
University of Economics in Prague

Faculty of Finance and Accounting

Department of Banking and Insurance

MASTER THESIS

Application of time series models and machine

learning methods for stock returns prediction

Author: Oleksandr Vodolazskyi

Supervisor: Ing. Milan Fičura

Academic Year: 2018

Declaration of Authorship

I hereby declares that I compiled this thesis independently using only the listed

resources and literature.

Prague, ______________

 Signature

Acknowledgements

I would like to thank my supervisor Milan Fičura for his valuable comments, ideas and

professional advice during preparation of the thesis.

Abstract

In this diploma thesis we applied time series models and machine learning methods on

real stock data to predict future returns movements. The time series models include

ARMA and GARCH models. We also used several machine learning algorithms such as

logistic regression, gradient boosted trees and Long Short-Term Memory neural

networks. The models were used to predict future daily returns movements. Then

strategies based on predictions were evaluated by their profitability and riskiness. Also

we measured the quality of the models from the point of accuracy and discrimination

power. The main goal of the thesis is to compare results of the models application with

the Buy & Hold strategy and between each other.

Abstrakt

V této diplomové práci jsme aplikovali modely časových řad a metody strojového učení

na reálná akciová data pro predikci pohybů budoucích výnosů. Mezi modely časových

řad patří modely ARMA a GARCH. Také jsme požili několik algoritmů strojového

učení, jako je logistická regrese, gradient boosted trees a takzvané Long Short-Term

Memory neuronové sítě. Tyto modely byly použité pro predikci pohybů budoucích

výnosů akcí. Strategie založené na předpovědích byly vyhodnoceny podle jejich

ziskovosti a rizikovosti. Také jsme změřili kvalitu modelů z hlediska přesnosti a

diskriminační schopnosti. Hlavním cílem práce je porovnání výsledků aplikace

zvolených modelů se strategií Buy & Hold a mezi sebou.

Contents

Introduction ... 1

Chapter 1. Stock returns ... 2

1.1 Gross returns .. 2

1.2 Net returns .. 3

1.3 Log returns ... 3

Chapter 2. Time series models .. 5

2.1 Stationarity and autocorrelation function ... 5

2.2 Autoregressive models ... 8

2.3 Moving-average models ... 11

2.4 ARMA models ... 12

2.5 GARCH models ... 14

Chapter 3. Machine learning methods ... 16

3.1 Machine learning tasks ... 16

3.2 Supervised machine learning algorithms ... 18

3.2.1 Logistic regression .. 19

3.2.2 Decision trees .. 22

3.2.3 Bagging and boosting ... 26

3.2.4 Artificial neural networks ... 28

Chapter 4. Stock returns prediction ... 33

4.1 Methodology .. 33

4.2 Data .. 35

4.3 Quality and performance metrics ... 36

4.4 Results of time series models ... 39

4.5 Results of machine learning methods .. 46

Conclusion ... 66

List of references ... 68

Appendix .. 71

1

Introduction

The ability to predict the movement of the stock market is what every investor or trader

would like to possess. Unfortunately, this is one of the most difficult tasks in financial

world. There are mane approaches how to make investment and trading decisions.

Among them we can distinguish time series models which try to find the stochastic

process describing the behaviour of stock prices or returns. Time series models have

been used for many years for modeling stock returns.

In recent years machine learning methods are gaining the popularity as an effective tool

for making predictions in different areas. One of these areas is the stock market where

machine learning algorithms can learn to predict its future behaviour.

The main goal of the thesis is to apply time series models and machine learning

methods for prediction futures stock returns and to examine how effective they are in

this task. We want to measure the performance of the strategies based on different

models and compare them between each other and with the simple Buy & Hold

strategy. Our aim is to verify whether the time series models and machine learning

methods are able to beat the market systematically. Obtained results of our research can

help to understand the potential of the models and to identify directions of further

exploration.

The thesis is divided into four chapters. In the first chapter we describe different

approaches for calculation stock returns and explain why logarithmic returns is the most

common type. In the second chapter is devoted to theoretical basis of time series models

such as ARMA and GARCH. In the third chapter we introduce basic principles of

machine learning and tasks which it is able to solve. Also we describe theoretical

background of several machine learning methods such as logistic regression, gradient

boosted trees and Long Short-Term Memory neural networks. The last chapter is

devoted to the results of application of time series models and machine learning

methods for stock returns prediction.

2

Chapter 1. Stock returns

Stock Returns

In Chapter 1 we present the basic principles of stock returns calculation. The Chapter is

divided into three sections where we describe gross returns, net returns and log returns.

1.1 Gross returns

The goal of trading on stock markets is to make a profit. The amount of a profit or a loss

from a trading strategy depends on changes in prices of stocks and the amount of stocks

being traded. Hence traders are rather interested in a relative measure of their profits in

order to estimate how well a certain strategy performs. Returns are able to provide this

measure because they are expressed as a relation of changes in price to the initial price.

Campbell, Lo, and MacKinlay (1997) give two main reasons for using returns. First, for

average investors, return of an asset is a complete and scale-free summary of the

investment opportunity. Second, return series are easier to handle than price series

because the former have more attractive statistical properties, such as stationarity and

ergodicity.

Let Pt be the price of a stock at time index t. For the sake of simplicity, we assume that a

stock pays no dividends.

For one period from date t - 1 to date t the simple gross return can be calculated as:

𝑃𝑡

𝑃𝑡−1
= 1 + 𝑅𝑡 (2.1)

Returns are scale-free, meaning that they do not depend on units (dollars, cents, etc.).

The gross return over the k periods is the product of the k single-period gross returns

(from time t - k to time t):

𝑃𝑡

𝑃𝑡−𝑘
=

𝑃𝑡

𝑃𝑡−1
×

𝑃𝑡−1

𝑃𝑡−2
× … ×

𝑃𝑡−𝑘+1

𝑃𝑡−𝑘
= 1 + 𝑅𝑡(𝑘) = (1 + 𝑅𝑡)(1 + 𝑅𝑡−1) … (1 + 𝑅𝑡−𝑘)(2.2)

Thus, the k-period simple gross return is just the product of the k one-period simple gross

returns. This is called a compound or cumulative return.

3

1.2 Net returns

Net return over the period from time t - 1 to time t is:

𝑅𝑡 =
𝑃𝑡

𝑃𝑡−1
− 1 =

𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1

(2.3)

Pt - Pt-1 in the numerator is the revenue over the period from time t - 1 to time t and Pt-1

is the initial price of a stock. Therefore, the net return can be considered as the relative

profit.

1.3 Log returns

Log returns, also called continuously compounded returns, are denoted by rt can be

obtained by taking the natural logarithm of the simple gross return of a stock:

𝑟𝑡 = 𝑙𝑛(1 + 𝑅𝑡) = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
) = 𝑝𝑡 − 𝑝𝑡−1 (2.4)

where pt = ln(Pt) is called the log price.

There several advantages of using log returns.

First, if we assume that prices are distributed log normally, then 𝑙𝑛(1 + 𝑟𝑡) is normally

distributed.

Second, small values of log return can be approximately interpreted as the simple net

return:

𝑟𝑡 ≈ 𝑅𝑡 , 𝑅𝑡 ≪ 1

The difference between the functions of net and log returns is showed on the following

figure.

4

Figure 1.1: Net and log returns (Author’s own work)

As can be seen from the graph, for large values the log function gives us smaller returns

than simple net. If simple net return can be interpreted as the percentage change of the

price, then log returns can also be approximately interpreted as the percentage change of

the price.

Third advantage of using log returns is time-additivity. A k-period log return is simply

the sum of the single-period log returns:

𝑟𝑡(𝑘) = ln(1 + 𝑅𝑡(𝑘)) = ln((1 + 𝑅𝑡)(1 + 𝑅𝑡−1) … (1 + 𝑅𝑡−𝑘+1))

= ln(1 + 𝑅𝑡) + ln(1 + 𝑅𝑡−1) + ⋯ + ln(1 + 𝑅𝑡−𝑘+1)

= 𝑟𝑡 + 𝑟𝑡−1 + ⋯ + 𝑟𝑡−𝑘+1

Fourth advantage is numerical stability: addition of small numbers is numerically safer

than multiplying small numbers. For many interesting problems, this is a serious potential

problem. To solve this, either the algorithm must be modified to be numerically robust or

it can be transformed into a numerically safe summation via logs.

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

x ln(1+x)

5

Chapter 2. Time series models

Time series models

Chapter 2 is devoted to the basic theory of time series models. Specifically, we describe

main definitions used in time series analysis, present ARMA models for time series

forecasting and GARCH models for volatility forecasting.

2.1 Stationarity and autocorrelation function

A time series is a chronologically ordered sequence of values of a variable at equally

spaced time intervals. Considering log returns rt of a stock as an ordered collection of

random variables over time, we have a time series {rt}.

One of the most important concepts in time series analysis is stationarity.

Definition 1. A time series {rt} is said to be strictly stationary if for each k, t, and n, the

joint distribution of (rt, …, rt+k) is identical to that of (rt+n, …, rt+k+n).

Strict stationarity is a very strong assumption that is hard to verify empirically, because

it requires that all aspects of behavior of a time series process are unchanged in time.

Rather than strict stationarity the weaker form of it is usually assumed.

Definition 2. A time series {rt} is weakly stationary if the mean of rt E(rt) and the

covariance between rt and rt+k Cov(rt, rt+k) are constant and do not depend on t.

Henceforth, we will use the term stationary to mean weakly stationary. Usually stock

prices are not stationary, but it is common to assume that stock returns are stationary.

The stationary means that statistical structure of the series is independent of time. It allows

preserving model stability, i.e. the model which parameters and structure are stable in

time. Stationarity matters because it provides a framework in which averaging (used in

AR and MA processes that we will be described further) can be properly used to describe

the time series behaviour.

Examples of non-stationary and stationary time series are showed on the following

graphs.

6

Figure 2.1: Development of Google stock price, non-stationary process (Author’s own

work)

Figure 2.2: Randomly generated time series from a normal distribution, stationary

process (Author’s own work)

The covariance Cov(rt, rt-k) is called the lag-k autocovariance of rt, which is in fact a

covariance between realizations of the one variable in different points in time.

7

The autocovariance can be written as:

𝛾𝑘 = 𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑘) = 𝐸[(𝑟𝑡 − 𝜇)(𝑟𝑡−𝑘 − 𝜇)] (3.1)

Autocovariance is closely related to autocorrelation of the time series process. The

correlation coefficient between rt and rt-k is called the lag-k autocorrelation of rt. and can

be defined as

𝜌𝑘 =
𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑘)

√𝑉𝑎𝑟(𝑟𝑡)𝑉𝑎𝑟(𝑟𝑡−𝑘)
=

𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑘)

𝑉𝑎𝑟(𝑟𝑡)
=

𝛾𝑘

𝛾0

(3.2)

The autocorrelation function (ACF) shows linear dependency between rt and its past

values. For any given stationary time series {rt} we can estimate sample autocovariance

and autocorrelation functions. First, let’s define the sample mean of rt as �̅� = ∑ 𝑟𝑡 𝑇⁄𝑇
𝑡=1 .

Then the sample autocovariance function can be estimated as follows:

𝛾𝑘 = 𝑇−1 ∑(𝑟𝑡 − �̅�)(𝑟𝑡−𝑘 − �̅�)

𝑇−𝑘

𝑖=1

(3.3)

Using the formula stated above we can estimate the sample autocorrelation function:

�̂�𝑘 =
𝛾𝑘

𝛾0

(3.4)

Plotting the ACF can help to understand an autocorrelation structure of a time series.

Usually the sample ACF is plotted with test bounds which are used for testing the null

hypothesis that an autocorrelation coefficient is equal to 0.

For the purposes of demonstrations how ACF plot can be constructed we randomly

generated 100 numbers from a normal distribution and plot ACF functions with test

bounds with 5% significance level.

We can see in figure 2.3 that the autocorrelation coefficients for 20 lags lie in the test

boundaries meaning that they are equal to 0 on the 5% significance level. We know this

is true in that case because the data for the plot were generated from a normal

distribution.

8

Figure 2.3: The sample ACF plot of a randomly generated sequence from a normal

distribution (Author’s own work)

An alternative way to test the autocorrelation coefficients is to use the Ljung-Box test.

This test is used for testing whether all the autocorrelation coefficients are equal to 0

simultaneously. The null hypothesis states that the data are independently distributed

(i.e. the autocorrelations are 0). The test is provided using the following statistic:

𝑄(𝑚) = 𝑇(𝑇 + 2) ∑
�̂�𝑘

2

𝑇 − 𝑘

𝑚

𝑘=1

The null hypothesis H0 is rejected if Q(m) > χα
2, where χα

2 denotes the 100(1 − α)th

percentile of a chi-squared distribution with m degrees of freedom.

2.2 Autoregressive models

Autoregressive (AR) models are based on the idea that the current value of the time series,

rt, can expressed as a function of k past values. A simple autoregressive model can be

written in the following way:

𝑟𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 + 𝜀𝑡 (3.5)

9

where {𝜀𝑡} is assumed to be a white noise series with mean zero and variance 𝜎𝛼
2. In the

time series literature, model (3.5) is denoted as an autoregressive model of order 1 or an

AR(1) model. The term autoregression refers to the regression of the series on its own

past values (Tsay 2010).

In a similar way we can define a generalization of the AR(1) model which is the AR(p)

model:

𝑟𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 + ⋯ + 𝜙𝑝𝑟𝑡−𝑝 + 𝜀𝑡 = 𝜙0 + ∑ 𝜙𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 (3.6)

The AR(p) model can be considered as a multiple linear regression model with lagged

values serving as the explanatory variables. This understanding will help us in following

chapters.

The autoregressive processes have, in general, infinite non-zero autocorrelation

coefficients that decay with the lag. The AR processes have a relatively “long” memory,

since the current value of a series is correlated with all previous ones, although with

decreasing coefficients.

AR models have several properties that should be described. Consider AR(1) model and

let’s assume that the series is weakly stationary. Under this assumption we have E(rt) = µ,

Var(rt) = γ0 and Cov(rt, rt-k) = γk, where µ and γ0 are constant and γk is a function of k.

Takin the expectation of equation 3.5 we obtain

𝐸(𝑟𝑡) = 𝜙0 + 𝜙1𝐸(𝑟𝑡−1)

Under the stationary condition of a constant mean we have

𝜇 = 𝜙0 + 𝜙1𝜇

𝜇 =
𝜙0

1 − 𝜙1

The result gives us two conclusions. First, the mean of rt exists if 𝜙1 ≠ 1. Second,

E(rt) = 0 if 𝜙0 = 0. Also, we can express 𝜙0 = (1-𝜙1)𝜇and using it we can rewrite our

AR(1) model in the following way:

𝑟𝑡 − 𝜇 = 𝜙1(𝑟𝑡−1 − 𝜇) + 𝜀𝑡 (3.7)

10

By repeating the substitution we can express the original equation of AR(1) model as

follows:

𝑟𝑡 − 𝜇 = ∑ 𝜙1
𝑖 𝜀𝑡−𝑖

∞

𝑖=0

(3.8)

Acquired equation represents rt - µ as a linear function of εt-i. Having applied this property

and the independence of the series {εt} we can obtain E[(rt - µ) εt+1] = 0. By the

stationarity assumption Cov(rt-1, εt) = E[(rt-1 - µ) εt] = 0. If we the square and then the

expectation of equation (3.7), we obtain

𝑉𝑎𝑟(𝑟𝑡) = 𝜙1
2𝑉𝑎𝑟(𝑟𝑡−1) + 𝜎𝜀

2 (3.9)

where 𝜎𝜀
2 is the variance of εt. Under the stationarity assumption that variance is constant

we can obtain the following expression of variance:

𝑉𝑎𝑟(𝑟𝑡) =
𝜎𝜀

2

1 − 𝜙1
2

(3.10)

Consequently, the weak stationarity of an AR(1) model implies that −1 < 𝜙1 < 1, that is,

|𝜙1| < 1. This condition is necessary and sufficient for an AR(1) model to be weakly

stationary. In order to have better understanding how 𝜙1 affects an AR(1) model we can

plot it for different values of the coefficient. On the first graph with 𝜙1 = 0 we can see

white noise because only random part εt left in the model. As far as 𝜙1 is increasing the

data are becoming less stationary. And finally, when 𝜙1 takes a value 1, the data are not

stationary anymore. An AR(1) model with 𝜙0 = 0 and 𝜙1 = 1 is called random walk.

The ACF of rt satisfies the following equation:

𝜌𝑙 = 𝜙1𝜌𝑙−1, 𝑓𝑜𝑟 𝑙 > 0.

This result says that the ACF of a weakly stationary AR(1) series decays exponentially

with rate φ1 and starting value ρ0 = 1.

11

Figure 2.4: Randomly generated data by AR(1) model with different values of 𝜙1

(Author’s own work)

2.3 Moving-average models

The idea behind AR processes is to feed past data back into the current value of the time

series. Rather than use past values of the time series in a regression, a moving average

(MA) model uses past values of the white noise process εt. MA(1) model is defined to be

𝑟𝑡 = 𝑐0 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 (3.11)

where 𝑐0 is a constant and {𝜀𝑡} is a white noise series. And similarly, we can construct a

generalized form of MA process – MA(q) model:

𝑟𝑡 = 𝑐0 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − . . . − 𝜃𝑞𝜀𝑡−𝑞 (3.12)

Moving-average models are always weakly stationary because they are finite linear

combinations of a white noise sequence for which the first two moments are time

invariant. For example, taking expectation of MA(1) model, we have:

𝐸(𝑟𝑡) = 𝑐0,

12

which is constant and does not depend on time. In a similar way, taking variance of MA(1)

model, we have:

𝑉𝑎𝑟(𝑟𝑡) = (1 + 𝜃1
2)𝜎𝜀

2,

which is also invariant with respect to time. These two properties can be applied to the

general MA(q) model.

Autocorrelation structure of the general MA(q) model is described by the following rules:

𝜌𝑘 {
≠ 0, 𝑘 ≤ 𝑞
= 0, 𝑘 > 𝑞

This means that MA(q) series is linearly dependent on first q-lagged values. That is why

it is called “finite-memory” model (Tsay 2010).

The other property of MA models is invertibility. We can rewrite the MA(1) model with

zero mean as 𝜀𝑡 = 𝑟𝑡 + 𝜃1𝑟𝑡−1. If we continue the substitution we will obtain:

𝜀𝑡 = 𝑟𝑡 + 𝜃1𝑟𝑡−1 + 𝜃1
2𝑟𝑡−2 + 𝜃1

3𝑟𝑡−3 + …

This equation expresses the shock at time t as a linear combination of the present and past

returns. If |𝜃1| < 1 then we say that MA(1) model is invertible.

2.4 ARMA models

An ARMA model combines the ideas of AR and MA models into a compact form so that

the number of parameters used is kept small, achieving parsimony in parameterization. A

time series rt follows an ARMA(1,1) model if it satisfies:

𝑟𝑡– 𝜙1𝑟𝑡−1 = 𝜙0 + 𝜀𝑡– 𝜃1𝜀𝑡−1 (3.13)

The left-hand side of the (3.13) is the AR component of the model and the right-hand side

gives the MA component. The constant term is φ0. For this model to be meaningful, we

need φ1 ≠ θ1; otherwise, there is a cancellation in the equation and the process reduces to

a white noise series.

A general ARMA(p, q) model can expressed in the following form:

𝑟𝑡 = 𝜙0 + ∑ 𝜙𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

 + 𝜀𝑡– ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

(3.14)

where {εt} is a white noise series and p and q are nonnegative integers.

13

ARMA(1,1) models also has several properties. Under condition of a weakly stationarity

the mean of rt is defined as follows:

𝐸(𝑟𝑡) = 𝜇 =
𝜙0

1 − 𝜙1

Assuming a weakly stationarity of the time series rt we can also express the variance:

𝑉𝑎𝑟(𝑟𝑡) =
(1– 2𝜙1𝜃1 + 𝜃1

2)𝜎𝜀
2

1 − 𝜙1
2

Because the variance is positive, we need |φ1| < 1.

The ACF of ARMA(1,1) time series is ruled by the following equation:

𝜌𝑙 = 𝜙1𝜌𝑙−1, 𝑓𝑜𝑟 𝑙 > 1.

In such a way we can conclude the the ACF of an ARMA(1,1) model behaves almost like

that of an AR(1) model except the fact that the exponential decay starts with lag 2.

There are two methods for identifying the order of AR or MA part in ARMA models:

1. ACF and PACF

2. Information criteria

The ACF and PACF are not informative in determining the order of ARMA models,

therefore we should focus on information criteria. There are two well-known information

criteria: Akaike information criterion (AIC) and Bayesian information criterion (BIC).

The Akaike information criterion attempts to balance the complexity of the model, which

in this case means the number of parameters, with how well it fits the data. If we take the

likelihood function for a statistical model, which has k parameters, and L maximises the

likelihood, then the Akaike Information Criterion is given by:

𝐴𝐼𝐶 = −2 𝑙𝑛(𝐿) + 2𝑘 (3.15)

The preferred model, from a selection of models, has the minimum AIC of the group.

One can see that the AIC grows as the number of parameters, k, increases, but is reduced

if the negative log-likelihood increases. Essentially it penalises models that are tending

to overfit.

The Bayesian information criterion has similar behaviour to the AIC in that it penalises

models for having too many parameters. The difference between the BIC and AIC is that

14

the BIC is stricter with penalisation of additional parameters. The Bayesian information

criterion is defined as:

𝐵𝐼𝐶 = −2 𝑙𝑛(𝐿) + 𝑘 𝑙𝑛(𝑛) (3.16)

where n is the number of data points in the time series.

Once an ARMA(p,q) model is specified, its parameters can be estimated by either the

conditional or exact-likelihood method. In addition, the Ljung–Box statistics of the

residuals can be used to check the adequacy of a fitted model.

2.5 GARCH models

ARMA models are used to model the conditional expectation of a process given the

past, but in an ARMA model the conditional variance given the past is constant. In

financial data we usually see that a volatility is not constant in time. Therefore, GARCH

models are widely used for volatility modeling.

GARCH stands for Generalized Autoregressive Conditional Heteroscedasticity. A

collection of random variables is heteroskedastic if there are subsets of variables within

the larger set that have a different variance from the remaining variables. For example,

if a non-stationary time series possesses seasonal or trend effects, then the variance of

the series increases with the seasonality or the trend. This type of variability is known as

heteroscedasticity. Conditional heteroscedasticity means that variance at one time has a

positive relationship with variance at one or more previous time steps. This leads to the

fact that periods of high volatility tend to follow periods of high volatility and vice

versa.

We should start explanation with a model called ARCH or Autoregressive Conditional

Heteroscedasticity. The basic idea of ARCH models is that the shock εt of an asset

return is serially uncorrelated, but dependent, and the dependence of εt can be described

by a simple quadratic function of its lagged values (Tsay 2010).

An ARCH(m) model can be written as follows:

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 , 𝜀𝑡 = 𝜎𝑡𝜖𝑡

𝑚

𝑖=1

(3.17)

15

where {ϵt} is a sequence of independent and identically distributed (i.i.d.) random

variables with mean zero and variance 1, α0 > 0, and αi ≥ 0 for i > 0.

Although the ARCH model is relatively simple, it often requires many parameters for

proper description of an asset return volatility. The ARCH model is appropriate when

the error variance in an asset returns series follows an AR model. If we apply ARMA

for the error variance, the result will be a GARCH model. The shock εt of an asset return

follows a GARCH(m, s) model if

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑠

𝑗=1

, 𝜀𝑡 = 𝜎𝑡𝜖𝑡

𝑚

𝑖=1

(3.18)

where {ϵt} is a sequence of independent and identically distributed (i.i.d.) random

variables with mean zero and variance 1, α0 > 0, αi ≥ 0, βj ≥ 0 and ∑ (𝛼𝑖 + 𝛽𝑖) < 1𝑚𝑎𝑥(𝑚,𝑠)
𝑖=1 .

To see the strengths and weaknesses of GARCH models we should look at the

GARCH(1,1) model:

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2 , 0 ≤ 𝛼1, 𝛽1 ≤ 1, (𝛼1 + 𝛽1) < 1

It is obvious that large 𝜀𝑡−1
2 and 𝜎𝑡−1

2 values lead to large values of 𝜎𝑡
2. It means that

large εt follows by large εt-1. This behavior is known in financial time series as volatility

clustering.

Further in the thesis ARMA and GARCH models described above will be used for

modeling different stock returns and making prediction of their movements in the

future.

16

Chapter 3. Machine learning methods

Machine learning methods

In Chapter 3 we introduce the basics of machine learning tasks and describe several

machine learning methods. In the first part of chapter we distinguish different problems

where machine learning can be applied. In the second part we focus on several machine

learning methods for classification that will be used in Chapter 4.

3.1 Machine learning tasks

Machine learning is a very popular topic nowadays and there are several reasons for

that. The most exciting thing is that machine learning provides the ability to

automatically obtain deep insights, recognize unknown and invisible patterns in data,

and create high performing predictive models from data without being explicitly

programmed. Machine learning opens new doors for research in finance, especially in

exploration of stock prices behaviour.

The formal definition of machine learning was stated by Tom M. Mitchell (1997).

Definition 3. A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at tasks in T, as

measured by P, improves with experience E.

The goal of machine learning algorithms is to learn from data, in order to build

generalizable models that give accurate predictions, or to find patterns, particularly with

new and unseen similar data.

Machine learning tasks are usually classified into two broad categories: supervised and

unsupervised learning.

 Supervised machine learning can apply what has been learned in the past to new

data using labeled examples to predict future events. For example, when learning to

classify handwritten digits, a supervised learning algorithm takes thousands of

pictures of handwritten digits along with labels containing the correct number each

image represents. The algorithm will then learn the relationship between the images

and their associated numbers and apply that learned relationship to classify

completely new images (without labels) that the machine hasn’t seen before.

17

o Semi-supervised learning - the learning algorithm is provided with a mixture of

labeled and unlabeled data. The systems that use this method are able to

considerably improve learning accuracy.

o Active learning is similar to semi-supervised learning, but the algorithm can

"ask" for extra labeled data based on what it needs to improve on.

o Reinforcement learning is a method that interacts with its environment by

producing actions and discovers penalties or rewards. The goal is maximizing

lifetime/long-term reward (or minimizing lifetime/long-term penalty).

 Unsupervised learning - the learning algorithm is provided with unlabeled

examples. Generally, unsupervised learning is used to uncover some structure or

pattern in the data. This is a much less well-defined problem, since we are not told

what kinds of patterns to look for, and there is no obvious error metric to use.

There are two tasks of supervised learning: regression and classification. In regression

tasks the goal is to predict a continuous target variable. Examples include a person’s

age, height, or income, the value of a house, and the price of a stock. In contrast, in

classification tasks the goal is to predict discrete target variable. For example, a person’s

gender (male or female), the brand of product purchased (brand A, B, or C), whether a

person defaults on a debt (yes or no), or a cancer diagnosis (James, Witten, Hastie and

Tibshirani 2013).

Regression involves fitting a model to data. The goal is to understand the relationship

between one set of variables - the dependent or target variables (y) - and another set -

the independent or explanatory variables (X or x). In cases of just one dependent and

one explanatory variable, we have simple regression. In scenarios with more than one

explanatory variable, we have multiple regression. In scenarios with more than one

dependent variable, we have multivariate regression.

Classification problems are where the target variables are discrete, and they represent

some categories or classes. For binary classification, there are only two classes

(y ∈ {0,1}). Otherwise, the classification problem is called a multiclass classification

problem - there are more than two classes.

The most widely used algorithms for supervised learning are:

 Support Vector Machines

 Linear regression

18

 Logistic regression

 Naive Bayes

 Linear discriminant analysis (LDA)

 Decision trees

 k-nearest neighbor algorithm

 Neural networks

The two main unsupervised learning tasks are clustering the data into groups by

similarity and reducing dimensionality to compress the data while maintaining its

structure and usefulness. In contrast to supervised learning, there is no precise metric for

how well an unsupervised learning algorithm is doing. Performance is usually

subjective and domain-specific.

The most known algorithms for unsupervised learning are:

 K-means

 Hierarchical clustering

 Mixture models

 Manifold learning algorithms

 Principal component analysis (PCA)

 Singular value decomposition

 Neural networks (Autoencoders, Deep Belief Nets, etc.)

We can conclude that the scope of machine learning algorithms is wide and not all of

them are of our interest for the aim of the thesis. As the main goal is to predict stock

returns we can reduce this task to a binary classification problem: whether the price

will go up or down in the future, whether the return will be positive or negative in other

words. That is why further we will focus on regression and classification machine

learning algorithms.

3.2 Supervised machine learning algorithms

There are many methods in machine learning for classification problems. Some of them

are relatively simple, some are more advanced. The goal of this thesis is to predict stock

returns or the direction of the price movement. This is a typical classification problem.

In this part of the chapter we will consider several algorithms that can solve this type of

19

problems: logistic regression as the basic algorithm for classification, decision trees and

their ensembles and artificial neural networks.

3.2.1 Logistic regression

Logistic regression, despite its name, is a linear model for classification rather than

regression. Logistic regression is also known in the literature as logit regression,

maximum-entropy classification or the log-linear classifier. Logistic regression

measures the relationship between the categorical dependent variable and one or more

independent variables, which are usually (but not necessarily) continuous, by estimating

probabilities.

An explanation of logistic regression begins with an explanation of the logistic function.

The logistic function is useful because it can take an input with any value from negative

to positive infinity, whereas the output always takes values between zero and one and

hence is interpretable as a probability. The logistic function σ(z), also known as a

sigmoid function, is defined as follows:

𝜎(𝑧) =
𝑒𝑧

𝑒𝑧 + 1
=

1

1 + 𝑒−𝑧
(4.1)

A graph of the logistic function is shown in figure 3.1.

Figure 3.1: Logistic (sigmoid) function (Author’s own work)

20

The input parameter z of the logistic function is a linear function that is expressed in the

following way:

𝑧 = 𝑤0 + 𝑤1𝑥

This equation can be written in the matrix representation:

𝑧 = 𝒘𝑇𝑿, (4.2)

where wT is a vector of weights and X is a matrix of explanatory variables.

Now the logistic function can be expressed as:

𝜎(𝒘𝑇𝑿) =
1

1 + 𝑒−𝒘𝑇𝑿
(4.3)

The sigmoid function can be interpreted as a probability that the target variable is equal

to 1: 𝜎(𝒘𝑇𝑿) = 𝑃(𝑦 = 1|𝒘𝑇; 𝑿). Since we make a binary classification, we want to

output a label, not a continuous value. Then we might say that y = 1 if σ(z) ≥ 0.5 and

y = 0 if σ(z) < 0.5. The line that forms this divide is an example of a decision boundary.

The regression coefficients are usually estimated using maximum likelihood estimation.

Unlike linear regression with normally distributed residuals, it is not possible to find a

closed-form expression for the coefficient values that maximize the likelihood function,

so that an iterative process must be used instead.

The negative log-likelihood for logistic regression is given by:

𝑁𝐿𝐿(𝒘𝑇𝑿) = − ∑[𝑦𝑖𝑙𝑛(𝜎𝑖(𝒘𝑇𝒙𝒊)) + (1 − 𝑦𝑖)𝑙𝑛(1 − 𝜎𝒊(𝒘𝑇𝒙𝒊))]

𝑵

𝒊=𝟏

(4.4)

This is also called the cross-entropy error function. Another way of writing this equation

is following. Suppose yi ∈ {−1, +1} instead of yi ∈ {0, 1}. Then we have:

𝑝(𝑦 = 1) =
1

1+𝑒−𝒘𝑻𝑋
 and (𝑦 = −1) =

1

1+𝑒𝒘𝑻𝑋
 . Hence:

𝑁𝐿𝐿(𝒘𝑇𝑿) = ∑ 𝑙𝑛(1 + 𝑒𝑥𝑝(−𝒚𝒊𝒘
𝑇𝒙𝒊))

𝑵

𝒊=𝟏

(4.5)

Minimizing the negative log likelihood is equivalent to maximizing log likelihood.

Hence, our goal is to minimize the function in the equation 4.5. We can achieve that using

optimization algorithm known as gradient descent. Gradient descent perhaps is the most

common optimization algorithm in machine learning.

21

The function we want to minimize or maximize is called the objective function. When we

are minimizing it, we may also call it the cost function, loss function, or error function.

Suppose we have a function y = f(x), where both x and y are real numbers. The derivative

f ′(x) gives the slope of f(x) at the point x. The derivative is therefore useful for minimizing

a function because it tells us how to change x in order to make a small improvement in y.

We can thus reduce f(x) by moving x in small steps with opposite sign of the derivative.

This technique is called gradient descent.

For functions with multiple inputs, we must make use partial derivatives. The gradient

generalizes the notion of derivative to the case where the derivative is with respect to a

vector: the gradient of f is the vector containing all of the partial derivatives, denoted

∇x f(x). The gradient points directly uphill, and the negative gradient points directly

downhill. We can decrease f by moving in the direction of the negative gradient. This is

known as the method of steepest descent or gradient descent. Gradient descent proposes

a new point:

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓(𝑥) (4.6)

where α is the learning rate, a positive scalar determining the size of the step. If α is too

small, the minimization algorithm takes long time to converge, if α is too big, the

algorithm can diverge. Gradient descent converges when every element of the gradient is

zero or, in practice, very close to zero (Goodfellow, Bengio and Courville 2016). An

illustration of how gradient descent algorithm works is shown in figure 3.2.

For logistic regression the gradient descent algorithm takes the following form:

𝑤𝑗
𝑛𝑒𝑤 = 𝑤𝑗

𝑜𝑙𝑑 − 𝛼 ∙ ∑[𝜎(𝒘𝑻𝒙(𝒊)) − 𝑦(𝑖)]

𝑁

𝑖=0

𝑥𝑗
(𝑖) (4.7)

where ∑ [𝑦(𝑖) − 𝜎(𝒘𝑻𝒙(𝒊))]𝑁
𝑖=0 𝑥𝑗

(𝑖)
 is a gradient of the negative log likelihood.

One problem with ML estimation is that it can result in overfitting. The reason that the

MLE can overfit is that it is picking the parameter values that are the best for modeling

the training data; but if the data is noisy, such parameters often result in complex

functions. In order to prevent overfitting, we should use regularization.

22

Figure 3.2: Gradient descent method (Credit towardsdatascience.com webpage)

Regularization is any modification we make to a learning algorithm that is intended to

reduce its generalization error but not its training error. In intuitive terms, we can think

of regularization as a penalty against complexity. Increasing the regularization strength

penalizes large weight coefficients. Our goal in an unregularized model is to minimize

the cost function, i.e., we want to find the weights that correspond to the global cost

minimum. Now, if we regularize the cost function, we add an additional to our cost

function that increases as the value of your parameter weights w increase:

𝐽(𝒘) = 𝑁𝐿𝐿(𝒘) + λ𝒘𝑇𝒘 (𝟒. 𝟖)

where λ controls the strength of the regularization. This type of regularization is known

as L2 regularization.

3.2.2 Decision trees

Decision trees are defined by recursively partitioning the input space and defining a

local model in each resulting region of input space. This can be represented by a tree,

with one leaf per region. Decision trees can be applied to both regression and

classification problems, but we will focus on classification decision trees only.

A general schema that represents a decision tree can look as a diagram in figure 3.3.

23

Figure 3.3: Schema of a decision tree (Credit www.analyticsvidhya.com webpage)

Root node represents entire population or sample and it is divided then into two or more

homogeneous sets. Decision node is a sub-node that splits further into other sub-nodes.

Leaf or terminal node is a node that has no sub-nodes.

Basic algorithm for building a decision tree looks as follows:

1. Start with all the data in the root node.

2. Find some criteria, which splits outcomes the best way

3. Divide the data into two groups

4. Repeat until the groups are too small or sufficiently homogeneous

5. Prediction of a terminal node is the most common outcome (in case of

classification task) or the mean of outcomes (in case of regression task)

There are several criteria that measure the quality of the split for classification decision

trees.

Misclassification error is the fraction of the training observations in the node that do

not belong to the most common class:

𝐸 = 1 − max
𝑘

(�̂�𝑚𝑘) (4.9)

24

where �̂�𝑚𝑘 represents the proportion of training observations in the mth node that are

from the kth class. However, misclassification error is not sufficiently sensitive for tree-

growing, and in practice two other measures are used.

The Gini index is defined by:

𝐺 = ∑ �̂�𝑚𝑘

𝐾

𝑘=1

(1 − �̂�𝑚𝑘) (4.10)

The Gini index is a measure of total variance across the K classes. It takes a small value

if all of the �̂�𝑚𝑘 are close to zero or one. For this reason the Gini index is referred to as

a measure of node purity - a small value indicates that a node contains generally

observations from a single class.

An alternative to the Gini index is cross-entropy, given by:

𝐻 = − ∑ �̂�𝑚𝑘

𝐾

𝑘=1

ln �̂�𝑚𝑘 (4.11)

One can show that the cross-entropy will take on a value near zero if the �̂�𝑚𝑘 are all

near zero or near one. Therefore, like the Gini index, the cross-entropy takes a small

value if the mth node is pure.

For example, if we have two classes and �̂�𝑚1 = 𝑝, then:

 Misclassification error: min(𝑝, 1 − 𝑝)

 Gini index: 2𝑝 ∙ (1 − 𝑝)

 Cross-entropy: −𝑝 ∙ ln 𝑝 − (1 − 𝑝) ∙ ln(1 − 𝑝)

This situation is shown in figure 3.4.

25

Figure 3.4: Node impurity measures for binary classification (Credit

github.com/diefimov/MTH594_MachineLearning webpage)

To prevent overfitting, we can stop growing the tree if the decrease in the error is not

sufficient to justify the extra complexity of adding an extra subtree. The standard

approach, however, is to grow a full tree, and then to perform pruning. To determine

how far to prune back, we can evaluate the cross-validated error on each subtree, and

then pick the tree whose CV error is within 1 standard error of the minimum (Murphy

2012).

Decision tree models are popular for several reasons: they are easy to interpret, they can

easily handle mixed discrete and continuous inputs, they perform automatic variable

selection, they are relatively robust to outliers, they scale well to large data sets, and

they can be modified to handle missing inputs.

On the other hand, decision trees have some disadvantages. First, they do not have the

same level of predictive accuracy as other kinds of model. Another problem is that trees

can be unstable. In other words, a slight change in the input data can lead to a large

change in the final tree. However, by aggregating many decision trees, using methods

like bagging and boosting, the predictive performance of trees can be substantially

improved.

26

3.2.3 Bagging and boosting

Usually, with increasing complexity of the model prediction error reduces due to lower

bias in the model. But at some point, the variance starts to increase and at the end the

model is overfitted. It is imported to maintain a balance between these two types of

errors. This is known as the trade-off management of bias-variance errors, which is

shown in figure 3.5.

Figure 3.5: Optimal model complexity (Credit www.analyticsvidhya.com webpage)

One way to reduce the variance of an estimate is to average together many estimates.

For example, we can train M different trees on different subsets of the data, chosen

randomly with replacement, and then compute the ensemble:

𝑓(𝑥) = ∑
1

𝑀
𝑓𝑚(𝑥)

𝑀

𝑚=1

(4.12)

where fm is the mth tree. This technique is called bootstrap aggregation or bagging.

Unfortunately, repeating run of the same learning algorithm on different subsets of the

data can lead to highly correlated predictors, which limits the amount of variance

reduction that is possible. Random forests provide an improvement over bagged trees by

decorrelating the trees. As in bagging, we build a number forest of decision trees on

27

bootstrapped training samples. But when building these decision trees, each time a split

in a tree is considered, a random sample of m predictors is chosen as split candidates

from the full set of p predictors. The split is used only for those m predictors. In practice

usually 𝑚 = √𝑝 is used (James, Witten, Hastie and Tibshirani 2013).

Another approach for improving the predictions from a decision tree is boosting, which

is a generally can be applied to many statistical learning methods. Boosting works in a

similar way to bagging, except that the trees are grown sequentially: each tree is grown

using information from previously grown trees. Boosting does not involve bootstrap

sampling. Instead each tree is fit on a modified version of the original data set.

One of the realization of the boosting is gradient boosting algorithm. The basic

principles of gradient boosting are as follows: given a loss function and a weak learner

(e.g., regression trees), the algorithm seeks to find an additive model that minimizes the

loss function. The algorithm is typically initialized with the best guess of the response.

The gradient is calculated, and a model is then fit to the residuals to minimize the loss

function. The current model is added to the previous model, and the procedure

continues for a specified number of iterations.

Gradient boosting is a greedy algorithm and can overfit a training dataset quickly. That

is why an important part of gradient boosting are regularization methods that penalize

various parts of the algorithm and generally improve the performance of the algorithm

by reducing overfitting. There are several regularization methods for gradient boosting

such as tree constraints, shrinkage, random sampling and penalized learning.

There are a number of ways that the trees can be constrained:

 Number of trees. The general rule is to keep adding trees until no further

improvement is observed.

 Tree depth. In practice, usually, shorter trees are preferred.

 Number of nodes can constrain the size of the tree.

 Number of observations per split sets a minimum constraint on the amount of

training data at a training node before a split can be considered.

 Minimum improvement to loss is a constraint on the improvement of any split

added to a tree.

28

Another constrain on a learning process is shrinkage. Instead of adding the predicted

value for a sample to previous iteration’s predicted value, only a fraction of the current

predicted value is added to the previous iteration’s predicted value. This fraction is

commonly referred to as the learning rate and is parameterized by the symbol, λ. This

parameter can take values between 0 and 1 and becomes another tuning parameter for

the model.

There is a modification of the gradient boosting algorithm called stochastic gradient

boosting. It involves a random sampling scheme: at each iteration a subsample of the

training data is drawn at random (without replacement) from the full training dataset.

The randomly selected subsample is then used, instead of the full sample, to fit the base

learner.

Another useful regularization techniques for gradient boosted trees is to penalize tree

complexity using L1 or L2 regularization of the leaf weight values of the trees.

3.2.4 Artificial neural networks

Artificial neural networks (ANNs) are computing systems inspired by the biological

neural networks that constitute animal brains. An ANN is based on a collection of

connected units or nodes called artificial neurons (a simplified version of biological

neurons in an animal brain). Each connection (a simplified version of a synapse)

between artificial neurons can pass a signal from one to another.

The most common type of neural networks is feedforward neural network or multilayer

perceptron (MLP). The goal of a feedforward network is to approximate some function

f∗. For example, for a classifier, y = f∗(x) maps an input x to a category y. A feedforward

network defines a mapping y = f(x; w) and learns the value of the parameters w that

result in the best function approximation.

An example of a multilayer perceptron’s structure is shown in figure 3.6.

29

Figure 3.6: An example of a feedforward network with 1 hidden layer (Credit

www.learnopencv.com webpage)

Given neural network has an input layer, an output layer, and a hidden layer. In general,

there can be multiple hidden layers. Each node, called neuron, in the layer can be

thought as the basic processing unit. A schematic diagram of the process unit is given in

figure 3.7.

Figure 3.7: An example of a neuron showing the input (x1…xn), their corresponding

weights (w1…wn), a bias (b) and an activation function applied to the weighted sum of

the inputs (Credit www.learnopencv.com webpage)

30

As seen above, a neuron calculates the weighted sum of its inputs and then applies an

activation function that can be linear or nonlinear. There are three most used activation

functions:

1. Already known sigmoid function: 𝜎(𝒘𝑇𝑿) =
1

1+𝑒−𝒘𝑇𝑿

2. Hyperbolic tangent function: 𝑡𝑎𝑛ℎ(𝒘𝑇𝑿) = 2𝜎(2𝒘𝑇𝑿) − 1

3. Rectified Linear Unit (ReLU): 𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)

The training of a feedforward network is carried out using the backpropagation

algorithm. The training samples are passed through the network and the output obtained

from the network is compared with the actual output to compute the value of some

predefined error function. The error is then fed back through the network. Using this

information, the algorithm adjusts the weights of each connection in order to reduce the

value of the error function by some small amount. After repeating this process for a

sufficiently large number of training cycles, the network will usually converge to some

state where the error of the calculations is small. To adjust weights properly a gradient

descent algorithm is used. The derivative of the error function with respect to the network

weights should be calculated, and the weights are changed such that the error decreases.

The other type of neural networks that is of interest for the thesis are recurrent neural

networks. RNNs are a family of neural networks for processing sequential data.

A typical RNN is shown in figure 3.8.

Figure 3.8: A general structure of a recurrent neural network (Credit colah.github.io

webpage)

31

As can be seen from the graph above the output of the hidden layer in a recurrent neural

network is fed back into itself. For learning RNNs an extension of a backpropagation

algorithm is used. It is called backpropagation through time or BPTT. BPTT works by

unrolling all input timesteps. Each timestep has one input timestep, one copy of the

network, and one output. Errors are then calculated and accumulated for each timestep.

The network is rolled back up and the weights are updated.

For recurrent neural networks, we would want to have long memories, so the network

can connect data relationships at significant distances in time. However, the more time

steps we have, the more chance we have that backpropagation gradients will either

accumulate and explode or vanish down to nothing. This issue can be resolved by

applying modified form of RNNs – the Long Short-Term Memory Networks or LSTM.

LSTM networks are a special kind of RNN that is capable of learning long-term

dependencies. They were introduced by Hochreiter & Schmidhuber (1997), and then

were popularized by many people in following work. LSTMs work well on a large

variety of problems and are now widely used.

Figure 3.9: The repeating module of LSTM that has four interacting layers (Credit

colah.github.io webpage)

32

LSTMs also have this chain like structure, but the repeating module has a different

structure. Instead of having a single neural network layer, they have four. The structure

of LSTMs is shown in figure 3.9.

A common architecture is composed of a memory cell, an input gate, an output gate

and a forget gate.

A forget gate is responsible for removing information from the cell state. It is a sigmoid

function that takes an output vector from the previous cell ht-1 and the input vector xt:

𝒇𝒕 = 𝝈(𝑾𝒇𝒙𝒕 + 𝑼𝒇𝒉𝒕−𝟏 + 𝒃𝒇) (4.13)

where Wf and Uf are weights matrices and bf is a bias vector.

A memory cell or a cell state consists of two parts. First, a sigmoid layer called the input

gate controls which values will be updated:

𝒊𝒕 = 𝝈(𝑾𝒊𝒙𝒕 + 𝑼𝒊𝒉𝒕−𝟏 + 𝒃𝒊) (4.14)

Next, a tanh layer creates a vector of new candidate values, �̃�𝒕, that could be added to

the state:

�̃�𝒕 = tanh(𝑾𝑪𝒙𝒕 + 𝑼𝑪𝒉𝒕−𝟏 + 𝒃𝑪) (4.15)

Then a new cell state is created in the following way:

𝑪𝒕 = 𝒇𝒕 ∗ 𝑪𝒕−𝟏 + 𝒊𝒕 ∗ �̃�𝒕 (4.16)

where operator ∗ denotes Hadamard product.

The output vector is based on another sigmoid layer called output gate and the cell state

filtered by tanh activation function:

𝒐𝒕 = 𝝈(𝑾𝒐𝒙𝒕 + 𝑼𝒐𝒉𝒕−𝟏 + 𝒃𝒐) (4.17)

𝒉𝒕 = 𝒐𝒕 ∗ tanh(𝑪𝒕) (4.18)

Such a complicated structure allows the error to remain in the LSTM unit's memory

when error values are back-propagated from the output. This transition continuously

feeds error back to each of the gates until they learn to cut off the value. Thus,

backpropagation through time is effective at training an LSTM unit to remember values

for long durations.

33

Chapter 4. Stock returns prediction

Stock returns prediction

In Chapter 4 we apply models described in previous chapters to make predictions of

stock returns. In the first section we describe methodology of how experiments are

conducted and methods for obtaining and preprocessing data. In the second section we

present the results of ARMA and GARCH models application. The third section is

devoted to the outcomes of machine learning methods application.

4.1 Methodology

In order to achieve the goals of the thesis we have to automate the process of modeling

and forecasting. Therefore we used R and Python programming languages.

R was chosen for ARMA and GARCH modeling because it has comprehensive libraries

such as tseries and rugarch. These libraries allow to easily build and fit ARMA and

GARCH models with optimal parameters and to make forecasts conveniently.

PerformanceAnalytics library has a wide range of indicators for measuring performance

of strategies based on our predictions.

On the other hand, Python offers rich and efficient libraries for applying machine

learning methods. We used Python version 3.6 with pandas and numpy libraries for data

manipulation. Scikit-learn library contains a variety of machine learning methods and it

was used for logistic regression. LightGBM library was developed by Microsoft for

building gradient boosted trees. The library uses computationally efficient algorithms

therefore the time needed for training a model is lower than in other libraries. Keras and

Tensorflow libraries were used for constructing LSTM neural networks. Keras is an API

for Tensorflow therefore it makes easier to build ANNs.

Making precise point predictions of stock returns is a very complicated task. Therefore,

much more useful information for us is the sign of that prediction, whether return is

positive or not. The direction of a future stock movement gives us an information to

make a trading decision whether to buy or to sell a stock. That is why we consider stock

returns prediction task as a classification problem.

The process for making time series modeling consists of the following steps:

34

1. Download the stock data containing daily information about Open, High, Low,

Close prices and Volume.

2. Compute daily log returns from adjusted Close prices. This is the only column

used for modeling.

3. Split the data into train and test datasets.

4. Fit ARMA and GARCH models on train + rolling window dataset. As we make

1-day ahead prediction we need to extend our train dataset by 1 day from test set

on each iteration.

5. Make a prediction for the following day. If the prediction is positive then we

expect upward direction of the stock movement and go long, otherwise we go

short.

6. Calculate returns of the strategy based on the predicted direction and realized

return on the respective day.

7. Calculate accuracy and Gini coefficient for measuring the quality of

classification.

8. Calculate performance metrics for the strategy based on our predictions and for

the benchmark Buy & Hold strategy: total return; return per annum; return per

trade (per day); Sharpe ratio (annualized); Maximum Drawdown; p-value for t-

test whether the return per trade is greater than 0.

9. Save the results to a csv file.

The general process for machine learning methods is quite similar:

1. Download the stock data containing daily information about Open, High, Low,

Close prices and Volume.

2. Compute daily log returns from adjusted Close prices and generate several extra

predictors from the original data:1-day lagged Open and Close prices; difference

between Open and 1-day lagged Close prices; number of month, day and day of

week. These features along with Open, High, Low, Close prices and Volume can

possibly help algorithms to learn better.

3. Split the data into train and test datasets.

4. Transform the data using Standard Scaler from the Scikit-learn library.

5. Train models on the train dataset using 10-folds cross-validation for finding

optimal input parameters. It means that we train our models on 9 folds and then

validate the result on 10th. This operation repeats 10 times in order to validate

35

on all the folds. Then we choose parameters for the model which demonstrated

the best average score on the validation data and the model on the entire train

dataset. For splitting the train data into 10 folds we use TimeSeriesSplit function

from the Scikit-learn library. This function keeps the time structure of the data

and prevents from training on the future data and validate on the past one.

6. Make predictions of stock movement’s direction for the test data. If the

prediction is 1 then we go long. If the prediction is −1 we go short.

7. Calculate returns of the strategy based on the predicted direction and realized

return on the respective day.

8. Calculate accuracy and Gini coefficient for measuring the quality of

classification.

9. Calculate performance metrics for the strategy based on our predictions.

10. Save the results to a csv file.

At the end all the results are merged into one table to compare the models with each

other and the benchmark.

4.2 Data

We conducted experiments on 20 stocks from a list of the biggest companies by market

capitalization that are traded on New York Stock Exchange and NASDAQ Stock

Exchange. All data were downloaded from Quandl. It is a service that provides financial

data including historical stock prices. Quandl has R and Python APIs that allows to

download data from their servers in convenient format.

Companies and their tickers used in the thesis are listed in the table 4.1.

Table 4.1: List of stocks used in experiments

Company Ticker

Apple Inc. AAPL

Amazon.com, Inc. AMZN

Alphabet Inc. GOOGL

Microsoft Corporation MSFT

JPMorgan Chase & Co. JPM

Johnson & Johnson JNJ

Exxon Mobil Corporation XON

Walmart Inc. WMT

36

Intel Corporation INTC

Chevron Corporation CVX

International Business Machines Corporation IBM

The Procter & Gamble Company PG

The Boeing Company BA

The Coca-Cola Company KO

PepsiCo, Inc. PEP

NVIDIA Corporation NVDA

McDonald’s Corporation MCD

Amgen, Inc. AMGN

General Electric Company GE

Honeywell International Inc. HON

Our datasets cover the period from 03/01/2006 to 29/12/2017. We split the data into

train and test sets. The train data covers the period from 03/01/2006 to 30/12/2014

(2264 observations). The test data covers the period from 31/12/2014 to 29/12/2017

(754 observations), which is approx. 20% of all observations.

In the process description for machine learning methods we mentioned that the data

should be transformed using Standard Scaler. It standardizes features by removing the

mean and scaling to unit variance.

𝑥′ =
𝑥 − �̅�

𝜎
(4.1)

Centering and scaling happen independently on each feature by computing the relevant

statistics on the samples in the training set. Standardization of a dataset is a common

requirement for many machine learning estimators: they might behave badly if the

individual feature do not look like standard normally distributed data.

4.3 Quality and performance metrics

The results of our experiments should be quantified in order to understand how good

our prediction models are. To do that we use two groups of metrics. The first one

defines the quality of classification. Metrics in this group are accuracy and Gini

coefficient.

37

Accuracy or Fraction Correct (FC) is the simplest statistic for measuring the quality of

binary classification. Accuracy should not be confused with Accuracy Ratio (AR),

which is also called Gini coefficient. Accuracy it is the ratio of the number of correct

classifications to the total number of correct or incorrect classifications:

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
(4.2)

Gini coefficient is a quantitative measure of the discriminatory power in classification

models. Gini coefficient can be calculated using cumulative accuracy profile (CAP).

The CAP of a model represents the cumulative number of positive outcomes along the

y-axis versus the corresponding cumulative number of a classifying parameter along the

x-axis. An example of CAP curve is shown in figure 4.1.

Figure 4.1: CAP curve (Credit www.researchgate.net webpage)

Gini coefficient is defined as the ratio of the area AC between the CAP of the validating

model and the CAP of the random model, and the area AP between the CAP of the perfect

38

model and the CAP of the random model. However, for the purposes of the thesis we will

use another formula for computation of Gini coefficient:

𝐺𝑖𝑛𝑖 = 2𝐴𝑈𝐶 − 1 (4.3)

The reason for using this formula is that the Scikit-learn library allows to compute ROC

AUC score only.

The second group of metrics are strategy performance metrics. Since our goal is to predict

returns in order to make a trading decision we want to measure how good the strategy

based on our predictions is.

Total return is return gained for all period when strategy operated. In our case this is a

return gained for entire test period. Total return can be obtained as a sum of daily log

returns. Return per annum is an annual return. It can be calculated as an average yearly

log returns. Return per trade is an average daily log return.

The Sharpe ratio is the average return earned in excess of the risk-free rate per unit of

volatility.

𝑆 =
�̅�𝑡 − 𝑟𝑓

𝜎𝑟

(4.4)

Sharpe ratio represents risk-adjusted return and allows to compare strategies with almost

the same rate of return. Generally, the greater the value of the Sharpe ratio, the more

attractive the risk-adjusted return.

Maximum Drawdown (MDD) is another measure of the risk of the strategy. MDD is the

maximum loss from a peak to a trough of a portfolio, before a new peak is reached. MDD

is calculated as a percentage:

𝑀𝐷𝐷 =
𝑇𝑟𝑜𝑢𝑔ℎ 𝑣𝑎𝑙𝑢𝑒 − 𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒

𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒
(4.5)

MDD is used to compare the relative riskiness of one strategy with another. Usually, the

more maximum drawdown is the more risky the strategy is.

The last metric we use in the thesis is a p-value of the t-test. T-test is a statistical test. One

sample t-test can be used for testing whether the mean of a population has a value

specified in the null hypothesis. This is two-sided test therefore we can conduct a one-

sided test to define whether the mean return is greater than 0 or not. The outcome of the

t-test is p-value. P-value determines a probability that the null hypothesis is true with

39

some significance level α. If p-value is greater than α then the null hypothesis is not

rejected. If the p-value is less than α, then the null hypothesis is rejected in favor of the

alternative hypothesis. We set the significance level to 5% in our thesis. If the p-value

from t-test conducted for our strategies is less than 5% then we can say that the average

return per trade is greater than 0.

4.4 Results of time series models

As we already mentioned we fit ARMA and GARCH models on the train and window

rolling data. It means that for each day of prediction we should add one day to the train

data in order to extend the set on which we fit the models. But first we should detect the

orders of ARMA and GARCH models. The common approach for GARCH models on

stock markets is to use (1,1) orders.

In case of ARMA we can apply auto.arima function from the forecast package. This

function selects the best model from the specified range of p and q orders by minimum

AIC. By default the maximum value for p and q is 5. Empirically we identified that

higher orders usually do not demonstrate lower AIC values so we keep default

maximum ARMA orders. Then selected ARMA orders enter the specification of

GARCH model which is available in rugarch package. This library allows to construct

GARCH models and include ARMA as a mean model in its specification.

Once the specification is constructed we can carry out the fitting of the model using the

ugarchfit function, which takes the specification object and numerical optimization

solver. We have chosen hybrid regime, which tries different solvers in order to increase

the likelihood of convergence. If the ARMA-GARCH model does not converge then we

produce a positive prediction, which is obviously a guess, but in most cases the model

converges.

The process of fitting ARMA-GARCH models is highly time consuming. It took

approx. 15-20 minutes to make all predictions for the test data of a one ticker. When all

predictions are computed we calculate all performance metrics and merge them into one

table. We conducted the same procedure of calculating performance metrics for

Buy&Hold as well in order to have the results as a benchmark. The results of the

benchmark and ARMA-GARCH models ordered by accuracy are presented in the

following tables.

40

Table 4.2: The results of Buy & Hold strategy

Ticker Model Accuracy Gini

coefficient

Total

return

Average return

per trade

Return

p.a.

Sharpe ratio

(annualized)

Maximum

Drawdown

T-test

(p-value)

MCD Buy & Hold 0.5610 -0.0703 0.6917 0.0009 0.2312 1.4475 -0.1152 0.0062

NVDA Buy & Hold 0.5597 -0.0109 2.2960 0.0030 0.7674 1.9337 -0.1895 0.0004

BA Buy & Hold 0.5570 -0.1099 0.9053 0.0012 0.3026 1.4177 -0.2910 0.0072

HON Buy & Hold 0.5451 -0.0627 0.4861 0.0006 0.1625 0.9850 -0.1419 0.0444

INTC Buy & Hold 0.5432 -0.0772 0.3365 0.0004 0.1126 0.5205 -0.3272 0.1843

AMZN Buy & Hold 0.5418 -0.0346 1.3266 0.0018 0.4440 1.5773 -0.2019 0.0033

GOOGL Buy & Hold 0.5345 -0.0179 0.6857 0.0009 0.2292 1.0490 -0.1092 0.0350

MSFT Buy & Hold 0.5345 -0.0783 0.6865 0.0009 0.2294 1.0200 -0.1705 0.0390

WMT Buy & Hold 0.5332 -0.1032 0.2158 0.0003 0.0721 0.3712 -0.4308 0.2605

PEP Buy & Hold 0.5332 -0.0807 0.3160 0.0004 0.1056 0.8077 -0.1010 0.0814

AMGN Buy & Hold 0.5279 0.0093 0.1546 0.0002 0.0517 0.2162 -0.2556 0.3542

KO Buy & Hold 0.5265 -0.0799 0.1728 0.0002 0.0577 0.4518 -0.1212 0.2174

AAPL Buy & Hold 0.5219 -0.0423 0.4786 0.0006 0.1602 0.6989 -0.3048 0.1137

JPM Buy & Hold 0.5186 -0.0073 0.6141 0.0008 0.2053 0.9631 -0.2330 0.0481

IBM Buy & Hold 0.5172 -0.0133 0.0628 0.0001 0.0210 0.1102 -0.3304 0.4244

JNJ Buy & Hold 0.5106 0.0038 0.3724 0.0005 0.1245 0.8973 -0.1348 0.0605

XOM Buy & Hold 0.5080 -0.0734 0.0061 0.0000 0.0020 0.0112 -0.2840 0.4923

CVX Buy & Hold 0.5053 -0.1215 0.2269 0.0003 0.0758 0.3384 -0.4473 0.2792

PG Buy & Hold 0.5027 -0.0525 0.1043 0.0001 0.0348 0.2511 -0.2774 0.3321

GE Buy & Hold 0.4987 0.1206 -0.2795 -0.0004 -0.0934 -0.4688 -0.4557 0.7911

41

Table 4.3: The results of time series models

Ticker Model Accuracy Gini

coefficient

Total

return

Average return

per trade

Return p.a. Sharpe ratio

(annualized)

Maximum

Drawdown

T-test

(p-value)

MCD ARMA-GARCH 0.5623 -0.0397 0.6694 0.0009 0.2237 1.4006 -0.1267 0.0078

NVDA ARMA-GARCH 0.5597 -0.0109 2.2960 0.0030 0.7674 1.9337 -0.1895 0.0004

HON ARMA-GARCH 0.5517 -0.0395 0.5408 0.0007 0.1807 1.0964 -0.1436 0.0291

AMZN ARMA-GARCH 0.5511 0.0209 1.1753 0.0016 0.3933 1.3960 -0.1834 0.0080

BA ARMA-GARCH 0.5411 -0.1237 0.7148 0.0009 0.2389 1.1176 -0.3871 0.0268

WMT ARMA-GARCH 0.5371 -0.0221 0.4787 0.0006 0.1600 0.8243 -0.1894 0.0772

GOOGL ARMA-GARCH 0.5345 -0.0179 0.6857 0.0009 0.2292 1.0490 -0.1092 0.0350

PEP ARMA-GARCH 0.5345 -0.0298 0.3903 0.0005 0.1305 0.9985 -0.1321 0.0423

MSFT ARMA-GARCH 0.5252 -0.0369 0.5222 0.0007 0.1745 0.7752 -0.2362 0.0902

PG ARMA-GARCH 0.5252 0.0061 0.3075 0.0004 0.1028 0.7413 -0.2528 0.1001

INTC ARMA-GARCH 0.5232 -0.0946 0.2393 0.0003 0.0801 0.3701 -0.2697 0.2613

XOM ARMA-GARCH 0.5186 -0.0245 0.0109 0.0000 0.0036 0.0200 -0.3009 0.4862

KO ARMA-GARCH 0.5186 -0.0829 0.1116 0.0001 0.0373 0.2918 -0.1282 0.3070

AAPL ARMA-GARCH 0.5166 -0.0458 0.5625 0.0007 0.1882 0.8217 -0.2478 0.0780

AMGN ARMA-GARCH 0.5106 0.0067 0.3420 0.0005 0.1143 0.4784 -0.2265 0.2041

IBM ARMA-GARCH 0.5066 -0.0288 0.1004 0.0001 0.0336 0.1762 -0.3446 0.3803

JPM ARMA-GARCH 0.5053 -0.0070 0.3035 0.0004 0.1015 0.4754 -0.1642 0.2056

JNJ ARMA-GARCH 0.5053 0.0039 0.2912 0.0004 0.0973 0.7010 -0.2266 0.1128

GE ARMA-GARCH 0.5053 0.0740 0.0972 0.0001 0.0325 0.1630 -0.1860 0.3890

CVX ARMA-GARCH 0.4960 -0.1288 -0.0644 -0.0001 -0.0215 -0.0960 -0.6901 0.5659

42

The largest accuracy was demonstrated by MCD ticker (McDonald’s Corporation):

56.23%. The lowest accuracy has CVX (Chevron Corporation): 49.60%, meaning that

model correctly predicted direction in less than 50% cases. Also we can see that the

tickers from the top of the table mostly have p-values for t-test lower than 5%, meaning

we can accept alternative hypothesis that average return per trade is greater than zero.

In order to investigate the dependencies between accuracy and strategy performance

metrics better we can build a correlation matrix.

Figure 4.6: Correlation plot for performance metrics

As we can see from the plot there is a strong positive correlation between accuracy and

returns gained from the strategy.

43

In order to visualize the results we can also plot cumulative returns of ARMA-GARCH

model in comparison to Buy & Hold strategy over entire test period for several best and

worst performed tickers.

Figure 4.2: Cumulative returns of the stock with the largest accuracy - MCD

Figure 4.3: Cumulative returns of the HON stock

44

As we can from the plots above stocks with the most accurate models almost replicated

the curve for Buy & Hold strategy.

Figure 4.4: Cumulative returns of the GE stock

Figure 4.5: Cumulative returns of the CVX stock

45

ARMA-GARCH strategy for the CVX stock could not demonstrate higher total return

than Buy & Hold strategy, but in case of GE ticker, the model was able to reach better

performance than the benchmark despite low value of accuracy.

We can also calculate performance metrics for a portfolio of all stocks in order to see

how good our models are in terms of portfolio trading. Prices of our stocks do not lay

on the same scale and much different from each other. Therefore we construct a

portfolio in such a way that initial investment to each stock is approx. 1000 USD. Then

we apply trading rules according to our models separately for each stock and recalculate

the value if the portfolio for each day in the testing period. It allows us to derive returns

for the whole portfolio and to compute performance metrics. Metrics for measuring the

quality of classification are not applicable in this case.

Performance metrics of the portfolio for Buy & Hold and ARMA-GARCH strategies

are shown in the table 4.4.

Table 4.4: Performance metrics of the portfolio for ARMA-GARCH and benchmark

strategies

Model Total return Average return per

trade

Return p.a.

Benchmark

(Buy&Hold)
0.6927 0.0009 0.2315

ARMA-GARCH 0.6744 0.0009 0.2254

Model Sharpe ratio

(annualized)

Maximum

Drawdown

T-test (p-value)

Benchmark

(Buy&Hold)
1.6256 -0.1196 0.0025

ARMA-GARCH 1.7747 -0.1088 0.0011

We can see that Buy & Hold strategy seems to be more profitable in a portfolio view.

On the other hand, maximum drawdown is lower in ARMA-GARCH models and

Sharpe ratio is a bit higher. This tells us that the strategy based on time series models’

predictions could be considered as less risky strategy. However, the results of both

strategies are very close to each other.

46

4.5 Results of machine learning methods

First, we build a logistic regression model. Using Scikit-learn package the process of

building is straightforward. In order to find best parameters of the model we use 10-fold

cross-validation. Then we select parameters that demonstrated the best mean accuracy

score. The only parameter we optimize is L2-regularization term called C. Lower values

of C means stronger regularization. Therefore we specify a range of the regularizer as a

linear space of 20 values between 0.001 and 1. Results of the parameter selection and

respective validation and test accuracies for all stocks are shown in the table 4.4.

Table 4.5: The best regularization parameters for all stocks

Ticker C Validation accuracy Test accuracy

AAPL 0.8423 0.5161 0.5265

AMZN 0.0010 0.5132 0.5424

GOOGL 0.7371 0.5249 0.4861

MSFT 0.6845 0.5098 0.4662

JPM 0.0010 0.5078 0.5285

JNJ 0.7371 0.5180 0.5099

XOM 0.0536 0.5141 0.5563

WMT 0.2113 0.5132 0.5073

INTC 1.0000 0.5137 0.5504

CVX 0.0536 0.5273 0.5139

IBM 0.4742 0.5083 0.5232

PG 1.0000 0.5161 0.4967

BA 0.3165 0.5102 0.5536

KO 0.1062 0.5249 0.5086

PEP 0.2639 0.5220 0.4914

NVDA 0.9474 0.5244 0.4808

MCD 0.0010 0.5356 0.5616

AMGN 0.2639 0.5049 0.5430

GE 1.0000 0.5224 0.4993

HON 0.1062 0.5068 0.5391

47

Selected parameters are then used to train the models on the entire train dataset and to

make predictions for the test data. Performance metrics of the logistic regression models

for all stocks ordered by accuracy are shown in the table 4.6.

The best accuracy was gained by MCD ticker as in the time series models. But among

top of the list we can also see XOM and INTC tickers, which improved their accuracy

against time series models from 51.86% to 55.57% and from 52.32% to 54.98%

respectively. On the other hand, NVDA and MSFT tickers dropped to the down

demonstrating accuracy lower than 50%.

In order to see an impact of changed classification quality on profitability we can plot

cumulative returns of the strategy in comparison to the benchmark for several stocks.

We can see in figures 4.6 and 4.7 that the logistic regression model for XOM and INTC

stocks managed to significantly outperform Buy & Hold strategy.

Figure 4.6: Cumulative returns of the XOM stock

48

Table 4.6: The results of logistic regression models
Ticker Model Accuracy Gini

coefficient

Total

return

Average return

per trade

Return

p.a.

Sharpe ratio

(annualized)

Maximum

Drawdown

T-test

(p-value)

MCD Logistic regression 0.5610 0.0033 0.6308 0.0008 0.2108 1.3193 -0.1216 0.0114

XOM Logistic regression 0.5557 0.1083 0.4757 0.0006 0.1590 0.8735 -0.1657 0.0656

BA Logistic regression 0.5531 0.0039 0.9158 0.0012 0.3061 1.4342 -0.2456 0.0067

INTC Logistic regression 0.5498 0.0464 0.7714 0.0010 0.2582 1.1962 -0.1659 0.0195

AMGN Logistic regression 0.5424 0.0564 0.5018 0.0007 0.1677 0.7023 -0.2580 0.1124

AMZN Logistic regression 0.5418 0.0085 0.8033 0.0011 0.2688 0.9522 -0.2888 0.0501

HON Logistic regression 0.5385 0.0028 0.3253 0.0004 0.1087 0.6585 -0.2596 0.1275

JPM Logistic regression 0.5279 0.0218 0.7576 0.0010 0.2532 1.1893 -0.2552 0.0200

AAPL Logistic regression 0.5272 0.0298 0.7556 0.0010 0.2529 1.1049 -0.1398 0.0283

IBM Logistic regression 0.5225 0.0311 0.4030 0.0005 0.1347 0.7076 -0.3208 0.1107

CVX Logistic regression 0.5133 0.0197 0.4633 0.0006 0.1548 0.6916 -0.5376 0.1160

JNJ Logistic regression 0.5093 -0.0024 0.3747 0.0005 0.1252 0.9027 -0.1124 0.0594

KO Logistic regression 0.5080 -0.0260 0.1526 0.0002 0.0510 0.3990 -0.1264 0.2452

WMT Logistic regression 0.5066 -0.0275 -0.3170 -0.0004 -0.1059 -0.5455 -0.8446 0.8271

GE Logistic regression 0.5000 -0.0010 -0.3110 -0.0004 -0.1039 -0.5216 -0.3928 0.8164

PG Logistic regression 0.4960 -0.0095 -0.0795 -0.0001 -0.0266 -0.1914 -0.1775 0.6297

PEP Logistic regression 0.4920 -0.0340 0.0309 0.0000 0.0103 0.0789 -0.1778 0.4457

GOOGL Logistic regression 0.4867 -0.0162 0.3333 0.0004 0.1114 0.5090 -0.3086 0.1894

NVDA Logistic regression 0.4814 0.0195 -1.1944 -0.0016 -0.3992 -1.0005 -1.2405 0.9580

MSFT Logistic regression 0.4668 0.0003 -0.5218 -0.0007 -0.1744 -0.7747 -0.6179 0.9097

49

Figure 4.7: Cumulative returns of the INTC stock

However, NVDA and MSFT stocks demonstrated very poor performance.

Figure 4.8: Cumulative returns of the NVDA stock

50

Figure 4.9: Cumulative returns of the MSFT stock

Cumulative returns for them are almost mirrored with respect to the benchmark. The

reason of such poor performance may be the fact that returns in the train period were

mostly negative and the model is not able to predict positive directions.

Portfolio performance of the logistic regression models in comparison with the

benchmark are shown in table 4.7.

Table 4.7: Performance metrics of the portfolio for logistic regression and benchmark

strategies

Model Total return Average return per

trade

Return p.a.

Benchmark

(Buy&Hold)
0.6927 0.0009 0.2315

Logistic regression 0.3723 0.0005 0.1244

Model Sharpe ratio

(annualized)

Maximum

Drawdown

T-test (p-value)

Benchmark

(Buy&Hold)
1.6256 -0.1196 0.0025

Logistic regression 1.7331 -0.0620 0.0014

51

In the table above we observe that logistic regression models demonstrated poorer

performance. However, the maximum drawdown is almost 2 times lower. This results in

higher Sharpe ratio compared to the benchmark. Therefore the strategy based on logistic

regression can be considered as less risky providing higher risk-adjusted returns.

The next model is gradient boosted trees (GBT). We use LightGBM package to build

the trees. This package is built on very effective algorithms that makes the process of

training models faster than in other packages. GBT have more input parameters and

process of finding optimal values for them can take a huge amount of time. Therefore

we kept some parameters constant and tried to find optimal values only for two of them.

Our goal during parameters selection is prevent overfitting so we set the maximum

depth of the tree to 3, number of leaves to 5 and number of trees to 1000. Higher

number of trees usually increase the generalization ability of the model. Also we set

subsample ratio to 0.8, which is the fraction of observation to be selected for each tree.

The two parameters we are selecting are learning rate for boosting algorithm and

colsample_bytree – subsample ratio of columns for constructing each tree. Results of

GBT’s predictions are shown in the table 4.8.

At first glance, obviously there is a poorer overall performance. Almost half of the

stocks achieved accuracy lower than 50% and only three stocks have an average return

per trade greater than 0 according to the results of t-test. MCD stock, which had the best

accuracy in time series and logistic regression models now shows the worst. Similarly,

AMZN and BA tickers dropped from the top to the down. However, AAPL stock

significantly improved accuracy and demonstrated the highest total return among all the

stocks.

52

Table 4.8: The results of gradient boosted trees
Ticker Model Accuracy Gini

coefficient

Total

return

Average return

per trade

Return

p.a.

Sharpe ratio

(annualized)

Maximum

Drawdown

T-test

(p-value)

INTC LightGBM 0.5511 0.0549 0.7999 0.0011 0.2677 1.2406 -0.2290 0.0162

AMGN LightGBM 0.5504 0.0857 0.3868 0.0005 0.1293 0.5412 -0.2896 0.1747

HON LightGBM 0.5451 0.0314 0.5974 0.0008 0.1997 1.2118 -0.1212 0.0182

AAPL LightGBM 0.5445 0.1025 1.0314 0.0014 0.3452 1.5114 -0.1465 0.0046

IBM LightGBM 0.5212 0.0220 0.1615 0.0002 0.0540 0.2834 -0.3305 0.3121

XOM LightGBM 0.5199 0.0394 0.0074 0.0000 0.0025 0.0136 -0.2127 0.4906

WMT LightGBM 0.5106 0.0174 0.0030 0.0000 0.0010 0.0052 -0.2645 0.4964

JNJ LightGBM 0.5093 -0.0021 0.3262 0.0004 0.1090 0.7857 -0.1547 0.0873

KO LightGBM 0.5027 -0.0321 0.1716 0.0002 0.0574 0.4488 -0.1338 0.2189

PG LightGBM 0.5000 0.0000 0.1712 0.0002 0.0572 0.4125 -0.1488 0.2379

PEP LightGBM 0.5000 0.0254 0.0389 0.0001 0.0130 0.0993 -0.2570 0.4318

NVDA LightGBM 0.4920 0.0115 -1.1626 -0.0015 -0.3886 -0.9738 -1.1718 0.9537

GE LightGBM 0.4854 -0.0295 -0.1715 -0.0002 -0.0573 -0.2875 -0.4463 0.6904

MSFT LightGBM 0.4841 0.0171 0.0779 0.0001 0.0260 0.1155 -0.3894 0.4209

JPM LightGBM 0.4814 -0.0341 -0.4120 -0.0005 -0.1377 -0.6455 -0.5363 0.8677

GOOGL LightGBM 0.4801 0.0041 -0.4735 -0.0006 -0.1582 -0.7235 -0.5511 0.8944

CVX LightGBM 0.4801 -0.0422 -0.2488 -0.0003 -0.0831 -0.3711 -0.7129 0.7394

BA LightGBM 0.4775 0.0441 -0.2803 -0.0004 -0.0937 -0.4373 -0.5565 0.7752

AMZN LightGBM 0.4622 -0.0038 -1.0278 -0.0014 -0.3440 -1.2196 -1.0452 0.9823

MCD LightGBM 0.4536 0.0142 -0.3443 -0.0005 -0.1151 -0.7184 -0.5107 0.8928

53

Plots of cumulative returns of several stock are shown on the following figures.

Figure 4.10: Cumulative returns of the AAPL stock

We can notice from the plot of the AAPL cumulated returns that the strategy based on

GBT gained the major return during downward trend of the actual returns. In the same

time there is a negative performance during the upward trend at the beginning of 2017.

The reason of that the model learnt to predict downward directions because the training

data can possess higher fraction of negative returns than positive.

In figure 4.11 we see that at the beginning of the test period the LightGBM model

demonstrated higher returns against benchmark but then started to fail when cumulative

returns of the benchmark went up.

54

Figure 4.11: Cumulative returns of the MCD stock

Figure 4.12: Cumulative returns of the AMZN stock

We see the similar picture with the AMZN stock. Again, the reason of such behavior of

the model may lie in the different structure of returns in the train and test data.

55

We can compare performance metrics of the portfolio for LightGBM and benchmark

strategies in the table 4.9.

Table 4.9: Performance metrics of the portfolio for LightGBM and benchmark

strategies

Model Total return Average return per

trade

Return p.a.

Benchmark

(Buy&Hold)
0.6927 0.0009 0.2315

LightGBM 0.1189 0.0002 0.0398

Model Sharpe ratio

(annualized)

Maximum

Drawdown

T-test (p-value)

Benchmark

(Buy&Hold)
1.6256 -0.1196 0.0025

LightGBM 0.8006 -0.0740 0.0833

Total return of the strategy based on LightGBM’s prediction is much lower that the

benchmark. According to T-test the average daily return of LightGBM model is not

higher than 0 on the 95% confidence level.

The last machine learning method that we used is Long Short-Term Memory neural

network. We used Keras API with Tensorflow library as a backend. Our neural network

consists of one LSTM layer and one sigmoid layer, which takes an output of the LSTM

layer and makes a binary prediction of the next day’s direction. Our input training data

should be a three dimensional tensor in the following format [samples, timesteps,

features]. Samples is a number of our observations, timesteps is a size of a look-back

window. After several experiments we set timesteps parameter to 10 (this represent two

business weeks) as a relatively stable window for different time structures of the stocks.

We also fixed a size of batch and number of epochs in order to have training time on an

acceptable level. Two parameters that we wanted to optimize are dropout and number of

units in the LSTM layer. The dropout represents a fraction of the units to drop for the

linear transformation of the inputs and of the recurrent state. This parameter is needed to

prevent early overfitting. We used for dropout values of 0.2, 0.4, 0.6 and number of

units were 5, 10, 20. The time needed to find optimal parameters and make predictions

for all stocks was almost 4.5 hours. Results of LSTM neural networks are presented in

the table 4.10.

56

Table 4.10: The results of LSTM neural networks
Ticker Model Accuracy Gini

coefficient

Total

return

Average return

per trade

Return

p.a.

Sharpe ratio

(annualized)

Maximum

Drawdown

T-test

(p-value)

MCD LSTM 0.5477 0.0473 0.5078 0.0007 0.1697 1.0606 -0.0927 0.0335

HON LSTM 0.5477 0.0087 0.5598 0.0007 0.1871 1.1351 -0.1713 0.0250

BA LSTM 0.5451 -0.0079 0.7519 0.0010 0.2513 1.1760 -0.3235 0.0211

INTC LSTM 0.5445 0.0038 0.3113 0.0004 0.1042 0.4815 -0.3514 0.2027

PEP LSTM 0.5332 0.0004 0.3422 0.0005 0.1144 0.8750 -0.0784 0.0653

AMGN LSTM 0.5318 0.0120 0.1137 0.0002 0.0380 0.1590 -0.3450 0.3917

GOOGL LSTM 0.5305 -0.0008 0.6329 0.0008 0.2115 0.9680 -0.1346 0.0472

IBM LSTM 0.5239 0.0458 0.2079 0.0003 0.0695 0.3647 -0.2330 0.2642

WMT LSTM 0.5212 -0.0075 -0.1429 -0.0002 -0.0477 -0.2457 -0.4119 0.6645

JPM LSTM 0.5199 0.0028 0.6255 0.0008 0.2090 0.9810 -0.2230 0.0451

JNJ LSTM 0.5199 0.0199 0.4010 0.0005 0.1340 0.9663 -0.2517 0.0475

AAPL LSTM 0.5193 -0.0037 0.3035 0.0004 0.1016 0.4429 -0.4406 0.2221

KO LSTM 0.5186 -0.0083 0.2387 0.0003 0.0798 0.6246 -0.0847 0.1402

AMZN LSTM 0.5139 -0.0260 0.0495 0.0001 0.0166 0.0586 -0.3696 0.4597

GE LSTM 0.5119 0.0227 0.3001 0.0004 0.1003 0.5034 -0.1903 0.1921

XOM LSTM 0.5053 0.0068 0.3214 0.0004 0.1074 0.5896 -0.4323 0.1541

PG LSTM 0.4775 -0.0478 -0.3020 -0.0004 -0.1009 -0.7282 -0.4158 0.8959

MSFT LSTM 0.4708 -0.0191 -0.0428 -0.0001 -0.0143 -0.0635 -0.3609 0.5437

CVX LSTM 0.4682 -0.0683 -0.1427 -0.0002 -0.0477 -0.2128 -0.4363 0.6436

NVDA LSTM 0.4576 -0.0289 -0.9308 -0.0012 -0.3111 -0.7791 -1.0329 0.9109

57

The results in table clearly show that LSTM networks could not reach better accuracy

and performance than other models. The highest accuracy score 54.77% has MCD

ticker but it is less than in logistic regression and ARMA-GARCH models. At the down

of the list we again can see MSFT and NVDA stocks. Highly likely that these results

that demonstrated each machine learning method can be explained by different patterns

in train and test data for these tickers.

Figure 4.13: Cumulative returns of the NVDA stock

We see on the plot above that behavior of cumulative returns of NVDA stock for the

LSTM network is very similar to other machine learning models.

When we take a look at cumulative returns of stocks with highest accuracy we can

observe that LSTM networks make their predictions very close to Buy & Hold strategy.

This case is shown in figure 4.14.

58

Figure 4.14. Cumulative returns of the HON stock

Portfolio results for LSTM networks in comparison to the benchmark are shown in the

table 4.11.

Table 4.11: Performance metrics of the portfolio for LSTM and benchmark strategies

Model Total return Average return per

trade

Return p.a.

Benchmark

(Buy&Hold)
0.6927 0.0009 0.2315

LSTM 0.3234 0.0004 0.1081

Model Sharpe ratio

(annualized)

Maximum

Drawdown

T-test (p-value)

Benchmark

(Buy&Hold)
1.6256 -0.1196 0.0025

LSTM 1.3919 -0.1372 0.0081

Profitability of LSTM networks is not as good as the benchmark. In the same time this

is the only one model that demonstrated higher maximum drawdown compared to

Buy & Hold.

In order to compare all models we created merged table with all results in the following

pages.

59

Table 4.12: The results of all models and the benchmark strategy
Ticker Model Accuracy Gini

coefficient

Total

return

Average return

per trade

Return

p.a.

Sharpe ratio

(annualized)

Maximum

Drawdown

T-test

(p-value)

AAPL

Buy & Hold 0.5219 -0.0423 0.4786 0.0006 0.1602 0.6989 -0.3048 0.1137

ARMA-GARCH 0.5166 -0.0458 0.5625 0.0007 0.1882 0.8217 -0.2478 0.0780

Logistic regression 0.5299 0.0346 0.8076 0.0011 0.2703 1.1814 -0.1298 0.0207

LightGBM 0.5445 0.1025 1.0314 0.0014 0.3452 1.5114 -0.1465 0.0046

LSTM 0.5193 -0.0037 0.3035 0.0004 0.1016 0.4429 -0.4406 0.2221

AMZN

Buy & Hold 0.5418 -0.0346 1.3266 0.0018 0.4440 1.5773 -0.2019 0.0033

ARMA-GARCH 0.5511 0.0209 1.1753 0.0016 0.3933 1.3960 -0.1834 0.0080

Logistic regression 0.5418 0.0085 0.8033 0.0011 0.2688 0.9522 -0.2888 0.0501

LightGBM 0.4622 -0.0038 -1.0278 -0.0014 -0.3440 -1.2196 -1.0452 0.9823

LSTM 0.5139 -0.0260 0.0495 0.0001 0.0166 0.0586 -0.3696 0.4597

GOOGL

Buy & Hold 0.5345 -0.0179 0.6857 0.0009 0.2292 1.0490 -0.1092 0.0350

ARMA-GARCH 0.5345 -0.0179 0.6857 0.0009 0.2292 1.0490 -0.1092 0.0350

Logistic regression 0.5053 0.0171 0.5386 0.0007 0.1800 0.8233 -0.1979 0.0774

LightGBM 0.4801 0.0041 -0.4735 -0.0006 -0.1582 -0.7235 -0.5511 0.8944

LSTM 0.5305 -0.0008 0.6329 0.0008 0.2115 0.9680 -0.1346 0.0472

MSFT

Buy & Hold 0.5345 -0.0783 0.6865 0.0009 0.2294 1.0200 -0.1705 0.0390

ARMA-GARCH 0.5358 -0.0237 0.2823 0.0004 0.0943 0.4187 -0.2271 0.2346

Logistic regression 0.4602 -0.0184 -0.8752 -0.0012 -0.2925 -1.3021 -0.9024 0.9877

LightGBM 0.4841 0.0171 0.0779 0.0001 0.0260 0.1155 -0.3894 0.4209

LSTM 0.4708 -0.0191 -0.0428 -0.0001 -0.0143 -0.0635 -0.3609 0.5437

60

JPM

Buy & Hold 0.5186 -0.0073 0.6141 0.0008 0.2053 0.9631 -0.2330 0.0481

ARMA-GARCH 0.5053 -0.0070 0.3035 0.0004 0.1015 0.4754 -0.1642 0.2056

Logistic regression 0.5385 0.0607 0.4782 0.0006 0.1598 0.7494 -0.2081 0.0976

LightGBM 0.4814 -0.0341 -0.4120 -0.0005 -0.1377 -0.6455 -0.5363 0.8677

LSTM 0.5199 0.0028 0.6255 0.0008 0.2090 0.9810 -0.2230 0.0451

JNJ

Buy & Hold 0.5106 0.0038 0.3724 0.0005 0.1245 0.8973 -0.1348 0.0605

ARMA-GARCH 0.5053 0.0039 0.2912 0.0004 0.0973 0.7010 -0.2266 0.1128

Logistic regression 0.5093 -0.0003 0.2995 0.0004 0.1001 0.7212 -0.1747 0.1063

LightGBM 0.5093 -0.0021 0.3262 0.0004 0.1090 0.7857 -0.1547 0.0873

LSTM 0.5199 0.0199 0.4010 0.0005 0.1340 0.9663 -0.2517 0.0475

XOM

Buy & Hold 0.5080 -0.0734 0.0061 0.0000 0.0020 0.0112 -0.2840 0.4923

ARMA-GARCH 0.5080 -0.0533 -0.1316 -0.0002 -0.0440 -0.2413 -0.3445 0.6617

Logistic regression 0.5305 0.0665 0.3520 0.0005 0.1177 0.6460 -0.1734 0.1321

LightGBM 0.5199 0.0394 0.0074 0.0000 0.0025 0.0136 -0.2127 0.4906

LSTM 0.5053 0.0068 0.3214 0.0004 0.1074 0.5896 -0.4323 0.1541

WMT

Buy & Hold 0.5332 -0.1032 0.2158 0.0003 0.0721 0.3712 -0.4308 0.2605

ARMA-GARCH 0.5199 -0.0535 0.1113 0.0001 0.0372 0.1915 -0.2834 0.3703

Logistic regression 0.5119 -0.0140 -0.3570 -0.0005 -0.1193 -0.6143 -0.8392 0.8559

LightGBM 0.5106 0.0174 0.0030 0.0000 0.0010 0.0052 -0.2645 0.4964

LSTM 0.5212 -0.0075 -0.1429 -0.0002 -0.0477 -0.2457 -0.4119 0.6645

61

INTC

Buy & Hold 0.5432 -0.0772 0.3365 0.0004 0.1126 0.5205 -0.3272 0.1843

ARMA-GARCH 0.5246 -0.0935 0.1172 0.0002 0.0392 0.1813 -0.3669 0.3770

Logistic regression 0.5153 -0.0070 0.1178 0.0002 0.0394 0.1822 -0.4087 0.3764

LightGBM 0.5511 0.0549 0.7999 0.0011 0.2677 1.2406 -0.2290 0.0162

LSTM 0.5445 0.0038 0.3113 0.0004 0.1042 0.4815 -0.3514 0.2027

CVX

Buy & Hold 0.5053 -0.1215 0.2269 0.0003 0.0758 0.3384 -0.4473 0.2792

ARMA-GARCH 0.5027 -0.0995 -0.3628 -0.0005 -0.1213 -0.5414 -0.6997 0.8253

Logistic regression 0.5133 0.0195 0.3094 0.0004 0.1034 0.4616 -0.5478 0.2124

LightGBM 0.4801 -0.0422 -0.2488 -0.0003 -0.0831 -0.3711 -0.7129 0.7394

LSTM 0.4682 -0.0683 -0.1427 -0.0002 -0.0477 -0.2128 -0.4363 0.6436

IBM

Buy & Hold 0.5172 -0.0133 0.0628 0.0001 0.0210 0.1102 -0.3304 0.4244

ARMA-GARCH 0.5212 0.0081 0.2506 0.0003 0.0838 0.4398 -0.2249 0.2235

Logistic regression 0.5000 -0.0123 0.1495 0.0002 0.0500 0.2623 -0.3710 0.3251

LightGBM 0.5212 0.0220 0.1615 0.0002 0.0540 0.2834 -0.3305 0.3121

LSTM 0.5239 0.0458 0.2079 0.0003 0.0695 0.3647 -0.2330 0.2642

PG

Buy & Hold 0.5027 -0.0525 0.1043 0.0001 0.0348 0.2511 -0.2774 0.3321

ARMA-GARCH 0.5040 -0.0411 0.0996 0.0001 0.0333 0.2400 -0.2327 0.3391

Logistic regression 0.5040 0.0067 0.1597 0.0002 0.0534 0.3848 -0.1384 0.2529

LightGBM 0.5000 0.0000 0.1712 0.0002 0.0572 0.4125 -0.1488 0.2379

LSTM 0.4775 -0.0478 -0.3020 -0.0004 -0.1009 -0.7282 -0.4158 0.8959

62

BA

Buy & Hold 0.5570 -0.1099 0.9053 0.0012 0.3026 1.4177 -0.2910 0.0072

ARMA-GARCH 0.5570 -0.1099 0.9053 0.0012 0.3026 1.4177 -0.2910 0.0072

Logistic regression 0.5557 0.0289 1.0037 0.0013 0.3355 1.5732 -0.1967 0.0033

LightGBM 0.4775 0.0441 -0.2803 -0.0004 -0.0937 -0.4373 -0.5565 0.7752

LSTM 0.5451 -0.0079 0.7519 0.0010 0.2513 1.1760 -0.3235 0.0211

KO

Buy & Hold 0.5265 -0.0799 0.1728 0.0002 0.0577 0.4518 -0.1212 0.2174

ARMA-GARCH 0.5252 -0.0687 0.1713 0.0002 0.0572 0.4479 -0.1212 0.2194

Logistic regression 0.5066 -0.0282 0.2083 0.0003 0.0696 0.5447 -0.1117 0.1732

LightGBM 0.5027 -0.0321 0.1716 0.0002 0.0574 0.4488 -0.1338 0.2189

LSTM 0.5186 -0.0083 0.2387 0.0003 0.0798 0.6246 -0.0847 0.1402

PEP

Buy & Hold 0.5332 -0.0807 0.3160 0.0004 0.1056 0.8077 -0.1010 0.0814

ARMA-GARCH 0.5424 -0.0164 0.2269 0.0003 0.0758 0.5796 -0.1229 0.1582

Logistic regression 0.4814 -0.0514 0.0734 0.0001 0.0245 0.1874 -0.1718 0.3730

LightGBM 0.5000 0.0254 0.0389 0.0001 0.0130 0.0993 -0.2570 0.4318

LSTM 0.5332 0.0004 0.3422 0.0005 0.1144 0.8750 -0.0784 0.0653

NVDA

Buy & Hold 0.5597 -0.0109 2.2960 0.0030 0.7674 1.9337 -0.1895 0.0004

ARMA-GARCH 0.5610 -0.0110 2.2782 0.0030 0.7614 1.9185 -0.1895 0.0005

Logistic regression 0.4814 0.0189 -1.2040 -0.0016 -0.4024 -1.0085 -1.2480 0.9593

LightGBM 0.4920 0.0115 -1.1626 -0.0015 -0.3886 -0.9738 -1.1718 0.9537

LSTM 0.4576 -0.0289 -0.9308 -0.0012 -0.3111 -0.7791 -1.0329 0.9109

63

MCD

Buy & Hold 0.5610 -0.0703 0.6917 0.0009 0.2312 1.4475 -0.1152 0.0062

ARMA-GARCH 0.5623 -0.0397 0.6694 0.0009 0.2237 1.4006 -0.1267 0.0078

Logistic regression 0.5610 0.0033 0.6308 0.0008 0.2108 1.3193 -0.1216 0.0114

LightGBM 0.4536 0.0142 -0.3443 -0.0005 -0.1151 -0.7184 -0.5107 0.8928

LSTM 0.5477 0.0473 0.5078 0.0007 0.1697 1.0606 -0.0927 0.0335

AMGN

Buy & Hold 0.5279 0.0093 0.1546 0.0002 0.0517 0.2162 -0.2556 0.3542

ARMA-GARCH 0.5093 -0.0012 0.0754 0.0001 0.0252 0.1055 -0.2879 0.4277

Logistic regression 0.5424 0.0564 0.4874 0.0006 0.1629 0.6821 -0.2605 0.1192

LightGBM 0.5504 0.0857 0.3868 0.0005 0.1293 0.5412 -0.2896 0.1747

LSTM 0.5318 0.0120 0.1137 0.0002 0.0380 0.1590 -0.3450 0.3917

GE

Buy & Hold 0.4987 0.1206 -0.2795 -0.0004 -0.0934 -0.4688 -0.4557 0.7911

ARMA-GARCH 0.5093 0.0872 -0.0425 -0.0001 -0.0142 -0.0713 -0.2701 0.5490

Logistic regression 0.5106 0.0205 -0.2512 -0.0003 -0.0839 -0.4212 -0.3173 0.7668

LightGBM 0.4854 -0.0295 -0.1715 -0.0002 -0.0573 -0.2875 -0.4463 0.6904

LSTM 0.5119 0.0227 0.3001 0.0004 0.1003 0.5034 -0.1903 0.1921

HON

Buy & Hold 0.5451 -0.0627 0.4861 0.0006 0.1625 0.9850 -0.1419 0.0444

ARMA-GARCH 0.5398 -0.0667 0.2767 0.0004 0.0925 0.5600 -0.1935 0.1665

Logistic regression 0.5398 0.0067 0.3638 0.0005 0.1216 0.7367 -0.2823 0.1015

LightGBM 0.5451 0.0314 0.5974 0.0008 0.1997 1.2118 -0.1212 0.0182

LSTM 0.5477 0.0087 0.5598 0.0007 0.1871 1.1351 -0.1713 0.0250

64

In a similar way we can summarize performance metrics of the portfolio for all models

in the table 4.13.

Table 4.13: Portfolio results for all models

Model Total return Average return per

trade

Return p.a.

Benchmark

(Buy&Hold)
0.6927 0.0009 0.2315

ARMA-GARCH 0.6744 0.0009 0.2254

Logistic regression 0.3723 0.0005 0.1244

LightGBM 0.1189 0.0002 0.0398

LSTM 0.3234 0.0004 0.1081

Model Sharpe ratio

(annualized)

Maximum

Drawdown

T-test (p-value)

Benchmark

(Buy&Hold)
1.6256 -0.1196 0.0025

ARMA-GARCH 1.7747 -0.1088 0.0011

Logistic regression 1.7331 -0.0620 0.0014

LightGBM 0.8006 -0.0740 0.0833

LSTM 1.3919 -0.1372 0.0081

Also we can plot cumulative returns of the portfolio of all models.

Figure 4.15. Portfolio cumulative returns

65

According to the table the most profitable strategy is Buy & Hold. However, ARMA-

GARCH and logistic regression models demonstrated better risk-adjusted returns

according to the Sharpe ratios. We can also see in the figure 4.15 that ARMA-GARCH

model almost replicates Buy & Hold curve. This explains very close performance

results.

Development of logistic regression curve is smooth and much less volatile than ARMA-

GARCH and Buy & Hold curves. That is why logistic regression reached similar

Sharpe ratio as ARMA-GARCH while having much lower total return.

LightGBM model has the worst performance among all models. In the first half f the

testing period the curve moves similarly to logistic regression curve. But then it starts to

go down.

LSTM networks could not provide better results than other machine learning methods in

spite of their effectiveness on sequential data. Usually, neural networks demonstrate

good results when there are large amounts of the training data. However, the size of

historical daily stock data is not enough for LSTM networks to learn complex

structures. Supposedly LSTM networks can be successfully applied to lower timeframes

such as hours or minutes. However, it is a subject of further research.

66

Conclusion

The main goal of thesis was to use time series models and several machine learning

methods for prediction of stock returns and to test whether applied models can

outperform simple Buy & Hold strategy. Also we aimed to compare performance of the

models between each other and to explore the potential of machine learning algorithms

on financial markets.

In this thesis we described theoretical background of time series models for modeling

stock returns such as ARMA and GARCH models for modeling volatility. Also we

introduced basic principles of machine learning field and tasks that can be solved using

machine learning approaches. We described several methods for classification such as

logistic regression and gradient boosted trees. Likewise we investigated theoretical

framework of Long Short-Term Memory neural networks that became very popular in

recent times by their effectiveness on sequential data.

In the empirical part of the thesis we applied selected models on the real stock data of

20 tickers, which were chosen from the list of top companies by market capitalistion on

the New York Stock Exchange and NASDAQ. We used daily stock data over a period

from 01.01.2006 to 31.12.2017. The entire period we divide into train (from 01.01.2016

to 31.12.2014) and test (from 01.01.2015 to 31.12.2017) parts. The train data were split

into 10 folds for conducting a cross-validation during the training in order to select the

best meta parameters of the models. The selected and fitted parameters then were used

in models on the test data for making predictions.

In case of time series models only logarithmic returns were used as predictors. To the

contrary, machine learning methods allow us to use more predictors so we used all set

of stock data such as Adjusted Close, Open, High and Low prices, Volumes. Also we

generated some additional features such as log returns, 1-day lagged Open and Close

prices, difference between Open and 1-day lagged Close prices, number of month, day

and day of week.

To assess the quality of our models we used accuracy and Gini coefficient metrics. For

measuring performance of strategies based on predictions produced by the models we

used such metrics as total return, return p.a., average return per trade, annualized Sharpe

67

ratio, maximum drawdown and t-test on whether average return per trade is greater than

zero. These metrics allow us to consider our models from different points of view.

The results of ARMA-GARCH models were very close to the results of Buy & Hold

strategy. If we look at the cumulative return curve of the portfolio of all stocks we can

notice that it almost replicates the development of Buy & Hold strategy. Even if we

investigate the results for each stock individually we cannot observe some significant

outperform or underperform of Buy & Hold strategy. However, ARMA-GARCH

models demonstrated slightly less riskiness in terms of maximum drawdown.

Logistic regression models demonstrated poorer performance than Buy & Hold strategy

and ARMA-GARCH. The total return of the portfolio of the stocks was almost 2 times

less than the benchmark (Buy & Hold). In the same time individual stocks had very

different results. While several stocks significantly outperformed Buy & Hold the other

stocks demonstrated almost mirrored development of the cumulative returns. However,

from the portfolio point of view the riskiness of logistic regression models was much

lower than of Buy & Hold and ARMA-GARCH. That allowed to reach similar risk-

adjusted returns as the benchmark.

Gradient boosted trees showed the worst performance and quality of classification

among all models. For almost half of the stock the accuracy of predictions was under

50%. From the portfolio point of view the average return per trade according to t-test is

not greater than zero on the 95% confidence level.

LSTM networks also did not demonstrate higher performance than Buy & Hold

strategy. The reason of that may be the fact that such complicated neural networks

usually give good results when there is a big amount of data for training. Unfortunately,

daily stock data do not have sufficient number of observations.

We should also note that in the thesis we did not count any commissions or fees in

calculation of performance so in real world profitability of the strategies would be even

worse.

Generally we can conclude that stock markets seem to be relatively effective and

described models are not able to beat the market systematically. In several cases some

models demonstrated positive prediction power but the question is whether they can

sustain these results in the future.

68

List of references

ARLT, J., ARLTOVÁ, M., RUBLIKOVÁ, E.: Analýza ekonomických časových řad s

příklady. Skripta VSE Praha, 148 str., 2002.

BISHOP, Christopher M.: Pattern Recognition and Machine Learning. Springer, 2006.

BOLLERSLEV, Tim: Generalized Autoregressive Conditional Heteroskedasticity.

Journal of Econometrics, 1986

BROCKWELL, P.J., DAVIS, R.A.: Introduction to Time Series and Forecasting.

Springer, 2002.

BROWNLEE, Jason: A Gentle Introduction to Backpropagation Through Time.

[online]. Available from: https://machinelearningmastery.com/gentle-introduction-

backpropagation-time/

BROWNLEE, Jason: A Gentle Introduction to the Gradient Boosting Algorithm for

Machine Learning. [online]. Available from:

https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-

machine-learning/

BROWNLEE, Jason: Bagging and Random Forest Ensemble Algorithms for Machine

Learning. [online]. Available from: https://machinelearningmastery.com/bagging-and-

random-forest-ensemble-algorithms-for-machine-learning/

CAMPBELL, J.Y., LO, A.W., MACKINLAY, A.C.: The Econometrics of Financial

Markets. Princeton University Press, 1996.

CHEN, Tianqi: Intoruction to Boosted Trees. Tutorial [online]. Available from:

https://homes.cs.washington.edu/~tqchen/data/pdf/BoostedTree.pdf

CRYER, J.D., CHAN, K.-S.: Time Series Analysis With Applications in R. Springer,

2008.

DEEPLEARNING4J. A Beginner’s Guide to Recurrent Networks and LSTMs. [online].

Available from: https://deeplearning4j.org/lstm

FLACH, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of

Data. Cambridge University Press, 2012.

https://machinelearningmastery.com/gentle-introduction-backpropagation-time/
https://machinelearningmastery.com/gentle-introduction-backpropagation-time/
https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://machinelearningmastery.com/bagging-and-random-forest-ensemble-algorithms-for-machine-learning/
https://machinelearningmastery.com/bagging-and-random-forest-ensemble-algorithms-for-machine-learning/
https://homes.cs.washington.edu/~tqchen/data/pdf/BoostedTree.pdf
https://deeplearning4j.org/lstm

69

GOODFELLOW, I., BENGIO, Y., COURVILLE A.: Deep Learning [online]. MIT

Press, 2016. Available from: http://www.deeplearningbook.org/

HALLS-MOORE, Michael: ARIMA+GARCH Trading Strategy on the S&P500 Stock

Market Index Using R [online]. Available from:

https://www.quantstart.com/articles/ARIMA-GARCH-Trading-Strategy-on-the-SP500-

Stock-Market-Index-Using-R

HAMILTON, J.D.: Time Series Analysis. Princeton Unoversity Press, 1994.

HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J.: The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, 2009.

HOCHREITER, Sepp & SCHMIDHUBER, Jürgen: Long Short-term Memory. Neural

computation 9(8):1735-80, December 1997.

HYNDMAN, Rob J., ATHANASOPOULOS, G.: Forecasting: principles and practice

[online]. Available from: https://www.otexts.org/fpp

JAMES, G., WITTEN, D., HASTIE, T., TIBSHIRANI, R.: An Introduction to

Statistical Learning with Applications in R. Springer, 2013.

KARPATHY, Adnrej: The Unreasonable Effectiveness of Recurrent Neural Networks.

[online]. Available from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

KUHN, M., JOHNSON, K.: Applied Predictive Modeling. Springer, 2013.

MIKUSHEVA, Anna: Time Series Analysis. Lecture notes [online]. Available from:

https://ocw.mit.edu/courses/economics/14-384-time-series-analysis-fall-2013/lecture-

notes/

MURPHY, Kevin P.: Machine Learning: A Probabilistic Perspective. The MIT Press,

2012.

NG, Andrew, BONEH, Dan: Machine learning course. Lecture notes [online].

Available from: http://cs229.stanford.edu/syllabus.html

OLAH, Christopher: Understanding LSTM Networks. [online]. Available from:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RASCHKA, S.: Python Machine Learning. Packt Publishing, 2015.

http://www.deeplearningbook.org/
https://www.quantstart.com/articles/ARIMA-GARCH-Trading-Strategy-on-the-SP500-Stock-Market-Index-Using-R
https://www.quantstart.com/articles/ARIMA-GARCH-Trading-Strategy-on-the-SP500-Stock-Market-Index-Using-R
https://www.otexts.org/fpp
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://ocw.mit.edu/courses/economics/14-384-time-series-analysis-fall-2013/lecture-notes/
https://ocw.mit.edu/courses/economics/14-384-time-series-analysis-fall-2013/lecture-notes/
http://cs229.stanford.edu/syllabus.html
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

70

RICHERT, W., COELHO, Luis Pedro: Building Machine Learning Systems with

Python. Packt Publishing, 2013.

RUPPERT, D.: Statistics and Data Analysis for Financial Engineering. Springer, 2011

SCHAPIRE, Robert E.: The Strength of Weak Learnability. Machine Learning. Boston,

MA: Kluwer Academic Publishers. 5 (2): 197–227, 1990.

SHUMWAY, R.H., STOFFER, D.S.: Time Series Analysis and Its Applications with R

Examples. Springer, 2011.

SRIVASTAVA, Pranjal: Essentials of Deep Learning : Introduction to Long Short

Term Memory. [online]. Available from:

https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-

introduction-to-lstm/

TSAY, Ruey S.: Analysis of Financial Time Series, 3rd Edition. John Wiley & Sons,

August 2010

WERBOS, Paul J.: Backpropagation through time: what it does and how to do it.

Article [online]. Available from:

http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf

https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf

71

Appendix

R code:

library(Quandl)
library(tseries)
library(forecast)
library(rugarch)
library(ggplot2)
library(MLmetrics)
library(PerformanceAnalytics)

stocks =
c('AAPL','AMZN','GOOGL','MSFT','JPM','JNJ','XOM','WMT','INTC','CVX','IBM'
,'PG','BA','KO','PEP','NVDA','MCD','AMGN','GE','HON')

path = 'University/Data/'
Quandl.api_key('-ssfpXQYbXiJG1FnjoUE')

Downloading stock prices
for (stock in stocks){
 assign(paste(stock), Quandl(paste('WIKI/', stock, sep=''), start_date =
 "2006-01-01", end_date = "2017-12-31", type = "xts"))
}

Fitting ARMA+GARCH models and forecasting returns for each stock
for (stock in stocks){

 # Calculate log returns and add additional columns
 data = get(stock)
 data$LogReturns = Return.calculate(data$`Adj. Close`, method = 'log')
 data$LogReturns[1] = 0
 data$TrueDirection = ifelse(data$LogReturns < 0, -1, 1)
 data$PredictedReturns = 0
 data$PredictedDirection = 0
 test_data = data['2015-01-01/']
 predictionsLength = length(data$LogReturns) -
 length(data$LogReturns['/2015-01-01'])

 # Find optimal arma model
 arimaModel = auto.arima(data$LogReturns['/2015-01-01'], ic = 'aic',
 stepwise = F)

 garch = ugarchspec(variance.model = list(garchOrder = c(1,1)),
 mean.model = list(armaOrder =
 arimaorder(arimaModel)[c(1,3)], include.mean = TRUE),
 distribution.model = 'std')

72

 # Make predictions
 for (i in 0:(predictionsLength-1)){
 window = length(data$LogReturns['/2015-01-01'])+i
 trainReturns = data$LogReturns[1:window]
 garchFit = tryCatch(ugarchfit(
 garch, trainReturns, solver = 'hybrid'
), error=function(e) e, warning=function(w) w)

 if(is(garchFit, "warning")) {
 test_data$PredictedDirection[index(data$LogReturns[(window+1)])]=1
 print(paste(stock,index(trainReturns[window]),1,"warning",sep=","))
 } else {
 garchForecast = ugarchforecast(garchFit, n.ahead=1)
 prediction = garchForecast@forecast$seriesFor
 test_data$PredictedDirection[index(data$LogReturns[(window+1)])] =
 ifelse(prediction[1] < 0, -1, 1)
 print(paste(stock, colnames(prediction), ifelse(prediction[1] < 0,
 -1, 1), sep=","))
 }
 }

 # Calculate cumulative returns and save data to csv files
 test_data$PredictedReturns =
 test_data$LogReturns*test_data$PredictedDirection
 test_data$CumulativeReturns = cumsum(test_data$LogReturns)
 test_data$CumulativePredictedReturns =
 cumsum(test_data$PredictedReturns)
 assign(paste(stock, '_test', sep=''), test_data)
 write.zoo(get(paste(stock, '_test', sep='')),
 paste(path,stock,'_test.csv',sep=''), sep = ',')
}

Calculating performance metrics for each stock
for(stock in stocks){
 test_data = get(paste(stock, '_test', sep=''))
 results = data.frame()
 results[1:2,'Ticker'] = stock
 results[1, 'Model'] = 'Benchmark (Buy&Hold)'
 results[2, 'Model'] = 'ARMA+GARCH

 results[1, 'Accuracy'] = Accuracy(rep(1, length(test_data$LogReturns)),
 as.numeric(test_data$TrueDirection))
 results[2, 'Accuracy'] =
 Accuracy(as.numeric(test_data$PredictedDirection),
 as.numeric(test_data$TrueDirection))
 results[1, 'Gini coefficient'] = Gini(rep(1,
 length(test_data$LogReturns)), as.numeric(test_data$TrueDirection))
 results[2, 'Gini coefficient'] =
 Gini(as.numeric(test_data$PredictedDirection),
 as.numeric(test_data$TrueDirection))
 results[1, 'Total return'] = Return.cumulative(test_data$LogReturns,
 geometric = F)
 results[2, 'Total return'] =
 Return.cumulative(test_data$LogReturns*test_data$PredictedDirection,
 geometric = F)
 results[1, 'Average return per trade'] = mean(test_data$LogReturns)

73

 results[2, 'Average return per trade'] =
 mean(test_data$PredictedReturns)
 results[1, 'Return p.a.'] = Return.annualized(test_data$LogReturns,
 scale = 252, geometric = F)
 results[2, 'Return p.a.'] =
 Return.annualized(test_data$LogReturns*test_data$PredictedDirection,
 scale = 252, geometric = F)
 results[1, 'Sharpe ratio (annualized)'] =
 SharpeRatio.annualized(test_data$LogReturns, scale = 252, geometric=F)
 results[2, 'Sharpe ratio (annualized)'] =
 SharpeRatio.annualized(test_data$PredictedReturns, scale = 252,
geometric = F)
 results[1, 'Maximum Drawdown'] = maxDrawdown(test_data$LogReturns,
 geometric = F, invert = F)
 results[2, 'Maximum Drawdown'] =
 maxDrawdown(test_data$PredictedReturns, geometric = F, invert = F)
 results[1, 'T-test (p-value)'] =
 t.test(as.vector(test_data$LogReturns), alternative =
 'greater')$p.value[1]
 results[2, 'T-test (p-value)'] =
 t.test(as.vector(test_data$PredictedReturns), alternative =
 'greater')$p.value[1]
 assign(paste(stock,'_results',sep=''), results)
 write.table(get(paste(stock, '_results', sep='')),
 paste(path,stock,'_results.csv',sep=''), sep = ',', row.names = F)
}

Python code:

import pandas as pd
import numpy as np
import quandl
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import TimeSeriesSplit, GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score, roc_auc_score
from scipy.stats import ttest_1samp
import seaborn as sns
import matplotlib.pyplot as plt
import lightgbm as lgb
import warnings
from tensorflow import set_random_seed
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.optimizers import RMSprop

74

def max_drawdown(cum_returns, invert = True):
"""
Function to calculate maximum drawdown
"""
highest = [0]
ret_idx = cum_returns.index
drawdown = pd.Series(index = ret_idx)

for t in range(1, len(ret_idx)):

cur_highest = max(highest[t-1], cum_returns[t])
highest.append(cur_highest)
drawdown[t]= (1 + cum_returns[t]) / (1 + highest[t]) - 1

if invert:

return -1 * drawdown.min()
else:

return drawdown.min()

def onesided_ttest(returns, mean = 0, alternative = 'greater'):
"""
Function returns p-value of one-sided t-test
"""
ttest = ttest_1samp(returns, mean)
if alternative == 'greater':

if ttest[0] > 0:
return ttest[1]/2

else:
return 1 - ttest[1]/2

if alternative == 'less':

if ttest[0] > 0:
return 1 - ttest[1]/2

else:
return ttest[1]/2

def gini_coef(y_true, y_pred):
"""
Function to calculate Gini coefficient
"""
return 2*roc_auc_score(y_true, y_pred)-1

def Sharpe(returns, n=252):

"""
Function to calculate Sharpe ratio
"""
sharpe = returns.mean() * np.sqrt(n) / returns.std()
return sharpe

def train_test_split(df):

"""
Function to split stock data into train and test data sets
"""
X_train, X_test = df.drop('Tomorrow Direction', axis=1)[:'2014-12-
30'], \
df.drop('Tomorrow Direction', axis=1)['2014-12-31':]

75

y_train, y_test = df['Tomorrow
Direction'].loc[X_train.first_valid_index():'2014-12-30'], \
df['Tomorrow Direction']['2014-12-31':]
return X_train, X_test, y_train, y_test

def lstm_train_test_split(df, window = 10):
"""
Function to split stock data into train and test data sets for LSTM
model
"""
X_train, X_test = df.drop('Tomorrow Direction',
axis=1)[len(df[:'2006-01-03'])-window:len(df[:'2014-12-30'])], \
df.drop('Tomorrow Direction', axis=1)[(len(df[:'2014-
12-31'])-window):len(df[:'2017-12-28'])]
y_train, y_test = df['Tomorrow Direction'].loc['2006-01-03':'2014-12-
30'], \
df['Tomorrow Direction']['2014-12-31':'2017-12-28']
return X_train, X_test, y_train, y_test

def lstm_preprocess(df):
"""
Function to preprocess stock data for LSTM model
"""

Select only Adjusted columns
df_copy = df[['Adj. Open','Adj. High','Adj. Low','Adj. Close','Adj.
Volume']]
df_copy = df_copy.rename(columns={'Adj. Open':'Open','Adj.
High':'High','Adj. Low':'Low',
'Adj. Close':'Close','Adj.
Volume':'Volume'})

Compute log returns
df_copy['Log Returns'] = np.log(df_copy['Close']) -
np.log(df_copy['Close'].shift(1))
df_copy['Log Returns'][0] = 0

Add difference between today's Open and yesterday's Close;
yeasterday's Open and Close
df_copy['Open_Close'] = df_copy['Open'] - df_copy['Close'].shift(1)
df_copy['Open_Lag_1'] = df_copy['Open'].shift(1)
df_copy['Close_Lag_1'] = df_copy['Close'].shift(1)

Add month, day and day of week columns
df_copy['Month'] = df_copy.index.month
df_copy['Day'] = df_copy.index.day
df_copy['Day_of_week'] = df_copy.index.dayofweek
df_copy = df_copy.dropna()

Create a target column, which we want to predict
df_copy['Tomorrow Direction'] = np.where(df_copy['Log
Returns'].shift(-1) < 0, 0, 1)

return df_copy

76

def preprocess(df):
"""
Function to preprocess stock data
"""
Select only Adjusted columns
df_copy = df[['Adj. Open','Adj. High','Adj. Low','Adj. Close','Adj.
Volume']]
df_copy = df_copy.rename(columns={'Adj. Open':'Open','Adj.
High':'High','Adj. Low':'Low','Adj. Close':'Close','Adj.
Volume':'Volume'})

Compute log returns
df_copy['Log Returns'] = np.log(df_copy['Close']) -
np.log(df_copy['Close'].shift(1))
df_copy['Log Returns'][0] = 0

Add difference between today's Open and yesterday's Close;
yeasterday's Open and Close
df_copy['Open_Close'] = df_copy['Open'] - df_copy['Close'].shift(1)
df_copy['Open_Lag_1'] = df_copy['Open'].shift(1)
df_copy['Close_Lag_1'] = df_copy['Close'].shift(1)

Add month, day and day of week columns
df_copy['Month'] = df_copy.index.month
df_copy['Day'] = df_copy.index.day
df_copy['Day_of_week'] = df_copy.index.dayofweek
df_copy = df_copy.dropna()

Create a target column, which we want to predict
df_copy['Tomorrow Direction'] = np.where(df_copy['Log
Returns'].shift(-1) < 0, -1, 1)
return df_copy

def build_score_model(X_train, y_train, X_test, y_test, units=10,
dropout=0.2):

"""
Function to compute average validation accuracy for LSTM model
"""

timesteps = X_train.shape[1]
features = X_train.shape[2]
model = Sequential()
model.add(LSTM(units, dropout=dropout, recurrent_dropout=dropout,
input_shape=(timesteps, features)))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(lr=0.001),
metrics=['accuracy'])
hist = model.fit(X_train, y_train, batch_size=10, epochs=10,
validation_split=0.1, shuffle=False, verbose=0)

acc = np.array(hist.history['val_acc']).mean()
return acc

quandl.ApiConfig.api_key = '-ssfpXQYbXiJG1FnjoUE'

77

stocks =
['AAPL','AMZN','GOOGL','MSFT','JPM','JNJ','XOM','WMT','INTC','CVX','IBM',
'PG','BA','KO','PEP','NVDA','MCD','AMGN','GE','HON']

Download stock data
for stock in stocks:

vars()[stock] = quandl.get('WIKI/' + stock, start_date='2006-01-01',
end_date='2017-12-31')

Fit Logistic regression and predict for all stocks
best_conf = []
for stock in stocks:

Preprocess data
df = preprocess(globals()[stock])
X_train, X_test, y_train, y_test = train_test_split(df)

Find optimal parameters, train model and make predictions
cv = TimeSeriesSplit(n_splits=10)
scaler = StandardScaler()
logreg = LogisticRegression(random_state=42)
pipeline = Pipeline([
('scaler', scaler),
('logreg', logreg)
])
param_grid = {
'logreg__C': np.linspace(0.001,1,20)
}
grid = GridSearchCV(pipeline, cv=cv, param_grid=param_grid,
scoring='accuracy')
grid.fit(X_train,y_train)
pred = grid.predict(X_test)

Prepare table for test data
df_test = globals()[stock][['Adj. Open','Adj. High','Adj. Low','Adj.
Close','Adj. Volume']]
df_test = df_test.rename(columns={'Adj. Open':'Open','Adj.
High':'High','Adj. Low':'Low','Adj. Close':'Close','Adj.
Volume':'Volume'})
df_test['Log Returns'] = np.log(df_test['Close']) -
np.log(df_test['Close'].shift(1))
df_test = df_test['2015-01-01':]
df_test['True Direction'] = np.where(df_test['Log Returns'] < 0,-1,1)
df_test['Predicted Direction'] = pred[:-1]
df_test['Predicted Returns'] = df_test['Predicted Direction'] *
df_test['Log Returns']
df_test['Cumulative Returns'] = df_test['Log Returns'].cumsum()
df_test['Cumulative Predicted Returns'] = df_test['Predicted
Returns'].cumsum()

best_conf.append([stock, grid.best_params_['logreg__C'],
grid.best_score_, grid.score(X_test, y_test)])
vars()[stock+'_log'] = df_test
df_test.to_csv('Data/'+stock+'_log.csv')

78

Save best parameters for Logistic regression in a csv file
best_conf = pd.DataFrame(data=best_conf,
columns=['Ticker','C','Validation accuracy','Test accuracy'])
best_conf.to_csv('Data/Best_conf_log.csv')

Calculate total results for ARMA-GARCH + Logistic regression
total_results = pd.DataFrame(columns=['Ticker','Model','Accuracy','Gini
coefficient','Total return','Average return per trade',
'Return p.a.','Sharpe ratio (annualized)','Maximum Drawdown','T-test
(pvalue)'])
for stock in stocks:

df_test = globals()[stock+'_log']
df_results = pd.read_csv('Data/' + stock + '_results_arma.csv')
df_results.loc[len(df_results), 'Model'] = 'Logistic regression'
df_results.loc[(len(df_results)-1), 'Ticker'] = stock
df_results.loc[(len(df_results)-1), 'Accuracy'] =
accuracy_score(df_test['True Direction'], df_test['Predicted
Direction'])
df_results.loc[(len(df_results)-1), 'Gini coefficient'] =
gini_coef(df_test['True Direction'], df_test['Predicted Direction'])
df_results.loc[(len(df_results)-1), 'Total return'] =
df_test['Predicted Returns'].sum()
df_results.loc[(len(df_results)-1), 'Average return per trade'] =
df_test['Predicted Returns'].mean()
df_results.loc[(len(df_results)-1), 'Return p.a.'] =
df_test['Predicted Returns'].mean() * 252
df_results.loc[(len(df_results)-1), 'Sharpe ratio (annualized)'] =
Sharpe(df_test['Predicted Returns'])
df_results.loc[(len(df_results)-1), 'Maximum Drawdown'] =
max_drawdown(cum_returns=df_test['Cumulative Predicted Returns'],
invert=False)
df_results.loc[(len(df_results)-1), 'T-test (p-value)'] =
onesided_ttest(returns=df_test['Predicted Returns'])
df_results.to_csv('Data/' + stock + '_results_log.csv', index=False)
total_results = total_results.append(df_results)
vars()[stock+'_results_log'] = df_results

total_results.reset_index(drop=True, inplace=True)
total_results.to_csv('Data/total_results_log.csv', index=False)

Fit LightGBM and predict for all stocks
best_conf = []
for stock in stocks:

warnings.filterwarnings(action='ignore', category=DeprecationWarning)

Preprocess data
df = preprocess(globals()[stock])
X_train, X_test, y_train, y_test = train_test_split(df)

Find optimal parameters, train and make predictions
cv = TimeSeriesSplit(n_splits=10)
lgbm = lgb.LGBMClassifier(random_state=42, max_depth=3,
n_estimators=1000, num_leaves=5, subsample=0.8)
param_grid = {'learning_rate': [0.0001,0.001,0.01,0.1],
'colsample_bytree': [0.1,0.25,0.5,0.75,1]}

79

grid = GridSearchCV(lgbm, cv=cv, param_grid=param_grid,
scoring='accuracy')
grid.fit(X_train,y_train)
pred = grid.predict(X_test)

Prepare table for test data
df_test = globals()[stock][['Adj. Open','Adj. High','Adj. Low','Adj.
Close','Adj. Volume']]
df_test = df_test.rename(columns={'Adj. Open':'Open','Adj.
High':'High','Adj. Low':'Low','Adj. Close':'Close','Adj.
Volume':'Volume'})
df_test['Log Returns'] = np.log(df_test['Close']) -
np.log(df_test['Close'].shift(1))
df_test = df_test['2015-01-01':]
df_test['True Direction'] = np.where(df_test['Log Returns'] < 0,-1,1)
df_test['Predicted Direction'] = pred[:-1]
df_test['Predicted Returns'] = df_test['Predicted Direction'] *
df_test['Log Returns']
df_test['Cumulative Returns'] = df_test['Log Returns'].cumsum()
df_test['Cumulative Predicted Returns'] = df_test['Predicted
Returns'].cumsum()
best_conf.append([stock, grid.best_params_['learning_rate'],
grid.best_params_['colsample_bytree'], grid.best_score_,
grid.score(X_test, y_test)])
vars()[stock+'_gbm'] = df_test
df_test.to_csv('Data/'+stock+'_gbm.csv')
print(stock + ' - Done!')

Write the best parameters to a csv file
best_conf = pd.DataFrame(data=best_conf, columns=['Ticker','Learning
rate','Subsample ratio of columns',
'Validation accuracy','Test accuracy'])
best_conf.to_csv('Data/Best_conf_gbm.csv')

Calculate total results for ARMA-GARCH + Logistic regression + LightGBM
total_results = pd.DataFrame(columns=['Ticker','Model','Accuracy','Gini
coefficient','Total return','Average return per trade',
'Return p.a.','Sharpe ratio (annualized)','Maximum Drawdown','T-test
(pvalue)'])
for stock in stocks:

df_test = globals()[stock+'_gbm']
df_results = pd.read_csv('Data/' + stock + '_results_log.csv')
df_results.loc[len(df_results), 'Model'] = 'LightGBM'
df_results.loc[(len(df_results)-1), 'Ticker'] = stock
df_results.loc[(len(df_results)-1), 'Accuracy'] =
accuracy_score(df_test['True Direction'], df_test['Predicted
Direction'])
df_results.loc[(len(df_results)-1), 'Gini coefficient'] =
gini_coef(df_test['True Direction'], df_test['Predicted Direction'])
df_results.loc[(len(df_results)-1), 'Total return'] =
df_test['Predicted Returns'].sum()
df_results.loc[(len(df_results)-1), 'Average return per trade'] =
df_test['Predicted Returns'].mean()
df_results.loc[(len(df_results)-1), 'Return p.a.'] =
df_test['Predicted Returns'].mean() * 252
df_results.loc[(len(df_results)-1), 'Sharpe ratio (annualized)'] =

80

Sharpe(df_test['Predicted Returns'])
df_results.loc[(len(df_results)-1), 'Maximum Drawdown'] =
max_drawdown(cum_returns=df_test['Cumulative Predicted Returns'],
invert=False)
df_results.loc[(len(df_results)-1), 'T-test (p-value)'] =
onesided_ttest(returns=df_test['Predicted Returns'])
df_results.to_csv('Data/' + stock + '_results_gbm.csv', index=False)
total_results = total_results.append(df_results)
vars()[stock+'_results_gbm'] = df_results

total_results.reset_index(drop=True, inplace=True)
total_results.to_csv('Data/total_results_gbm.csv', index=False)

Train LSTM network and make predictions for all stocks
for stock in stocks:

Preprocess data
window = 10
df = lstm_preprocess(globals()[stock])
X_train, X_test, y_train, y_test = lstm_train_test_split(df,
window=window)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Transform data to tensors
X_train, y = [], []
for i in range(window,X_train_scaled.shape[0]+1):

X_train.append(X_train_scaled[i-window:i])
y.append(y_train[i-window])

X_train = np.array(X_train)
y_train = np.array(y)
X_test, y_t = [], []
for i in range(window,X_test_scaled.shape[0]+1):

X_test.append(X_test_scaled[i-window:i])
y_t.append(y_test[i-window])

X_test = np.array(X_test)
y_test = np.array(y_t)

Train LSTM network for different input parameters
df_params = []
for unit in [5,10,20]:

for drop in [0.2,0.4,0.6]:
score = build_score_model(X_train, y_train, X_test, y_test,
unit, drop)
df_params.append([unit,drop,score])

df_params =
pd.DataFrame(data=df_params,columns=['Units','Dropout','Accuracy'])

Select the best parameters
best_units = df_params[df_params['Accuracy'] ==
df_params['Accuracy'].max()]['Units'].values[0]
best_drop = df_params[df_params['Accuracy'] ==
df_params['Accuracy'].max()]['Dropout'].values[0]

81

Train LSTM network on training data with best parameters
timesteps = X_train.shape[1]
features = X_train.shape[2]
batch = 10
model = Sequential()
model.add(LSTM(best_units, dropout=best_drop,
recurrent_dropout=best_drop, input_shape=(timesteps, features)))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(lr=0.001),
metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=batch, epochs=10,
shuffle=False, verbose=1)

Make predictions
pred = np.where(model.predict_classes(X_test, batch_size=batch) == 0,
-1, 1)

Prepare table for test data
df_test = globals()[stock][['Adj. Open','Adj. High','Adj. Low','Adj.
Close','Adj. Volume']]
df_test = df_test.rename(columns={'Adj. Open':'Open','Adj.
High':'High','Adj. Low':'Low','Adj. Close':'Close','Adj.
Volume':'Volume'})
df_test['Log Returns'] = np.log(df_test['Close']) -
np.log(df_test['Close'].shift(1))
df_test = df_test['2015-01-01':]
df_test['True Direction'] = np.where(df_test['Log Returns'] < 0,-1,1)
df_test['Predicted Direction'] = pred
df_test['Predicted Returns'] = df_test['Predicted Direction'] *
df_test['Log Returns']
df_test['Cumulative Returns'] = df_test['Log Returns'].cumsum()
df_test['Cumulative Predicted Returns'] = df_test['Predicted
Returns'].cumsum()

best_conf.append([stock, best_units, best_drop,
df_params['Accuracy'].max(),model.evaluate(X_test, y_test,
batch_size=batch)[1]])

vars()[stock+'_lstm'] = df_test
df_test.to_csv('Data/'+stock+'_lstm.csv')
print(stock + ' - Done!')

Write best parameters to a csv file
best_conf = pd.DataFrame(data=best_conf,
columns=['Ticker','Units','Dropout','Validation accuracy','Test
accuracy'])
best_conf.to_csv('Data/Best_conf_lstm.csv')

Calculate total results for ARMA-GARCH + Logistic regression + LightGBM
+ LSTM
total_results = pd.DataFrame(columns=['Ticker','Model','Accuracy','Gini
coefficient','Total return','Average return per trade',
'Return p.a.','Sharpe ratio (annualized)','Maximum Drawdown','T-test
(pvalue)'])
for stock in stocks:

82

df_test = globals()[stock+'_lstm']
df_results = pd.read_csv('Data/' + stock + '_results_gbm.csv')
df_results.loc[len(df_results), 'Model'] = 'LSTM'
df_results.loc[(len(df_results)-1), 'Ticker'] = stock
df_results.loc[(len(df_results)-1), 'Accuracy'] =
accuracy_score(df_test['True Direction'], df_test['Predicted
Direction'])
df_results.loc[(len(df_results)-1), 'Gini coefficient'] =
gini_coef(df_test['True Direction'], df_test['Predicted Direction'])
df_results.loc[(len(df_results)-1), 'Total return'] =
df_test['Predicted Returns'].sum()
df_results.loc[(len(df_results)-1), 'Average return per trade'] =
df_test['Predicted Returns'].mean()
df_results.loc[(len(df_results)-1), 'Return p.a.'] =
df_test['Predicted Returns'].mean() * 252
df_results.loc[(len(df_results)-1), 'Sharpe ratio (annualized)'] =
Sharpe(df_test['Predicted Returns'])
df_results.loc[(len(df_results)-1), 'Maximum Drawdown'] =
max_drawdown(cum_returns=df_test['Cumulative Predicted Returns'],
invert=False)
df_results.loc[(len(df_results)-1), 'T-test (p-value)'] =
onesided_ttest(returns=df_test['Predicted Returns'])
df_results.to_csv('Data/' + stock + '_results_lstm.csv', index=False)
total_results = total_results.append(df_results)
vars()[stock+'_results_lstm'] = df_results

total_results.reset_index(drop=True, inplace=True)
total_results.to_csv('Data/total_results_lstm.csv', index=False)

#Calculating portfolio performance metrics
port_res = pd.DataFrame()
temp = []
for stock in stocks:
 df_test = globals()[stock+'_log']
 price = df_test['Close'][0]
 pcs = round(1000/price)
 amounts = [price*pcs,]
 for each in df_test['Log Returns'][1:]:
 amounts.append(amounts[-1]*np.exp(each))
 if (df_test[df_test['Log Returns'] == each].index[0] ==
pd.Timestamp('2017-08-04 00:00:00') \
 or df_test[df_test['Log Returns'] == each].index[0] == '2017-08-
04') and df_test.shape[0] == 753:
 amounts.append(amounts[-1])
 temp.append(amounts)

df_benchmark = pd.DataFrame(temp)
df_benchmark = df_benchmark.transpose()
df_benchmark.columns = stocks

df_benchmark['Portfolio'] = df_benchmark.apply(sum, axis=1)
df_benchmark['Log Returns'] = np.log(df_benchmark['Portfolio']) -
np.log(df_benchmark['Portfolio'].shift(1))
df_benchmark['Log Returns'][0] = 0
df_benchmark['True Direction'] = np.where(df_benchmark['Log Returns'] <
0, -1, 1)

83

df_benchmark['Predicted Direction'] = 1
df_benchmark['Cumulative Log Returns'] = df_benchmark['Log
Returns'].cumsum()
portfolio = df_benchmark[['Portfolio','Log Returns','True
Direction','Predicted Direction','Cumulative Log Returns']]

results = []
results.append('Benchmark')
results.append('Portfolio')
results.append(accuracy_score(portfolio['True Direction'],
portfolio['Predicted Direction']))
results.append(gini_coef(portfolio['True Direction'],
portfolio['Predicted Direction']))
results.append(portfolio['Log Returns'].sum())
results.append(portfolio['Log Returns'].mean())
results.append(portfolio['Log Returns'].mean() * 252)
results.append(Sharpe(portfolio['Log Returns']))
results.append(max_drawdown(cum_returns=portfolio['Cumulative Log
Returns'], invert=False))
results.append(onesided_ttest(returns=portfolio['Log Returns']))
port_res = port_res.append(pd.DataFrame(results).transpose())

for stock in stocks:
 vars()[stock+'_arma'] = pd.read_csv('../Data/' + stock + '_arma.csv',
index_col='Index')
 vars()[stock+'_arma'] = vars()[stock+'_arma'].iloc[:,7:]
 vars()[stock+'_arma'].columns = ['Open', 'High', 'Low', 'Close',
'Volume', 'Log Returns','True Direction','Predicted Returns', 'Predicted
Direction','Cumulative Returns','Cumulative Predicted Returns']

for model in ['arma','log','gbm','lstm']:
 temp = []
 for stock in stocks:
 df_test = globals()[stock+'_'+model]
 price = df_test['Close'][0]
 pcs = round(1000/price)
 amounts = [price*pcs,]
 for each in df_test['Predicted Returns'][1:]:
 amounts.append(amounts[-1]*np.exp(each))
 if (df_test[df_test['Predicted Returns'] == each].index[0] ==
pd.Timestamp('2017-08-04 00:00:00') \
 or df_test[df_test['Predicted Returns'] == each].index[0]
== '2017-08-04') and df_test.shape[0] == 753:
 amounts.append(amounts[-1])
 temp.append(amounts)

 df_temp = pd.DataFrame(temp)
 df_temp = df_temp.transpose()
 df_temp.columns = stocks

 df_temp['Portfolio'] = df_temp.apply(sum, axis=1)
 df_benchmark['Predicted Returns_'+model] =
np.log(df_temp['Portfolio']) - np.log(df_temp['Portfolio'].shift(1))
 df_benchmark['Predicted Returns_'+model][0] = 0
 df_benchmark['Predicted Direction_'+model] =
np.where(df_benchmark['Predicted Returns_'+model] < 0, -1, 1)

84

 df_benchmark['Cumulative Predicted Returns_'+model] =
df_benchmark['Predicted Returns_'+model].cumsum()
 portfolio = df_benchmark[['Portfolio','Log Returns','True
Direction','Predicted Direction_'+model,'Predicted Returns_'+model,
 'Cumulative Log Returns','Cumulative
Predicted Returns_'+model]]

 results = []
 results.append(model)
 results.append('Portfolio')
 results.append(accuracy_score(portfolio['True Direction'],
portfolio['Predicted Direction_'+model]))
 results.append(gini_coef(portfolio['True Direction'],
portfolio['Predicted Direction_'+model]))
 results.append(portfolio['Predicted Returns_'+model].sum())
 results.append(portfolio['Predicted Returns_'+model].mean())
 results.append(portfolio['Predicted Returns_'+model].mean() * 252)
 results.append(Sharpe(portfolio['Predicted Returns_'+model]))
 results.append(max_drawdown(cum_returns=portfolio['Cumulative
Predicted Returns_'+model], invert=False))
 results.append(onesided_ttest(returns=portfolio['Predicted
Returns_'+model]))
 port_res = port_res.append(pd.DataFrame(results).transpose())

port_res.columns = ['Model','Ticker','Accuracy','Gini','Total
Return','Avg Return','Return p.a.','Sharpe','Max DD','T-test']

port_res.to_excel('../Data/portfolio_results.xlsx', index=False)

	Introduction
	Chapter 1. Stock returns
	1.1 Gross returns
	1.2 Net returns
	1.3 Log returns

	Chapter 2. Time series models
	2.1 Stationarity and autocorrelation function
	2.2 Autoregressive models
	2.3 Moving-average models
	2.4 ARMA models
	2.5 GARCH models

	Chapter 3. Machine learning methods
	3.1 Machine learning tasks
	3.2 Supervised machine learning algorithms
	3.2.1 Logistic regression
	3.2.2 Decision trees
	3.2.3 Bagging and boosting
	3.2.4 Artificial neural networks

	Chapter 4. Stock returns prediction
	4.1 Methodology
	4.2 Data
	4.3 Quality and performance metrics
	4.4 Results of time series models
	4.5 Results of machine learning methods

	Conclusion
	List of references
	Appendix

