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Abstract

In this Thesis, small to medium scale DSGE model for Czech republic incorpo-

rating set of frictions and rigidities is derived, and estimated by Bayesian techniques.

Subsequent Impulse response and Shock decomposition analysis evaluate properties

of this model. Model is then matched to empirical data and estimated on Czech

major economic time series. Forecasting performance of this models is opposed by

Bayesian Threshold VAR and plain Bayesian VAR Models. Forecasting exercise con-

siders a variety of settings and its evaluation is judged upon RMSE providing simple

ranking of inquired models.

Key Words: DSGE, Bayesian estimation, forecasting, Bayesian VAR

JEL classification: E37, C11, C51, C53

Abstrakt

V tejto diplomovej práci je odvodený a Bazesovskými metódami odvadnutý malý,

až stredne veľký DSGE model pre Českú republiku zahrňujúci tržné frikcie a rigidity.

Nasledujúca analýza odozvy a dokompozícia šokov popisuju a hodnotí vlastnosti tohto

modelu. Ten je potom upravený tak, aby zodpovedal empiricky pozorvatelným datám

a následne odhadnutý na hlavných časových radoch popisujúcich Českú ekonomiku.

Predikčné schopnosti modelu sú porovnané s Bayesovským režim-prepinajúcim VAR a

obyčajným Bayesovským VARmodelom. Výpočet predpovedí pozostáva z celého setu

scenárov a výsledky sú ohodnetené na základe RMSE, ktorá poskytuje jednoduché

zoradenie modelov.

Key Words: DSGE, Bayesovské odhady, predpovede, Bayesovký VAR

JEL klasifikácia: E37, C11, C51, C53
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1 Introduction

This thesis aims to develop and practically implement progressive and powerful fore-

casting models able to from precise prognosis about future realization of major

macroeconomic time series, which are usual interests of financial institutions, cen-

tral banks or government. Since economic development is a dynamic process subject

to temporary fluctuations or permanent structural breaks, there is considerable un-

certainty related to almost every aspects of economic activity. High quality forecasts

are able to reduce this uncertainty and turn it into quantifiable risk.

In relation to that, they are necessary condition for successful implementation of

various risk models requiring short and long term forecasts as an basic input and for

simulations of artificial scenarios and evaluation of their impact. Widely used risk

management models such as Value at Risk, portfolio (or even individual) credit risk

modeling, provisioning under IFRS9 or BASEL III, all contain macroeconomic part

to produce either thought-the-cycle or point-in-time estimates. In particular, strong

forecasting models are appreciated in stress testing, when assessing overall health of

financial institutions.

For this purpose, two main types of models are constructed: a small to medium

scale DSGE model describing Czech economy, which performance is compared to

Threshold VAR model, both estimated by Bayesian techniques. For the former, in-

tention is to develop structural macroeconomic model suitable not only for forecasting

under different scenarios, but also for conducting inference in policy evaluation and

counter-factual analysis. For the latter, goal is to implement modern Bayesian tech-

niques to improve performance and build stable roots for inference of already powerful

VAR models.
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Derivation of the DSGE model follows mainly influential work of Smets and

Wouters (2002), Fernandez-Villaverde and Rubio-Ramirez (2005) and Adolfson et

al. (2005). Partially following New Keynesian tradition, estimated DSGE model

incorporates short run rigidities of prices and wages, but still perceives perfectly mo-

bile and cost-free adjustments of capital stock typical for RBC models as in King

and Rebelo (1999) or in basic NKE models. In addition, it is a money-in-the-utility

model with habit persistence formation, indexation to past inflation and two sectors

of firms. Role of government in model is reduced to setting of gross nominal inter-

est rate through Taylor rule. As such, model does not provide only unconditional

forecast, but also identifies drivers of structural changes and responses to past sup-

ply, demand and monetary shocks hitting the economy and considered in the model.

Moreover, with little adjustments, it is well-suitable to produce conditional forecasts

for structural analysis, although this matter is not subject of this thesis. Solved

model is estimated by Metropolis-Hastings algorithm and implemented in Dynare.

Next, constructed VAR models and estimated on the same data challenge perfor-

mance of this DSGE. VAR as non-structural models are capable of producing rela-

tively precise unconditional forecasts. In the past, they were widely used and into

certain degree still are, for economic or monetary policy assessment (Walsch, 2010).

For estimation of VAR parameters, Gibbs sampling algorithm is employed extended

by Metropolis-Hastings algorithm to sample threshold as in Blake and Mumtaz(2012).

Utilization and implementation of Bayesian techniques follows most recent trend in

econometrics and mainly macroeconomic modeling. Advantages of these methods are

discussed right in the subsequent period.

Forecasting exercise consist of out-of-sample 1 and 12-step ahead forecasts with

expanding window and two different in-sample periods. Forecasting performance of

models is judged upon and RMSE statistics computed from out-of-sample forecasts

and in sample-fit assessment is done upon marginal likelihood. Thesis also includes

illustrations of all practical implementations in Matlab and Dynare.
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2 Brief History of Macroeconomic

Modeling

Tradition of macroeconomic modeling is characterized by two approaches: structural

and non-structural. In the former, econometric techniques are tighten to theory

and as such depends on currently dominating economic thinking. The former ab-

stract themselves from macroeconomic theory and postulate unrestricted reduced-

form models intended to abstract correlations in observed time series. (Diebold,

2007)

The rise of structural modeling is closely related to Keynes’ (1936) General Theory

and Hicks’ (1937) IS-LM model. Subsequent period is characterized by development

of models based on system of decision rules used for conditional forecasting and for

evaluation of economic policy. Klein’s (1946) “revolutionary” approach introduced

simultaneous equation modeling. These determine equilibrium of the system as a

whole, but often are poorly identified due to lack of instruments in macroeconomic

time series and criticized for arbitrary selection of exogenous variables and ad-hoc

formulation of decision rules, such as consumption of investment functions. From

today’s perspective, they are even subject to spurious regression.

In the 70’s, a period characterized by empirical failure of such famous Phillips

curve, Lucas (1976) formally showed that conditional forecasts produced by systems

of simultaneous equations models are false as the change of policy changes also pa-

rameters of decision rules employed in the model. This gave a rise to models based

on rational expectations and optimizing agents of Kydlan and Prescot (1982), able

to produce artificial time series relatively close to observed ones. This models are

built on micro foundations incorporating several features of neoclassical economics.
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RBC research program is built on intertemporal substitution of labour and states

that fluctuations are caused by the fluctuations of the potential output itself due

to technological shocks. Further incorporation of nominal rigidities and imperfect

adjustments created New Keynesian economics and todays mainstream. In a recent

discussion, DSGE models are doubted to meet requirements for structural forecast-

ing imposed by Lucas critique, as larger-scale models are able to produce the same

outcomes with completely different sets of parameters.

On the other hand, non-structural models are intended to produce unconditional

forecast as a likely future path and therefore and not subject to Lucas critique

(Diebold, 2007). Let begin with Box and Jenkins (1970) methodology for univariate

time series analysis, i.e. ARMA models. They abandoned to that time generally

accepted deterministic trend modeling, and introduced stochastic trends generated

by cumulation of past shocks.

Breakthrough in non-structural modeling was Sims (i) formulation of famous fore-

casting equation yt+1 = β0 + β1xt + εt and (ii) relaxation of arbitrary selection of

exogenous variables in simultaneous equation modeling, resulting in formulation of

Vector Autoregressive models. Advantage over ARMA models is in description of

multivariate relationships. VAR models can be easily manipulated to produce even

conditional forecast (Lutkepohl, 2005) and still are often used for policy analysis

(Walsch, 2010).

Cointegration analysis of Engle and Granger (1987) as a response to spurious

regression allowed for modeling of long term relationships without differencing time

series and thus loosing information.

Threshold models, firstly introduced by Tong (1980) view economic fluctuations

as different regimes determined by certain threshold value of exogenous or lagged en-

dogenous variable. Markov-switching models are basically generalization of threshold

models with threshold being determined by unobserved indicator.

Current rise of computational power enhanced utilization of Bayesian methods

in estimation of both, structural and non-structural models. Especially for the
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large scale models it is easier to integrate likelihood function then to maximize it

(Fernández-Villaverde; 2009). Moreover, modern algorithms such as Gibbs sampling

or Metropolis-Hastings algorithm allow for approximation of posterior distributions

of parameters of interest combining prior distributions with likelihood function devoid

of tedious integration of multidimensional functions.

Key difference between classical and Bayesian approach is in the interpretation

of the relationship between parameters and data: while classical approach (MLE)

takes data as random realization of likelihood function and parameters intended to

maximize it as fixed, yet exhibiting uncertainty connected to random realization of

data, Bayesians consider data as given and parameters are treated as being random,

with objective to provide conditional probabilistic statements (DeJong and Dave,

2007). It is the probabilistic treatment that enables to incorporate prior beliefs about

parameters to be estimated in form of prior distribution.

In non-structural modeling, main advantage of Bayesian econometrics in estima-

tion of linear models over classical approach is that no limiting assumption have to be

employed. Standard VAR model requires stationarity of all variables (or stability of

a model) and testing for co-integration relationships, while only limitation of BVAR

is convergence. Second, standard methods utilizing OLS or maximum likelihood es-

timation provides point estimates of β̂ parameters and (probably biased) estimate

of error variance σ̂2 relying only on the information contained in the data (Blake

and Mumtaz, 2012). Bayesian approach produce not only mode, but entire posterior

distribution and again allows for incorporation of prior beliefs.

Availability of entire posterior distribution for parameters and endogenous vari-

ables of interest, or possible impulse response functions, represents better cornerstone

for inference about significance, efficiency, unbiasedness and confidence bands (per-

centiles of posterior distribution) of estimated parameters themselves or predicted

(forecasted) values in both, structural and non-structural modeling.
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3 DSGE Model

In this section, DSGE model For Czech economy is derived and solved. Later on, link-

age of model to empirical data is demonstrated and subsequent estimation method-

ology, setting of priors and results are presented. In this thesis, Czech republic is

modeled as a closed economy with corresponding corrections to the data and without

government sector of major influence. Derived DSGE is a mixture of NKE with labour

market a price rigidities, and RBC with perfect capital mobility. Price rigidities are

incorporated into model though intermediate goods producers and their monopolistic

power in price setting.

3.1 Households

Domestic economy is populated by the continuum of identical forever living house-

holds indexed over interval (i) ∈ [0, 1]. The unitary preferences are represented

by instantaneous utility function separable in consumption, labour supply and real

money balances:

U

(
Ct(i), Nt(i),

Mt(i)

Pt

)
=

(
eε
c
t (Ct(i)−Ht)

1−σ

1− σ
−ψ eε

l
tNt(i)

1+η

1 + η
+

(
Mt(i)

Pt

)1−µ

1− µ

)
(3.1)

where Ct(i) is the per capita composite consumption index, Nt(i) differentiated per

capita labour supply in terms of hours worked and
(
Mt(i)

Pt

)
are per capita real money

balances, i.e. real money demand. Next, σ is the inverse of intertemporal elasticity

of substitution in consumption parameter, i.e. a consumption smoothing or relative

risk aversion parameter, η is the inverse of Frisch labour supply elasticity or work
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effort with respect to real wage (Smets and Wouters, 2007), ψ is labour disutility

parameters and µ is money demand smoothing parameter.

Consumption pattern is subject to the habit persistence Ht = hCt−1(i) with h

representing habit formation parameter and h ∈ [0, 1]. It is a function of lagged

consumption and thus is not affected by current household decision Its purpose is to

incorporate desired persistence of consumption seen in empirical data and “keeping

up wit Joneses” effect (Abel, 1990). Motivation for money holding is of transactional

character and provided utility is rather of available free liquidity to finance consump-

tion. εct and εlt are, respectively, consumption preference and labour shock processes

defined as:

εct = ρcε
c
t−1 + εct (3.2)

εlt = ρlε
l
t−1 + εlt (3.3)

Households are capital owners and thus provide capital services to production

sector for rental rate rt and decide about its level in subsequent period through

current period investments. They also form savings by holding bond and receiving

interest payments corresponding to nominal interest rate it. Law of motion for capital

is defined as:

Kt+1(i) = ebtIt(i) + (1− δ)Kt−1(i) (3.4)

with

bt = ρbbt−1 + εit , where εit ∼ N(0, σ2
i ) (3.5)

Discounted lifetime utility is maximized subject to a series of intertemporal budget

constraints defined in real and per capita (household) terms and after substitution

for investments defined as:

Ct(i) +
Bt(i)

Pt
+
Mt(i)

Pt
+ e−btKt+1(i) ≤ ...

Wt(i)Nt(i) + rtKt(i) + (1− δ)e−btKt(i) +
(1 + it−1)Bt−1(i)

Pt
+
Mt−1(i)

Pt
(3.6)
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Stochastic utility maximization problem is taking form of:

max
Ct(i),Nt(i),Mt(i),Bt(i,)Kt+1(i)

: U

(
Ct(i), Nt(i),

Mt(i)

Pt

)
s. t. BC

This problem can be solved by forming and solving a Lagrangian or Bellman equation,

providing the same first order conditions. Whereas solving Lagrangian is simpler,

Bellman equation allows for direct cardinal evaluation of preferences. Nonetheless,

for this problem is Lagrangian more then sufficient and is utilized in all optimization

problems.

Lh = Etβt
[
∞∑
t=0

U

(
Ct(i), Nt(i),

Mt(i)

Pt

)
+ λht

(
Wt(i)Nt(i) + rtKt(i) + ...

+(1−δ)Kt(i)e
−bt+

(1 + it−1)Bt−1(i)

Pt
+
Mt−1(i)

Pt
−Ct(i)−

Bt(i)

Pt
−Mt(i)

Pt
−Kt+1(i)e−bt

)]

Lagrangian is differentiated by choice variables and first order conditions associated

with this problem are:

∂Lh
∂Ct(i)

: eε
c
tβt
(
Ct(i)− hCt−1(i)

)−σ
+ eε

c
t+1βt+1

(
Ct+1(i)− hCt(i)

)−σ
(−h) = βtλht

∂Lh
∂Nt(i)

: ψeε
l
tNt(i)

η = λhtWt(i)

∂Lh
∂Mt(i)

: βt

[(
Mt(i)

Pt

)−µ
1

Pt

]
= βtλht

1

Pt
− βt+1λht+1

1

Pt+1

∂Lh
∂Bt(i)

: βtλht
1

Pt
= βt+1λht+1

(1 + it)

Pt+1

∂Lh
∂Kt+1(i)

: βtλht e
−bt = βt+1λht+1((1− δ)e−bt+1 + rt+1)

with Kt+1 as a predetermined variable. Defining marginal utility of consumption at

time t as utc = λht and in time t + 1 as ut+1
c = λht+1 as and in similar fashion utn as

marginal disutility from work at time t and utm as marginal utility from real money

holdings at time t, first order conditions can be rewritten and manipulated as follows:

Ct(i) : utc = λht = eε
c
t

(
Ct(i)− hCt−1(i)

)−σ
− eε

c
t+1hβ

(
Ct+1(i)− hCt(i)

)−σ
(3.7)



10 Chapter 3. DSGE Model

Nt(i) : utl = utcWt(i) = utcMPLt (3.8)

Mt(i) : utm = utc − βut+1
c

1

1 + πt+1

(3.9)

Bt(i) : utc = βut+1
c

1 + it
1 + πt+1

(3.10)

Kt+1(i) : utc = βut+1
c

ebt

ebt+1

(
1− δ + ebt+1rt+1

)
(3.11)

Where (1 + πt+1) =
Pt+1

Pt
is inflation index. Note the equivalence of equation (3.10)

and (3.11) through the Fisher relation1:

1 + rrealt+1 =
1 + it

1 + πt+1

(3.12)

Utilizing the relationship from intermediate firm’s optimization where it will be de-

rived that marginal return from capital is equal to Rt+1 = MPKt+1, real rate of

return from capital rt is given by:

rrealt+1 = rt+1 − δ (3.13)

which follows to:

1 + rrealt+1 = 1 + rt+1 − δ =
1 + it

1 + πt+1

(3.14)

This result states that real rate of return from holding bonds and capital ownership

has to be equal across the entire economy. Substituting (3.11) into (3.9) and (3.14)

into (3.11), first order conditions for Ct(i) and Mt(i) are taking form of:

utc = βut+1
c

( 1 + it
1 + πt+1

)
(3.15)

utm = βut+1
c

( 1 + it
1 + πt+1

− 1

1 + πt+1

)
(3.16)

and (3.17) is then the marginal rate of substitution between real money holdings and

consumption. It also states that money demand is a function of nominal interest rate,

i.e. the opportunity costs from holding money, as it can be interpreted as difference in
1With Ebt = Ect = 0
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real return from capital and money holdings2. Friedman rule of zero nominal interest

rate, implying stable deflationary environment where rt = −πt+1 and resulting in

non-substitutability between money and consumption, is the most effective outcome

in this model as well.
utm
utc

=
it

1 + it
(3.17)

3.2 Labour Market

There exists a labour packer firm, or a labour union, that packs and aggregate dif-

ferentiated labour services supplied by households into homogeneous labour service

later provided to intermediate producers via a Dixit-Stiglitz type of aggregator:

Nd
t ≡

[∫ 1

0

Nt(i)

ε
l
−1

ε
l di

] ε
l

ε
l
−1

(3.18)

where Nd
t denotes aggregate labour demand and Nt(i) differentiated labour supply.

Labour packer takes all individual differentiated wagesWt(i) and aggregate (average)

wage Wt as given and maximizes its profit subject to (3.18):

max
Nt(i)

WtNt −
∫ 1

0

Wt(i)Nt(i)di

Lw = WtNt − λwt
(∫ 1

0

Wt(i)Nt(i)di

)
First order condition for this problem is:

∂Lw
∂Nt(i)

: Wt
ε
l

ε
l
− 1

(∫ 1

0
Nt(i)

ε
l
−1

ε
l di

) ε
l

ε
l
−1
−1

ε
l
− 1

ε
l

Nt(i)

ε
l

ε
l
−1
−1
− λwt Wt(i) = 0

Considering equivalent FOC for labour i and j and by perfect competition imposed

zero-profit conditionWtN
d
t =
∫ 1

0
Wt(i)Nt(i)di, demand function for per capita labour

2With approximation of Fisher relation as it ≈ rrealt +πt+1; where rt is the real return to capital
and −πt+1 is real return of money
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type i is obtained:

Nt(i) =

(
Wt(i)

Wt

)−ε
l

Nd
t (3.19)

Aggregate wage is also found by utilization of zero-profit condition such that:

WtN
d
t =

∫ 1

0

Wt(i)

(
Wt(i)

Wt

)−ε
l

Nd
t di

W
1−ε

l
t =

∫ 1

0

Wt(i)(Wt(i))
−ε

l di

to again obtain Dixit-Stiglitz type of aggregator function describing relationship for

aggregate (average) wage in this economy:

Wt ≡

[∫ 1

0

Wt(i)
1−εldi

] 1
1−ε

l

(3.20)

Wage Setting

Each household have a certain monopolistic power when setting their wage, which is

subject to a Calvo (1983) pricing. In each period, each household faces a probability

of (1 − θw) that it will be allowed to optimally adjust its wage, and at the same

time probability θw that it will remain stacked with old wage from previous period.

However, households not allowed to optimize can partially index their wage to past

inflation as in Smets and Wouters (2003) or Adolfson et al. (2005). Rigorously:

Wt(i) =

W
∗
t (i), with probability (1− θw)

Π
κw

t−1Wt−1(i), with probability θw

where W ∗
t is the optimal rest wage for period t, Πt−1 is gross inflation index from

previous period and κw ∈ [0, 1] is indexation controlling parameter, with 0 mean-

ing no indexation and 1 full indexation to past inflation. Solution of wage setting

problem follows (Fernandez-Villaverde, Rubio-Ramirez; 2006). With above imposed
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conditions, relevant part of Lagrangian for household optimization becomes:

max
Wt(i)

Et
∞∑
k=0

(
θwβ

)k(
− ψeε

l
t+k
Nt+k(i)

1+η

1 + η
+ λht+k

k∏
s=1

Π
κw

t+s−1

Πt+s

Wt(i)Nt+k(i)

)

s.t.

Nt+k(i) =

(
k∏
s=1

Π
κw

t+s−1

Πt+s

Wt(i)

Wt+k

)−ε
l

Nt+k

Pre-multiplying objective function by 1 =
Wt+k

Wt+k

and substituting constraint to ob-

jective function gives:

max
Wt(i)

Et
∞∑
k=0

(
θwβ

)k{−ψeε
l
t+k

1 + η

(
k∏
s=1

Π
κw

t+s−1

Πt+s

Wt(i)

Wt+k

)−ε
l
(1+η)

N1+η
t+k + ...

λht+k

( k∏
s=1

Π
κw

t+s−1

Πt+s

Wt(i)

Wt+k

)1−ε
l

Nt+kWt+k

}
(3.21)

First order condition is:

Et
∞∑
k=0

(
θwβ

)k{ε
l
ψeε

l
t+k

W
∗
t

(
k∏
s=1

Π
κw

t+s−1

Πt+s

W
∗
t

Wt+k

)−ε
l
(1+η)

N
1+η

t+k + ...

λht+k(1− εl)

(
k∏
s=1

Π
κw

t+s−1

Πt+s

)1−ε
l(

W
∗
t

Wt+k

)−ε
l

Nt+k

}

Due to complete markets property allowing for risk sharing in timing of wage set-

ting, all household set the same wage W ∗
t and index (i) is then dropped (Fernandez-

Villaverde, Rubio-Ramirez; 2006). Defining equality w1
t = w2

t for first order condition,

it can be rewritten as:

w1
t = Et

∞∑
k=0

(
θwβ

)k
ψeε

l
t+k

(
k∏
s=1

Π
κw

t+s−1

Πt+s

)−ε
l
(1+η)(

Wt+k

W
∗
t

)ε
l
(1+η)

N
1+η

t+k (3.22)
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and

w2
t =

ε
l
− 1

ε
l

W
∗

t Et
∞∑
k=0

(
θwβ

)k
λht+k

(
k∏
s=1

Π
κw

t+s−1

Πt+s

)1−ε
l(
Wt+k

W
∗
t

)ε
l

Nt+k (3.23)

which recursive solution eliminating sums and products operators leads to:

w1
t = ψeε

l
t

(
Wt

W
∗
t

)ε
l
(1+η)

N
1+η

t + βθwEt

(
Π
κw

t

Πt+1

)−ε
l
(1+η)(

W
∗
t+1

W
∗
t

)ε
l
(1+η)

w1
t+1 (3.24)

and

w2
t =

ε
l
− 1

ε
l

(
W

∗

t

)1−ε
l

λhtW
ε
l
t Nt + βθwEt

(
Π
κw

t

Πt+1

)1−ε
l
(
W

∗
t+1

W
∗
t

)ε
l
−1

w2
t+1 (3.25)

but since wt = w1
t = w2

t we can write that:

wt = ψeε
l
t

(
Wt

W
∗
t

)ε
l
(1+η)

N
1+η

t + βθwEt

(
Π
κw

t

Πt+1

)−ε
l
(1+η)(

W
∗
t+1

W
∗
t

)ε
l
(1+η)

wt+1 (3.26)

and

wt =
ε
l
− 1

ε
l

(
W

∗

t

)1−ε
l

λhtW
ε
l
t Nt + βθwEt

(
Π
κw

t

Πt+1

)1−ε
l
(
W

∗
t+1

W
∗
t

)ε
l
−1

wt+1 (3.27)

3.3 Firms

There are two types of firms: intermediate and final producers. Final goods produc-

ers operate on perfectly competitive market and produce single homogeneous good,

while intermediate markets exhibits monopolistic competition property implied by

heterogeneous nature of their production.
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Final Goods Producers

Producers of final goods buy heterogeneous intermediate producers output Yt(i) and

use it as an input to produce single homogeneous product Yt designed for final con-

sumption of households. Production function is basically a CES aggregate over a

continuum of intermediate goods (i) distributed on the unit interval:

Yt ≡

(∫ 1

0

Yt(i)
ε−1
ε di

) ε
ε−1

(3.28)

where ε denotes elasticity of substitution between consumption goods. Final pro-

duction sector is perfectly competitive and cost minimization problem subject to a

downward sloping demand curve takes form of:

min
Yt(i)

: Pt

(∫ 1

0

Yt(i)
ε−1
ε di

) ε
ε−1

s. t
(
PtYt =

∫ 1

0

Yt(i)Pt(i)
)

Optimization is performed by solving the Lagrangian:

Lf = Pt

(∫ 1

0

Yt(i)
ε−1
ε di

) ε
ε−1

− λft
(∫ 1

0

Yt(i)Pt(i)di

)

First order condition for this problem is:

∂Lf
∂Yt(i)

: Pt
ε

ε− 1

(∫ 1

0
Yt(i)

ε−1
ε di

) ε
ε−1
−1

ε− 1

ε
Yt(i)

ε
ε−1
−1 − λft Pt(i) = 0

Downward sloping demand curve for each intermediate good is then:

Yt(i) =

(
Pt(i)

Pt

)−ε
Yt (3.29)

Using the aggregate sum of total expenditures, overall composite price index is de-

termined as:

Pt ≡

[∫ 1

0

Pt(i)
1−εdi

] 1
1−ε

(3.30)
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Intermediate Goods Producers

In the intermediate producer‘s sector, there is a continuum of these firms defined over

unit interval (i) ∈ [0, 1] producing corresponding number of heterogeneous products.

Intermediate sector operates in monopolistic competition market structure providing

monopolistic power over their products for each intermediate producer. Production

technology is of Cobb-Douglas type:

Yt(i) = eatKα
t (i)(Nd

t (i))1−α (3.31)

where:

at = ρaat−1 + εat , where εat ∼ N(0, σ2
a) (3.32)

is the TFP shock process defined as AR(1) and written in terms of level, i.e. aggregate

level of technology, Kt(i) is the amount of rented capital from households and Nd
t (i) is

the amount of labour services rented from labour packer by firm i. Cost minimization

problem is subject to production technology and downward sloping demand curve of

final goods producers for intermediate output:

min
Kt(i),Nt(i)

: WtNt(i) + rtKt(i) s. t. eatKt(i)
αNt(i)

1−α ≥

(
Pt(i)

Pt

)−εj
Yt

in the form of Lagrangian as:

Li = WtNt(i) + rtKt(i)− λit
(

eatKt(i)
αNt(i)

1−α −

(
Pt(i)

Pt

)−εj
Yt

)
Optimization of intermediate producers consists of two stages. At, first optimal

production inputs, capital Kt(i) and labour demand Nd(i) are chosen. First order

conditions for this stage are:

∂Li
∂Nt

: Wt = (1− α)λite
at

(
Kt(i)

Nt(i)

)α

∂Li
∂Kt

: rt = αλite
at

(
Nt(i)

Kt(i)

)1−α
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By dividing first order conditions by each other, capital-labour ratio (3.33) represent-

ing optimal inputs equation is obtained. Due to symmetric equilibrium nature of this

model, subscript (i) can be dropped, meaning that capital-labour ratio is identical

across entire sector of intermediate firms.

Wt

rt
=

1− α
α

(
Kt

Nt

)
(3.33)

To derive marginal cost, definition of unconstrained problem by solving the con-

strain for Kt =

(
Yt

eatN1−α
t

) 1
α

, optimal utilization of labour and capital is so that

satisfy:

N∗t =

(
1− α
α

rt
Wt

)α

Yt
eat

K∗t =

(
α

1− α
Wt

rt

)1−α
Yt
eat

Plugging into original minimization problem:

[(
1− α
α

rt
Wt

)α

Wt +

(
α

1− α
Wt

rt

)1−α

rt

]
Yt
eat

and taking derivative w.r.t. Yt, marginal cost are obtained and defined as:

MCt =

(
rt
α

)α(
Wt

1− α

)1−α
1

eat
(3.34)

Price Setting

In the second stage, given the optimal inputs ration, firms have to choose their optimal

price. Pricing mechanism of intermediate producers follows Calvo (1983) and solution

procedure Fernandez-Villaverde and Rubio-Ramirez (2006). In each period there is a

probability θ that firm will not be able to adjust its price and remain stacked with old

price from previous period. On the other hand, there is probability (1− θ) that firm

will have an opportunity to reset price for its product and set it optimally. However,
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non-optimizing firms can partially index their price to previous period inflation Πt−1.

Recalling composite price index (3.30), the price evolution equation is derived as:

Pt =

(∫ 1−θ

0

P ∗1−εt (i)di+

∫ 1

1−θ
(Πκ

t−1)1−εP 1−ε
t−1 (i)di

) 1
1−ε

(3.35)

where Πt−1 =
Pt−1

Pt−2

is an inflation index, κ ∈ [0, 1] is an controlling inflation-

indexation parameter, with κ = 0 meaning no indexation and κ = 1 resulting in

perfect indexation to past inflation. Gross inflation index exhibits can be factorized

to Πt =
Pt
Pt−1

and Πt = 1 + πt = 1 +
Pt
Pt−1

− 1.

In continuous setting, i.e. with continuum of firms, or in discrete setting with

limit case of infinite number of firms, evaluation of these integrals by properties law

of large numbers and random selection or firms being able to reset their price, results

in exact portion of (1− θ) setting optimal price and θ firms stacked with old prices.

Pt =
(
θ (Πκ

t−1)1−εP 1−ε
t−1 + (1− θ)P ∗1−εt

) 1
1−ε (3.36)

or after dividing by P 1−ε
t equivalently expressed as the law of motion of prices as:

1 = θ

(
Πκ
t−1

Πt

)1−ε

+ (1− θ)
(
P ∗t
Pt

)1−ε

(3.37)

Firms optimization problem is to choose price maximizing the sum of its currently

expected discounted flow of future profits. These are given by the difference in set

price per (i) unit of production in given time period and its marginal cost, i.e. cost

for one additional (i) unit of production and scaled by overall quantity of product (i)

in that period:

max
Pt(i)

Et
∞∑
k=0

(θ β)
k

λht+k

(
k∏
s=1

Πκ
t+s−1

Pt(i)

Pt+k
−MCt+k(i)

)
Yt+k(i)

s.t.
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Yt+k(i) =

(
k∏
s=1

Πκ
t+s−1

Pt(i)

Pt+k

)−ε
Yt+k

Unconstrained problem is obtained by inserting demand function into objective func-

tion.

max
Pt(i)

Et
∞∑
k=0

(
θβ
)k
λht+k

{(
k∏
s=1

Πκ
t+s−1

Pt(i)

Pt+k

)1−ε

−

(
k∏
s=1

Πκ
t+s−1

Pt(i)

Pt+k

)−εj
MCt+k(i)

}
Yt+k

In the next step, price evolution relationship given by equation (3.38) is utilized to

eliminate Pt+k from (3.3) and so the optimization depends only on currently expected

evolution of future inflation. It follows that price level Pt+k is given by current price

level Pt and basis inflation index Pt+k
Pt

.

Pt+k = Pt

k∏
s=1

Πt+s = Pt
Pt+1

Pt

Pt+2

Pt+1

· · · Pt+k
Pt+k−1

= Pt
Pt+k
Pt

(3.38)

Et
∞∑
k=0

(
θ β
)k
λht+k

{(
k∏
s=1

Πκ
t+s−1

Πt+s

Pt(i)

Pt

)1−ε

−

(
k∏
s=1

Πκ
t+s−1

Πt+s

Pt(i)

Pt

)−ε
MCt+k(i)

}
Yt+k

(3.39)

Also note, that with perfect price indexation to past inflation, i.e. when κ
j

= 1,

product of inflation indexes collapses
Πt

Πt+k

=
PtPt+k−1

Pt−1Pt+k
. Optimization with respect

to PJ,t(i), i.e.
∂(·)

∂PJ,t(i)
, first order conditions after multiplication by 1 =

P
∗
t (i)

P
∗
t (i)

can

be manipulated to:

Et
∞∑
k=0

(
θβ
)k
λht+k

{(
(1− ε)

k∏
s=1

Πκ
t+s−1

Πt+s

P
∗
t (i)

Pt

)1−ε
1

P
∗
t (i)

+ ...

ε

(
k∏
s=1

Πκ
t+s−1

Πt+s

P
∗
t (i)

Pt

)−ε
MCt+k(i)

P
∗
t (i)

}
Yt+k

Since only symmetric equilibrium is considered, P ∗
t (i) = P

∗
t and as in (3.34)

MCt(i) = MCt, i.e. it is assumed that in equilibrium all firms are identical and

therefore all face the same optimization problem and prices. After rearranging above
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stated first order conditions, dropping irrelevant constant and substituting for P ∗
J,t(i)

we get:

Et
∞∑
k=0

(
θβ
)k
λht+k

{(
(1− ε)

k∏
s=1

Πκ
t+s−1

Πt+s

)1−ε
P

∗
t

Pt
+ ε

(
k∏
s=1

Πκ
t+s−1

Πt+s

)−ε
MCt+k

}
YJ,t+k

(3.40)

Devoid of price rigidity in the price setting mechanism, implying that θ
J

= 0, (3.40)

can be evaluated only in current period k = 0 (otherwise its value is zero) and

simplifies to usual expression for mark-up representing monopolistic power of a firm.

P
∗

t =
ε

ε− 1
PtMCt

Now, let define equality εf 1
t = (ε− 1)f 2

t to equalize previously defined first order

condition. The purpose is to express FOC recursively and by rewriting it in the form

of difference equation to eliminate sums and products operators.

f 1
t = Et

∞∑
k=0

(
θβ
)k
λht+k

(
k∏
s=1

Πκ
t+s−1

Πt+s

)1−ε
P

∗
t

Pt
Yt+k (3.41)

and

f 2
t = Et

∞∑
k=0

(
θβ
)k
λht+k

(
k∏
s=1

Πκ
t+s−1

Πt+s

)−ε
MCt+k Yt+k (3.42)

To ensure well definiteness and stationarity of these sums, and thus the solution of

this maximization problem,
(
θβ
)k

has to converge to zero in expectations faster than∏k
s=1

Π
κj
t+s−1

Πt+s

goes to infinity (Fernandez-Villaverde, Rubio-Ramirez; 2006). Recursive

expression is taking form of:

f 1
t = λht Π

∗

tYt + θβE

(
Πκ
t

Πt+1

)1−ε(
Π

∗
t

Π
∗
t+1

)
f 1
t+1 (3.43)

f 2
t = λhtMCtYt + θ

J
βE

(
Πκ
t

Πt+1

)−ε
f 2
t+1 (3.44)

where previous FOC is:

εf 1
t = (ε− 1)f 2

t
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and optimal reset price in terms of gross inflation index is:

Π
∗

t =
P

∗
t

Pt

3.4 Government

Role of the government int his model is marginal and consists only of setting of

nominal interest rate according to Taylor rule:

Rt

R̄
=

(
Rt−1

R̄

)γ
R

((
Πt

Π̄

)γ
Π
(

Yt
Yt−1

)γ
Y

)1−γ
R

eε
m
t (3.45)

where Rt is the gross nominal interest rate Rt = 1 + it and R̄ is the corresponding

equilibrium rate. Next, εmt represents monetary shock defined as AR(1) stationary

process:

εmt = ρmε
m
t−1 + εmt (3.46)

There is no money growth equation, i.e. real demand for money and amount of

money in this economy is identical. This imply strictly endogenous property of money

supply. Government does not impose any taxes (for individuals, consumption, firms

or profits) and have no income from seigniorage or inflation tax. Thus, it cannot

provide transfers and cannot have its own expenditures.

3.5 Aggregation

Symmetric equilibrium properties of this model define Ct(i) = Ct, It(i) = It, Kt(i) =

Kt and W
∗
t (i) = W

∗
t . At first, expression for aggregate demand is derived:

Yt = Ct + It (3.47)
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Individual demand for products of each intermediate producer is:

Yt(i) =

(
Pt(i)

Pt

)−ε
(Ct + It) (3.48)

and substituting production function leads to:

eatKα
t (i)N1−α

t (i) =

(
Pt(i)

Pt

)−ε
(Ct + It) (3.49)

Now, let define υpt =

∫ 1

0

(
Pt(i)

Pt

)−ε
di to get:

Ct + It =
eatKα

t (i)N1−α
t (i)

υpt
(3.50)

Deflator index υpt is the measure of dispersion of intermediate producer‘s relative

prices. Next to the distortion associated with monopolistic competition and corre-

sponding monopolistic power of intermediate producers, this is another distortion

associated with fluctuations of relative prices due to price stickiness (Sims, 2016).

Essentially, in flexible price models, this term is always equal to one, i.e. υpt = 1,

as all firms choose the same price. Degree of price dispersion depends on stickiness

parameter θ, degree of indexation to past inflation κ and inflation targeted by central

bank Π̄. This equation can be break down by Calvo pricing properties to:

υpt =

∫ 1−θ

0

(
P

∗
t

Pt

)−ε
di+

∫ 1

1−θ

(
Π
κ

t−1Pt−1(i)

Pt

)−ε
di (3.51)

Pre-multiplying second term by Pt−1

Pt−1
= 1 and substituting the definition of optimal

reset price Π
∗
t =

P
∗
t

Pt
leads to:

υpt = (1− θ)(Π∗

t )
−ε +

∫ 1

1−θ

Π
−κε

t−1

(
Pt−1(i)

Pt−1

Pt−1

Pt

)−ε
di (3.52)

where the evaluation of the first integral gives by the law of large numbers exactly
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(1 − θ) portion of firms allowed to optimally rest their price. Evaluation of second

integral leaves θ portion of firms allowed only to partially index their prices to past

inflation:

υpt = (1− θ)(Π∗

t )
−ε + θ

(
Π
κj
t−1

Πt

)−εj ∫ 1

0

(
Pt−1

Pt

)−ε
di (3.53)

Change of lower bound of remaining integral form (1−θ) to 0 follows from the random

selection of these firms. Further evaluation fo this integral result in obtaining υpt−1.

Thus, getting all together, the law of motion of price dispersion is:

υpt = (1− θ)(Π∗

t )
−ε + θ

(
Π
κj
t−1

Πt

)−εj
υpt−1 (3.54)

Defining aggregate labour supply as an integral over all households i, Nt =
∫ 1

0
Nt(i)di,

aggregate labour demand Nd
t is derived from (3.19) as:

Nt =

∫ 1

0

Nt(i)di =

∫ 1

0

(
Wt(i)

Wt

)−ε
l

di Nd
t (3.55)

Following exactly the same steps as in case of aggregate output definition:

υwt =

∫ 1

0

(
Wt(i)

Wt

)−ε
l

di = θw

(
Wt−1

Wt

Πκw
t−1

Πt

)−ε
l

υwt−1 + (1− θ
W

)(Π
∗w
t )−εl (3.56)

is the measure of wage dispersion cased by imperfect wage setting mechanism. Rela-

tionship between aggregate labour demand is supply is then:

Nd
t =

Nt

υwt
(3.57)

closing last part of this model.
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3.6 Equilibrium

Model is given by the following set of equations. Each of them is implemented in

Dynare

λht =
(
Ct(i)− hCt−1(i)

)−σ
− hβ

(
Ct+1(i)− hCt(i)

)−σ
(3.58)

m−µ = λht − βλht+1

1

Πt+1

(3.59)

λht = βλht+1

1 + it
Πt+1

(3.60)

λht = βλht+1

ebt

ebt+1

(
1− δ + ebt+1rt+1

)
(3.61)

wt = ψeε
l
t l

(
Wt

W
∗
t

)ε
l
(1+η)

N
1+η

t + βθwEt

(
Π
κw

t

Πt+1

)−ε
l
(1+η)(

W
∗
t+1

W
∗
t

)ε
l
(1+η)

wt+1 (3.62)

wt =
ε
l
− 1

ε
l

(
W

∗

t

)1−ε
l

λhtW
ε
l
t Nt + βθwEt

(
Π
κw

t

Πt+1

)1−ε
l
(
W

∗
t+1

W
∗
t

)ε
l
−1

wt+1 (3.63)

f 1
t = λht Π

∗

tYt + θβE

(
Πκ
t

Πt+1

)1−ε(
Π

∗
t

Π
∗
t+1

)
f 1
t+1 (3.64)

f 2
t = λhtMCtYt + θβE

(
Πκ
t

Πt+1

)−ε
f 2
t+1 (3.65)

εjf
1
t = (εj − 1)f 2

t (3.66)

Yt = Ct + It (3.67)

Yt =
eatKα

t N
1−α
t

υpt
(3.68)

υpt = θ

(
Πκ
t−1

Πt

)−ε
υpt−1 + (1− θ)Π∗−εt (3.69)

υwt = θw

(
Wt−1

Wt

Πκw
t−1

Πt

)−ε
l

υwt−1 + (1− θ
W

)(Π
∗w
t )−εl (3.70)

1 = θ

(
Πκ
t−1

Πt

)1−ε

+ (1− θ)Π∗1−εt (3.71)



3.7. Model Solution 25

1 = θw

(
Wt−1

Wt

Πκw
t−1

Πt

)1−ε
l

+ (1− θw)(Π
∗w
t )1−ε

l (3.72)

Π
∗

W,t =
W

∗
t

Wt

(3.73)

Rt

R̄
=

(
Rt−1

R̄

)γ
R

((
Πt

Π̄

)γ
Π
(

Yt
Yt−1

)γ
Y

)1−γ
R

eε
m
t (3.74)

Nt = υwt N
D
t (3.75)

Wt

rt
=

1− α
α

(
Kt

Nt

)
(3.76)

MCt =

(
rt
α

)α(
Wt

1− α

)1−α
1

eat
(3.77)

Kt+1(i) = ebtIt(i) + (1− δ)Kt−1(i) (3.78)

at = ρ1at−1 + εat (3.79)

bt = ρ1bt−1 + εit (3.80)

εct = ρcε
c
t−1 + εct (3.81)

εlt = ρlε
l
t−1 + εlt (3.82)

εmt = ρmε
m
t−1 + εmt (3.83)

3.7 Model Solution

Steady State

Here, analytical steady state relationships are derived. Household optimality condi-

tions are:

(1− h)−σ(1− hβ)C−σ = λssh (3.84)

β−1 =
1 + it
1 + πt

(3.85)
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Recalling (3.17), equilibrium condition for m = M
P

is:

m = λssh

( i

1 + i

)− 1
µ (3.86)

β−1 = δ + r (3.87)

w = (Π
∗

W,t)
−ε

l
(1+η)(Nd)

1+η

+ βθw

(
Π
κw

Π

)−ε
l
(1+η)(

W
∗

W ∗

)ε
l
(1+η)

w (3.88)

w =
ε
l
− 1

ε
l

(
W

∗
)1−ε

l

λW ε
lNd + βθw

(
Π
κw

Π

)1−ε
l
(
W

∗

W ∗

)ε
l
−1

w (3.89)

First order condition for firms are:

f 1 = λht Π
∗
Y + θβ

(
Πκ

Π

)1−ε(
Π

∗

Π∗

)
f 1 (3.90)

f 2 = λhtMC Y + θβ

(
Πκ

Π

)−ε
f 2 (3.91)

ε1t = (ε− 1)f 2 (3.92)

W

r
=

1− α
α

(
K

N

)
(3.93)

MC =

(
r

α

)α(
W

1− α

)1−α

(3.94)

Equilibrium law of motion of prices and wages:

1 = θ

(
Πκ

Π

)1−ε

+ (1− θ)Π∗1−ε (3.95)

1 = θ
W

(
Πκw

Π

)1−εl

+ (1− θ
W

)(Π
∗w)1−εl (3.96)

Price and wage dispersion:

υp = θ

(
Πκ

Π

)−ε
υp + (1− θ)Π∗−ε (3.97)
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υw = θw

(
Πκw

Π

)−εl
υw + (1− θw)(Π

∗w)−εl (3.98)

Law of motion fo capital (investments):

I = δK (3.99)

Market clearing conditions:

Y υp = KαN1−α (3.100)

N = υwNd (3.101)

Y = C + I (3.102)

And for shock processes

eat = ebt = eε
c
t = eε

l
t = eε

m
t = 1 (3.103)

Analytical Solution

To solve the model and find deterministic steady state, it is necessary to re-arrange

previously stated equilibrium conditions such that (i) variables uniquely determined

by parameters are computed (ii) labour demand is calculated from market clearing

condition and (iii) remaining steady state values depended on labour demand are

determined. Throughout the modeling gross interest and inflation rates are utilized

instead of their net counterparts, particularly R = 1 + i and Π = 1 + π, respectively.

Model solution is then given by following set of equations. Gross interest rate is given

by the ratio of gross inflation rate Π and discount factor β:

R =
Π

β

Note that this relationship also defines optimal gross interest rate R̄ targeted by

central bank through Taylor rule (3.74). This is crucial to account for in later stages
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when model is programmed in Dynare. Then, real rental rate of capital is given by:

r = β − 1 + δ

Next, relationships between inflation and optimal relative price and wages are:

Π
∗

=
(1− θΠ−(1−ε)(1−κ)

1− θ

) 1
1−ε

Π
∗w

=
(1− θwΠ−(1−εl)(1−κw)

1− θw

) 1
1−εl

defining equilibrium price and wages dispersion

υp =
1− θ

1− θΠ(1−κ)ε
Π∗−ε

υw =
1− θw

1− θwΠ
(1−κw)εl

Π∗−εl

Marginal costs are obtained from optimal price setting equations:

MC =
ε− 1

ε

1− θΠ(1−κ)ε

1− θΠ−(1−κ)(1−ε) Π
∗

Availability af marginal costs MC allows for computation of wages W from (3.94):

W = (1− α)
(
r
α

) 1−α
α
MC

1
1−α

and optimal wage is:

W
∗

= WΠ
∗w

Equilibrium for wage setting equations of household wage decision are obtained by

solving (3.88) and (3.89) for w and utilizing previous relationship for optimal wage

W
∗ :

w =
ψ(Π

∗
w)−εl (1+η)(Nd)

1+η

1− βθwΠε
l
(1+η)(1−κw)

and

w =

ε
l
−1

ε
l
W

∗
(Π

∗
w,t)
−ε

lλNd

1− βθwΠ−(1−ε
l
)(1−κw)
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Equalizing both equations and manipulating terms, labour demand Nd is defined as

a function of λ:
1− βθwΠε

l
(1+η)(1−κw)

1− βθwΠ−(1−ε
l
)(1−κw)

=

ε
l
−1

ε
l
W

∗
λ

ψ(Π∗
w)−εlη(Nd)η

To solve for labour demand recall market clearing condition:

Y = C + I

but since Y =
KαN1−α

υp
and I = δK it is the case that:

KαN1−α

υp
= C + δK

From relationship of optimal inputs allocation, it is possible to find K as a function

of Nd, namely:

K =
α

1− α
W

r
Nd = ΩNd

with defining auxiliary variable Ω =
α

1− α
W

r
and substituting for each K:

ΩαNd

υp
= C + δΩNd

or equivalently

C =
ΩαNd

υp
− δΩNd

Note that definition of λssh given by (3.84) is a function of known parameters and C:

λssh = (1− h)−σ(1− hβ)C−σ

and thus λssh can by expressed as a function of parameters, already in steady state

evaluated variables and labour demand Nd:

λssh = (1− h)−σ(1− hβ)

(
ΩαNd

υp
− δΩNd

)−σ
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Last step is to substitute this λ into labour demand Nd relationship defined by labour

market equilibrium as a function of λ:

1− βθwΠε
l
(1+η)(1−κw)

1− βθwΠ−(1−ε
l
)(1−κw)

=

ε
l
−1

ε
l
W

∗

ψ(Π∗
w)−εlη(Nd)η

(1− h)−σ(1− hβ)

(
ΩαNd

υp
− δΩNd

)−σ
(3.104)

This is a non-linear equation uniquely defining Nd and is solved by Matlab root finder

fsolve. All other equilibrium conditions are recursive to these:

K = ΩNd

I = δK

Y =
ΩαNd

υp

C =
ΩαNd

υp
− δΩNd = Y − I

λssh = (1− h)−σ(1− hβ)C−σ

and from (3.17) and definition of utc = λht real money demand is obtained:

m = λssh

( i

1 + i

)− 1
µ

3.8 Estimation

Original approach for bringing model into data since the rise of RBC model firstly

introduced by Kydland and Prescott (1982) was calibration. It represents weak econo-

metric approach, which goal is to simulate such artificial time series that best match

the moments of empirical data. Advantage of calibration is that it incorporates micro

evidence and set the properties of the model to be the most informative in the rele-

vant area of interest (Smets and Wouters; 2007). On the other hand, one should be

careful when building macroeconomic model on microeconomic evidence, since macro

model is build in certain context not necessarily the same as the micro study was

conducted (Fernandez-Villaverde, 2009).
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As opposed to calibration, estimation representing strong econometric approach

provides full characterization of empirically observed time series. DSGE models can

provide good fit on data when enough shocks are specified (Smets and Wouters,

2002). Estimation can be performed utilizing Maximum likelihood or Bayesian infer-

ence, which differences were discussed in section 2. Main downturn of MLE is that

likelihood function of a DSGE model is in general highly dimensional object with

numerous local minima and maxima and flat, or nearly flat surfaces (Fernandez-

Villaverde, 2009). On the other hand, Bayesian econometrics became popular as it

is sufficient to apply Bayes rule (theorem) on the data. In fact, Bayesian estimation

incorporates both: calibration for setting of prior and MLE for estimation.

Bayesian estimation of DSGE models consists of these steps (Griffoli, 2013; Herbst

and Schorfheide, 2015):

1. Select vector of parameters ϑ of model M to be estimated and set their priors

p(ϑ,M)

2. Write down the likelihood function L(ϑ|YT ,M) = p(YT |ϑ,M) describing the

density of the data approximated by Kalman filter and derive log-likelihood.

Kalman filter is used because likelihood function is non-linear in deep parame-

ters, but linear in variables.

3. Combine prior with likelihood function to get posterior density:

p(ϑ|TT ,M) =
p(YT |ϑ,M)p(ϑ,M)

p(Yt|M)

4. Find mode by maximization of the log-posterior kernel (numerator of posterior

density) consisting from log-likelihood and priors

5. Approximate posterior distribution employing RandomWalk Metropolis-Hastings

algorithm

Step 4 is the most tricky and often a reason of failure of the estimation. If mode of

the posterior distribution is not correctly identified, it results in not positive definite,
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and thus invertible, Hessian a MH algorithm cannot be initialized. Such obstacle

usually appears when model parameters are (i) poorly identified due to exclusion of

time series and inappropriate definition of observation equations or by natural model

structure. Or (ii) when mean of prior distribution is set too far from its true value.

Likelihood function is Gaussian only with respect to functions of parameters and

thus is difficult to maximize. With poor initial specification, optimization algorithm

is then unable to find mode and optimization fails. Dynare provides mode check

plots as an output of every estimation where this issue can be easily identified, but

solution always results in try-and-fail method. This issue is closely related to above

mentioned flat likelihood of highly dimensional DSGE models. For the mode check

plots see Appendix B.

3.8.1 Data and Observation Equations

For the estimation of the model, quarterly data for Czech republic ranging from

1995:Q1 to 2017:Q3 on GDP, consumption, investments, hours worked, interest rate

3M PRIBOR, inflation and GDP deflator are used. As the data sources, ARAD

system for time series of Czech National Bank and OECD statistics (for comparative

price level) are used. Necessary condition for estimation of any DSGE model are

seasonally adjusted time series. Presence of seasonality in the time series would create

fluctuations perceived by the model as a spurious economic cycle. To correct for

seasonality, Census X-13 filter is employed. Data transformation and corresponding

specification of measurement and observational equations is discussed for two cases:

(i) non-linear model and (ii) non-linear model for log-linearization. These two differs

not only in Dynare implementation, but also in specification of observation equations

and required data transformation. Despite complete .mod files being presented in

Appendix A, Dynare model block related to observation equations is demonstrated

here as well.

In general, raw data for specific variables consists of:
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1. GDP, Consumption, Investment and Hours Worked (Group 1): aggre-

gate level in nominal values (current prices)

2. Inflation and GDP deflator (Group 2): evolution of comparative price level

(GDP deflator) in form of basis index

3. Interest rate: level of 3M PRIBOR in percentage points

Descriptive statics are in Table 3.1 and visualized is Figure 3.1.

Figure 3.1: Final data for the estimation
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Table 3.1: Descriptive Statistics

Mean Std. dev. 5th perc. 95th perc. min max

Output -0.85 1.81 -3.8 2.29 -5.95 4.42

Consumption -0.91 1.48 -3.39 1.41 -4.65 1.96

Investments -0.71 5.36 -9.45 7.57 -15.88 13.88

Inflation 0 1.06 -1.37 1.62 -1.75 3.97

Nominal IR 0 1.2 -0.99 2.54 -0.99 5.23

Hours Worked 0.03 1.22 -2.16 2.04 -3.76 3.16

GDP deflator 0 1.01 -1.58 2.03 -2.03 2.88

To match model properties to data, two assumptions have to be employed:

(i) Exclusion of government from the model: Consumption data (and there-

fore model consumption variable Ct(i)) incorporates final government consump-

tion as well.

(ii) Closed economy property: Net exports are subtracted from value the of

GDP and thus are completely excluded from the estimation.

To describe stationary properties of this model, let define general shock process

st representing all model shock processes such that:

st = ρsst−1 + εst , where ε
s
t ∼ N(0, σ2

z)

Then, model variable St = est is fluctuation around its long-term, but unspecified

trend. As St is stationary, mean-reverting and log-normal AR(1) process resulting in

both specified models being stationary. Thus, model does not exhibit trend in terms

of growth along balanced growth path, but describes behaviour of the economy along

this path. Data transformation and specification of observation equations follows

mainly Pfeifer (2013), Adjemian et al. (2011) and Griffoli (2008).



3.8. Estimation 35

As a result of this specification, all model variables correspond to stationary, per

capita values. General model variable Zt(i) therefore is the intensive form of Zt such

that Zt(i) =
Zt
Lt

, where Lt denotes overall labour force. At first, Group 1 variables are

expressed in per capita terms, when as denominator is in line with Zt(i) used number

of employed, i.e. overall labour force Ldatat . This is at first seasonally adjusted and

then cyclical component is filtered by two-sided HP filter, to prevent distractions of

transformed variables due to statistical revisions regarding population statistics or

measurement errors. All transformations performed on each variable in Group 1 are

demonstrated on GDP. Denote Y data
t empirical GDP variable, then per capita value

Y pc,data
t is:

Y pc,data
t =

Y data
t

Ldatat

Subsequently, empirical gross GDP deflator υp,datat with model counterpart of υpt mea-

suring price dispersion and resulting distortion is computed:

υp,datat =
Υp,data
t

Υp,data
t−1

where Υp,data
t in basis deflator index. This is then used to obtain:

ydatat =
Y pc,data
t

υp,datat

with ydatat denoting empirically observed real per capita output. Up to this point,

data transformations are the same for both Dynare implementation of this model.

Non-linear Model

In strict non-linear specification, model variable Zt(i) is the level of per capita value

in real measures. To link data to the model 3 options are available:

1. use first difference filter and estimate level model variables: implemented

2. define observation equations as deviations from steady state and keep model
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variables on level: technically possible, but non-consistent implementation. In-

terpretation of several model features is different.

3. use loglinear option is estimation command of the .mod file to let Dynare

log-linearize model using Jacobian transformation: this requires strictly non-

negative steady state to perform Jacobian transformation. In terms of esti-

mation, this is the same as finally implemented model in Non-linear form for

Log-linearization, but differs in interpretation as Impulse-response functions

(IRFs) can no longer be interpreted as elasticities.

When first difference filter is applied, model relevant variable yobst given in terms

of demeaned growth rates is:

yobst = log

(
Y data
t

Y data
t−1

)
− log

(
Y data
t

Y data
t−1

)

Specification for other variables is very simple:

Πobs
t = Πdata

t

υp,obst = υp,datat

Robs
t = 1 +

Rdata
t

4× 100

Idea behind denominator for Robs
t is to convert annual interest rate to quarterly

ones. Before writing down observation equations (see Listing 1), note that model

variables are on level and real per capita values. Demeaned growth rates for trending

variables with added measurement error are:

yobst = log(Yt(i))− log(Yt−1(i)) + εyt , where εyt ∼ N(0, σ2
y)

For non-trending variables it is more straightforward:

Πt = Πobs
t + εΠ

t
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υpt = υp,obst + ευ
p

t

Rt = Robs
t + εRt

Incorporation of measurement error is intended solve lack of shocks included in

the model. Problem is that non-adequately tightness of model variables to observable

data results in poor identification of parameters as any model is by nature misspec-

ified. Added measurement errors allows for model variables to decouple from their

empirical counterparts devoid of ruining the model. Shock decomposition analysis

proves that measurement errors are especially useful when major shock not consid-

ered in the model hits the economy, such as monetary crisis of 90’s and dramatic

increase of nominal IR to prevent speculations.

Listing 3.1: observation equation for non-linear model

1 % Observation equations

2 y_obs=log(y)−log(y(−1))+e_y;

3 c_obs=log(c)−log(c(−1))+e_C;

4 l_obs=log(l)−log(l(−1))+e_l;

5 x_obs=log(x)−log(x(−1))+e_x;

6 PI_obs=PI+e_PI;

7 vp_obs=vp+e_vp;

8 R_obs=R+e_R;

Despite initial intention to implement this type of model for estimation, its prop-

erties are implausible:

1. After application of first difference filter, empirical data did not exhibit desired

properties. Data contained very little autocorrelation and too extensive fluctu-

ations, although typical for this filter. Usual data definition for empirical work

when applying first differences is to compute quarter-on-quarter (or generally

period-on-period) in opposed to period-on-period differences corresponding to

model structure of DSGE.

2. simulated artificial time series did not nearly match moments of empirical data
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3. filtered time series are too noisy and non-informative, translating to unprece-

dentedly high measurement errors incorporated in observation equations. Con-

sequently, it is difficult to find mode of posterior density due to often flat surface

of likelihood function and identification of parameters is rather unsuccessful de-

spite inclusion of desired data

As a result, alternative solution is implemented.

Non-linear Model for Log-linearization

For this model type, data transformation and writing down the observation equations

is more structured process. To obtain model relevant variable yobst , one-sided HP filter

as in Stock and Watson (1999) is applied to log(ydatat ). Logarithmic transformation

persists scales of percentage changes for different level of data. Advantage of causal

one-sided HP filter over its commonly used non-causal two-sided alternative comes

from the state-space setup of the model Pfeifer(2013). Solution of the model is

backward-looking system depending on current and past states. Filtration in two-

sided HP filter is based not only on past and current, but also on future values,

contradicting set up of the model. Moreover, non-causal filters are inappropriate in

any forecasting analysis, as only past values of filtered variables should enter the

estimation.

Empirical gross inflation Πdata
t is computed as a ratio of price level in two subse-

quent period:

Πdata
t =

P data
t

Pt−1data

observational equivalent is then:

Πobs
t = log

(
υp,datat

)
− log

(
ῡdatat

)
and for GDP deflator:

υp,obst = log
(

Πdata
t

)
− log

(
Π̄data
t

)



3.8. Estimation 39

This specification assumes that historical (long-run) well represents equilibrium (steady

state) inflation rate and deflator. For gross nominal interest rate there are two al-

ternatives. First is the same as for inflation and deflator and that is to consider

historical mean to beaing equilibrium rate. Then:

Robs
t = log

(
1 +

Rdata
t

4× 100

)
− log

(
1 +

Rdata
t

4× 100

)

All observed variables derived above are measure is deviation from their steady

state and have (asymptotically) zero-mean. This setting also makes prediction and

forecasting independent of empirical mean, model equilibrium target gross inflation

Π̄ and optimal gross nominal interest rate R̄ determined by model parameters. Next,

specification of observation equations to match transformed observable variables

yobst , cobst , xobst , nobst ,Πobs
t , Robs

t , υobst is required. Recall general model variable Zt(i),

which is in this model specification transformed to model variable z = log(Zt(i)).

Observation equation has to be specified in such way that ẑt = zobst corresponds to

deviations of Zt(i) from its steady state Zss

t (i). This is acquired by specifying:

ẑt = zt − zsst

which is in this model implementation observational equation of each above stated

variable. Final measurement equation is then obtained by equalizing ẑt = zobst and

adding measurement error εzt ∼ N(0, σ2
z):

zobst = zt − zsst + εzt (3.105)

Exact specification is in Listing 1.
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Listing 3.2: Observation equation for non-linear model for log-

linearization

1 % Observation equations

2 y_obs=yd$ $steady_state(yd)+e_y;

3 c_obs=c$ $steady_state(c)+e_C;

4 l_obs=l$ $steady_state(l)+e_l;

5 x_obs=x$ $steady_state(x)+e_x;

6 PI_obs=PI$ $steady_state(PI)+e_PI;

7 vp_obs=vp$ $steady_state(vp)+e_vp;

8 R_obs=R$ $steady_state(R)+e_R;

3.8.2 Priors

Total number of parameters included in the model counts to 35. Out of these 34+2

are included in the estimation, with +2 estimatescorrelations between shocks. It is

common to exclude parameters from the estimation if they are subject to e.g. govern-

ment decision such as tax rates or Taylor rule weights or when they are sufficiently

identified by other micro or macro study. As this model does not really have de-

sired properties (discussed below), it was decided to estimate model as the whole

and let it find its parameters to describe empirical data and potentially maximize

forecasting performance. Consequenly, µ is the only parameter excluded from the

estimation. It is (i) due to extremely poor identification, as model lacks financial

frictions features, money growth equation or any link between inflation and money

growth (or money demand), (i) unavailability of empirical data on money demand

and (iii) unimportance of µ on results.

Setting of prior follows semi-conservative approach, when mean of the priors is

subject to calibration, moments of empirical data, or based on macro and microeco-

nomic theory, but, overall, set relatively loose with high standard deviations. This

allows them to vary across subspace of potential values to extract maximum infor-

mation contained in the data. Priors selection follows standards of DSGE literature
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with inverse Gamma distribution with infinite standard deviation for shocks and Beta

distribution of parameters restricted on interval [0, 1]. Likewise, Gamma distribution

is used to tighten posterior mean closer to prior mean and Normal distribution when

no prior information about parameters are known3.

3.8.3 Estimation results and Convergence

Estimation was conducted using full sample of data from 1995:Q1 to 2017:Q3 provid-

ing 91 observations in total. Model was estimated in Dynare by Metropolis-Hastings

algorithm employing 6 MH blocks with 300 000 draws in each block and burn ra-

tio of 0.6. Convergence of MH sampler is judged upon statistics and plots directly

produced by Dynare on univariate and multivariate basis. Univariate describes con-

vergence of each individual parameter being estimated, while multivariate is based

on the range of posterior likelihood. Making things short, MH chains have converged

if both lines are stabilized horizontally and close to each other4. Plots for univari-

ate convergence diagnostics are not reported due to extensiveness, but all estimated

parameters exhibit properties of successful convergence.

Estimation results reported in Tables 3.2 - 3.4 contain information on mean and

standard deviations for prior and extra 5th and 95th percentiles for the posterior

distributions. Results on parameters listed in Table 3.2 are reasonable. Only con-

cern might be stated to capital share of output parameter α, which value of nearly

0.7 might appear unprecedentedly high when compared to other estimation. On the

other hand, it is perfectly in line with endogenous growth theories. Depreciation pa-

rameter δ imply annual depreciation rate around 0.12, which is also consistent with

theory and other estimations. Discount factor β ≈ 0.97 corresponds to equilibrium

net nominal interest rate of approx. 5% with inflation target being 2%. Labour

dis-utility parameter, elasticities of substitution between labour and good varieties

or shock persistence are similar to models estimated for European economies, Smets
3Typical incorporation of uniform distribution failed to find posterior mode
4For more details, see e.g. Pfeifer (2014) or Brooks and Gelman (1998)
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Figure 3.2: Multivariate Convergence Diagnostics

and Wouters (2007) for entire Euro Area, Burriel, Fernández-Villaverde and Rubio-

Ramírez (2010) for Spain or Hristov (2016) for Germany and G3 model of Czech

National Bank. Problematic part are rigidities (Calvo) parameters θ, θw and par-

tially indexation ones κ, κw, which are estimated on considerably lower level then in

other studies. Possible explanation is in model structure, when capital is perfectly

adjustable and is no subject to neither installation costs nor capacity utilization.

Investments and capital stock therefore serve as easy channels for accommodation

on shocks devoid of putting much pressure on wages and prices. Second, it might

be relatively high price stability in Czech republic accompanied with traditionally

strong dislike of inflation represented also by high value of γ
Π
parameter of Taylor

rule. Possible cause of extremely low weight on interest rate Rt smoothing parameter

γ
R
can be past setting of interest rate not following domestic economic fundamentals,

but rather currency stability during monetary crises in 90’s.
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Table 3.2: Estimated Parameters

Prior Posterior

Dist. Mean Std. dev. Mean Std. dev. HPD5 95% HPD 5%

α Beta 0.600 0.1000 0.695 0.0806 0.5692 0.8293

β Beta 0.950 0.0200 0.968 0.0108 0.9509 0.9855

h Beta 0.700 0.1500 0.869 0.0600 0.7892 0.9538

σ Gamma 1.000 0.2000 1.121 0.2098 0.7772 1.4619

η Gamma 3.500 1.5000 4.606 1.3724 2.3832 6.7323

ψ Normal 3.000 1.0000 3.004 1.0033 1.3274 4.6408

ε
l

Gamma 8.000 2.0000 6.229 1.6478 3.4843 8.8111

ε Gamma 5.000 2.0000 7.234 2.7321 2.9555 11.3459

δ Beta 0.050 0.0400 0.039 0.0143 0.0161 0.0613

θ Beta 0.500 0.1000 0.374 0.0655 0.2649 0.4788

θw Beta 0.500 0.1000 0.259 0.0713 0.1413 0.3735

κ Beta 0.400 0.1500 0.183 0.1135 0.0245 0.3448

κw Beta 0.500 0.1500 0.379 0.1360 0.1588 0.6006

γy Beta 0.300 0.1500 0.368 0.1257 0.1608 0.5746

γ
Π

Gamma 1.500 0.2000 2.025 0.1803 1.7223 2.3101

γ
R

Beta 0.500 0.1500 0.144 0.0575 0.0510 0.2335

ρa Beta 0.800 0.0500 0.893 0.0290 0.8468 0.9403

ρb Beta 0.700 0.1000 0.883 0.0279 0.8378 0.9283

ρc Beta 0.700 0.1000 0.703 0.0895 0.5610 0.8500

ρl Beta 0.700 0.1000 0.755 0.0813 0.6263 0.8851

ρe Beta 0.400 0.0500 0.385 0.0499 0.3033 0.4677
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Table 3.3: Estimated standard deviation of Structural Shocks

Prior Posterior

Dist. Mean Std. dev. Mean Std. dev. HPD 95% HPD 5%

εa Inverse Gamma 0.050 Inf 0.010 0.0009 0.0081 0.0110

εb Inverse Gamma 0.050 Inf 0.014 0.0019 0.0107 0.0166

εc Inverse Gamma 0.050 Inf 0.033 0.0097 0.0188 0.0473

εl Inverse Gamma 0.050 Inf 0.042 0.0168 0.0170 0.0665

εr Inverse Gamma 0.030 Inf 0.006 0.0008 0.0043 0.0068

εy Inverse Gamma 0.050 Inf 0.007 0.0006 0.0060 0.0077

εC Inverse Gamma 0.050 Inf 0.009 0.0008 0.0081 0.0106

εx Inverse Gamma 0.050 Inf 0.011 0.0016 0.0087 0.0138

εΠ Inverse Gamma 0.050 Inf 0.010 0.0008 0.0084 0.0110

εn Inverse Gamma 0.050 Inf 0.010 0.0010 0.0082 0.0116

εR Inverse Gamma 0.040 Inf 0.005 0.0004 0.0047 0.0059

ευ
p Inverse Gamma 0.050 Inf 0.010 0.0008 0.0090 0.0118

Table 3.4: Estimated correlation of Structural Shocks

Prior Posterior

Dist. Mean Std. dev. Mean Std. dev. HPD 95% HPD 5%

(εa, εb) Beta 0.000 0.3000 -0.413 0.1691 -0.6889 -0.1450

(εc, εl) Beta 0.000 0.3000 -0.022 0.2303 -0.3984 0.3578

Correlation between structural shock was estimated in order to get insight about

fundamentals affecting the economy. Pairs are selected according to the sector they

come from. First estimated correlation between TFP and investment shock is sur-

prising, as RBC theory suggests that positive TFP shock due to intertemporal sub-

stitution effect rise both hours worked and investments as both factors of production
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become more productive, thus positive correlation. Negative one appear more like an

“income” effect, when higher overall productivity requires less capital stock, and thus

investments, to persist current level of output. Transformation process conducted

mainly in 90s-00s but still not finished for Czech economy provides explanation: it is

a negative TFP shock hitting economy for long period of time, but at the same time,

this period is characterized by high level of private investments required to re-build

economy structure and start new private businesses. This interpretation is supported

also by the Shock decompositions analysis, when supply shocks remain negative for

long period of time6. For the second group, estimated results are considered as in-

significant. Plots 3.3 - 3.4 illustrate Tables 3.2 - 3.4, with grey being prior, black

posterior and with dashed green line denoting mode of the posterior.

Figure 3.3: Prior and Posterior Distributions (1)

3.9 Model Properties

Model properties are evaluated by (i) IRFs calculated during MH sampling utilizing

Cholesky decomposition and representing mean response to shocks (not response at

the mean) and (ii) historical shock decompositions. Former shows impact of each

shock on observables with 5 and 95% confidence bands, i.e. 90% Highest probability
6On separately conducted analysis with individual shcks investment-specific shock accounted for

majority of growth in that period
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Figure 3.4: Prior and Posterior Distributions (2)

density interval of their posterior distribution, while latter decompose historical fluc-

tuations around their steady state into individual shocks. Entire analysis is performed

on empirically observable time series expressed in real per capita values linked to the

model through observation equations. Model is then perfectly capable of estimating

the impact of structural shocks upon these time series of main interest. Figure 3.5

shows evolution of smoothed structural shock as estimated by the model.

Figure 3.5: Smoothed past realization of shocks

IRFs are depended not only relationships between variables, but also on estimated
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Figure 3.6: Response to Monetary shock

magnitude of each shock. Therefore note that responses to monetary shock εm (Figure

3.6 ) are of such negligible magnitude due to low estimated standard deviation for this

shock. This is perfectly illustrated by shock decomposition for Nominal interest rate,

as its movement is not primarily influenced by monetary, but supply shocks. Analysis

shows that response to monetary shock is rather negative, as nominal interest rate

Rt is set above its equilibrium value R̄t implied by the model, and relatively quickly

fading.

Response to TFP shock (Figure 3.7) is standard for RBC model: increasing out-

put, investment, labour supply and steadily consumption while decreasing inflation

(and GDP deflator). Lower nominal IR is in line with RBC theory, but its impact on

IR is uncertain, mainly due to negative correlation of TFP with investment shocks.

Usual response of working hours (or employment) is NKE models with rigid labour

market, is the decrease of supplied labour services, as with better technology less

work is required to produce the same output. However, as mentioned in Estimation

section, this model contains rigid labour market, but also perfectly flexible capital

formation that accommodates TFP shock very quickly, which in turn shifts labour

demand up as in RBC models.
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Figure 3.7: Response to TFP shock

Figure 3.8: Response to investment shock

Figure 3.8 reports responses to investment specific shock. Heavy rise at impact for

investments is rather expected and rising impact on consumption is also property of

RBC model. Note that for later periods, slowly diminishing dynamics on investments
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are substituted by stronger growth in consumption keeping growth of output relatively

constant. Steep response of nominal interest rate is natural answer to increased

demand for loanable funds.

Figure 3.9: Response to consumption preference shock

Figure 3.9 describes responses on consumption preference shock. As expected,

Consumption shock is accompanied by steep growth of current consumption at the

expense of future one, as investments fall down even more rapidly. Moreover, this is

accompanied by decrease of employment (as lower capital stock requires less labour

input in production) and thus decreasing output is just a logical outcome. Note, that

in this model real consumption per capita also includes government consumption.

From this point of view, higher government expenditures and support of private

consumption is rather contra productive for stabilization of output.

At last, Figure 3.10 shows responses to shock into labour supply. It is charac-

terized by substantial decrease on impact in provided labour services and this shock

translates to entire economy, when worsening every indicator of economic prosperity.

For the purposes of the variance decomposition analysis, shocks are grouped into

categories: (i) Supply shock consists of TFP, investment and labour supply, (ii)
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Figure 3.10: Response to labour supply shock

Demand being consumption preference shock, (iii) Monetary (Taylor rule shock) and

(iv) Measurement errors as specified in section 3.8.1. At this place is illustrated only

decomposition of output and rest is to be found in Appendix B.

Figure 3.11 shows decomposed fluctuations of output around its equilibrium value

as being hit by specified shocks. Entire shock decomposition analysis for all observ-

able time series is characterized by supply and demand sides effects opposing each

other. As model is by its natural structure not capable of explaining monetary part

of the economy, dynamics of nominal interest rate is identified as being subject to

supply, particularly investment shocks. Initial strong wave of negative supply shocks

is considered being caused by transformation and privatization process in 90’s, that

translates into 00s’ as well. Thereafter, Czech economy was hit by economic downturn

in early 2000’s and then by global financial crisis. Subsequent recovery was thanks to

finally positive TFP shocks. This decomposition shows that Czech economic growth

was spurred by demand side, i.e. private and government consumption. Assigning

extensive amount of negative impact on TFP shocks might be also caused by filtration

technique: one-sided HP filter that demean time series only asymptotically (Stock

and Watson, 1990). When applied to Czech data, considerable negative mean was

still present after filtration (see Table 3.1).

As for inflation, model is unable to well explain steep sudden changes opposing

each other from period to period. Vast majority os this movements is assigned to
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Figure 3.11: Shock decomposition - Output

supply shock, while only a fraction is identified as a monetary or other shock. On top

of this, degree of measurement errors, representing unexplained part of the model,

well define model inability to explain inflation. As is the matter of DSGE, inflation

is closely tighten to its respective equilibrium value, in the model specified as 2% as

is the mean inflation target of Czech National bank.

3.10 Forecasting

Typical approach to determine forecasting ability of any model is to conduct out-

of-sample forecast k-steps ahead employing expanding window. In this procedure,

data are split into two subsamples (e.g. 40:60), when initial model is fit only on

first period, corresponding forecast is conducted k-steps ahead and one observation

is repeatedly added into in-sample period, model is re-estimated and new forecast is

computed. In case of DSGE is such procedure cumberstone:
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1. Estimation of model of such complexity and scale by Bayesian methods is ex-

tremely demanding on computational power. To obtain desired properties of

estimated model, i.e. to find true distributions of estimated parameters and

reach convergence, requires extensive amount of MH draws and blocks7.

2. Each iteration of expanding window triggers entire estimation of DSGE from

mode finding, MH sampling to posterior draws. As mentioned before, finding

mode of the posterior is often non-trivial task for solution algorithms due to flat

surfaces of likelihood function. As data changes over time and so does the priors,

repeating estimation would requires either try-and-fail setting of new priors in

each period or employment of more robust, but inefficient optimization methods

such as MCMC algorithm.

To sum up, full out-of-sample forecast would consume full author’s computational

power for more than a month. Instead, forecasting performance in case of DSGE

model is evaluated from k-step ahead filtered variables. This is a combination of

in-sample and out-of-sample forecast such that model is initially estimated on entire

data set, and filtered variables are obtained taking into account only data known

at time T . Formally, general model filtered variable z k-step ahead is given by its

expectation with respect to time T :

ẑT+k = ET zT+k

where T denotes initial period of filtration/pseudo-forecast. This procedure is some-

times referred to as an in-sample back-testing to test for model stability over time.

Forecasting performances of all models developed in this thesis are reported and

summed in section 5.
7Only one estimation for this model took approx. 20 hours
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3.11 Model Implementation

Above derived model is solved and estimated using Dynare. It is a software platform

utilizing Matlab in-build functions to solve rational expectations DSGE models, i.e.

agent’s expectations about future are model consistent. Dynare works as a translator

between Matlab .m functions and .mat files and Dynare’s .mod files, which the model

is written in. Although presented DSGE model was not explicitly log-linearized, but

was entered into Dynare in non-linear form on levels, it. is still possible to write the

model in such a way that Dynare log-linearize it itself. To fasten the estimation, it

is recommended to write external _steady_state.m file that analytically computes

steady state, as 60− 70% of estimation time is spent on finding steady state by sim-

ulation algorithms. From complete .mod files with corresponding _steady_state.m

files for both versions of implementation of the model solved and estimated in Matlab

see the Appendix A.
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4 Bayesian Threshold VAR

4.1 Bayesian approach to linear models

In this section, Bayesian VAR and Threshold VAR models challenging performance of

previously derived DSGE model are developed. Description of estimation of Bayesian

linear models can be found in any textbook on Bayesian econometrics, e.g. in Koop

(2003), Geweke (2005), Kilian and Lutkepohl (2016) or in comprehensive guide of

Blake and Mumtaz (2012). Bayesian estimation of linear models, as usual, consists

of (i) formation of prior beliefs about parameters to be estimated in the form of prior

distribution, (ii) writing the likelihood function of the model representing information

in the data and (iii) continual updates of prior beliefs based on the information

contained in the data, i.e. combining prior distribution with likelihood function.

Purpose of this procedure is the same as in DSGE estimation: to form posterior

distribution H(B, σ2 | Yt), which is the simple product of the prior P (B, σ2) and

likelihood F (Yt | B, σ2) scaled by F (Y ) representing density of the data or marginal

likelihood, and is defined by the Bayes Law as:

H(B, σ2 | Yt) =
F (Yt | B, σ2)× P (B, σ2)

F (Y )
(4.1)

Before turning to multivariate and threshold models, suppose empirically relevant

univariate case when vector of coefficients B and variance σ are unknown. Conjugate

prior for vector of parameters β is normally distributed prior P (B) ∼ N(B0,Σ0)

and for σ2 it is inverse Gamma distribution, or alternatively, Gamma distribution for
1
σ2 . Definition of conjugate prior is that when combined with the likelihood function

(normal PDF in case of classical linear models), resulting posterior distribution is the
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same as prior and thus is known. Formally, joint prior density of B and σ is:

p

(
B,

1

σ2

)
= P

(
1

σ2

)
× P

(
B | 1

σ2

)
(4.2)

Resulting conditional posterior distribution H(B, 1
σ2 | Yt) is function of both B

and 1
σ2 , but to conduct inference about individual parameters B and σ2, marginal

posterior distribution for each parameter is necessary. Joint and marginal distribu-

tions can be approximated by Gibbs sampling algorithm that utilizes draws from

conditional posterior distribution available for each set of parameters. It si a Markov

Chain Monte Carlo algorithm, implying that random draws are independent of past

ones and it can be seen as an special case of Metropolis-Hastings algorithm (Geweke;

2005).

4.2 Bayesian VAR

Suppose a standard VAR(p) model of the following form:

Yt = c+B1Yt−1 + ...+BpYt−p + ut (4.3)

which can be in companion form written as

Yt = XtB + ut (4.4)

where X = {ci, Yit−1..., Yit−p}. This can be further rewritten in vectorized form

utilizing Kronecker’s product:

y = (IN ⊗X)b+ U (4.5)

with y = vec(Yt), b = vec(B), U = vec(u).

Prior distribution of VAR coefficient is assumed to be normal, with b̃0 denoting

prior mean and where H is matrix with diagonal elements specifying variance of the
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prior distribution:

p(b) ∼ N(b̃0, H) (4.6)

In turn, due to property of conjugate prior, posterior distribution of these coefficients

is also normal and conditional on Σ

H(b |Σ, Yt) ∼ (M∗, V ∗) (4.7)

where

M
∗

= (H−1 + Σ−1 ⊗X ′tXt)
−1(H−1b̃0 + Σ−1 ⊗X ′tXtb̂0) (4.8)

V ∗ = (H−1 + Σ−1 ⊗X ′tXt)
−1 (4.9)

where b̂ denotes vectorized format of OLS estimates of VAR coefficients

b̂ = vec((X ′tXt)
−1X ′tYt)). Note that the mean of this posterior distribution is simply

a weighted average of prior mean b̃ and OLS estimate b̂. Weights are given by the

inverse of corresponding variance, i.e. by H−1 in case of prior b̃ and by Σ−1 ⊗X ′tXt

for OLS estimate b̂.

For the VAR covariance matrix, conjugate prior is given by the inverse Wishart

distribution, multivariate version of inverse Gamma, with scale matrix S̄ and degrees

of freedom α = N + 1. Posterior for Σ is thus again inverse Wishart

H(Σ|b, Yt) ∼ IW (Σ̄, T + α) (4.10)

where T is the length of sample and Σ̄ is updated covariance matrix Σ̄ = S̄ + (Yt −

XtB)′(Yt −XtB).

To find posterior distribution, Gibbs Sampling algorithm is employed. For esti-

mation of VAR models Gibbs Sampling consists of:

1. Priors for VAR coefficient and covariance matrix are set.

2. Sampling of VAR coefficients is performed from conditional posterior
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distribution H(b |Σ, Yt) ∼ N(M∗, V ∗) in two steps: First M∗ and V ∗ are cal-

culated

M
∗

= (H−1 + Σ−1 ⊗X ′tXt)
−1(H−1b̃0 + Σ−1 ⊗X ′tXtb̂0) (4.11)

V ∗ = (H−1 + Σ−1 ⊗X ′tXt)
−1 (4.12)

Second, VAR coefficients b̄ are drawn from the standard normal distribution

b̄ ∼ N(0, 1) and by adding mean M∗ and multiplication by squared root of

variance matrix1 (V ∗)
1
2 as in (4.13), draw b̄ is transformed to b1 ∼ N(M∗, V ∗)

and first set of estimated parameters is obtained.

b1 = M∗ +
(
b̄× (V ∗)

1
2

)
(4.13)

3. Σ is drawn from its conditional distribution H(Σ|b, Yt) ∼ IW (Σ̄, T +α). Again,

Sigma Σ̂ is updated covariance matrix as in (4.10).

4. With increasing number of iterations, “conditional distributions converge to

joint and marginal distribution at an exponential rate” (Blake, Mumtaz; 2012)

allowing for approximation of marginal distributions by their empirical coun-

terparts. By repetition of Steps 2 and 3 M-times, estimates of B1 to BM are

obtained. In sake of robustness, estimates provided by first Nb iterations are

burned and remaining (N − Nb) estimates are used to form the empirical dis-

tribution of VAR coefficients. Point estimate of the mean subsequently used

in forecasting or impulse response analysis is the simple average of (N − Nb)

retained draws:

β̂i =
1

N −Nb

N−Nb∑
b=1

βbi

Convergence

Convergence check of Gibbs sampler can be partitioned into visual tests and formal

test statistics. In the former sequence of retained draws in examined in three ways:
1multivariate equivalent to standard deviation
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1. retained draws exhibit stationary, mean-reverting property, i.e. fluctuate ran-

domly around a stable mean

2. computed recursive mean shows little fluctuations

3. sample of retianed draws is not serially correlated, i.e. there is no autocorrela-

tion.

For the latter, Geweke (1991) propose formal tests to infer about convergence

based on stability of the mean and efficiency of provided estimates. Idea behind

stable mean test is similar to that in recursive mean plot. A sample of retained

draws of any model parameter θi is divided into two subsamples N1 and N2 and

corresponding simple averages M1, M2 and asymptotic variance S1(0)
N1

, S2(0)
N2

for each

subsample are computed. The asymptotically normally distributed test statistics is

then:

Z =
M1 −M2√
S1(0)
N1

+ S2(0)
N2

(4.14)

Convergence is judged upon values of Z, when low values indicate that there

is no significant difference in means and thus Gibbs sampler has converged. To

infer about efficiency, Geweke (1991) also introduced measure of relative numerical

efficiency (RNE) that explicitly accounts for autocorrelation of retained draws from

approximated posterior distribution. Test statistic is:

RNE =
ˆV AR(θ1)

S(0)
(4.15)

when values close to unity mean convergence.

4.3 Threshold Model

Model developed in this thesis follows usual implementation of threshold models

known as SETAR, i.e. Self-Exciting Threshold Autoregressive model. This is the

special cases of TAR model and is typical by two properties: (i) switching between
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regimes is based on past realization of single time series Yj,t−d being also endogenous

variable (self-exciting) and (ii) with exogenously set delay parameter d (Koop and

Potter; 2000). Simple SETAR(2,p1,p2) model contains two regimes with possibly

different degree of autoregressive properties p1,p2, but here always implemented as

p1 = p2 = p:

Yt = c1 +B11Yt−1 + ...+B1pYt−p + u1t for Yj,t−d ≤ Y
∗

(4.16)

Yt = c2 +B21Yt−1 + ...+B2pYt−p + u2t for Yj,t−d > Y
∗

where Y ∗ is the level of threshold. Fundamentally, with known threshold variable and

delay parameters, these are two ordinary VAR models conditional on currently valid

value of threshold (Tong, 1990). Threshold variable determines tandem allocation

of all other variables. Exogenous setting of delay parameter reduces problem to

determination of threshold valid for current data and estimation of parameters for

both regimes. Employing Bayesian methodology, model is estimated utilizing Gibbs

sampling with incorporated MH step to estimate threshold level Y ∗ as in Blake and

Mumtaz (2012):

1. Set priors.

2. Split data into regimes according to threshold variable Yj,t−d and currently valid

threshold level Y ∗ such that Y (1)
t = Yt | Yj,t−d ≤ Y

∗ and Y (2)
t = Yt | Yj,t−d > Y

∗ .

In the first iteration, threshold level Y ∗ is set to the values of historical mean

of threshold variable Y ∗
= Yj,t−d.

3. Sample coefficients for both regimes following (4.11) - (4.13).

4. Incorporate extra RWMH step to sample Y ∗ . New value is drawn from the

random walk:

Y
∗

new = Y
∗

+ ε ,where ε ∼ N(0,Σ)

Acceptance probability α given as ratio of likelihood functions for new and old

threshold is then computed and compared to draw from uniform distribution
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u ∼ U(0, 1) such that:

u < α −→ Y
∗

new

u ≥ α −→ Y
∗

old

Similarly to estimation of DSGE, scale Σ is tuned throughout the application in first

5000 iterations of the Gibbs sampler to keep acceptance rate α ∈ [0.2, 0.3] consid-

ered as being optimal. In SETAR models, threshold variable and lag parameter d

are assumed to be known or chosen arbitrarily. Criteria for selection of threshold

variable are: (i) sufficient volatility to ensure switching between regimes and (i) well

representativeness of variable of main interest (Kwon, 2003). Here, as a threshold

variable Y ∗ is selected GDP deviations with lag degree of 2: Y ∗
= Y1,t−2. Perfor-

mance of TVAR with delay parameter d = 2 is superior to that with d = 1 and

ensures roughly equal data partition to both regimes. This is particularly important

in out-of-sample forecasting (see Section 4.5) when initial in-sample period contains

only 50 observations.

4.4 Minnesota Prior

Minnesota prior is the special case of Gaussian conjugate prior when it is assumed

that data generating process for each endogenous variable in vec(Yt) is an AR(1)

process or a random walk. Distinction between these two is in stationary properties

of examined time series. Fundamentally, Minnesota prior is the most conservative

setting of the prior distribution and states that nothing is known (Koop, 2003). It

reduces the problem of prior setting into selection of hyperparameters specifying prior

variance matrix (Kilian and Lutkepohl, 2016).

Recalling companion form presented in equation (4.4), elements of prior mean b̃ =

vec(B̃) equal one only for bij elements where i = j, and zero otherwise. Dimensions

of b̃ are [N × (N ×L+ 1)]× 1 with N denoting number of endogenous variables, L is

the lag degree, and +1 stands for constant term. Scale matrix S̄ for Minnesota prior

is an identity matrix S̄ = IN .
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Prior variance is given by a square matrix with dimensions of [N × (N × L +

1)]× [N × (N ×L+ 1)] and its setting requires more structured approach. For VAR

coefficients, it is controlled by hyperparameters λ1, ...λ4 and is defined by following

set of relations: ( λ1

lλ3

)
for i = j (4.17)

(σiλ1λ2

σjlλ3

)
for i 6= j

(σ1λ4) for constant

Parameters λ1, ...λ4 control for relative tightness of the prior in the estimation.

They are also called shrinkage parameters, as they shrink variance of the prior.

Namely, λ1 and λ2 control for the standard deviation of the prior on lags of par-

ticular endogenous variable bij, such that λ1 influences std. deviation on own lags,

i.e. if i = j, and λ2 controls for std. deviation on other than own lags, i.e. if i 6= j.

Values of λ1, λ2 approaching 0 “shrinks” final estimates of bij towards the mean of

the prior distribution (Kilian and Lutkepohl, 2016). Note that if λ2 = 1 there is no

distinction among own and other lags. Increasing value of parameter λ3 increases

probability the coefficients on higher lags are equal to zero. Finally, λ4 controls con-

stant terms in such a way that if λ4 approaches zero, constant terms are shrunk to

zero as well. Purpose of variance ratio σi
σj

is to normalize possibly different scales of

included endogenous variables and l stands for lag degree.

Although developed BVAR models contain 7 endogenous variables and are char-

acterized by lag degree of L = 1, 2, 3, for illustration of Minnesota prior setting,

let consider a VAR(2) with only four endogenous variables and constant terms, as
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dimension of these matrices grow exponentially2:
y1t

y2t

y3t

y4t

 =


c1

c2

c3

c4

+


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44




y1t−1

y2t−1

y3t−1

y4t−1

+


d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44




y1t−2

y2t−2

y3t−2

y4t−2

+


u1

u2

u3

u4


As discussed above, under Minnesota prior are endogenous variables assumed to

follow random walk, which implies:
y1t

y2t

y3t

y4t

 =


0

0

0

0

+


b0

11 0 0 0

0 b0
22 0 0

0 0 b0
33 0

0 0 0 b0
44




y1t−1

y2t−1

y3t−1

y4t−1

+


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




y1t−2

y2t−2

y3t−2

y4t−2

+


u1

u2

u3

u4


Vectorized prior mean b̃0 = vec(B) is then simply:

b̃0 =


b0

1

b0
2

b0
3

b0
4

 (4.18)

where

b0
1 =



0

b0
11

0

0

0

0

0

0

0



; b0
2 =



0

0

b0
22

0

0

0

0

0

0



; b0
3 =



0

0

0

b0
33

0

0

0

0

0



; b0
4 =



0

0

0

0

b0
44

0

0

0

0


2Prior covariance matrix H = [105× 105] for L = 2 and H = [156× 156] for L = 3
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Setting of variance matrix of prior distribution is demonstrated only on one vari-

able y1t as other are analogous to this and in case of 4 endogenous variables (N = 4),

lag degree of 2 (P = 2), and with constant terms, it is a square matrix with dimen-

sions of [36 × 36]. With strict implementation of Minnesota prior it is a diagonal

matrix with fixed elements, imposing independence among parameters (Kilian and

Lutkepohl, 2016). Error variances of σi are obtain by OLS estimates of corresponding

AR(1) processes.

H =



(σ1λ4)2 0 0 0 0 0 0 0 0

0 (λ1)2 0 0 0 0 0 0 0

0 0 (σ1λ1λ2

σ2
)2 0 0 0 0 0 0

0 0 0 (σ1λ1λ2

σ3
)2 0 0 0 0 0

0 0 0 0 (σ1λ1λ2

σ4
)2 0 0 0 0

0 0 0 0 0 ( λ1

2λ3
)2 0 0 0

0 0 0 0 0 0 (σ1λ1λ2

σ22λ3
)2 0 0

0 0 0 0 0 0 0 (σ1λ1λ2

σ32λ3
)2 0

0 0 0 0 0 0 0 0 (σ1λ1λ2

σ42λ3
)2



4.5 Forecasting

General in-sample (full-sample) forecast equation in matrix form is defined as follows:

yt+1 = c+Xt(L)B + ut+1 (4.19)

where t = 1, . . . , T , endogenous variable yt+1 is a matrix of one-sided HP-filtered or

log-demeaned data as described in Section 3.8.1, Xt(L) = {yt, yt−1, ...yt−L} is matrix

of the same, but up to degree of L lagged variables, B is corresponding matrix of

estimated parameters and ut+1 is the forecast error term. This equation is estimated

using Gibbs sampling algorithm and Minnesota prior.

Out-of-sample forecasts ŷt+1, are generated using expanding window method pro-

viding 1-step-ahead predictions. First protection against overfitting is estimation of
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model parameters only on in-sample data (Ashey, Granger and Schmalensee; 1980).

Thus, full sample of T observations is split into in-sample and out-of-sample por-

tions. In-sample portion consists of R observations, leaving P = T −R observations

for out-of-sample portion. To obtain first value of out-of-sample forecast, equation

(4.19) is fitted on first R observations and matrix of lagged endogenous variables

Xt(L) is multiplied by estimated vector of parameters B̂. Corresponding forecast er-

ror is acquired as the difference between forecasted and actual value. For k = K = 1,

i.e. one step ahead forecasting, the next period (t + 1), R + 1 observations are used

as the in-sample portion of data to create t = R + 2 forecasts.

Multiple, k-step ahead forecast with k = {1, ...K}, is obtained by repeating es-

timation of ŷt+k devoid of expanding in-sample portion of data. Instead, matrix

Xt+k(L) includes previous forecasts such that for k > L only already forecasted

values are used to form subsequent forecasts. Consider relevant case when L = 2,

K = 12 and fixed in-sample portion t = R:

yt+1 = c+Xt(L)B + ut+1 , where Xt(2) = {yt, yt−1}

yt+2 = c+Xt+1(L)B + ut+2 , where Xt+1(2) = {ŷt+1, yt}

...

yt+K = c+Xt+K(L)B + ut+K , where Xt+k(2) = {ŷK−1ŷK−2}

with B being constant for one iteration of Gibbs sampler. Only after calculation of

all k forecasts, in-sample is expanded by adding R+1st observation. General forecast

K-steps ahead with R in-sample observations is calculated as :

ŷR+k = EyR+k = ĉ+XR+k(L)B̂ , k = {1, ...K}

with corresponding forecast error:

ûR+k = yR+k − ŷR+k , k = {1, ...K}
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Model forecasting performance is then assessed by RMSE:

RMSE =

√√√√√(∑T
i=t+1 ût+k

)2

R
, k = {1, ...K} (4.20)

Each iteration of Gibbs samples triggers stability check, when B is updated until

stable properties are guaranteed. When estimating thresholds, scales of Σ in MH

algorithm is tuned on first 5000 observations (after initialization on first 100 obs.)

to keep acceptance rate in desired range α ∈ [0.2 − 0.25]. Threshold estimation

includes 20 000 iterations of Gibbs sampler and MH algorithm with 16 000 burns.

Estimation of parameters B is done upon 50 000 draws and 40 000 burns. With last

burn-in draw, convergence statistics are computed and when desired, additional 5000

draws are trigged, with maximum of 2-triggers per estimation3. Despite this number

of iterations is not considered sufficient, limitations in computational power do not

allow for more.

For threshold models, forecasting algorithm is:

1. Separate data into in-sample and out-of sample

2. Estimate threshold value Y ∗
= Y1,R−2

3. Partition data into Y (1) and Y (2) for corresponding regimes

4. Perform K-step ahead forecast with K = 1 or K = 12.

5. Repeat Steps 1− 4 (P-R)-times

That is to say, value of threshold is estimated only on in-sample data and remains

fixed for the entire forecasting period K = {1, 12}. 1-step ahead forecast is computed

only for regime the system is currently in. For 12-step ahead forecast, forecasts are

calculated for both regimes and all K periods. Subsequently, threshold variable Y ∗

is recursively induced and final forecast is retrieved from mean estimates of both

regimes conditionally on fitted values of threshold (see Figure 5.1).
3Implying maximum possible amount of 60k draws and 50k burns
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For estimation and subsequent forecasting, the same data as for estimation of

DSGE are utilized, i.e. one-sided HP filtered or log-demeaned deviations from the

steady state of respective variable. For reference of transformations see Section 3.8.1.

Regarding out-of-sample forecast and dataset splitting, Clark and McCracken (2001)

recommend using P/R ratio π̂ = 0.4, corresponding to R = 65 for in-sample portion

and P = T −R = 26 fro out-of-sample. However, Bayesian methods and efficiency of

Gibbs sampler are challenged by setting R = 50 and thus π̂ = 0.8. This forecasting

exercise produces 41 out-of-sample forecast and includes period of major economic

downturn of 2009. Therefore it is well-suitable for inferences about forecasting abili-

ties and performance.

4.6 Implementation

As is the case for DSGE, all BVAR and BTVAR models are implemented in Mat-

lab. Core of the codes is taken from Blake and Mumtaz (2012) and their Guide

for Applied Bayesian econometrics. However, obtaining concrete solution required

extensive corrections, manipulations and combinations of various parts and so the

original code served rather as a guide and illustration of practical estimation than a

’running-version’ of the code.
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5 Results Summary and Comparison

To summarize, DSGE model is estimated on full sample of data and forecasting

capabilities are assessed utilizing filtered variables such that ŷt+k = Etyt+k. It is then

confronted with SETAR(2,2,2) estimated by Bayesian methods with threshold, regime

switching variable, Y ∗
= Y1,t−2 being 2-periods lagged output. As a benchmark are

selected plain Bayesian VAR models (BVAR(L)) with lag degree of L = {1, 2, 3}.

Assessment of forecasting power is done upon RMSE statistics. Analyzed time series

are those of usual interest in macroeconomic forecasting: output and inflation. For

the comparative analysis, these exercises were performed:

1. DSGE

2. 1-step ahead out-of-sample forecast of output and inflation with plain BVAR(1)

and BVAR(3)

3. 1-step and 12-steps ahead out-of-sample forecast of output and inflation with

SETAR(2,2,2)

4. 1-step and 12-steps ahead out-of-sample forecast of output and 1-step ahead

forecast of inflation with BVAR(2)

To evaluate the appropriateness of approximation of “forecasting” abilities of

DSGE model by filtered variables approach, experiment consisting of short series

of forecast is performed. Again, due to limitations in computational power, experi-

ment is conducted only on five1 subsequent period preceding the end of data sample.

In this exercise, five one-step ahead forecasts from subsequent periods are compared
1incorporation of more periods was unsuccessful due to inability to find posterior mode. More-

over, even inclusion of 12 period would still provide too little information for inference about ap-
proximation of 12-step ahead forecast by filtered variables.
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to filtered variables for the same period acquired from full sample of data. Differences

in both approaches are within a fraction of 1 standard deviation and thus filtered vari-

ables are fair approximation of actual 1-step ahead forecasts. However, one should

still consider uncertainty related to this approximation.

Model Comparison

As mentioned before, estimation by Bayesian methods provides full posterior distribu-

tion of estimated parameters. Mean of these distributions serves as a point estimate

for parameters and their standard errors. Percentiles of these distributions produce

posterior density intervals, and when combined, represents highest posterior density

intervals. These can be used for hypothesis testing and inference.

Formal model comparison of two (or more) models, is done by comparison of their

posterior probabilities, known as posterior odds ratio. With equal prior weights of all

models, this reduces to Bayes factor, given by the ratio of marginal likelihoods, which

depends only upon the prior and the likelihood. Bayes factor balances quality of the

fit and extra model complexity, while accounting for misspecification of the model.

Forecasting power of the model is judged upon its predictive density, which accounts

for parameter uncertainty as well. This is generated forecasts are calculated.

Sufficient condition for comparison of models using marginal likelihood is the

utilization of the same dataset (Koop, 2003). This imply:

1. Models do not need to be nested as there is natural correction for degrees of

freedom

2. Prior distributions over models are not required to be the same.

3. It is possible to compare performance of models with different parameters

4. Given the validity of point (3), shocks (or error terms) do not have to be nec-

essarily equivalent, as extra shocks included in the DSGE compared to BVARs

are only subjects of different parametrization.
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Marginal Likelihood is computed by Chib’s (1995) method. He decomposes Bayes

rule (4.1) through logarithmic transformation to:

log F (Y ) = log F (Y | B,Σ) + log P (B,Σ)− log H(B,Σ | Y )

Thereafter, posterior density is factorized such that:

log F (Y ) = log F (Y | B,Σ) + log P (B,Σ)− log
(
H(B∗ | Σ∗, Y )×H(Σ∗ | Y )

)

where ∗ values denote posterior means. Note that H(B∗ | Σ∗, Y ) ∼ N(M∗, V ∗) is as

in (4.7) multivariate normal posterior distribution for B∗ with M∗ and V ∗ given by

(4.8) - (4.9) and thus known. Last term si:

H(Σ∗ | Y ) ≈ 1

N −Nb

N−Nb∑
i=1

H(Σ∗ | Bi, Y )

H(Σ∗ | Bi, Y ) is drawn from inverse Wishart with degrees of freedom T +α and scale

matrix Σ̄ = S̄ + SSRi, where SSRi is sum of squared residuals for VAR model for

current draw of Bi. In case of DSGE, marginal likelihood is computed via Laplace

approximation and is part of Dynare output.

As further noted by Koop (2003), one should be careful when comparing models

on the basis of marginal likelihood when using non-informative priors, as Minnesota

certainly is, especially when different scales of data are included in the models about

to be in compared. Non-informative priors are not capable of correction for this dif-

ferent measurement scales and results are inherently biased. However, as all included

models are estimated on exactly the same data and of the same measure, i.e. per-

centage deviations from their respective steady state, comparison is still conducted

upon marginal likelihood, despite non-informative Minnesota prior.
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Results

At first, individual marginal likelihoods assessing in-sample fit of models are presented

in Table 5.1. Significant difference between values for DSGE and VARs is (i) due to

different computation method and (ii) weak in-sample fit of DSGE model, visible

also on shock decomposition charts2. On the other hand, VAR models are able to

fit modeled time series almost perfectly (see Figure B.6 in Appendix B). Despite in-

sample fit is one indicator for of power of the model, it does not have any further

implications for forecasting performance.

Table 5.1: Marginal likelihood based model comparison

BVAR(1) BVAR(2) BVAR(3) SETAR(2,2,2) DSGE

Marginal Likelihood -1748 -1726 -1705 -1759 -1891

Table 5.2: Results Comparison (RMSE)

In-sample period=50 In-sample period=60

Output Inflation Output Inflation

1-step 12-step 1-step 12-step 1-step 12-step 1-step 12-step

BVAR(1) 1.22 0.8321 1.18 0.667

BVAR(2) 1.21 1.423 0.849 0.34 1.16 1.33 0.692 0.346

BVAR(3) 1.215 0.858 1.166 0.71

SETAR(2,2,2) 1.185 1.515 0.946 1.09 1.56 0.77

DSGE 1.245 1.5042 0.794 0.704 1.224 1.61 0.612 0.66

Table 5.2 summarizes out-of-sample unconditional forecasting performance of

prescribed models on different forecasting horizon K and length of in-sample period
2Identifiable as high measurement errors
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R. Conditional forecasting is not performed as (i) VAR models do not meet require-

ments of Lucas critique, and (ii) derived DSGE model does not include any economic

policy for forecast to be conditional on, as monetary shocks plays negligible role in

the model. In turn, this table well-represents forecasting ability of included models

for 1-step ahead forecasts disregarding their properties and set up. 12-step ahead

forecast results for DSGE are non-representative, but still valid for other models.

Forecasting performance regarding 1-step ahead forecasts of output with in-sample

period R = 50 of all included models are almost identical, varying in range only

of 0.06. Minimum RMSE for Threshold model perfectly advocates its inclusion in

analysis and status of main benchmark model. To understand the importance of

threshold on estimation and subsequent forecasting, Figure 5.1 shows 1-step ahead

forecasts for both regimes of SETAR(2,2,2) before and after recursive computation

of threshold and filtration of both regimes to obtain single realization.
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Figure 5.1: Unfiltered and Filtered forecasts of output by SE-
TAR(2,2,2)

DSGE being the worst, but still relatively close to benchmarks, in not that sur-

prising as structural models are intended to produce rather long term predictions. On

longer horizon (12-step ahead forecast), SETAR(2,2,2) is outperformed by BVAR(2)

as well as DSGE. Explanation of failure is the fixed level of threshold for the entire 12-

quarters long forecasting period and thus its inherent non-representativeness. With

increased in-sample period to R = 60, order of models remains the same, supporting

robustness of stated results.

Following set of Figures visualizes most important results. Note that forecasting

performance af all included VAR models are not close only in terms of RMSE, but

also in terms of graphic representation Therefore, if not mentioned specifically, stated
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claims apply to all VAR models.

Output

One step ahead forecast with in-sample period of R = 50 for SETAR(2,2,2) in Figure

5.2 is accompanied by corresponding level of threshold estimated at that period (but

valid with delay of two quarters). Confidence bands are given by 80% of Highest

probability density interval (HPDI), with lower bound corresponding to 10th and

upper to 90th percentile.

Figure 5.2: 1-step out-of-sample forecast of Ouutput by SE-
TAR(2,2,2)

At the first view, VAR models are very adaptive and quickly responsive to past

development of tracked time series. They are able to well-define dynamics of the true

time series if the spread is not extensive. In vast majority of point forecast, true

values lies within the confidence bands.
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Figure 5.3: 12-step out-of-sample forecasts of output by SE-
TAR(2,2,2)

In some instances, it appears that forecasted values are just shifted past realiza-

tions or shifted in-sample fitted values. By construction, it is natural that 1-step

ahead out-of-sample forecasts copy the most recent past development. This phe-

nomenon it better illustrating by plotting 12-step ahead forecasts as in Figure 5.3.

This catches dynamics of forecast driven by mean-reversion property significantly bet-

ter. The further is deviation of analyzed time series from its respective equilibrium

rate, the stronger mean reversion property of the forecasts is. For certain periods

of time, subsequent forecasts are nothing else then by a constant horizontal shifts of

previous ones, creating “shifted” this property of 1-step ahead plots.
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Figure 5.4: 12-step out-of-sample forecasts of output by DSGE

Inability of DSGE to outperform BVAR (2) in long term forecasting is surprising.

As a structural model, it should be able to provide high quality forecasts for longer

periods ahead. Failure of DSGE is determined in-between 2010-2015 (Figure 5.4),

when it is unable to copy short term, kinky, dynamics as apposed to SETAR(2,2,2).

This exercise shows that VAR models are much more reactive to current development

and are able to incorporate new information faster. On the other hand, one should be

really skeptical about DSGE results especially for 12-step ahead forecasts, considering

the filtered variable methodology and thus non well-representativeness.

For 1-step ahead forecasting, result and visual realization of DSGE is similar to

VAR models. Extremely tight confidence bands are the inherent result of filtered

variables approach as there is no uncertainty related to estimated parameters, but

only to future realization of shocks. Also DSGE models is estimated by significantly

larger number of iterations, in total counting to 1.8 million compared to 50 000 of

VAR models for each in-sample period3, thus reduction in parameter uncertainty even

for in-sample period is incorporable across models.
3Again, due to limitations in computational power, number of iterations for VAR was reduced

in sake of producing full set of out-of-sample forecasts
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Figure 5.5: 1-step out-of-sample forecasts of output by DSGE

Inflation

Inflation forecasts in Figure 5.6 corresponds to best-performing model, i.e. BVAR(1),

but those are again almost identical for all VARs. It shows that if analyzed time series

is not over volatile, VAR is able to form relatively precise point forecasts of its future

realizations, with almost all taking place within confidence bands. Consequently, it

does not just passively follow past states, but provides relatively smooth trajectory

of forecasts.
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Figure 5.6: 1-step out-of-sample forecasts of inflation by
BVAR(1)

Figure 5.7: 1-step out-of-sample forecasts of inflation by DSGE

DSGE inability to explain historical changes of inflation described in Shock de-

composition analysis is transformed also to forecasting capabilities. Although it is

the best performing model in forecasting inflation 1-step ahead, Figure 5.7 illustrates

that unconditional 12-step ahead forecast in each period practically degrades into
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reversion to zero mean4, i.e. target equilibrium value. Paradoxically enough, this

inability benefits DSGE in 1-period ahead forecasting, when it outperforms all other

models by significant margin, simply by ignoring short run deviations and focusing

on its respective equilibrium value at zero mean. Dib et al.(2008) call this sampling

variability vs. inconsistencies paradox, when (probably) misspecified decisions rules

of DSGE impose, in comparison to VAR, relative tightness on behaviour of the model

and not allow to fully follow data. Extremely narrow confidence bands are again a

cause of filtered variables approach and superior estimation procedure compared to

BVARs.

Figure 5.8: 12-step out-of-sample forecasts of inflation by DSGE

Long term inflation forecasts were performed only for BVAR(2). SETAR(2,2,2).

It turns out that producing longer period forecasts by SETAR(2,2,2) is extremely

computationally demanding and thus forecasts for other variables besides output

were discarded. Forecasting with SETAR (2,2,2) in each in-sample period consists

of sampling of threshold, sampling of parameters in both regimes, calculation of K-

step ahead forecast, and repeating extension of in-sample period and consumes triple

amount of time than regular BVAR.
4Note the similarity with Inflation forecasts of Czech National bank in last two years.
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Figure 5.9: 12-step out-of-sample forecasts of inflation by SE-
TAR(2,2,2)

Simple ranking of the models according to Table 5.2 is:

1. SETAR(2,2,2) for short term output forecasting

2. BVAR(2) for long term output forecasting

3. DSGE for forecasting inflation

Interestingly enough, to obtain presented results required approximately 5 days of

intensive computations on 2 separate computers. From this perspective, conduction

of such forecasting exercise is not a subject of everyday activity. On the other hand,

producing single forecast for 12 subsequent period with sufficient amount of itera-

tions, is a matter of several minutes, depending on computational power. This can

be used as essential inputs to other models such as Value at Risk or stress testing.

Especially for artificial scenarios analysis, availability of entire posterior distributions

of forecasted variables of interest allowing for complex inference and assessment of ac-

tual probability of extreme events is considerable advantage. High quality forecasts

in such applications are capable of increasing profitability of financial institutions

when turning uncertainty into quantifiable risk and thus allowing fo creation of cor-

responding financial buffer. Given the advantages, relative preciseness and desirable
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properties of these models, argument for their utilization is at least considerable.
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6 Conclusion

In this thesis, small to medium scale closed economy DSGE model for Czech re-

public was introduced, solved, implemented and with Bayesian techniques estimated

on empirically observable time series. DSGE model is a mixture of NKE and RBC

modeling traditions, when incorporating frictions in prices and wages, but allowing

for perfect mobility of capital. Model properties were judged upon subsequent Im-

pulse Response and Shock decompositions analysis, when identifying supply, demand,

momentary shocks and measurement errors representing unexplained part of a model.

Due to modeling Czech republic as a closed economy, exclusion of government

and imperfect filtration of observable time series, model is unable to fully explain

temporary shocks hitting the economy and past development of variables of interest.

Major downturns are (i) the estimate of significantly negative correlation between

investment-specific and TFP shock, both being referred to as a supply shocks, and

(ii) extremely small standard deviation of monetary shock in Taylor rule. The former

results in failure to explain fluctuations in output, while the latter is responsible for

unexplained part of inflation and nominal interest rate decomposed into individual

shocks. Minor ones are relatively low values of Calvo and inflation indexation pa-

rameters compared to similar studies, caused by perfect capital mobility allowing for

quick accommodation of shocks.

Model is estimated by Bayesian techniques on Czech major macro time series:

output, consumption, investments, inflation, nominal interest rate and GDP deflator.

Due to limitations in computational power, forecasted values of DSGE are approx-

imated by filter variables, when parameters are estimated on full sample but only

data corresponding to in-sample period are used. Unconditional forecasting per-

formance of DSGE model is confronted by Threshold Bayesian VAR (SETAR(2,2,2))
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and plain Bayesian VARs with Minnesota prior.

Forecasting exercise is a set of 1-step and 12-step ahead out-of-sample forecasts

with 2 different in-sample periods. Although all models perform similarly, Evaluation

by RMSE suggests that forecasts of output produced by BVARs are superior to those

of DSGE, with SETAR(2,2,2) for short term and BVAR(2) for long term forecasting.

On the other hand, DSGE is superior when forecasting inflation in all considered

scenarios, paralytically thanks to its misspecification.

Despite some undesirable properties, this DSGE model can still be solid point of

departure for extensions. First natural path is to extend model for open economy

features. Next is to include actual government expenditures and taxes and rigidities

to capital stock formation such as installation costs or capacity utilizations. Such

model would then become perfectly suitable for conditional forecasting and economic

policy evaluation in further academic studies.

On top of that, this Thesis demonstrates that despite additional demands on

development, computational power and complexity, this methods are well-suitable for

implementation in real application to provide essential inputs for different scenarios

modeling.
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A DSGE Implementation

A.1 Dynare Implementation

Listing A.1: Non-linear model for log-linearization
1

2 %Spec i f y endogenous v a r i a b l e s prepared f o r Tex output

3

4 var

5 c c ( long_name='Consumption ' )

6 lam λ ( long_name='Shadow Pr ice ' )

7 R R ( long_name=' Gross nominal IR ' )

8 PI Π ( long_name=' Gross i n f l a t i o n ra t e ' )

9 r r ( long_name=' Real IR ' )

10 x x ( long_name=' Investments ' )

11 f f ( long_name='Wage s e t t i n g equat ion ' )

12 ld Nd ( long_name=' Labour Demand ' )

13 w W ( long_name='Wage ' )

14 wstar W
∗

( long_name=' Optimal r e s e t wage ' )

15 PIs tar Π
∗

( long_name=' Optimal r e s e t p r i c e ' )

16 PIstarw Π
∗
w ( long_name=' Optimal wage i n f l a t i o n ' )

17 g1 f1 ( long_name=' Pr i ce s e t t i n g equat ion ' )

18 g2 f2 ( long_name=' Pr i ce s e t t i n g equat ion ' )

19 yd y ( long_name='Output ' )

20 mc mc ( long_name=' Marginal c o s t s ' )

21 k k ( long_name=' Capita l s tock ' )

22 vp υp ( long_name=' Pr i ce d i s p e r s i o n ' )

23 vw υv ( long_name='Wage d i s p e r s i o n ' )

24 l n ( long_name=' Labour supply ' )

25 a a ( long_name='TFP shock ' )

26 b b ( long_name=' Investment shock ' )

27 m m ( long_name='Money demand ' )

28 eps_c εc ( long_name='Consumption shock ' )

29 eps_m εc ( long_name='Consumption shock ' )

30 d εl ( long_name=' Labour supply shock ' )

31 e εr ( long_name='Monetary po l i c y shock ' )

32 y_obs yobs ( long_name=' Observed outuput ' )

33 PI_obs Πobs ( long_name=' Observed g ro s s i n f l a t i o n ' )

34 l_obs nobs ( long_name=' Observed labour supply ' )

35 c_obs cobs ( long_name=' Observed consumption ' )

36 vp_obs υobs ( long_name=' Observed GDP de f l a t o r ' )

37 R_obs Robs ( long_name=' Observed g ro s s nominal IR ' )

38 x_obs xobs ( long_name=' Observed investments ' )

39 ;

40

41 varexo

42 epsmE εr ( long_name='Monetary po l i c y shock ' )

43 e_a εa ( long_name='TFP shock ' )

44 e_b εb ( long_name=' Investment shock ' )
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45 e_c εc ( long_name='Consumption shock ' )

46 e_d εl ( long_name=' Labour supply shock ' )

47 e_y εy ( long_name='Output Measurement Error ' )

48 e_C εC ( long_name='Consumption Measurement Error ' )

49 e_x εx ( long_name=' Investment Measurement Error ' )

50 e_R εR ( long_name=' Gross nominal IR Measurement Error ' )

51 e_PI εΠ ( long_name=' Gross i n l f a t i o n Measurement Error ' )

52 e_l εn ( long_name=' Labour supply Measurement Error ' )

53 e_vp ευ
p

( long_name='GDP de f l a t o r Measurement Error ' )

54 ;

55

56 % Spec i f y predetrmineed va r i a b l e s and keep t h e i r r e p s e c t i v e t imings as in de r i va t i on

57 predetermined_var iab les k ;

58

59 %

60 parameters

61 bet β ( long_name=' Discoutn f a c t o r ' )

62 de l δ ( long_name=' Depre s i a t i on ra t e ' )

63 eps_l ε
l

( long_name=' E l a s t i c i t y o f s ub s t i t u t i o n between labours ' )

64 eps_h ε ( long_name=' E l a s t i c i t y o f s ub s t i t u t i o n between goods ' )

65 psy ψ ( long_name=' Labor d i s u t i l i t y ' )

66 eta η ( long_name=' Inve r s e Fr i sch e l a s t i c i t y ' )

67 kappa κ ( long_name=' Pr i ce indexat ion to i n f l a t i o n ' )

68 kappaw κw ( long_name='Wage indexat ion to i n f l a t i o n ' )

69 theta θ ( long_name=' Calvo parameter p r i c e s ' )

70 theta_w θw ( long_name=' Calvo parameter wages ' )

71 a l f α ( long_name=' Capita l share o f output ' )

72 %Rbar R̄ ( long_name='Steady s t a t e IR ' ) %Float ing parameter

73 PIbar Π̄ ( long_name=' I n f l a t i o n ta rg e t ' )

74 gamR γR ( long_name='TR: IR smoothing ' )

75 gam_PI γΠ ( long_name='TR: i n f l a t i o n smoothing ' )

76 gam_y γy ( long_name='TR: output gap smoothing ' )

77 sig_m σm ( long_name='Consumption ' )

78 rho_e ρe ( long_name='AR parameter MP shock ' )

79 rho_a ρa ( long_name='AR parameter MP shock ' )

80 sig_a σa ( long_name=' stddev TFP ' )

81 sig_m σm ( long_name=' stddev monetary ' )

82 h h ( long_name=' Habit p e r s i s t e n c e ' )

83 sig_b σb ( long_name=' stddev investmetns ' )

84 sig_c σc ( long_name=' stddev consumption ' )

85 sig_d σl ( long_name=' stddev labour supply ' )

86 rho_b ρb ( long_name='AR parameter investment shock ' )

87 rho_c ρc ( long_name='AR parameter consumption shock ' )

88 rho_d ρl ( long_name='AR parameter labour supply shock ' )

89 rho_m ρm ( long_name='AR parameter monetary shock ' )

90 mu_m µ ( long_name='Consumption ' )

91 sigma_c σ ( long_name=' Inve r s e o f in t e r t empora l s ub s t i t u t i o n in consumption ' )

92 ;

93

94 de l =0.05;

95 eps_h=7;

96 eps_l=7;

97 bet =0.96;

98 psy=6;

99 eta = 2 ;

100 a l f =0.66;

101 theta =0.2;

102 theta_w=0.2;

103 kappa = 0 . 6 ;

104 kappaw = 0 . 6 ;

105 gamR =0.7;

106 gam_y =0.6;

107 gam_PI =1.2;

108 PIbar = 1 . 0 2 ;

109 sig_m =0.004;
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110 rho_e=0.1;

111 rho_a=0.8;

112 rho_m=0.8;

113 sig_a =0.009;

114 sig_b =0.009;

115 sig_c =0.009;

116 sig_d =0.009;

117 h=0.6;

118 rho_b=0.7;

119 rho_c=0.2;

120 rho_d=0.2;

121 mu_m=2;

122 sigma_c=3;

123

124

125

126 model ;

127 #Rbar = PIbar/bet ;

128

129 %1 . FOC consumption

130 exp ( ( eps_c ) ) ∗( exp ( c )−h∗exp ( c (−1) ) ) ^(−sigma_c )−h∗( exp ( eps_c(+1) ) ) ∗bet ∗( exp ( c (+1) )−h∗exp ( c ) ) ^(−

sigma_c )=exp ( lam) ;

131

132 %2 . FOC bonds

133 exp ( lam)=bet ∗exp ( lam(+1) ) /exp (PI(+1) ) ∗exp (R) ;

134

135 %3 . FOC cap i t a l

136 exp ( lam)=bet ∗exp ( lam(+1) ) ∗exp ( ( b) ) /exp ( ( b(+1) ) ) ∗(1−de l+(exp (b(+1) ) ) ∗exp ( r (+1) ) ) ;

137

138 %4 . FOC money

139 exp ( (m) ) ^(−mu_m)=exp ( lam)−bet ∗exp ( lam(+1) ) /exp (PI(+1) ) ;

140

141 % Labour market

142 %5 . − 6 .

143 exp ( f )=(eps_l−1) / eps_l∗exp ( wstar ) ^(1−eps_l ) ∗exp ( lam) ∗exp (w)^eps_l∗exp ( ld )+bet ∗theta_w∗( exp (PI )^

kappaw/exp (PI(+1) ) ) ^(1−eps_l ) ∗( exp ( wstar (+1) ) /exp ( wstar ) ) ^( eps_l−1) ∗exp ( f (+1) ) ;

144 exp ( f )=psy∗exp (d) ∗exp ( eps_c ) ∗exp ( PIstarw ) ^(−eps_l∗(1+ eta ) ) ∗exp ( ld )^(1+eta )+bet ∗theta_w∗( exp (PI )^

kappaw/exp (PI(+1) ) ) ^(−eps_l∗(1+ eta ) ) ∗( exp ( wstar (+1) ) /exp ( wstar ) ) ^( eps_l∗(1+ eta ) ) ∗exp ( f (+1) ) ;

145

146 % 7 . Law of Motion o f Wages

147 1=theta_w∗( exp (PI (−1) )^kappaw/exp (PI ) ) ^(1−eps_l ) ∗( exp (w(−1) ) /exp (w) ) ^(1−eps_l )+(1−theta_w)∗exp (

PIstarw ) ^(1−eps_l ) ;

148

149 %8−10 . f irm ' s p r i c e s e t t i n g

150 exp ( g1 )=exp ( lam) ∗exp (mc) ∗exp (yd )+bet ∗ theta ∗( exp (PI )^kappa/exp (PI(+1) ) ) ^(−eps_h ) ∗exp ( g1 (+1) ) ;

151 exp ( g2 )=exp ( lam) ∗exp ( PIs tar ) ∗exp (yd )+bet ∗ theta ∗( exp (PI )^kappa/exp (PI(+1) ) ) ^(1−eps_h ) ∗exp ( PIs tar ) /

exp ( PIs tar (+1) ) ∗exp ( g2 (+1) ) ;

152 eps_h∗exp ( g1 )=(eps_h−1) ∗exp ( g2 ) ;

153

154 %11−12 . optimal inputs (11−12)

155 exp (k ) /exp ( ld )=a l f /(1− a l f ) ∗exp (w) /exp ( r ) ;

156 exp (mc) =(1/(1− a l f ) ) ^(1− a l f ) ∗(1/ a l f )^ a l f ∗exp (w) ^(1− a l f ) ∗exp ( r )^ a l f /exp ( a ) ;

157

158 %13 . law o f motion p r i c e s

159 1=theta ∗( exp (PI (−1) )^kappa/exp (PI ) ) ^(1−eps_h )+(1− theta ) ∗exp ( PIs tar ) ^(1−eps_h ) ;

160

161 %14 . Law of motion f o r c a p i t a l

162 exp (x ) ∗exp (b) = exp (k(+1) ) − (1−de l ) ∗exp (k ) ;

163

164 %15 . Taylor Rule

165 exp (R) /Rbar=(exp (R(−1) ) /Rbar )^gamR∗(( exp (PI ) /PIbar )^gam_PI∗( exp (yd ) /exp (yd (−1) ) )^gam_y) ^(1−gamR)∗

exp ( e ) ;

166

167

168 %16−18 . Market c l e a r i n g
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169 exp (yd )=exp ( c )+exp (x ) ;

170 exp (yd )=(exp ( a ) ∗exp (k )^ a l f ∗exp ( ld ) ^(1− a l f ) ) /exp (vp ) ;

171 exp ( l )=exp (vw) ∗exp ( ld ) ;

172

173 %19−20 . Pr i ce and wage d i s p e r s i o n terms

174 exp (vp )=theta ∗( exp (PI (−1) )^kappa/exp (PI ) ) ^(−eps_h ) ∗exp (vp (−1) )+(1− theta ) ∗exp ( PIs tar ) ^(−eps_h ) ;

175 exp (vw)=theta_w∗( exp (w(−1) ) /exp (w) ∗exp (PI (−1) )^kappaw/exp (PI ) ) ^(−eps_l ) ∗exp (vw(−1) )+(1−theta_w)∗

exp ( ( PIstarw ) ) ^(−eps_l ) ;

176

177 %21 . Equi l ibr ium wage

178 exp ( PIstarw )=exp ( wstar ) /exp (w) ;

179

180 %21−26 . Shock p ro c e s s e s

181 a=rho_a∗a (−1)+e_a ;

182 b=rho_b∗b(−1)+e_b ;

183 eps_c=rho_c∗eps_c (−1)+e_c ;

184 eps_m=rho_m∗eps_m(−1)+epsmE ;

185 d=rho_d∗d(−1)+e_d ;

186 e=rho_e∗e (−1)+epsmE ;

187

188 %Observation equat ions

189 y_obs=yd−steady_state ( yd )+e_y ;

190 c_obs=c−steady_state ( c )+e_C;

191 l_obs=l−steady_state ( l )+e_l ;

192 x_obs=x−steady_state (x )+e_x ;

193 PI_obs=PI−steady_state (PI )+e_PI ;

194 vp_obs=vp−steady_state ( vp )+e_vp ;

195 R_obs=R−steady_state (R)+e_R;

196 end ;

197

198

199 % Shock can be ucommented f o r stoch_simul command

200 %shocks ;

201 %var epsmE ; s t d e r r ( sig_m) ;

202 %var e_a ; s t d e r r sig_a ;

203 %var e_b ; s t d e r r sig_b ;

204 %var e_c ; s t d e r r sig_c ;

205 %var e_d ; s t d e r r sig_d ;

206 %var e_a , e_b =0.1∗0 .009∗0 .009 ;

207 %end ;

208

209 %stoch_simul ( order=1, pe r i ods =200 , i r f =0)yd y_obs R_obs c l l_obs PI PI_obs ;

210

211 write_latex_orig inal_model ;

212 write_latex_static_model ;

213 write_latex_dynamic_model ( write_equation_tags ) ;

214 write_latex_parameter_table ;

215 wr i t e_ la t ex_de f i n i t i on s ;

216

217 varobs y_obs PI_obs l_obs vp_obs c_obs x_obs R_obs ;

218

219 estimated_params ;

220 a l f , beta_pdf , 0 . 6 , 0 . 1 ;

221 theta , beta_pdf , 0 . 5 , 0 . 1 ;

222 theta_w , beta_pdf , 0 . 5 , 0 . 1 ;

223 kappaw , beta_pdf , 0 . 5 , 0 . 1 5 ;

224 kappa , beta_pdf , 0 . 4 , 0 . 1 5 ;

225 s t d e r r e_a , inv_gamma_pdf , 0 . 05 , i n f ;

226 s t d e r r e_b , inv_gamma_pdf , 0 . 05 , i n f ;

227 s t d e r r e_c , inv_gamma_pdf , 0 . 05 , i n f ;

228 s t d e r r e_d , inv_gamma_pdf , 0 . 05 , i n f ;

229 s t d e r r e_y , inv_gamma_pdf , 0 . 05 , i n f ;

230 co r r e_a , e_b , 0 . 5 , , , beta_pdf , 0 , 0 . 3 , −1 , 1 ;

231 co r r e_c , e_d , 0 . 5 , , , beta_pdf , 0 , 0 . 3 , −1 , 1 ;

232 s t d e r r epsmE , inv_gamma_pdf , 0 . 01 , i n f ;
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233 s td e r r e_l , inv_gamma_pdf , 0 . 05 , i n f ;

234 s t d e r r e_x , inv_gamma_pdf , 0 . 05 , i n f ;

235 s t d e r r e_PI , inv_gamma_pdf , 0 . 05 , i n f ;

236 s t d e r r e_C, inv_gamma_pdf , 0 . 05 , i n f ;

237 s t d e r r e_vp , inv_gamma_pdf , 0 . 05 , i n f ;

238 s t d e r r e_R, inv_gamma_pdf , 0 . 05 , i n f ;

239 rho_a , beta_pdf , 0 . 7 , 0 . 1 ;

240 rho_b , beta_pdf , 0 . 7 , 0 . 1 ;

241 rho_c , beta_pdf , 0 . 7 , 0 . 1 ;

242 rho_d , beta_pdf , 0 . 7 , 0 . 1 ;

243 rho_m, beta_pdf , 0 . 8 , 0 . 1 ;

244 rho_e , beta_pdf , 0 . 4 , 0 . 0 5 ;

245 h , beta_pdf , 0 . 7 , 0 . 1 5 ;

246 bet , beta_pdf , 0 . 95 , 0 . 0 2 ;

247 del , beta_pdf , 0 . 05 , 0 . 0 4 ;

248 eta , gamma_pdf , 3 . 5 , 1 . 5 ;

249 eps_l , gamma_pdf , 8 , 2 ;

250 eps_h , gamma_pdf , 5 , 2 ;

251 sigma_c , gamma_pdf , 1 , 0 . 2 ;

252 gam_y, beta_pdf , 0 . 3 , 0 . 1 5 ;

253 gam_PI , gamma_pdf , 1 . 5 , 0 . 2 ;

254 gamR, beta_pdf , 0 . 5 , 0 . 1 5 ;

255 psy , normal_pdf , 5 , 1 ;

256 end ;

257

258 write_latex_prior_table ;

259

260 shock_groups (name=group1 ) ;

261 Supply = e_a , e_b , e_d ;

262 Demand = e_c ;

263 Monetary=epsmE ;

264 'Measrement Error '= e_y , e_l , e_x , e_PI , e_C, e_R, e_vp ;

265 end ;

266

267 es t imat ion ( d a t a f i l e=data_try2 , f i r s t_obs =1, mh_replic=300000 , mh_nblocks=6, mh_drop=0.6 , mh_jscale

=0.35 , f i l t e r ed_var s , logdata ,

268 mode_compute=4, f i l t e r_step_ahead =[1 : 12 ] , mode_check , bayes ian_ir f , tex , f o r e c a s t =12) y_obs PI_obs

l_obs vp_obs c_obs x_obs R_obs ;

269

270 %[ logdata ] : prevents Dynare from logg ing data

271 %[ mh_replic ] : i t e r a t i o n s per blck o f e s t imat ion

272 %[ mh_blocks ] : number o f b locks

273 %[ bayes ian_i r f ] : produces IRF

274 %[ f i l t e r_step_ahead ] : f i l t e r e d va r i b a l e s f o r per ioed 1−12

275 %[ tex ] : c r eated Tex output

276

277

278

279 %stoch_simul ( order=1, pe r i ods =200)y y_obs R_obs c c_obs l l_obs ;

280 shock_decomposition ( parameter_set=posterior_mean , use_shock_groups=group1 ) y_obs PI_obs l_obs

vp_obs c_obs R_obs

281

282 c o l l e c t_ l a t e x_ f i l e s ;

A.2 Steady state file

Listing A.2: Non−linear model for log−linearization

(_steady_state.m)
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1 func t i on [ ys , check ] = DP_exp_steadystate ( ys , exo )

2 % func t i on [ ys , check ] = NK_baseline_steadystate ( ys , exo )

3 % computes the steady s t a t e f o r the NK_baseline .mod and uses a numerical

4 % so l v e r to do so

5 % Inputs :

6 % − ys [ vec tor ] vec tor o f i n i t i a l va lues f o r the steady s t a t e o f

7 % the endogenous v a r i a b l e s

8 % − exo [ vec tor ] vec tor o f va lues f o r the exogenous v a r i a b l e s

9 %

10 % Output :

11 % − ys [ vec tor ] vec tor o f steady s t a t e va lues fp r the the endogenous v a r i a b l e s

12 % − check [ s c a l a r ] s e t to 0 i f steady s t a t e computation worked and to

13 % 1 o f not ( a l l ows to impos r e s t r i c t i o n on parameters )

14

15

16 g l oba l M_

17 (∗@ @∗)

18 % read out parameters to ac c e s s them with t h e i r name

19 NumberOfParameters = M_. param_nbr ;

20 f o r i i = 1 : NumberOfParameters

21 paramname = deblank (M_. param_names ( i i , : ) ) ;

22 eva l ( [ paramname ' = M_. params ( ' i n t 2 s t r ( i i ) ' ) ; ' ] ) ;

23 end

24 % i n i t i a l i z e i nd i c a t o r

25 check = 0 ;

26

27

28 opt ions=optimset ( ) ; % se t opt ions f o r numerical s o l v e r

29

30 %se t e q u i l i b r i u va lues o f shocks

31 PI=log ( PIbar ) ;

32 d=1;

33 a=0;

34 b=0;

35 d=0;

36 e=0;

37 eps_c=0;

38 eps_m=0;

39

40

41 %Ana ly s i t a l computation o f steady s t a t e as in Sect ion 3 .7

42 Rbar=PIbar/bet ;

43 R=log (Rbar ) ;

44 r=log ( bet ^(−1)−1+de l ) ;

45

46

47

48 PIs tar=log ( ( ( 1− theta ∗exp (PI ) ^( (1−eps_p ) ∗(1−ch i ) ) ) /(1− theta ) ) ^(1/(1−eps_p ) ) ) ;

49 PIstarw=log ( ( ( 1−theta_w∗exp (PI ) ^(−(1−kappaw) ∗(1−eps_l ) ) ) /(1−theta_w) ) ^(1/(1−eps_l ) ) ) ;

50

51 mc=log ( ( eps_p−1) /eps_p∗(1−bet ∗ theta ∗exp (PI ) ^((1−kappa ) ∗eps_p ) ) /(1−bet ∗ theta ∗exp (PI ) ^(−(1−eps_p )

∗(1−kappa ) ) ) ∗exp ( PIs tar ) ) ;

52 w=log ( (1− a l f ) ∗( exp (mc) ∗( a l f /exp ( r ) )^ a l f ) ^(1/(1− a l f ) ) ) ;

53 %w=(1− a l f ) ∗( exp (mc) ∗( a l f / r )^ a l f ) ^(1/(1− a l f ) ) ;

54

55 wstar=log ( exp (w) ∗exp ( PIstarw ) ) ;

56 vp=log ( (1− theta ) /(1− theta ∗exp (PI ) ^((1−kappa ) ∗eps_p ) ) ∗exp ( PIs tar ) ^(−eps_p ) ) ;

57 vw=log ( (1−theta_w) /(1−theta_w∗exp (PI ) ^((1−kappaw) ∗eps_l ) ) ∗exp ( PIstarw ) ^(−eps_l ) ) ;

58 tempvaromega=a l f /(1− a l f ) ∗exp (w) /exp ( r ) ;

59

60

61

62 %Fsolve func t i on to so l v e equat ion 3 .104
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63 [ ld , fva l , e x i t f l a g ]= f s o l v e (@( ld ) (1−bet ∗theta_w∗exp (PI ) ^(−(1−kappaw) ∗(1−eps_l ) ) ) /(1−bet ∗theta_w∗

exp (PI ) ^( eps_l ∗(1−kappaw) ∗(1+gam) ) )...

64 −( eps_l−1) / eps_l∗exp ( wstar ) /( psy∗exp ( PIstarw ) ^(−eps_l∗gam)∗exp ( ld )^gam) ∗((1−h∗bet ) ∗(1−h) ^(−

sigma_c ) ) ∗...

65 ( ( exp (vp ) ^(−1) ∗tempvaromega^ a l f−tempvaromega∗ de l ) ∗exp ( ld ) ) ^(−sigma_c ) , 0 . 25 , opt ions ) ;

66 d i sp ( ld )

67

68 l=log ( exp (vw) ∗exp ( ld ) ) ;

69 k=log ( tempvaromega∗exp ( ld ) ) ;

70 x=log ( de l ∗exp (k ) ) ;

71 yd=log ( ( exp (k )^ a l f ∗exp ( ld ) ^(1− a l f ) ) /exp (vp ) ) ;

72 c=log ( ( exp (vp ) ^(−1) ∗exp ( tempvaromega )^ a l f−exp ( tempvaromega ) ∗ de l ) ∗exp ( ld ) ) ;

73 c=log ( exp (yd )−exp (x ) ) ;

74 lam=log ( (1−h∗bet ) ∗(1−h) ^(−sigma_c ) ∗exp ( c ) ^(−sigma_c ) ) ;

75 f=log ( ( eps_l−1) / eps_l∗exp ( wstar ) ∗exp ( PIstarw ) ^(−eps_l ) ∗exp ( lam) ∗exp ( ld ) /(1−bet ∗theta_w∗exp (PI ) ^(−

(1−kappaw) ∗(1−eps_l ) ) ) ) ;

76 f2=log ( psy∗exp ( PIstarw ) ^(−eps_l∗(1+gam) ) ∗exp ( ld )^(1+gam) /(1−bet ∗theta_w∗( exp (PI )^kappaw/exp (PI ) )

^(−eps_l∗(1+gam) ) ∗( exp ( wstar ) /exp ( wstar ) ) ^( eps_l∗(1+gam) ) ) ) ;

77

78 g1=log ( exp ( lam) ∗exp (mc) ∗exp (yd ) /(1−bet ∗ theta ∗exp (PI ) ^((1−kappa ) ∗eps_p ) ) ) ;

79 g2=log ( eps_p/( eps_p−1) ∗exp ( g1 ) ) ;

80 m=log ( ( exp ( lam) ∗( ( exp (R)−1) /exp (R) ) ) ^(−1/mu_m) ) ;

81 y_obs=0;

82 PI_obs=0;

83 l_obs=0;

84 c_obs=0;

85 vp_obs=0;

86 R_obs=0;

87 x_obs=0;

88 %% end own model equations

89 f o r i t e r = 1 : l ength (M_. params ) %update parameters s e t in the f i l e

90 eva l ( [ 'M_. params ( ' num2str ( i t e r ) ' ) = ' M_. param_names ( i t e r , : ) ' ; ' ] )

91 end

92

93 NumberOfEndogenousVariables = M_. orig_endo_nbr ; %aux i l i a r y v a r i a b l e s are s e t automat i ca l ly

94 f o r i i = 1 : NumberOfEndogenousVariables

95 varname = deblank (M_. endo_names ( i i , : ) ) ;

96 eva l ( [ ' ys ( ' i n t 2 s t r ( i i ) ' ) = ' varname ' ; ' ] ) ;

97 end
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B Appendix

Figure B.1: Shock decomposition - Consumption
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Figure B.2: Shock decomposition - Investments

Figure B.3: Shock decomposition - Hours worked
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Figure B.4: Shock decomposition - Inflation

Figure B.5: Shock decomposition - Gross nominal IR
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Figure B.6: In-sample ft of output by BVAR(2)

For successful initiation of MH algorithm, finding mode of posterior distribution is

required. In the Figures, it is represented by highest density of blue line. Red line

represents deviation of currently approximated posterior distribution from the prior.

The further are these from each other, the bigger difference.

Figure B.7: Mode Check Plots (1)



Appendix B. Appendix 103

Figure B.8: Mode Check Plots (2)
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C BVAR Implementations in Matlab

C.1 Setting of Minnesota Prior

Setting of prior is due to extensiveness demonstrated only on least setting, i.e.

BVAR(1)

Listing C.1: Function Get prior
1 func t i on [H, be t ao l s ]= get_pr ior (Y,X)

2

3 %re turns p r i o r var iance B~N(b ,H)

4

5 % se t b

6 B0=ze ro s ( (N∗L+1) ,N) ;

7 f o r i =1:N

8 B0( i +1, i )=1;

9 end

10 B0=vec (B0) ;

11

12 %compute standard dev i a t i on o f each s e r i e s r e s i d u a l v ia an o l s r e g r e s s i o n

13 %to be used in s e t t i n g the p r i o r

14 be tao l s=vec ( inv (X'∗X) ∗(X'∗Y) ) ;

15

16 %se t hyperparameters

17 lamda1 =0.2; %con t r o l s the p r i o r on own l ag s

18 lamda2 =0.5; %on other l a g s

19 lamda3=1; %s i z e o f l a g s o f h igher degree

20 lamda4=10000; %f o r constatn term

21

22 %compute stardard e r r o r sigma ( i ) to be used in H

23 y=Y( : , 1 ) ; %s e l e c t only f i r s t v a r i ab l e

24 x=X( : , 1 : 2 ) ; %s e l e c t vec tor o f ones f o r i n t e r s e p t s and lag o f the same va r i ab e l as Y

25 b0=inv (x ' ∗ x ) ∗(x ' ∗ y ) ; %perform OLS

26 s1=sq r t ( ( ( y x∗b0 ) '∗( y x∗b0 ) ) /( rows (y ) 2 ) ) ; %std o f r e s i d u a l standard e r r o r

27 %second va r i ab l e

28 y=Y( : , 2 ) ;

29 x=X( : , [ 1 3 ] ) ;

30 b0=inv (x ' ∗ x ) ∗(x ' ∗ y ) ;

31 s2=sq r t ( ( ( y x∗b0 ) '∗( y x∗b0 ) ) /( rows (y ) 2 ) ) ;

32 % th i rd va r i ab l e

33 y=Y( : , 3 ) ;

34 x=X( : , [ 1 4 ] ) ;

35 b0=inv (x ' ∗ x ) ∗(x ' ∗ y ) ;

36 %. . . and ana logous ly f o r remaining va r i a b l e s 4 7 .

37

38 %Spec i f y the p r i o r var iance o f vec (B)

39 H=zero s (56 ,56) ;
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40

41 %fo r equat ion 1 o f the VAR

42 H(1 ,1 )=(s1 ∗lamda4 ) ^2;

43 H(2 ,2 )=(lamda1 ) ^2;

44 H(3 ,3 ) =(( s1 ∗lamda1∗lamda2 ) / s2 ) ^2;

45 H(4 ,4 ) =(( s1 ∗lamda1∗lamda2 ) / s3 ) ^2;

46 H(5 ,5 ) =(( s1 ∗lamda1∗lamda2 ) / s4 ) ^2;

47 H(6 ,6 ) =(( s1 ∗lamda1∗lamda2 ) / s5 ) ^2;

48 H(7 ,7 ) =(( s1 ∗lamda1∗lamda2 ) / s6 ) ^2;

49 H(8 ,8 ) =(( s1 ∗lamda1∗lamda2 ) / s7 ) ^2;

50

51 %second equat ion

52 H(9 ,9 )=(s2 ∗lamda4 ) ^2;

53 H(10 ,10) =(( s2 ∗lamda1∗lamda2 ) / s1 ) ^2;

54 H(11 ,11)=(lamda1 ) ^2;

55 H(12 ,12) =(( s2 ∗lamda1∗lamda2 ) / s3 ) ^2;

56 H(13 ,13) =(( s2 ∗lamda1∗lamda2 ) / s4 ) ^2;

57 H(14 ,14) =(( s2 ∗lamda1∗lamda2 ) / s5 ) ^2;

58 H(15 ,15) =(( s2 ∗lamda1∗lamda2 ) / s6 ) ^2;

59 H(16 ,16) =(( s2 ∗lamda1∗lamda2 ) / s7 ) ^2;

60

61 %th i rd equat ion

62 H(17 ,17)=(s3 ∗lamda4 ) ^2;

63 H(18 ,18) =(( s3 ∗lamda1∗lamda2 ) / s1 ) ^2;

64 H(19 ,19) =(( s3 ∗lamda1∗lamda2 ) / s2 ) ^2;

65 H(20 ,20)=(lamda1 ) ^2;

66 H(21 ,21) =(( s3 ∗lamda1∗lamda2 ) / s4 ) ^2;

67 H(22 ,22) =(( s3 ∗lamda1∗lamda2 ) / s5 ) ^2;

68 H(23 ,23) =(( s3 ∗lamda1∗lamda2 ) / s6 ) ^2;

69 H(24 ,24) =(( s3 ∗lamda1∗lamda2 ) / s7 ) ^2;

70 % . . . . and ana logous ly f o r remaining

71

72 end

C.2 Sampling of Threshold

Listing C.2: Function Get threshold
1 func t i on [ t ]= get_threshold (Y,X, Ystar )

2 %re turns t=mean( thre sho ld )

3 k=1;

4 Reps=20000;

5 burn=16000;

6 L=2;

7 N=co l s (Y) ;

8 n c r i t=(N∗L+1) ;

9 t a r s c a l e =0.1;

10 tarmean=mean( Ystar ) ; %mean o f the p r i o r on the thre sho ld i s the mean value o f the thre sho ld

va r i ab l e

11 ta rva r i anc e =10; %pr i o r var iance f o r th re sho ld

12 %sp e c i f y the p r i o r mean o f the c o e f f i c i e n t s

13

14 %pr i o r s c a l e matrix f o r sigma o f the VAR covar iance

15 S=eye (N) ;

16 %pr i o r degrees o f freedom

17 alpha=N+1;

18 tar=tarmean ; %i n i t i a l va lue o f the thre sho ld

19 ta ro ld=tar ;

20 naccept=0;
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21 tmat=ze ro s (1 , Reps burn ) ;

22

23 %s t a r t i n g va lues f o r the Gibbs sampling algor i thm ( Minnesota p r i o r )

24 Sigma1=eye (N) ;

25 Sigma2=eye (N) ;

26 B0=ze ro s ( (N∗L+1) ,N) ;

27 f o r i =1:N

28 B0( i +1, i )=1;

29 end

30 B0=vec (B0) ;

31

32 f o r j =1:Reps

33

34 %separate sample

35 e1=Ystar<=tar ;

36 e2=Ystar>tar ;

37 Y1=Y( e1 , : ) ;

38 X1=X( e1 , : ) ;

39 Y2=Y( e2 , : ) ;

40 X2=X( e2 , : ) ;

41

42 %Regime 1

43 [H, be t ao l s ]= get_pr ior (Y1 ,X1 , 2 ) ;

44 T=rows (X1) ;

45 M=inv ( inv (H)+kron ( inv ( Sigma1 ) ,X1' ∗X1) ) ∗( inv (H) ∗B0+kron ( inv ( Sigma1 ) ,X1' ∗X1) ∗ be tao l s ) ;

46 V=inv ( inv (H)+kron ( inv ( Sigma1 ) ,X1' ∗X1) ) ;

47

48 %check f o r s t a b i l i t y o f the VAR

49 check = 1 ;

50 whi le check<0

51 %update o f p r i o r ( equat ion 10)

52 beta1=M+(randn (1 ,N∗(N∗L+1) ) ∗ cho l (V) ) ' ;

53 CH=s t a b i l i t y ( beta1 ,N,L) ;

54 i f CH==0

55 check=10;

56 end

57 end

58

59 e=Y1 X1∗ reshape ( beta1 ,N∗L+1,N) ;

60 %s c a l e matrix

61 s c a l e=e ' ∗ e+S ;

62 Sigma1=IWPQ(T+alpha , inv ( s c a l e ) ) ;

63

64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

65 %and the same f o r regime 2 ( not here )

66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

67

68 %cont inue with sampling o f th re sho ld

69 tarnew=ta ro ld+randn (1 ,1 ) ∗ sq r t ( t a r s c a l e ) ;

70 postnew=getvarpos t (Y,X, beta1 , beta2 , Sigma1 , Sigma2 ,L , tarnew , tarmean , ta rvar iance , Ystar , n c r i t )

;

71 pos to ld=getvarpos t (Y,X, beta1 , beta2 , Sigma1 , Sigma2 ,L , taro ld , tarmean , ta rvar iance , Ystar , n c r i t )

;

72

73 accept=exp ( postnew posto ld ) ;

74 u=rand (1 ,1 ) ;

75 i f u<accept

76 ta ro ld=tarnew ;

77 naccept=naccept+1;

78 end

79 tar=ta ro ld ;

80 arate=naccept / j ;

81 i f j >100 && j <5100 %tuning o f s c a l e f o r th re sho ld sampling

82 i f arate <0.2

83 t a r s c a l e=t a r s c a l e ∗ 0 . 9 9 ;
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84 e l s e i f arate >0.4

85 t a r s c a l e=t a r s c a l e ∗ 1 . 0 1 ;

86 end

87 end

88 % par t i n i on o f data accord ing to thre sho ld f o r new i t e r a t i o n

89 i f j>burn

90 %smat1 ( : , k )=e1 ;

91 %smat2 ( : , k )=e2 ;

92 tmat (k )=tar ;

93 k=k+1;

94 end

95 end

96 t=mean( tmat ) ;

97 end

C.3 Forecasting

Equivalent implementation is for plain BVAR(L) models when threshold is discarded

Listing C.3: Forecast with SETAR(2,2,2)
1 %. . . i n i t i a l i z e p r i o r and data as be f o r e

2 L=2; %lag length o f the model

3 tard =2; %delay o f th r e sho ld value

4 tarvar =1; % thre sho ld va r i ab l e i s the column number tarvar in data

5 t a r s c a l e =0.1; %s c a l i n g parameter f o r RW Metropo l i s a lgor i thm

6 Reps=50000;

7 burn=40000;

8 N=s i z e ( data , 2 ) ;

9 f o r e ca s t_per i od =12; %1 2 step ahead f o r e c a s t

10 n=rows ( data ) ;

11 S=eye (N) ; %pr i o r s c a l e matrix

12 alpha=N+1; %pr i o r degrees o f freedom

13 %s e t t i n g o f p r i o r

14 B0=ze ro s ( (N∗L+1) ,N) ;

15 f o r i =1:N

16 B0( i +1, i )=1;

17 end

18 B0=vec (B0) ;

19

20 %fo r s to rage o f output

21 thre sho ld=ze ro s ( forecast_per iod , n) ;

22 out1 = [ ] ;

23 out2 = [ ] ;

24 out11 = [ ] ;

25 out12 = [ ] ;

26 R1=ze ro s (n+forecast_per iod , f o r eca s t_per i od ) ;

27 R2=ze ro s (n+forecast_per iod , f o r eca s t_per i od ) ;

28

29 f o r per iod =50:n %out of sample f o r e c a s t f o r per iod 50 90

30 %prepare data

31 Y=data ( 1 : per iod , : ) ;

32 X=[ ones ( s i z e (Y, 1 ) ,1 ) lag0 (Y, 1 ) lag0 (Y, 2 ) ] ;

33 Ystar=lag0 (Y( : , ta rvar ) , tard ) ;

34 Y=Y(max ( [ L , tard (1) ] ) +1:end , : ) ;

35 X=X(max ( [ L , tard (1) ] ) +1:end , : ) ;

36 Ystar=Ystar (max ( [ L , tard (1) ] ) +1:end , : ) ;

37 [ t ]= get_threshold (Y,X, Ystar ) ; %sample thre sho ld
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38 thre sho ld (1 , per iod )=t ;

39 %pa r t i t i o n data

40 e1=Ystar<=t ;

41 e2=Ystar>t ;

42 Y1=Y( e1 , : ) ;

43 X1=X( e1 , : ) ;

44 Y2=Y( e2 , : ) ;

45 X2=X( e2 , : ) ;

46 T1=rows (X1) ;

47 T2=rows (X2) ;

48 %get p r i o r s

49 [H1 , be tao l s 1 ]= get_pr ior (Y1 ,X1 ,L) ;

50 [H2 , be tao l s 2 ]= get_pr ior (Y2 ,X2 ,L) ;

51 Sigma1=eye (N) ;

52 Sigma2=eye (N) ;

53 f o r j =1:Reps %s t a r t sampling

54 M=inv ( inv (H1)+kron ( inv ( Sigma1 ) ,X1' ∗X1) ) ∗( inv (H1) ∗B0+kron ( inv ( Sigma1 ) ,X1' ∗X1) ∗

be tao l s 1 ) ;

55 V=inv ( inv (H1)+kron ( inv ( Sigma1 ) ,X1' ∗X1) ) ;

56

57 %check f o r s t a b i l i t y o f the VAR

58 check = 1 ;

59 whi le check<0

60 %update o f p r i o r ( equat ion 10)

61 beta1=M+(randn (1 ,N∗(N∗L+1) ) ∗ cho l (V) ) ' ;

62 CH=s t a b i l i t y ( beta1 ,N,L) ;

63 i f CH==0

64 check=10;

65 end

66 end

67 e=Y1 X1∗ reshape ( beta1 ,N∗L+1,N) ;

68 s c a l e=e ' ∗ e+S ;

69 Sigma1=IWPQ(T1+alpha , inv ( s c a l e ) ) ;

70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

71 %. . . same f o r regime 2

72 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

73

74 i f j>burn %s to r e outup a f t e r burn in per iod

75 %f o r e c a s t GDP growth and i n f l a t i o n f o r 3 years

76 A01=cho l ( Sigma1 ) ;

77 A02=cho l ( Sigma2 ) ;

78 yhat1=ze ro s (2+ forecast_per iod ,N) ;

79 yhat1 ( 1 : 2 , : )=Y1( end 1 : end , : ) ;

80 yhat2=ze ro s (2+ forecast_per iod ,N) ;

81 yhat2 ( 1 : 2 , : )=Y2( end 1 : end , : ) ;

82 f o r i =3:(2+ fo reca s t_per i od ) %actua l computation o f f o r e c a s t s

83 yhat1 ( i , : ) =[1 yhat1 ( i 1 , : ) yhat1 ( i 2 , : ) ] ∗ reshape ( beta1 ,N∗L+1,N)+

randn (1 ,N) ∗A01 ;

84 yhat2 ( i , : ) =[1 yhat2 ( i 1 , : ) yhat2 ( i 2 , : ) ] ∗ reshape ( beta2 ,N∗L+1,N)+

randn (1 ,N) ∗A02 ;

85 end

86

87 out1=[out1 yhat1 ( 3 : end , 1 ) ] ;

88 out2=[out2 yhat2 ( 3 : end , 1 ) ] ;

89 end

90 end

91 f o r k=1: f o r e ca s t_per i od %computations mean f o r e c a s t s throughout the e s t imat ion to

save RAM

92 R1( period , k )=mean( out1 (k , : ) ,2 ) ;

93 R2( per iod , k )=mean( out2 (k , : ) ,2 ) ;

94 end

95 out11{ period ,1}=out1 ;

96 out12{ period ,1}=out2 ;

97 end
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Listing C.4: Marginal likelihood computation for Minnesota

prior
1 %get mean value o f parameters

2 betam=squeeze (mean( outbeta , 1 ) ) ;

3 sigmam=squeeze (mean( outsigma , 1 ) ) ;

4 %eva luate p r i o r s

5 b0=B0 ;

6 b01=reshape (b0 ,N∗L+1,N) ;

7 e0=Y X∗b01 ;

8 S=eye (N) ;

9 %eva luate log p r i o r d i s t r i b u t i o n f o r VAR c o e f f i c i e n t s

10 bp=mult ivar iatenormal (betam ' ,B0 ,H) ;

11 %eva luate log p r i o r f o r VAR covar iance

12 sp= invwishpdf ( sigmam , S ,T+alpha ) ;

13 %eva luate log l i k e l i h o o d

14 l i k=l o g l i k ( reshape (betam ,N∗L+1,N) , sigmam ,Y,X) ;

15 %eva luate H( Bstar \ s igmastar ) ;

16 vs tar1=inv ( inv (H)+kron ( inv ( sigmam) ,X'∗X) ) ;

17 Mstar=inv ( inv (H)+kron ( inv ( sigmam) ,X'∗X) ) ∗( inv (H) ∗B0+kron ( inv ( sigmam) ,X'∗X) ∗ be tao l s ) ;

18

19 H1=mult ivar ia tenormal (betam ' , Mstar , v s tar1 ) ;

20 %eva luate H( s igmastar \beta [ j ] )

21 H2i = [ ] ;

22 f o r j =1: s i z e ( outbeta , 1 )

23 be ta j=outbeta ( j , : ) ;

24 e=Y X∗ reshape ( betaj ,N∗L+1,N) ;

25 s c a l e=e ' ∗ e ;

26 H2i= [ H2i ; invwishpdf ( sigmam , S+sca l e ,T+alpha ) ] ;

27 end

28 %take mean tak ing care o f p o s s i b l e underf low/ over f low with exp

29 f a c t o r=max( H2i ) ;

30 H2=exp (H2i f a c t o r ) ;

31 H2m=mean(H2) ;

32 H2m=log (H2m)+f a c t o r ;

33

34 mlik=l i k+bp+sp H1 H2m; %marginal l i k e l i h o o d


