Rosenstein et al.[42] us-
ing the command nolds.lyap r(data,emb dim = 14) . Note that Nolds package provides
also another way of calculating the Lyapunov exponents - nolds.lyap e(data) which esti-
mates the Lyapunov spectrum from which we can easily extract the largest Lyapunov expo-
nent, because in case of the univariate time series there is only a single Lyapunov exponent.
However, it is sensitive to proper choice of the parameters, so it we rather stuck to the first
algorithm. After short parameters tuning we used the value of 14 for embedded dimension
where it seemed to give us the consistent values - the smaller or larger values of embedded
dimension for the same time series sometimes led to the both negative and positive values
of the largest Lyapunov exponent, because time series in test sample showed very low mean
frequency which caused some calculation difficulties.

3.4.3 Sample Entropy Estimation

In our thesis we estimated the Metric entropy throughout calculating the Sample entropy
using a command nolds.sampen(data, tolerance = 0.02). Although Sample entropy is not
the same as the Approximate entropy, it is much less computationally intensive than latter
type of the entropy. Furthermore, as described in Section 1.2.3, the Sample entropy is
more consistent, so it does not require an extensive parameters tuning. The parameter for
embedded dimension is defaulted to value of two and although the parameter describing
tolerance is usually set to be some multiple of the standard deviation of time series - mostly
0,2 ∗ standard deviation, for Sample Entropy it may be suggested to leave it as a constant
value. After some empirical tests we used a tolerance parameter with a constant value of
0,02 that gave is the consistent values.[44]



Chapter 3. Methodology 29

3.5 Linear Regression and Correlation

To find any relationship between the prediction quality and the predictability we used two
common approaches - a simple linear regression between the average RMSE and a single
independent variable (in our case namely Hurst Coefficient estimated by R/S and DFA anal-
ysis, Sample Entropy and the largest Lyapunov Exponent) and the correlation analysis.

Simple Linear Regression - as already suggested, we assume a relationship between sin-
gle dependent endogenous variable (response) and single independent exogenous variable
(predictor), so that the changes in dependent variable are caused by the changes in the ex-
planatory variable and there is some linear relationship between these variables described
by a theoretical regression function: [45]

y = α +βx+ ε, (3.6)

where y is dependent variable and x is independent variable or predictor, parameter α is
called the y-intercept, β is the slope of the equation and parameter ε is called random error
term or residual that accounts for the changes in y that cannot be explained by the linear
relationship with x and must satisfy four conditions:

1. E(ε)=0 - the average value of the residual is zero

2. var(ε)=const. - the variance of the residuals is constant (homoskedasticity)

3. cov(εi,ε j)=0 for all i 6= j - the residual values are independent of each other

4. the residual values are normally distributed for any given value of x

The residuals are estimated from the linear regression model equation using the actual ob-
servations as a difference between the actual observed values yi and estimated values ŷi, so
for each pair of observations we get the ith residual as follows:

εi = yi− ŷi = yi− (a+b∗ x). (3.7)

The assessment of the model is done, firstly, by checking how proposed model fits the data
(R-squared, the overall F-test, t-test and the Root Mean Square Error), and secondly, by
validation if the residuals satisfy the conditions mentioned above.

Considering the nature of our data, the coefficient of determination R2 (or R-squared)
describing a portion of the total variation in the dependent variable that is explained by the
variation in the independent variable, was of smaller importance here, but we rather took
a look at the significance of the of regression coefficients described by t-test. The t-test
(hypothesis test for the regression slope) is used to check if there is a statistically significant
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linear relationship between an independent and the dependent variable,so the regression line
slope coefficient b significantly differs from zero. Note that it is based on using Student’s
t-distribution. Thus the null and alternative hypotheses are as follows:

H0 : b = 0
H1 : b 6= 0

We used the p-value approach, so in statistical software SPSS we computed the p-value
(cumulative probability that the theoretical t-score following the Student’s t-test is more
extreme than calculated value of t-score) and compare it with the chosen significance level.
When p-value is < than chosen significance level, then we reject the H0, so that the slope of
the regression line significantly differs from zero.

Then we have to examine if the residuals satisfy four well-known coditions:

1. E(ε)=0 - examined by the scatter plots of the residuals versus the predicted values,
where the values of the residuals - should be randomly scattered around zero

2. var(ε)=const. - examined using the scatter plots of the residuals versus the predicted
values variables - there should be no pattern.

3. cov(εi,ε j)=0 for all i 6= j - examined using the scatter plots of the residuals versus the
predicted values variables. No autocorrelation should be indicated by the absence of
any pattern. Alternatively we can use the Durbin-Watson test 2.

4. normal distribution - examined using the histogram and normal probability plot.

Correlation Analysis - used to describe a linear relationship between two variables in a
form of correlation coefficients that quantify its strength and direction. They range within
an interval of [-1,1], so according to their value we distinguish between three basic cases:

1. r(x,y)> 0 - positive correlation - if r(x,y) = +1 indicates perfect positive correlation

2. r(x,y) = 0 - no correlation

3. r(x,y)< 0 - negative correlation - if r(x,y) =−1 indicates perfect negative correlation

Please note that the correlation coefficient describes only a linear relationship between two
variables, i.e. the possible non-linear relationships are not captured, and the values closer to
zero mean weaker linear relationship only.

2 Let’s have the residuals εi sorted in time order, then

DW =
∑

n−1
i=1 (εi− εi+1)

2

∑
n
i=1 ε2

i
.

DW < 2 means positive serial correlation, DW > 2 means negative serial correlation. However, it tests only
the serial correlation. If the residuals are independent, the Durbin-Watson test value is around value of 2.[46].
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In this thesis we used a Pearson correlation coefficient between two random variables. For-
mally, the Pearson product-moment correlation coefficient of two random variables is cal-
culated as follows: [47]

r(x,y) =
∑

n
i=1(xi− x̄)(yi− ȳ)

∑
n
i=1(xi− x̄)2 ∑

n
i=1(yi− ȳ)2 . (3.8)

Furthermore, because we performed a simple linear regression, so there were only a single
regression coefficient, the Pearson correlation coefficient can be also calculated as a square
root of the R-squared with the sign being identical to the sign of a slope of the line.
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The Results

In this chapter the overall results of this thesis are presented in the form of heatmaps, plots,
tables and short discussion about them. At first, there are results of determining the most
precise models of the LSTM which are applied in following part on a huge number (150)
of various time series. Then there are the results conerning any possible relation between
the LSTM performance characterized by the average RMSE calculated from the best five
models and each of the predictability statistics characterized by the Hurst coefficient - via
Rescaled Range analysis, DFA exponent, and then the largest Lyapunov exponent and Sam-
ple entropy.

In the whole thesis we used data from Yahoo! Finance - daily adjusting closing price of
the stock in USD converted into their log returns with 2893 observations (since 1.1.2006 to
30.6.2017). Since more data means more information the LSTM can train on, we wanted to
include pre-crisis and post-crisis period and also use a relatively recent data in our sample.
However, more data also means more computing time, so we did not include too distant
periods and it took approximately between 30 to 45 seconds for LSTM to train and then
generate the prediction from a single dataset. The downloaded sample was divided into
training sample consisting of 2314 observations, and test sample consisting of the rest 579
observations which is in the agreement with standardly used division of the original sample,
such that testing sample contains approx. 20% of the observations.

4.1 The Best LSTM Models Selection

As previously mentioned, we tried to select five most precise LSTM models that could
relatively accurate and effectively forecast all the stocks we used in the next part, so then we
could compare their forecasting ability while being applied on a different time series with
different degree of predictability. Basically, we can influence LSTM network forecasting
ability either via changing its architecture, i.e. selecting the proper number of memory

– 32 –
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blocks, or via training process, i.e. modulating the number of training epochs.
We can set the desired number of memory blocks in single layer by using the variable

numBlocks in the script. The more memory blocks does not always mean the better fore-
casting capability, so we tried to run the script with several memory blocks and then chose
the model (ideally) with the lowest RMSE. Adding the memory blocks has a small influence
on computing time, so it is not a problem to have a LSTM with a large number of them.

On the other hands, adding the number of training epochs leads to a significant increase
in computing time, so we do not prefer a very long lasting training. However, in general,
the more training epochs we have, the smaller RMSE gets, although after some number of
epochs the over-training can occur. Thus we must set some reasonable threshold RMSE
that takes into account the fact that after some training the increments of refining the model
become smaller and smaller, so its is not preferable to continue with further training. Fur-
thermore, we must also consider the number of blocks in our selection process, that can
cause the RMSE to be a different for even the same number of training periods.

For our selection process we chose eight stocks from different industries that should be
representative to some extent, and thereby five selected LSTM models would be able to han-
dle with the various stocks. Representative in our case means the one that could characterize
the respecting industry like being typical for that sector, having a huge trading volumes etc.
Those stocks were Citigroup Inc. (ticker ”C”), Wells Fargo & Company (ticker ”WFC”)
for the financial sector, Pfizer Inc. (ticker ”PFE”) for the healthcare sector, Comcast Cor-
poration (ticker ”CMCSA”) for the services sector, PG&E Corporation (ticker ”PCG”) for
the sector of utilities, General Electric Company (ticker ‘”GE”) for the sector of industrial
goods, Apple Inc. (ticker ”AAPL”) for the sector of consumer goods and the Micron Tech-
nology, Inc. (ticker ”MU”) for the technology industry.

The range of memory blocks of the LSTM was chosen empirically from the previous
experience from two to ten, because too large number of the memory blocks has the problem
that the network can be too much complex and cannot be properly used for our type of the
problem.

Similarly, the range of the training epochs was chosen empirically from three to fifteen
to capture the relation how increasing LSTM learning leads to the smaller marginal im-
provement. On the other hand, for some time series the small number of learning epochs is
not enough to generate a sufficiently accurate model.

As a result we generated eight heatmaps, each for the respective stock, containing the
value of RMSE, number of memory blocks and number of training epochs. To better visu-
alize the low or high values we used the heatmaps where the specific colour from a given
colour scheme is assigned to a given value of RMSE.
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Figure 4.1: Heatmap of the RMSE for ticker C.

Figure 4.2: Heatmap of the RMSE for ticker WFC.
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Figure 4.3: Heatmap of the RMSE for ticker PFE.

Figure 4.4: Heatmap of the RMSE for ticker CMCSA.
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Figure 4.5: Heatmap of the RMSE for ticker PCG.

Figure 4.6: Heatmap of the RMSE for ticker GE.
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Figure 4.7: Heatmap of the RMSE for ticker AAPL.

Figure 4.8: Heatmap of the RMSE for ticker MU.
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Although a single heatmap gives us a quite sufficient view of the RMSE range, and thereby
it is easy to identify which LSTM configuration has the lowest RMSE, the overall searching
for the optimal architecture is more complex. We needed to choose the models that are able
to predict the whole range of time series of log returns as precise as possible. As anticipated,
for different stocks, the lowest RMSE is attainable by different LSTM network configuration
as seen on table below.

Table 4.1: Stocks with their minimal RMSE.
Company Ticker The lowest RMSE Blocks Epochs
Citigroup Inc. C 0,01696 7 12
Wells Fargo & Company WFC 0,01353 2 15
Pfizer Inc. PFE 0,01135 2 15
Comcast Corporation CMCSA 0,01134 9 15
PG&E Corporation PCG 0,01081 2 12
General Electric Company GE 0,01198 2 13
Apple Inc. AAPL 0,01474 4 14
Micron Technology, Inc. MU 0,03017 3 14

Finally, we tried to determine the most precisel configurations of our LSTM network by
calculating the average RMSE of the whole population consisting of all eight stocks. Its
calculation was described in the Methodology chapter, and the results are below in table
4.2. The best five models configurations were the ones with the minimal average RMSE
which are summarized in table below based on the overall heatmap on the next page.

Table 4.2: LSTM configurations with minimal RMSE.
Order Average RMSE Blocks Epochs
1. 0,01632 2 15
2. 0,01633 3 4
3. 0,01634 3 8
4. 0,01636 2 8
5. 0.01637 7 15

Then we made 150 predictions of log returns of various stocks using these five LSTM net-
works configuration and subsequently compared their average RMSE with the predictability
statistics.
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Figure 4.9: Heatmap of the average RMSE for all tickers.

Figure 4.10: Forecast made by the most precise LSTM network for ticker C.
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Figure 4.11: Forecast made by the most precise LSTM network for ticker WFC.

Figure 4.12: Forecast made by the most precise LSTM network for ticker PFE.
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Figure 4.13: Forecast made by the most precise LSTM network for ticker CMCSA.

Figure 4.14: Forecast made by the most precise LSTM network for ticker PCG.
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Figure 4.15: Forecast made by the most precise LSTM network for ticker GE.

Figure 4.16: Forecast made by the most precise LSTM network for ticker AAPL.
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Figure 4.17: Forecast made by the most precise LSTM network for ticker MU.

4.2 Final Results and LSTM Networks Forecasts

In this section we provide the complete results for 150 tickers including the predictability
statistics and the quality of fit attained by the five best LSTM models represented by the
average RSME to achieve a comparability. Please note that the three statistics concerning
the predictability - Hurst coefficient (calculated by R/S Analysis, DFA coefficient), Sample
entropy and the largest Lyapunov exponent are calculated for test sample because the quality
of prediction was calculated, obviously, on the test sample. These 150 tickers were selected
randomly in a such way that they should have represent the all possible types of stocks in a
given industry, i.e. stocks with high and low market capitalization, with high and low prices
etc. Furttjermore, we also present the plots with forecast made by the most precise LSTM
network for three stocks with the lowest average RMSE and for two stocks with the largest
average RMSE (the third largest average RMSE was calculated for ticker MU which plot is
presented in previous section). A table with results is presented on the next few pages.
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Table 4.3: The complete results.

Ticker Hurst (R/S) Hurst (DFA) Sample Entropy Lyapunov Exp. Average RMSE
KO 0,433362 0,443187 0,074153 0,031612 0,008476

CCA 0,423997 0,317632 0,086004 0,030915 0,009260

SO 0,471019 0,464852 0,118179 0,030975 0,009566

AFG 0,434640 0,464067 0,113748 0,032585 0,009864

MCD 0,462324 0,479140 0,103243 0,036631 0,010179

VZ 0,558248 0,665616 0,137737 0,033464 0,010216

MO 0,501747 0,449411 0,136761 0,030915 0,010302

XEL 0,492087 0,467948 0,156358 0,033335 0,010397

SR 0,500937 0,654029 0,161954 0,029832 0,010399

K 0,450584 0,435835 0,148735 0,032530 0,010542

AEP 0,491104 0,465843 0,169735 0,034324 0,010723

ED 0,494267 0,527142 0,162984 0,030797 0,010734

NEE 0,449724 0,462785 0,159092 0,031353 0,010830

AON 0,392178 0,370315 0,135128 0,032708 0,010957

PCG 0,446947 0,514053 0,175842 0,030665 0,010981

UTX 0,528158 0,612052 0,139535 0,026877 0,011034

PPL 0,478234 0,496162 0,159355 0,031518 0,011058

DUK 0,537218 0,618877 0,156475 0,026697 0,011064

CMS 0,461502 0,544036 0,159934 0,032479 0,011074

WEC 0,463311 0,596130 0,175385 0,031514 0,011205

AFL 0,469069 0,443591 0,127926 0,032793 0,011289

GSK 0,417554 0,517509 0,188517 0,031609 0,011347

PFE 0,500051 0,511348 0,148566 0,030666 0,011450

MORN 0,540198 0,553426 0,159901 0,032818 0,011481

CMCSA 0,505444 0,589872 0,182327 0,030852 0,011494

DIS 0,499716 0,447105 0,140663 0,030039 0,011657

LNT 0,450112 0,630596 0,179517 0,028785 0,011720

NHC 0,519410 0,582883 0,204302 0,032874 0,011853

PEG 0,468216 0,453717 0,228280 0,030977 0,012122

WMT 0,446933 0,442128 0,159926 0,032946 0,012176

GE 0,493760 0,449361 0,159842 0,030898 0,012335

NI 0,473970 0,454635 0,246026 0,023250 0,012503

UTL 0,468826 0,442331 0,221447 0,027045 0,012706
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PSA 0,477902 0,617624 0,221808 0,033827 0,012725

USB 0,457614 0,446673 0,206774 0,032304 0,013008

MRK 0,403960 0,456853 0,195013 0,030636 0,013012

ORCL 0,426034 0,440102 0,186657 0,033886 0,013065

MGEE 0,457597 0,628709 0,277713 0,031147 0,013148

SIRI 0,491985 0,569696 0,227789 0,033922 0,013168

BNS 0,520160 0,535347 0,225270 0,032383 0,013172

SBUX 0,463202 0,564864 0,210700 0,031522 0,013195

ICE 0,503530 0,479323 0,209547 0,040716 0,013502

IPG 0,441656 0,515585 0,253477 0,034483 0,013598

BA 0,471835 0,565301 0,234115 0,030118 0,013748

ABT 0,527650 0,465620 0,224195 0,035416 0,013792

CSCO 0,552415 0,562640 0,179407 0,033106 0,013848

WFC 0,497858 0,531927 0,264038 0,034048 0,013889

HRL 0,498282 0,447156 0,238772 0,034658 0,013916

BBT 0,471701 0,484956 0,263371 0,026059 0,013926

AVX 0,385966 0,558174 0,307718 0,027937 0,013926

PNC 0,438588 0,450357 0,263088 0,033621 0,013973

IR 0,486695 0,694757 0,246655 0,034685 0,014014

EMR 0,451647 0,642847 0,306361 0,031170 0,014090

AIG 0,465313 0,538013 0,185069 0,030479 0,014095

EXC 0,512962 0,651267 0,284983 0,033243 0,014125

ESE 0,494858 0,537665 0,252730 0,032445 0,014139

NKE 0,513825 0,490032 0,255100 0,032227 0,014206

WINA 0,514655 0,415615 0,291698 0,031753 0,014320

ETN 0,447863 0,501975 0,282423 0,027163 0,014446

TWX 0,524523 0,590530 0,174194 0,023300 0,014479

UNP 0,487072 0,564409 0,312720 0,028896 0,014574

PLD 0,493924 0,600394 0,229968 0,033917 0,014590

ADBE 0,417397 0,560037 0,231366 0,035069 0,014651

SNY 0,487415 0,490842 0,324959 0,034036 0,014744

GOOG 0,486607 0,537771 0,236183 0,036634 0,014862

MDLZ 0,473441 0,602011 0,272888 0,038151 0,014911

INTU 0,499180 0,570137 0,204318 0,040369 0,014954

JCI 0,482266 0,561938 0,274919 0,035130 0,015006
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NPK 0,487825 0,437116 0,366101 0,031334 0,015031

HSBC 0,503361 0,600279 0,277141 0,032095 0,015076

AAPL 0,526475 0,476089 0,270422 0,034661 0,015078

FOXA 0,479244 0,508016 0,276100 0,033920 0,015232

AOS 0,532658 0,548325 0,279465 0,028470 0,015268

GGP 0,499185 0,551008 0,330570 0,035128 0,015291

ANTM 0,492488 0,671903 0,326342 0,031802 0,015303

CBS 0,494131 0,560235 0,324938 0,028685 0,015310

BSX 0,398664 0,392395 0,273822 0,030918 0,015339

XLNX 0,530187 0,484864 0,271616 0,031409 0,015353

BK 0,502064 0,475034 0,249207 0,029427 0,015359

HIG 0,428160 0,494276 0,219022 0,032321 0,015388

RELL 0,431947 0,485968 0,286429 0,032947 0,015832

EML 0,471130 0,325828 0,322948 0,027396 0,015898

CWT 0,507431 0,441634 0,339508 0,032435 0,016131

AET 0,500364 0,467471 0,319937 0,029868 0,016190

GS 0,509846 0,503546 0,326315 0,027404 0,016281

PBH 0,501974 0,517238 0,314394 0,033746 0,016289

COLB 0,471764 0,563211 0,391887 0,033886 0,016445

F 0,485647 0,611914 0,290268 0,030343 0,016559

USLM 0,464353 0,369749 0,305762 0,033034 0,016826

MGIC 0,489277 0,551613 0,368022 0,037121 0,016932

CRWS 0,444272 0,361965 0,290990 0,036465 0,016964

C 0,500498 0,527844 0,343508 0,027571 0,017200

NWL 0,428407 0,481449 0,267096 0,038037 0,017211

LEN 0,540863 0,454047 0,405416 0,028167 0,017217

RHT 0,501975 0,612892 0,296823 0,031227 0,017359

DDR 0,486234 0,547826 0,293681 0,030800 0,017389

KAI 0,481499 0,446780 0,379844 0,035898 0,017478

PHM 0,522078 0,502782 0,407447 0,030903 0,017543

CSGP 0,493272 0,525712 0,325839 0,029376 0,017565

SHG 0,505253 0,449269 0,470099 0,029770 0,017570

EBAY 0,459149 0,534346 0,313000 0,028885 0,017643

NVO 0,496537 0,570761 0,351189 0,040574 0,017690

KEY 0,459500 0,470576 0,405266 0,027032 0,017702
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BH 0,519310 0,494661 0,433178 0,034500 0,017708

ATNI 0,509559 0,478370 0,378196 0,033437 0,017847

KR 0,504622 0,598622 0,316003 0,034495 0,017928

JNPR 0,471046 0,509273 0,305893 0,028379 0,018049

ARTNA 0,552311 0,524170 0,407925 0,035130 0,018058

TV 0,413000 0,552981 0,434919 0,036107 0,018086

KB 0,488792 0,594369 0,490299 0,032379 0,018453

CTL 0,478818 0,564454 0,343039 0,036390 0,018557

MS 0,502492 0,478037 0,394251 0,027930 0,018711

BAC 0,521108 0,604444 0,406645 0,028188 0,018727

YORW 0,456823 0,526960 0,467503 0,030341 0,018893

DISCA 0,463078 0,523638 0,464229 0,036107 0,019030

QCOM 0,469125 0,516821 0,299765 0,030195 0,019076

GENC 0,450354 0,528242 0,440521 0,029770 0,019260

AMSWA 0,473550 0,406770 0,419651 0,038489 0,019363

AGN 0,538112 0,536278 0,363474 0,031034 0,019816

MTU 0,465508 0,588587 0,462148 0,034500 0,019884

SNE 0,479773 0,456999 0,439646 0,030341 0,019926

CNO 0,485588 0,544452 0,447650 0,034997 0,019939

WWW 0,494770 0,531928 0,510716 0,028780 0,019973

WF 0,427593 0,450599 0,529767 0,030718 0,020212

SVA 0,509320 0,707567 0,239734 0,038439 0,020443

DJCO 0,437016 0,421086 0,495992 0,032965 0,020488

CTS 0,458111 0,517807 0,374783 0,031712 0,020535

JHX 0,469123 0,538633 0,493520 0,032610 0,020576

PLCE 0,494525 0,571650 0,507571 0,035404 0,020713

MTSC 0,493140 0,573123 0,380173 0,035057 0,020858

RF 0,506736 0,454774 0,462132 0,032379 0,021017

AJRD 0,499635 0,593897 0,483295 0,034997 0,021522

KBH 0,499056 0,498459 0,543712 0,035065 0,021534

TS 0,478073 0,494825 0,596556 0,027878 0,021690

JBLU 0,491262 0,490979 0,597891 0,033503 0,021817

IBN 0,457453 0,554871 0,562046 0,032234 0,021829

HNP 0,424122 0,428320 0,593109 0,026436 0,022244

ERJ 0,468034 0,517185 0,602687 0,039733 0,022245
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GILT 0,494564 0,505115 0,525823 0,030855 0,022580

SAN 0,491838 0,558506 0,582347 0,035347 0,023161

GSH 0,510465 0,545509 0,516780 0,033700 0,023504

MYL 0,479425 0,516011 0,582450 0,030735 0,024966

BCS 0,452041 0,563272 0,541090 0,030844 0,025403

TI 0,534818 0,477052 0,645743 0,031971 0,025445

ATRO 0,512339 0,547543 0,627950 0,035011 0,027473

DB 0,525748 0,579358 0,714194 0,034432 0,027617

ACY 0,469204 0,484010 0,648541 0,037256 0,029403

MU 0,472787 0,528408 0,796248 0,028796 0,030317

CBI 0,513612 0,521579 0,678456 0,035664 0,030738

NYNY 0,510600 0,536193 0,822532 0,036508 0,035085

As seen on table with complete results, the lowest average RMSE of test sample was
achieved for prediction of stock with ticker KO - The Coca-Cola Company - 0,00847601.
On the contrary, the largest RMSE, and thereby the worst forecast was made for stock with
ticker NYNY - Empire Resorts, Inc. - 0,0350849936. On the next pages there are forecast
plots for the best and worst predictions.

Figure 4.18: Stock with the most accurate forecast (KO).
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Figure 4.19: Stock with the second most accurate forecast (CCA).

Figure 4.20: Stock with the third most accurate forecast (SO).
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Figure 4.21: Stock with the least accurate forecast (NYNY).

Figure 4.22: Stock with the second least accurate forecast (CBI).
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4.3 Quality of Prediction vs. Predictability Statistics
Finally, we tried to determine a possible relationship, if any, between the calculated average
RMSE and Hurst coefficient (estimated by R/S Analysis and DFA), Sample entropy and the
largest Lyapunov exponent. At first, we generated four simple plots with error bars below
to visually inspect for any relationships.

Figure 4.23: Average RMSE vs. Hurst coefficient estimated using R/S Analysis.

Figure 4.24: Average RMSE vs. Hurst coefficient estimated using DFA.
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Figure 4.25: Average RMSE vs. Sample Entropy.

Figure 4.26: Average RMSE vs. Lyapunov Exponent.
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The graphs 4.23 - 4.26 clearly indicate that there might be some linear relationship between
the average RMSE and Sample Entropy, but the relationship between the rest of the measures
of predictability is not that detectable. To asses the relationship between the average RMSE
and the Hurst Coefficient we tried to estimate some simple regression curve on a distance of
Hurst coefficient from value of 0,5 (completely random time series). In general, to estimate
any relationship between forecasting precision and the predictability statistics we performed
in SPSS a simple regression analysis to find some regression models - linear, quadratic
and exponential - that can describe how level of the average RMSE is associated to the
value of aforementioned measures of predictability with the results presented on next few
pages. Note that in reality the forecasting precision depends not only on a single measure
of predictability we used, because they deal with the (slightly) different aspect of what can
influence the prediction quality, but we wanted to study the relationship between the average
RMSE and a single factor concerning the forecastability. Thus these regression models were
developed for some rough explanatory purposes and not for any precise forecasts.

Figure 4.27: Fitted plot of RMSE vs. distance of Hurst coefficient (R/S) from 0,5.

Figure 4.28: Fitting results - linear, quadratic and exponential trend.
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Figure 4.29: Residuals diagnostics for exponential trend.

Although it is evident that the values of RMSE tend to be higher around value of 0,5 for
Hurst coefficient, they are more dispersed when time series is random. Thus it is a little bit
difficult to find some simple regression model because the LSTM can achieve a relatively
low RMSE even when the Hurst coefficient is close to 0,5. To get some approximate results
we tried a linear, quadratic and exponential fitting line presented in table above. Because
all of them show a decreasing tendency and their coefficients are statistically significant, we
can state that the more distant values of Hurst coefficient are, the smaller average RMSE our
LSTM models tended to achieve. The largest R-squared was achieved by exponential trend
which p-value was 0,0016 for constant and 0,0354 for b1. The residuals analysis showed
that the assumptions about the residuals were clearly not satisfied.

Figure 4.30: Fitted plot of RMSE vs. distance of Hurst coefficient (DFA) from 0,5.
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Figure 4.31: Fitting results - linear, quadratic and exponential trend.

Figure 4.32: Residuals diagnostics for linear trend.

Likewise in the previous case, there is a larger dispersion of RMSE values around DFA with
values close to 0,5. Again we tried a linear, quadratic and exponential fitting line presented
in table above, and all of them show a decreasing tendency, so we can state that the more
distant values of Hurst coefficient are, the smaller average RMSE our LSTM models tended
to achieve. The most appropriate model was one with the linear trend which parameters had
p-value very close to zero for constant and 0,0166 for b1, but the assumptions about the
residuals were not satisfied in this case, but for some rough model with significant parame-
ters, it is satisfactory even though all R-squared values are low.
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Figure 4.33: Fitted plot of RMSE vs. Sample Entropy.

Figure 4.34: Fitting results - linear, quadratic and exponential trend.

Figure 4.35: Residuals diagnostics for linear trend.
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It is clear from the graph that the average RMSE increases with the Sample Entropy. All
three fitting lines - a linear, quadratic and exponential one were calculated with the statis-
tically significant F-tests. The best model was the one containing the quadratic trend line
with high R-squared of 0,92, but its parameter b2 was insignificant with value of 0,0597, so
we continued with an analysis of the model with linear fit which coefficient were significant
(their p-values were very close to zero). The residuals analysis showed that DW statistics
was around 1,94, their mean value fluctuated around zero, but still looked a little bit het-
eroskedastic, and the histogram indicates that the residuals were not normally distributed.
Thus as expected the Sample Entropy alone cannot be the only explanatory variable, but
as opposed to the previous results, it gave us the statistically significant result with high
R-squared, so that the level of average RMSE conditioned on the Sample Entropy increases
if the values of Sample Entropy rise.

Figure 4.36: .

Figure 4.37: Fitting results - linear, quadratic and exponential trend.
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Figure 4.38: Residuals diagnostics for linear trend.

By looking at the figure 4.36 it is noticeable that there is no clear linear relationship visible.
Again we tried a linear, quadratic and exponential fitting line presented in table above. Be-
cause again all of them show an increasing tendency, we can state that the larger the largest
Lyapunov exponent is, the larger the average RMSE our LSTM models tends to be, i.e. the
time series become less predictable. Although the highest R-squared was achieved for the
quadratic trend which F-test was significant at the significance level of 0,05, its parameters
were not - p-value for constant was 0,1967, 0,4065 for b1 and 0,3157 for b2. Therefore
we used the model with linear fit for subsequent residuals analysis which parameter were
statistically significant with p-value 0,0465 for constant and 0,0235 for b1. It showed that
the assumptions were not satisfied as seen on the plots of residuals.

Below there is a correlation table describing the intensity of the linear relationship be-
tween normalized RMSE and each of the predictability statistics using the Pearson corre-
lation coefficient estimated by SPSS. Because we are just interested in how the levels of
the average RMSE moves depending on each predictability statistics, this approach is much
more simpler than finding the regression line.

Figure 4.39: Pearson correlation coefficient.
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The correlation table reveals that there are significant correlation coefficients between the
predictability statistics and the RMSE. The correlation coefficient between the Sample en-
tropy and RMSE is very large - 0,949 which means nearly perfect correlation. Thus the
presence of irregularities has a huge impact on how the LSTM can forecast the future val-
ues. The correlation coefficient between RMSE and the largest Lyapunov coefficient implies
the small but significant positive correlation, so the chaotic behaviour tends to increase the
RMSE. The correlation coefficients between transformed Hurst coefficient and RMSE both
for estimation using R/S analysis and DFA method signifies the small but significant nega-
tive correlation, which means that the closer to the value of 0,5 the Hurst coefficient gets,
the worse prediction the LSTM makes.

Furthermore, recall from the section 3.5 that the Pearson correlation coefficients can be
estimated from the R-squared obtained by linear fit in simple linear regression. Thus using
the R-squared we get the correlation coefficient between the Sample entropy and RMSE
as -0,9486, the correlation coefficient between RMSE and the largest Lyapunov coefficient
as +0,1844, the correlation coefficients between transformed Hurst coefficient (R/S) and
RMSE as -0,1703 and the correlation coefficients between transformed Hurst coefficient
(DFA) and RMSE as -0,1949 which is in agreement with the values presented in table on
the previous page.
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Conclusion

One of the most prominent feature of the financial time series is their non-stationarity and
non-linearity. These two qualities make the stock prices time series modeling and prediction
difficult, so their log returns are used for the statistical analysis instead. Fortunately, the re-
cent advances in the field of machine learning lead to the development of the specific type of
the artificial neural networks called the Long Short-Term Memory network belonging to the
Recurrent Neural Network class which is capable to capture various temporal relationships
bounded to the real-world time series, and thereby can be used for their forecasting.

Apart from that, time series predictability is related to the time series characteristics
describing their long-term memory presence, information decay, presence of irregularities
or chaotic behavior. These measures called namely the Hurst coefficient, Metric entropy
and Lyapunov exponent can be estimated to some accuracy using the modern computational
methods, and thereby represent some guidance for classifying time series according to their
forecasting difficulty.

This diploma thesis was devoted to the both matters discussed above - time series predic-
tions using the LSTM networks and assessing their predictability using aforesaid statistical
measures. Then we tried to determine a possible relationship between the quality of pre-
dictions and these measures of predictability. Apart from using the log returns, to get the
comparable results, at first, we selected five LSTM models (with a single hidden LSTM
layer) with certain values of parameters which lead to the lowest average RMSE from fore-
casting eight time series of stocks from 7 different industries. Then we made a forecasts of
150 randomly selected log returns of financial stocks available on Yahoo!Finance to obtain
the RMSE of a test sample as a measure of prediction quality. The measures of predictability
were calculated on the same test sample, and afterwards, we tried to asses any relationship
between them using the plots, simple linear regression and the correlation coefficients.

LSTM networks predictions - In our thesis we used the time series of log returns of daily
adjusting closing price of the stocks in USD with 2894 observations which correspond to the
period from 1.1.2006 to 30.6.2017, that was split into training and test sample on which the
forecast by LSTM networks was made. Because we desired to get the comparable results,
we identified five LSTM networks that could have the best forecasting abilities. Thus we
used 8 time series from 7 different industries to find five optimal models applicable to a wide
variety of stocks by changing its two parameters - number of memory blocks and number of
training epochs. Note that we used 2 stocks from financial industry as we realized that there
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is a much greater availability of suitable time series than in the other industries.
The main part was about making predictions of 150 randomly selected stocks having

available data for our chosen time periods, using five LSTM networks. Although they were
selected randomly, we had to omit few of them because of the data incompleteness, shortness
etc. Furthermore, we tried to preserve the ratio of numbers of stocks between different
industries given by the previous tuning part but we did not strictly adhere to it because of
the different level of suitable stocks found among the industries. The lowest average RMSE
attained was 0,008476 for ticker KO. On the other hand, the largest average RMSE obtained
was 0,035085 for ticker NYNY which is a quite large compared to the mean value of average
RMSE of all 150 stocks which was 0,016303.

Quality of forecasts vs. predictability - To asses the predictability of selected 150 time se-
ries we calculated three statistics on test sample - Hurst coefficient using a Rescaled Range
Analysis and Detrended Fluctuation Analysis, Metric entropy estimated by calculating a
Sample entropy and the largest Lyapunov exponent to asses a long-term memory, stability
and chaotic behaviour of the given time series. Then we tried to find out if there is any
statistical relationship between the prediction quality (average RMSE) and each of these
measures of predictability, using a simple linear regression to find some simple and approx-
imate model, and the correlation coefficients.

The estimation of the Hurst Coefficient using two methods showed us that the R/S anal-
ysis gave us in average lower values than those estimated by DFA method, which were also
spread in a wider range. Specifically, the R/S Analysis resulted in the Hurst coefficient rang-
ing from 0,385966 to 0,558248, and approximately half of the time series were estimated as
being persistent and a half of them were anti-persistent. Furthermore, the Hurst coefficient
was estimated also as DFA statistics. For DFA measures using RANSAC fitting method the
values ranged from 0,317632 to 0,707567, and slightly less than half of time series being
anti-persistent and the rest of values being either close to random or being persistent. To
find some relation to the average RMSE, we transformed their values into the distance from
random time series - 0,5 as |H-0,5| and |DFA-0,5| measures. In both cases the simple linear
regression indicated a decreasing behaviour of RMSE when the Hurst coefficient is more
distant from the value of 0,5 which means that time series with trends were predicted better
than time series with random behaviour. The same result was also provided by the Pearson
correlation coefficient with the values of -0,171 and -0,195 respectively, which indicate the
weak but statistically significant negative correlation.

The Sample entropy ranged from 0,074153 to 0,822532 meaning that our time series
contained mostly smaller irregularities or chaotic behavior. The simple linear regression
resulted in the models with high R-squared indicating increasing tendency of average RMSE
when the Sample entropy rises which is evident from the corresponding plots. Furthermore,
as expected, the Pearson correlation coefficient with the value of 0,949 indicated the strong
positive correlation. Therefore we found a strong evidence that the LSTM network generates
less precise forecast of the time series which contains more irregular patterns or exhibit the
chaotic behaviour.

The largest Lyapunov exponent ranged only from 0,023250 to 0,040716 indicating a
weakly chaotic and nearly stable system. The corresponding plot showed some rough in-
creasing tendency of the average RMSE when the largest Lyapunov exponent increases but
we would suggest to use a larger sample to obtain larger range of the larger Lyapunov ex-



Conclusion 62

ponent values. Note that the largest Lyapunov exponent does not indicate only chaos but
also the presence of noise, so the wider range would refine a possible relationship. The
simple linear regression models indicated increasing average RMSE while the Lyapunov
exponent increases. Furthermore, the Pearson correlation coefficient with the value of 0,184
showed the weak but statistically significant positive correlation. Therefore, higher values
of the largest Lyapunov exponent indicating the chaos tend to be associated with the worse
predictions.

In summary, we succeeded in generating of five LSTM networks that were able to relatively
accurately forecast 150 time series of log returns of randomly selected stocks. To get the
consistent results we used five the most appropriate LSTM models selected using a small
sample of time series before we started with forecasting above mentioned 150 time series of
which we calculated their average value of RMSE for each stock.

The calculated measures of predictability showed us that our randomly selected time
series differed in long-term memory and the irregular patterns, but were relatively similar
in terms of the chaotic behaviour and stability. In general, our results are in agreement with
the theory so that the random time series were tend to be predicted less accurately that those
with Hurst coefficient value more distant from 0,5. More complex time series or with severe
irregularities quantified by the Sample entropy were predicted with smaller precision and
those with a presence of chaos defined through the largest Lyapunov exponent resulted in
the higher RMSE of prediction as expected. Note that our results point out to the LSTM
networks ability to learn and accurately forecast time series. If our LSTM networks were
designed incorrectly, we would end up with the spurious results of average RMSE with no
relation to the time series predictability. Hence we can state state that irregular patterns
are strongly related to the accuracy of how the appropriately designed LSTM networks in
our thesis are able to make the forecasts. Long-term memory and chaotic behaviour of
time series have weaker but still significant influence on our LSTM networks forecasting
capabilities.

We think that further study comprising a larger time series sample even from less effi-
cient markets would provide the data with a much broader range of aforesaid measures of
predictability, and thereby refine their relation to the quality of forecast, especially in case
of the largest Lyapunov exponent. Apart from that, the forecasting abilities depend also on
the information from the training set, so that the less accurate predictions might have been
partially caused by the fact that LSTM networks did not learn some patterns. Therefore,
we would also suggest a further study that takes into account the measures of predictability
estimated from the training data as well, and also using the LSTM networks with more than
one hidden layer (also called stacked LSTM networks).
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Appendix

#A s c r i p t c o n t a i n s f o u r b a s i c f u n c t i o n s :
# Downloads d a t a : yahoo download ( t i c k e r s )
#LSTM network g e n e r a t i o n and p r e d i c t i o n o f t ime s e r i e s : LSTM gener ( t i m e s e r i e s , numBlocks , numEpochs )
# Measures o f p r e d i c t a b i l i t y o f t ime s e r i e s c a l c u l a t i o n : p r e d i c t s t a t ( t i m e s e r i e s , sample =0)
# Saves t h e a l l r e s u l t s a s s t r u c t u r e d Exce l t a b l e : s a v e r e s ( t i c k e r s , PREDICTABILITY , RMSE)

# download ing t h e d a t a from Yahoo ! F i n a n c e u s i n g a g i v e n l i s t o f t i c k e r s , e . g . [ ’GE’ , ’AAPL’ ]
d e f yahoo download ( t i c k e r s ) :

a l l s t o c k = l i s t ( )
i m p o r t pandas
from p a n d a s d a t a r e a d e r i m p o r t d a t a
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t numpy
s t a r t d a t e = ’ 2 0 0 6 0 1 0 1 ’
e n d d a t e = ’ 2 0 1 7 0 6 3 0 ’
f o r i i n t i c k e r s :

p a n e l d a t a = d a t a . g e t d a t a y a h o o ( i , s t a r t d a t e , e n d d a t e )
p r i n t ( i , ’ downloaded s u c c e s s f u l l y ’ )
s t o c k = p a n e l d a t a [ p a n e l d a t a . columns [ 4 : 5 ] ] # a d j u s t e d c l o s i n g p r i c e
s t o c k =numpy . l o g ( s t o c k ) . d i f f ( ) # l o g r e t u r n s
s t o c k = s t o c k . d ropna ( ) # d r o p i n g NaN v a l u e s
a l l s t o c k . append ( s t o c k )

r e t u r n a l l s t o c k

# g e n e r a t e s a LSTM, makes a p r e d i c t i o n , p l o t s t h e g raph and r e t u r n s t h e RMSE and NRMSE
d e f LSTM gener ( t i m e s e r i e s , numBlocks , numEpochs ) :

RMSE= l i s t ( )
i m p o r t math
from k e r a s . models i m p o r t S e q u e n t i a l
from k e r a s . l a y e r s i m p o r t Dense
from k e r a s . l a y e r s i m p o r t LSTM
from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler
from s k l e a r n . m e t r i c s i m p o r t m e a n s q u a r e d e r r o r
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t pandas
i m p o r t numpy

# f i x random seed f o r r e p r o d u c i b i l i t y
from numpy . random i m p o r t s eed
seed ( 1 2 1 )
from t e n s o r f l o w i m p o r t s e t r a n d o m s e e d
s e t r a n d o m s e e d ( 1 2 2 )

# c o n v e r t an a r r a y o f v a l u e s i n t o a d a t a s e t m a t r i x
d e f c r e a t e d a t a s e t ( d a t a s e t , l o o k b a c k = 1 ) :

dataX , dataY = [ ] , [ ]
f o r i i n r a n g e ( l e n ( d a t a s e t ) l ook back 1 ) :

a = d a t a s e t [ i : ( i + l o o k b a c k ) , 0 ]
dataX . append ( a )
dataY . append ( d a t a s e t [ i + look back , 0 ] )

r e t u r n numpy . a r r a y ( dataX ) , numpy . a r r a y ( dataY )

– 67 –
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# l o a d t h e d a t a s e t
f o r i i n r a n g e ( l e n ( t i m e s e r i e s ) ) :

s t o c k = t i m e s e r i e s [ i ]
p r i n t ( ’LSTM i n i t i a t e d f o r ’ , t i c k e r s [ i ] )
t s = s t o c k . v a l u e s
a v e r =numpy . mean ( t s )

d a t a s e t = s t o c k . v a l u e s
d a t a s e t = d a t a s e t . a s t y p e ( ’ f l o a t 6 4 ’ )

# n o r m a l i z e t h e d a t a s e t
s c a l e r = MinMaxScaler ( f e a t u r e r a n g e = (0 , 1 ) )
d a t a s e t = s c a l e r . f i t t r a n s f o r m ( d a t a s e t )

# s p l i t i n t o t r a i n and t e s t s e t s
t r a i n s i z e = i n t ( l e n ( d a t a s e t ) ∗ 0 . 8 0 )
t e s t s i z e = l e n ( d a t a s e t ) t r a i n s i z e
t r a i n , t e s t = d a t a s e t [ 0 : t r a i n s i z e , : ] , d a t a s e t [ t r a i n s i z e : l e n ( d a t a s e t ) , : ]
p r i n t ( l e n ( t r a i n ) , l e n ( t e s t ) )

# r e s h a p e i n t o X= t and Y= t +1
l o o k b a c k = 5
t r a i n X , t r a i n Y = c r e a t e d a t a s e t ( t r a i n , l o o k b a c k )
t e s t X , t e s t Y = c r e a t e d a t a s e t ( t e s t , l o o k b a c k )

# r e s h a p e i n p u t t o be [ samples , t ime s t e p s , f e a t u r e s ]
t r a i n X = numpy . r e s h a p e ( t r a i n X , ( t r a i n X . shape [ 0 ] , t r a i n X . shape [ 1 ] , 1 ) )
t e s t X = numpy . r e s h a p e ( t e s t X , ( t e s t X . shape [ 0 ] , t e s t X . shape [ 1 ] , 1 ) )

# c r e a t e and f i t t h e LSTM network
model = S e q u e n t i a l ( )
model . add (LSTM( numBlocks , i n p u t s h a p e =( look back , 1 ) ) )
model . add ( Dense ( 1 ) )
model . compi l e ( l o s s = ’ m e a n s q u a r e d e r r o r ’ , o p t i m i z e r = ’adam ’ )
model . f i t ( t r a i n X , t r a i n Y , epochs =numEpochs , b a t c h s i z e =1 , v e r b o s e =2)

# make p r e d i c t i o n s
t r a i n P r e d i c t = model . p r e d i c t ( t r a i n X )
t e s t P r e d i c t = model . p r e d i c t ( t e s t X )

# i n v e r t p r e d i c t i o n s
t r a i n P r e d i c t = s c a l e r . i n v e r s e t r a n s f o r m ( t r a i n P r e d i c t )
t r a i n Y = s c a l e r . i n v e r s e t r a n s f o r m ( [ t r a i n Y ] )
t e s t P r e d i c t = s c a l e r . i n v e r s e t r a n s f o r m ( t e s t P r e d i c t )
t e s t Y = s c a l e r . i n v e r s e t r a n s f o r m ( [ t e s t Y ] )

# c a l c u l a t e r o o t mean s q u a r e d e r r o r
t r a i n S c o r e = math . s q r t ( m e a n s q u a r e d e r r o r ( t r a i n Y [ 0 ] , t r a i n P r e d i c t [ : , 0 ] ) )
p r i n t ( ’ T r a i n Score : \%.4 f RMSE’ \% ( t r a i n S c o r e ) )
t e s t S c o r e = math . s q r t ( m e a n s q u a r e d e r r o r ( t e s t Y [ 0 ] , t e s t P r e d i c t [ : , 0 ] ) )
p r i n t ( ’ T e s t Score :\%.4 f RMSE’ \% ( t e s t S c o r e ) )
rmse =[ t e s t S c o r e ]
RMSE. append ( rmse )

# s h i f t t r a i n p r e d i c t i o n s f o r p l o t t i n g
t r a i n P r e d i c t P l o t = numpy . e m p t y l i k e ( d a t a s e t )
t r a i n P r e d i c t P l o t [ : , : ] = numpy . nan
t r a i n P r e d i c t P l o t [ l o o k b a c k : l e n ( t r a i n P r e d i c t )+ look back , : ] = t r a i n P r e d i c t

# s h i f t t e s t p r e d i c t i o n s f o r p l o t t i n g
t e s t P r e d i c t P l o t = numpy . e m p t y l i k e ( d a t a s e t )
t e s t P r e d i c t P l o t [ : , : ] = numpy . nan
t e s t P r e d i c t P l o t [ l e n ( t r a i n P r e d i c t ) + ( l o o k b a c k ∗2 ) + 1 : l e n ( d a t a s e t ) 1 , : ] = t e s t P r e d i c t

# p l o t b a s e l i n e and p r e d i c t i o n s
p l t . f i g u r e ( f i g s i z e = ( 1 3 , 8 ) )
p l t . t i t l e ( ’ O r i g i n a l vs . F o r e c a s t e d Time S e r i e s ’ , s i z e =18)
o r i g i n a l = p l t . p l o t ( s c a l e r . i n v e r s e t r a n s f o r m ( d a t a s e t ) , l a b e l = ’ O r i g i n a l da t a ’ )
t r a i n S a m p l e = p l t . p l o t ( t r a i n P r e d i c t P l o t , l a b e l = ’ P r e d i c t i o n s o f t h e t r a i n i n g sample ’ )
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t e s t S a m p l e = p l t . p l o t ( t e s t P r e d i c t P l o t , l a b e l = ’ P r e d i c t i o n s o f t h e t e s t sample ’ )
p l t . l e g e n d ( [ ’ O r i g i n a l da t a ’ , ’ T r a i n i n g sample p r e d i c t i o n s ’ , ’ T e s t sample p r e d i c t i o n s ’ ] )
p l t . y l a b e l ( ’ Log r e t u r n s o f d a i l y a d j u s t e d c l o s i n g p r i c e s ’ , s i z e =15)
p l t . x l a b e l ( ’ Days ’ , s i z e =16)
p l t . s a v e f i g ( ’ F o l d e r / ’+ t i c k e r s [ i ] , d p i =100)
p l t . c l o s e ( )

r e t u r n RMSE

# c a l c u l a t e s t h e measures o f p r e d i c t a b i l i t y , and r e t u r n s a l i s t o f them
# u s e s a n o l d s package
# argument sample r e f e r s t o t h e sample o f t ime s e r i e s used f o r c a l c u l a t i o n
# 0 whole sample ( d e f a u l t ) , 1 t r a i n i n g sample , 2 t e s t sample
d e f p r e d i c t s t a t ( t i m e s e r i e s , sample = 0 ) :

PREDICTABILITY= l i s t ( )
i m p o r t pandas
i m p o r t numpy
i m p o r t n o l d s

f o r i i n r a n g e ( l e n ( t i m e s e r i e s ) ) :
t s = t i m e s e r i e s [ i ] . v a l u e s
t s =numpy . r e s h a p e ( t s , ( l e n ( t s ) ) )
i f sample >0:

i f sample ==1:
t s = t s [ : i n t ( 0 . 8∗ l e n ( t s ) ) ] # t r a i n i n g s e t

e l s e :
t s = t s [ i n t ( 0 . 8∗ l e n ( t s ) ) : ] # t e s t s e t

h u r s t e x p = n o l d s . h u r s t r s ( t s , f i t = ’ poly ’ )
d f a ex p = n o l d s . d f a ( t s , o r d e r =2 , f i t t r e n d = ’RANSAC’ )
e n t r o p y = n o l d s . sampen ( t s , t o l e r a n c e = 0 . 0 2 )
l y a p e x p = n o l d s . l y a p r ( t s , emb dim =14)

p r e d i c t a b i l i t y =[ h u r s t e x p ] + [ d fa e xp ] + [ e n t r o p y ] + [ l y a p e x p ]
PREDICTABILITY . append ( p r e d i c t a b i l i t y )

r e t u r n PREDICTABILITY

# s a v e s t h e r e s u l t s i n t o t h e s t r u c t u r e d Exce l f i l e and o u t p u t s t h e r e s u l t s
# e v e r y row c o r r e s p o n d s t o a s i n g l e t i c k e t w i th a l l c a l c u l a t e d s t a t i s t i c s
d e f s a v e r e s ( t i c k e r s , PREDICTABILITY ,RMSE ) :

r e s u l t s = l i s t ( )
from pandas i m p o r t DataFrame
f o r i i n r a n g e ( l e n ( t i c k e r s ) ) :

a l l =[ t i c k e r s [ i ] ] + PREDICTABILITY [ i ]+RMSE[ i ]
r e s u l t s . append ( a l l )

r s =DataFrame ( r e s u l t s , columns =[ ’ T icke r ’ , ’ Hurs t ’ , ’DFA’ , ’ Ent ropy ’ , ’ Lyapunov ’ , ’RMSE’ ] )
r s . t o e x c e l ( ’ r e s u l t s . x l sx ’ , s h e e t n a m e = ’ r e s u l t s ’ , i n d e x = F a l s e )
r e t u r n r s
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