
University of Economics in Prague 

Faculty of Finance and Accounting 

Department of Banking and Insurance 

 

 

 

 

 

MASTER THESIS 

Application of time series models and machine 

learning methods for stock returns prediction 

 

 

 

 

 

Author: Oleksandr Vodolazskyi 

Supervisor: Ing. Milan Fičura 

Academic Year: 2018  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declaration of Authorship 

I hereby declares that I compiled this thesis independently using only the listed 

resources and literature. 

 

Prague,                                                  ______________ 

  Signature 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

I would like to thank my supervisor Milan Fičura for his valuable comments, ideas and 

professional advice during preparation of the thesis. 

  



Abstract 

 

In this diploma thesis we applied time series models and machine learning methods on 

real stock data to predict future returns movements. The time series models include 

ARMA and GARCH models. We also used several machine learning algorithms such as 

logistic regression, gradient boosted trees and Long Short-Term Memory neural 

networks. The models were used to predict future daily returns movements. Then 

strategies based on predictions were evaluated by their profitability and riskiness. Also 

we measured the quality of the models from the point of accuracy and discrimination 

power. The main goal of the thesis is to compare results of the models application with 

the Buy & Hold strategy and between each other. 

 

 

 

 

 

Abstrakt 

 

V této diplomové práci jsme aplikovali modely časových řad a metody strojového učení 

na reálná akciová data pro predikci pohybů budoucích výnosů. Mezi modely časových 

řad patří modely ARMA a GARCH. Také jsme požili několik algoritmů strojového 

učení, jako je logistická regrese, gradient boosted trees a takzvané Long Short-Term 

Memory neuronové sítě. Tyto modely byly použité pro predikci pohybů budoucích 

výnosů akcí. Strategie založené na předpovědích byly vyhodnoceny podle jejich 

ziskovosti a rizikovosti. Také jsme změřili kvalitu modelů z hlediska přesnosti a 

diskriminační schopnosti. Hlavním cílem práce je porovnání výsledků aplikace 

zvolených modelů se strategií Buy & Hold a mezi sebou. 
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Introduction 

The ability to predict the movement of the stock market is what every investor or trader 

would like to possess. Unfortunately, this is one of the most difficult tasks in financial 

world. There are mane approaches how to make investment and trading decisions. 

Among them we can distinguish time series models which try to find the stochastic 

process describing the behaviour of stock prices or returns. Time series models have 

been used for many years for modeling stock returns.  

In recent years machine learning methods are gaining the popularity as an effective tool 

for making predictions in different areas. One of these areas is the stock market where 

machine learning algorithms can learn to predict its future behaviour. 

The main goal of the thesis is to apply time series models and machine learning 

methods for prediction futures stock returns and to examine how effective they are in 

this task. We want to measure the performance of the strategies based on different 

models and compare them between each other and with the simple Buy & Hold 

strategy. Our aim is to verify whether the time series models and machine learning 

methods are able to beat the market systematically. Obtained results of our research can 

help to understand the potential of the models and to identify directions of further 

exploration. 

The thesis is divided into four chapters. In the first chapter we describe different 

approaches for calculation stock returns and explain why logarithmic returns is the most 

common type. In the second chapter is devoted to theoretical basis of time series models 

such as ARMA and GARCH. In the third chapter we introduce basic principles of 

machine learning and tasks which it is able to solve. Also we describe theoretical 

background of several machine learning methods such as logistic regression, gradient 

boosted trees and Long Short-Term Memory neural networks. The last chapter is 

devoted to the results of application of time series models and machine learning 

methods for stock returns prediction. 
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Chapter 1. Stock returns 

Stock Returns 

In Chapter 1 we present the basic principles of stock returns calculation. The Chapter is 

divided into three sections where we describe gross returns, net returns and log returns. 

1.1 Gross returns 

The goal of trading on stock markets is to make a profit. The amount of a profit or a loss 

from a trading strategy depends on changes in prices of stocks and the amount of stocks 

being traded. Hence traders are rather interested in a relative measure of their profits in 

order to estimate how well a certain strategy performs. Returns are able to provide this 

measure because they are expressed as a relation of changes in price to the initial price.  

Campbell, Lo, and MacKinlay (1997) give two main reasons for using returns. First, for 

average investors, return of an asset is a complete and scale-free summary of the 

investment opportunity. Second, return series are easier to handle than price series 

because the former have more attractive statistical properties, such as stationarity and 

ergodicity. 

Let Pt be the price of a stock at time index t. For the sake of simplicity, we assume that a 

stock pays no dividends. 

For one period from date t - 1 to date t the simple gross return can be calculated as: 

𝑃𝑡

𝑃𝑡−1
= 1 + 𝑅𝑡 (2.1) 

Returns are scale-free, meaning that they do not depend on units (dollars, cents, etc.).  

The gross return over the k periods is the product of the k single-period gross returns 

(from time t - k to time t): 

𝑃𝑡

𝑃𝑡−𝑘
=

𝑃𝑡

𝑃𝑡−1
×

𝑃𝑡−1

𝑃𝑡−2
× … ×

𝑃𝑡−𝑘+1

𝑃𝑡−𝑘
= 1 + 𝑅𝑡(𝑘) = (1 + 𝑅𝑡)(1 + 𝑅𝑡−1) … (1 + 𝑅𝑡−𝑘)(2.2) 

Thus, the k-period simple gross return is just the product of the k one-period simple gross 

returns. This is called a compound or cumulative return. 
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1.2 Net returns 

Net return over the period from time t - 1 to time t is: 

𝑅𝑡 =
𝑃𝑡

𝑃𝑡−1
− 1 =

𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1

(2.3) 

Pt - Pt-1 in the numerator is the revenue over the period from time t - 1 to time t and Pt-1 

is the initial price of a stock. Therefore, the net return can be considered as the relative 

profit.  

1.3 Log returns 

Log returns, also called continuously compounded returns, are denoted by rt can be 

obtained by taking the natural logarithm of the simple gross return of a stock: 

𝑟𝑡 = 𝑙𝑛(1 + 𝑅𝑡) = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
) = 𝑝𝑡 − 𝑝𝑡−1 (2.4) 

where pt = ln(Pt) is called the log price. 

There several advantages of using log returns. 

First, if we assume that prices are distributed log normally, then 𝑙𝑛(1 + 𝑟𝑡) is normally 

distributed. 

Second, small values of log return can be approximately interpreted as the simple net 

return: 

𝑟𝑡 ≈ 𝑅𝑡 , 𝑅𝑡 ≪ 1 

The difference between the functions of net and log returns is showed on the following 

figure. 
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Figure 1.1: Net and log returns (Author’s own work) 

 

As can be seen from the graph, for large values the log function gives us smaller returns 

than simple net. If simple net return can be interpreted as the percentage change of the 

price, then log returns can also be approximately interpreted as the percentage change of 

the price. 

Third advantage of using log returns is time-additivity. A k-period log return is simply 

the sum of the single-period log returns: 

𝑟𝑡(𝑘) = ln(1 + 𝑅𝑡(𝑘)) = ln((1 + 𝑅𝑡)(1 + 𝑅𝑡−1) … (1 + 𝑅𝑡−𝑘+1))

= ln(1 + 𝑅𝑡) + ln(1 + 𝑅𝑡−1) + ⋯ + ln(1 + 𝑅𝑡−𝑘+1)

= 𝑟𝑡 + 𝑟𝑡−1 + ⋯ + 𝑟𝑡−𝑘+1 

Fourth advantage is numerical stability: addition of small numbers is numerically safer 

than multiplying small numbers. For many interesting problems, this is a serious potential 

problem. To solve this, either the algorithm must be modified to be numerically robust or 

it can be transformed into a numerically safe summation via logs.  
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Chapter 2. Time series models 

Time series models 

Chapter 2 is devoted to the basic theory of time series models. Specifically, we describe 

main definitions used in time series analysis, present ARMA models for time series 

forecasting and GARCH models for volatility forecasting. 

2.1 Stationarity and autocorrelation function 

A time series is a chronologically ordered sequence of values of a variable at equally 

spaced time intervals. Considering log returns rt of a stock as an ordered collection of 

random variables over time, we have a time series {rt}. 

One of the most important concepts in time series analysis is stationarity. 

Definition 1. A time series {rt} is said to be strictly stationary if for each k, t, and n, the 

joint distribution of (rt, …, rt+k) is identical to that of (rt+n, …, rt+k+n). 

Strict stationarity is a very strong assumption that is hard to verify empirically, because 

it requires that all aspects of behavior of a time series process are unchanged in time. 

Rather than strict stationarity the weaker form of it is usually assumed.  

Definition 2. A time series {rt} is weakly stationary if the mean of rt E(rt) and the 

covariance between rt and rt+k Cov(rt, rt+k) are constant and do not depend on t. 

Henceforth, we will use the term stationary to mean weakly stationary. Usually stock 

prices are not stationary, but it is common to assume that stock returns are stationary.  

The stationary means that statistical structure of the series is independent of time. It allows 

preserving model stability, i.e. the model which parameters and structure are stable in 

time. Stationarity matters because it provides a framework in which averaging (used in 

AR and MA processes that we will be described further) can be properly used to describe 

the time series behaviour. 

Examples of non-stationary and stationary time series are showed on the following 

graphs. 
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Figure 2.1: Development of Google stock price, non-stationary process (Author’s own 

work) 

 

Figure 2.2: Randomly generated time series from a normal distribution, stationary 

process (Author’s own work) 

 

The covariance Cov(rt, rt-k) is called the lag-k autocovariance of rt, which is in fact a 

covariance between realizations of the one variable in different points in time.  
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The autocovariance can be written as: 

𝛾𝑘 = 𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑘) = 𝐸[(𝑟𝑡  −  𝜇)(𝑟𝑡−𝑘  −  𝜇)] (3.1) 

Autocovariance is closely related to autocorrelation of the time series process. The 

correlation coefficient between rt and rt-k is called the lag-k autocorrelation of rt. and can 

be defined as 

𝜌𝑘 =
𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑘)

√𝑉𝑎𝑟(𝑟𝑡)𝑉𝑎𝑟(𝑟𝑡−𝑘)
=

𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑘)

𝑉𝑎𝑟(𝑟𝑡)
=

𝛾𝑘

𝛾0

(3.2) 

The autocorrelation function (ACF) shows linear dependency between rt and its past 

values. For any given stationary time series {rt} we can estimate sample autocovariance 

and autocorrelation functions. First, let’s define the sample mean of rt as �̅� = ∑ 𝑟𝑡 𝑇⁄𝑇
𝑡=1 . 

Then the sample autocovariance function can be estimated as follows: 

𝛾𝑘 = 𝑇−1 ∑(𝑟𝑡 − �̅�)(𝑟𝑡−𝑘 − �̅�)

𝑇−𝑘

𝑖=1

(3.3) 

Using the formula stated above we can estimate the sample autocorrelation function: 

�̂�𝑘 =
𝛾𝑘

𝛾0

(3.4) 

Plotting the ACF can help to understand an autocorrelation structure of a time series. 

Usually the sample ACF is plotted with test bounds which are used for testing the null 

hypothesis that an autocorrelation coefficient is equal to 0. 

For the purposes of demonstrations how ACF plot can be constructed we randomly 

generated 100 numbers from a normal distribution and plot ACF functions with test 

bounds with 5% significance level. 

We can see in figure 2.3 that the autocorrelation coefficients for 20 lags lie in the test 

boundaries meaning that they are equal to 0 on the 5% significance level. We know this 

is true in that case because the data for the plot were generated from a normal 

distribution. 
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Figure 2.3: The sample ACF plot of a randomly generated sequence from a normal 

distribution (Author’s own work) 

 

An alternative way to test the autocorrelation coefficients is to use the Ljung-Box test. 

This test is used for testing whether all the autocorrelation coefficients are equal to 0 

simultaneously. The null hypothesis states that the data are independently distributed 

(i.e. the autocorrelations are 0). The test is provided using the following statistic: 

𝑄(𝑚) = 𝑇(𝑇 + 2) ∑
�̂�𝑘

2

𝑇 − 𝑘

𝑚

𝑘=1

 

The null hypothesis H0 is rejected if Q(m) > χα
2, where χα

2 denotes the 100(1 − α)th 

percentile of a chi-squared distribution with m degrees of freedom. 

2.2 Autoregressive models 

Autoregressive (AR) models are based on the idea that the current value of the time series, 

rt, can expressed as a function of k past values. A simple autoregressive model can be 

written in the following way: 

𝑟𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 + 𝜀𝑡 (3.5) 
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where {𝜀𝑡} is assumed to be a white noise series with mean zero and variance 𝜎𝛼
2. In the 

time series literature, model (3.5) is denoted as an autoregressive model of order 1 or an 

AR(1) model. The term autoregression refers to the regression of the series on its own 

past values (Tsay 2010). 

In a similar way we can define a generalization of the AR(1) model which is the AR(p) 

model: 

𝑟𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 + ⋯ + 𝜙𝑝𝑟𝑡−𝑝 + 𝜀𝑡 = 𝜙0 + ∑ 𝜙𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 (3.6) 

The AR(p) model can be considered as a multiple linear regression model with lagged 

values serving as the explanatory variables. This understanding will help us in following 

chapters. 

The autoregressive processes have, in general, infinite non-zero autocorrelation 

coefficients that decay with the lag. The AR processes have a relatively “long” memory, 

since the current value of a series is correlated with all previous ones, although with 

decreasing coefficients. 

AR models have several properties that should be described. Consider AR(1) model and 

let’s assume that the series is weakly stationary. Under this assumption we have E(rt) = µ, 

Var(rt) = γ0 and Cov(rt, rt-k) = γk, where µ and γ0 are constant and γk is a function of k. 

Takin the expectation of equation 3.5 we obtain 

𝐸(𝑟𝑡) = 𝜙0 + 𝜙1𝐸(𝑟𝑡−1) 

Under the stationary condition of a constant mean we have 

𝜇 = 𝜙0 + 𝜙1𝜇 

𝜇 =
𝜙0

1 −  𝜙1
 

The result gives us two conclusions. First, the mean of rt exists if 𝜙1 ≠ 1. Second, 

E(rt) = 0 if 𝜙0 = 0. Also, we can express 𝜙0 = (1-𝜙1)𝜇and using it we can rewrite our 

AR(1) model in the following way: 

𝑟𝑡 −  𝜇 = 𝜙1(𝑟𝑡−1 −  𝜇) + 𝜀𝑡 (3.7) 
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By repeating the substitution we can express the original equation of AR(1) model as 

follows: 

𝑟𝑡 −  𝜇 = ∑ 𝜙1
𝑖 𝜀𝑡−𝑖

∞

𝑖=0

(3.8) 

Acquired equation represents rt - µ as a linear function of εt-i. Having applied this property 

and the independence of the series {εt} we can obtain E[(rt - µ) εt+1] = 0. By the 

stationarity assumption Cov(rt-1, εt) = E[(rt-1 - µ) εt] = 0. If we the square and then the 

expectation of equation (3.7), we obtain 

𝑉𝑎𝑟(𝑟𝑡) = 𝜙1
2𝑉𝑎𝑟(𝑟𝑡−1) + 𝜎𝜀

2 (3.9) 

where 𝜎𝜀
2 is the variance of εt. Under the stationarity assumption that variance is constant 

we can obtain the following expression of variance: 

𝑉𝑎𝑟(𝑟𝑡) =
𝜎𝜀

2

1 −  𝜙1
2

(3.10) 

Consequently, the weak stationarity of an AR(1) model implies that −1 < 𝜙1 < 1, that is, 

|𝜙1| < 1. This condition is necessary and sufficient for an AR(1) model to be weakly 

stationary. In order to have better understanding how 𝜙1 affects an AR(1) model we can 

plot it for different values of the coefficient. On the first graph with 𝜙1 = 0 we can see 

white noise because only random part εt left in the model. As far as 𝜙1 is increasing the 

data are becoming less stationary. And finally, when 𝜙1 takes a value 1, the data are not 

stationary anymore. An AR(1) model with 𝜙0 = 0 and 𝜙1 = 1 is called random walk. 

The ACF of rt satisfies the following equation: 

𝜌𝑙 = 𝜙1𝜌𝑙−1,    𝑓𝑜𝑟 𝑙 >  0. 

This result says that the ACF of a weakly stationary AR(1) series decays exponentially 

with rate φ1 and starting value ρ0 = 1. 
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Figure 2.4: Randomly generated data by AR(1) model with different values of 𝜙1 

(Author’s own work) 

 

2.3 Moving-average models 

The idea behind AR processes is to feed past data back into the current value of the time 

series. Rather than use past values of the time series in a regression, a moving average 

(MA) model uses past values of the white noise process εt. MA(1) model is defined to be 

𝑟𝑡 = 𝑐0 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 (3.11) 

where 𝑐0 is a constant and {𝜀𝑡} is a white noise series. And similarly, we can construct a 

generalized form of MA process – MA(q) model: 

𝑟𝑡 = 𝑐0 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − . . . − 𝜃𝑞𝜀𝑡−𝑞 (3.12) 

Moving-average models are always weakly stationary because they are finite linear 

combinations of a white noise sequence for which the first two moments are time 

invariant. For example, taking expectation of MA(1) model, we have: 

𝐸(𝑟𝑡) = 𝑐0,  
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which is constant and does not depend on time. In a similar way, taking variance of MA(1) 

model, we have: 

𝑉𝑎𝑟(𝑟𝑡) = (1 + 𝜃1
2)𝜎𝜀

2,  

which is also invariant with respect to time. These two properties can be applied to the 

general MA(q) model. 

Autocorrelation structure of the general MA(q) model is described by the following rules: 

𝜌𝑘 {
≠ 0, 𝑘 ≤ 𝑞
= 0, 𝑘 > 𝑞

 

This means that MA(q) series is linearly dependent on first q-lagged values. That is why 

it is called “finite-memory” model (Tsay 2010). 

The other property of MA models is invertibility. We can rewrite the MA(1) model with 

zero mean as 𝜀𝑡 = 𝑟𝑡 + 𝜃1𝑟𝑡−1. If we continue the substitution we will obtain: 

𝜀𝑡 = 𝑟𝑡 + 𝜃1𝑟𝑡−1 + 𝜃1
2𝑟𝑡−2 + 𝜃1

3𝑟𝑡−3 +  … 

This equation expresses the shock at time t as a linear combination of the present and past 

returns. If |𝜃1| < 1 then we say that MA(1) model is invertible. 

2.4 ARMA models 

An ARMA model combines the ideas of AR and MA models into a compact form so that 

the number of parameters used is kept small, achieving parsimony in parameterization. A 

time series rt follows an ARMA(1,1) model if it satisfies: 

𝑟𝑡– 𝜙1𝑟𝑡−1 = 𝜙0 + 𝜀𝑡– 𝜃1𝜀𝑡−1 (3.13) 

The left-hand side of the (3.13) is the AR component of the model and the right-hand side 

gives the MA component. The constant term is φ0. For this model to be meaningful, we 

need φ1 ≠ θ1; otherwise, there is a cancellation in the equation and the process reduces to 

a white noise series. 

A general ARMA(p, q) model can expressed in the following form: 

𝑟𝑡 = 𝜙0 + ∑ 𝜙𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

 +  𝜀𝑡– ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

(3.14) 

where {εt} is a white noise series and p and q are nonnegative integers. 
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ARMA(1,1) models also has several properties. Under condition of a weakly stationarity 

the mean of rt is defined as follows: 

𝐸(𝑟𝑡) = 𝜇 =
𝜙0

1 −  𝜙1
 

Assuming a weakly stationarity of the time series rt we can also express the variance: 

𝑉𝑎𝑟(𝑟𝑡) =
(1– 2𝜙1𝜃1 + 𝜃1

2)𝜎𝜀
2

1 − 𝜙1
2  

Because the variance is positive, we need |φ1| < 1. 

The ACF of ARMA(1,1) time series is ruled by the following equation: 

𝜌𝑙 = 𝜙1𝜌𝑙−1,    𝑓𝑜𝑟 𝑙 >  1. 

In such a way we can conclude the the ACF of an ARMA(1,1) model behaves almost like 

that of an AR(1) model except the fact that the exponential decay starts with lag 2. 

There are two methods for identifying the order of AR or MA part in ARMA models: 

1. ACF and PACF 

2. Information criteria 

The ACF and PACF are not informative in determining the order of ARMA models, 

therefore we should focus on information criteria. There are two well-known information 

criteria: Akaike information criterion (AIC) and Bayesian information criterion (BIC). 

The Akaike information criterion attempts to balance the complexity of the model, which 

in this case means the number of parameters, with how well it fits the data. If we take the 

likelihood function for a statistical model, which has k parameters, and L maximises the 

likelihood, then the Akaike Information Criterion is given by: 

𝐴𝐼𝐶 = −2 𝑙𝑛(𝐿) + 2𝑘 (3.15) 

The preferred model, from a selection of models, has the minimum AIC of the group. 

One can see that the AIC grows as the number of parameters, k, increases, but is reduced 

if the negative log-likelihood increases. Essentially it penalises models that are tending 

to overfit. 

The Bayesian information criterion has similar behaviour to the AIC in that it penalises 

models for having too many parameters. The difference between the BIC and AIC is that 
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the BIC is stricter with penalisation of additional parameters. The Bayesian information 

criterion is defined as: 

𝐵𝐼𝐶 = −2 𝑙𝑛(𝐿) + 𝑘 𝑙𝑛(𝑛) (3.16) 

where n is the number of data points in the time series. 

Once an ARMA(p,q) model is specified, its parameters can be estimated by either the 

conditional or exact-likelihood method. In addition, the Ljung–Box statistics of the 

residuals can be used to check the adequacy of a fitted model. 

2.5  GARCH models 

ARMA models are used to model the conditional expectation of a process given the 

past, but in an ARMA model the conditional variance given the past is constant. In 

financial data we usually see that a volatility is not constant in time. Therefore, GARCH 

models are widely used for volatility modeling.  

GARCH stands for Generalized Autoregressive Conditional Heteroscedasticity. A 

collection of random variables is heteroskedastic if there are subsets of variables within 

the larger set that have a different variance from the remaining variables. For example, 

if a non-stationary time series possesses seasonal or trend effects, then the variance of 

the series increases with the seasonality or the trend. This type of variability is known as 

heteroscedasticity. Conditional heteroscedasticity means that variance at one time has a 

positive relationship with variance at one or more previous time steps. This leads to the 

fact that periods of high volatility tend to follow periods of high volatility and vice 

versa.  

We should start explanation with a model called ARCH or Autoregressive Conditional 

Heteroscedasticity. The basic idea of ARCH models is that the shock εt of an asset 

return is serially uncorrelated, but dependent, and the dependence of εt can be described 

by a simple quadratic function of its lagged values (Tsay 2010). 

An ARCH(m) model can be written as follows: 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 ,            𝜀𝑡 = 𝜎𝑡𝜖𝑡

𝑚

𝑖=1

(3.17) 
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where {ϵt} is a sequence of independent and identically distributed (i.i.d.) random 

variables with mean zero and variance 1, α0 > 0, and αi ≥ 0 for i > 0. 

Although the ARCH model is relatively simple, it often requires many parameters for 

proper description of an asset return volatility. The ARCH model is appropriate when 

the error variance in an asset returns series follows an AR model. If we apply ARMA 

for the error variance, the result will be a GARCH model. The shock εt of an asset return 

follows a GARCH(m, s) model if 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑠

𝑗=1

,            𝜀𝑡 = 𝜎𝑡𝜖𝑡

𝑚

𝑖=1

(3.18) 

where {ϵt} is a sequence of independent and identically distributed (i.i.d.) random 

variables with mean zero and variance 1, α0 > 0, αi ≥ 0, βj ≥ 0 and ∑ (𝛼𝑖 + 𝛽𝑖) < 1𝑚𝑎𝑥(𝑚,𝑠)
𝑖=1 . 

To see the strengths and weaknesses of GARCH models we should look at the 

GARCH(1,1) model: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2 ,                                0 ≤ 𝛼1, 𝛽1 ≤ 1, (𝛼1 +  𝛽1) < 1  

It is obvious that large 𝜀𝑡−1
2  and 𝜎𝑡−1

2  values lead to large values of 𝜎𝑡
2. It means that 

large εt follows by large εt-1. This behavior is known in financial time series as volatility 

clustering.  

Further in the thesis ARMA and GARCH models described above will be used for 

modeling different stock returns and making prediction of their movements in the 

future. 
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Chapter 3. Machine learning methods 

Machine learning methods 

In Chapter 3 we introduce the basics of machine learning tasks and describe several 

machine learning methods. In the first part of chapter we distinguish different problems 

where machine learning can be applied. In the second part we focus on several machine 

learning methods for classification that will be used in Chapter 4. 

3.1  Machine learning tasks 

Machine learning is a very popular topic nowadays and there are several reasons for 

that. The most exciting thing is that machine learning provides the ability to 

automatically obtain deep insights, recognize unknown and invisible patterns in data, 

and create high performing predictive models from data without being explicitly 

programmed. Machine learning opens new doors for research in finance, especially in 

exploration of stock prices behaviour. 

The formal definition of machine learning was stated by Tom M. Mitchell (1997). 

Definition 3. A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P if its performance at tasks in T, as 

measured by P, improves with experience E. 

The goal of machine learning algorithms is to learn from data, in order to build 

generalizable models that give accurate predictions, or to find patterns, particularly with 

new and unseen similar data. 

Machine learning tasks are usually classified into two broad categories: supervised and 

unsupervised learning.  

 Supervised machine learning can apply what has been learned in the past to new 

data using labeled examples to predict future events. For example, when learning to 

classify handwritten digits, a supervised learning algorithm takes thousands of 

pictures of handwritten digits along with labels containing the correct number each 

image represents. The algorithm will then learn the relationship between the images 

and their associated numbers and apply that learned relationship to classify 

completely new images (without labels) that the machine hasn’t seen before. 
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o Semi-supervised learning - the learning algorithm is provided with a mixture of 

labeled and unlabeled data. The systems that use this method are able to 

considerably improve learning accuracy.  

o Active learning is similar to semi-supervised learning, but the algorithm can 

"ask" for extra labeled data based on what it needs to improve on. 

o Reinforcement learning is a method that interacts with its environment by 

producing actions and discovers penalties or rewards. The goal is maximizing 

lifetime/long-term reward (or minimizing lifetime/long-term penalty). 

 Unsupervised learning - the learning algorithm is provided with unlabeled 

examples. Generally, unsupervised learning is used to uncover some structure or 

pattern in the data. This is a much less well-defined problem, since we are not told 

what kinds of patterns to look for, and there is no obvious error metric to use. 

There are two tasks of supervised learning: regression and classification. In regression 

tasks the goal is to predict a continuous target variable. Examples include a person’s 

age, height, or income, the value of a house, and the price of a stock. In contrast, in 

classification tasks the goal is to predict discrete target variable. For example, a person’s 

gender (male or female), the brand of product purchased (brand A, B, or C), whether a 

person defaults on a debt (yes or no), or a cancer diagnosis (James, Witten, Hastie and 

Tibshirani 2013). 

Regression involves fitting a model to data. The goal is to understand the relationship 

between one set of variables - the dependent or target variables (y) - and another set - 

the independent or explanatory variables (X or x). In cases of just one dependent and 

one explanatory variable, we have simple regression. In scenarios with more than one 

explanatory variable, we have multiple regression. In scenarios with more than one 

dependent variable, we have multivariate regression. 

Classification problems are where the target variables are discrete, and they represent 

some categories or classes. For binary classification, there are only two classes 

(y ∈ {0,1}). Otherwise, the classification problem is called a multiclass classification 

problem - there are more than two classes. 

The most widely used algorithms for supervised learning are: 

 Support Vector Machines 

 Linear regression 
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 Logistic regression 

 Naive Bayes 

 Linear discriminant analysis (LDA) 

 Decision trees 

 k-nearest neighbor algorithm 

 Neural networks 

The two main unsupervised learning tasks are clustering the data into groups by 

similarity and reducing dimensionality to compress the data while maintaining its 

structure and usefulness. In contrast to supervised learning, there is no precise metric for 

how well an unsupervised learning algorithm is doing. Performance is usually 

subjective and domain-specific. 

The most known algorithms for unsupervised learning are: 

 K-means 

 Hierarchical clustering 

 Mixture models 

 Manifold learning algorithms 

 Principal component analysis (PCA) 

 Singular value decomposition 

 Neural networks (Autoencoders, Deep Belief Nets, etc.) 

We can conclude that the scope of machine learning algorithms is wide and not all of 

them are of our interest for the aim of the thesis. As the main goal is to predict stock 

returns we can reduce this task to a binary classification problem: whether the price 

will go up or down in the future, whether the return will be positive or negative in other 

words. That is why further we will focus on regression and classification machine 

learning algorithms. 

3.2  Supervised machine learning algorithms 

There are many methods in machine learning for classification problems. Some of them 

are relatively simple, some are more advanced. The goal of this thesis is to predict stock 

returns or the direction of the price movement. This is a typical classification problem. 

In this part of the chapter we will consider several algorithms that can solve this type of 
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problems: logistic regression as the basic algorithm for classification, decision trees and 

their ensembles and artificial neural networks. 

3.2.1 Logistic regression 

Logistic regression, despite its name, is a linear model for classification rather than 

regression. Logistic regression is also known in the literature as logit regression, 

maximum-entropy classification or the log-linear classifier. Logistic regression 

measures the relationship between the categorical dependent variable and one or more 

independent variables, which are usually (but not necessarily) continuous, by estimating 

probabilities. 

An explanation of logistic regression begins with an explanation of the logistic function. 

The logistic function is useful because it can take an input with any value from negative 

to positive infinity, whereas the output always takes values between zero and one and 

hence is interpretable as a probability. The logistic function σ(z), also known as a 

sigmoid function, is defined as follows: 

𝜎(𝑧) =
𝑒𝑧

𝑒𝑧 + 1
=

1

1 + 𝑒−𝑧
(4.1) 

A graph of the logistic function is shown in figure 3.1. 

 

Figure 3.1: Logistic (sigmoid) function (Author’s own work) 
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The input parameter z of the logistic function is a linear function that is expressed in the 

following way: 

𝑧 =  𝑤0 + 𝑤1𝑥 

This equation can be written in the matrix representation: 

𝑧 = 𝒘𝑇𝑿, (4.2) 

where wT is a vector of weights and X is a matrix of explanatory variables. 

Now the logistic function can be expressed as: 

𝜎(𝒘𝑇𝑿) =
1

1 + 𝑒−𝒘𝑇𝑿
(4.3) 

The sigmoid function can be interpreted as a probability that the target variable is equal 

to 1: 𝜎(𝒘𝑇𝑿) = 𝑃(𝑦 = 1|𝒘𝑇; 𝑿). Since we make a binary classification, we want to 

output a label, not a continuous value. Then we might say that y = 1 if σ(z) ≥ 0.5 and 

y = 0 if σ(z) < 0.5. The line that forms this divide is an example of a decision boundary. 

The regression coefficients are usually estimated using maximum likelihood estimation. 

Unlike linear regression with normally distributed residuals, it is not possible to find a 

closed-form expression for the coefficient values that maximize the likelihood function, 

so that an iterative process must be used instead. 

The negative log-likelihood for logistic regression is given by: 

𝑁𝐿𝐿(𝒘𝑇𝑿) = − ∑[𝑦𝑖𝑙𝑛(𝜎𝑖(𝒘𝑇𝒙𝒊)) + (1 − 𝑦𝑖)𝑙𝑛(1 − 𝜎𝒊(𝒘𝑇𝒙𝒊))]

𝑵

𝒊=𝟏

(4.4) 

This is also called the cross-entropy error function. Another way of writing this equation 

is following. Suppose yi ∈ {−1, +1} instead of yi ∈ {0, 1}. Then we have:  

𝑝(𝑦 = 1) =
1

1+𝑒−𝒘𝑻𝑋
  and (𝑦 = −1) =

1

1+𝑒𝒘𝑻𝑋
 . Hence: 

𝑁𝐿𝐿(𝒘𝑇𝑿) = ∑ 𝑙𝑛(1 + 𝑒𝑥𝑝(−𝒚𝒊𝒘
𝑇𝒙𝒊))

𝑵

𝒊=𝟏

(4.5) 

Minimizing the negative log likelihood is equivalent to maximizing log likelihood. 

Hence, our goal is to minimize the function in the equation 4.5. We can achieve that using 

optimization algorithm known as gradient descent. Gradient descent perhaps is the most 

common optimization algorithm in machine learning. 
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The function we want to minimize or maximize is called the objective function. When we 

are minimizing it, we may also call it the cost function, loss function, or error function. 

Suppose we have a function y = f(x), where both x and y are real numbers. The derivative 

f ′(x) gives the slope of f(x) at the point x. The derivative is therefore useful for minimizing 

a function because it tells us how to change x in order to make a small improvement in y. 

We can thus reduce f(x) by moving x in small steps with opposite sign of the derivative. 

This technique is called gradient descent. 

For functions with multiple inputs, we must make use partial derivatives. The gradient 

generalizes the notion of derivative to the case where the derivative is with respect to a 

vector: the gradient of f is the vector containing all of the partial derivatives, denoted 

∇x f(x). The gradient points directly uphill, and the negative gradient points directly 

downhill. We can decrease f by moving in the direction of the negative gradient. This is 

known as the method of steepest descent or gradient descent. Gradient descent proposes 

a new point: 

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓(𝑥) (4.6) 

where α is the learning rate, a positive scalar determining the size of the step. If α is too 

small, the minimization algorithm takes long time to converge, if α is too big, the 

algorithm can diverge. Gradient descent converges when every element of the gradient is 

zero or, in practice, very close to zero (Goodfellow, Bengio and Courville 2016). An 

illustration of how gradient descent algorithm works is shown in figure 3.2. 

For logistic regression the gradient descent algorithm takes the following form: 

𝑤𝑗
𝑛𝑒𝑤 = 𝑤𝑗

𝑜𝑙𝑑 − 𝛼 ∙ ∑[𝜎(𝒘𝑻𝒙(𝒊)) − 𝑦(𝑖)]

𝑁

𝑖=0

𝑥𝑗
(𝑖) (4.7) 

where ∑ [𝑦(𝑖) − 𝜎(𝒘𝑻𝒙(𝒊))]𝑁
𝑖=0 𝑥𝑗

(𝑖)
 is a gradient of the negative log likelihood. 

One problem with ML estimation is that it can result in overfitting. The reason that the 

MLE can overfit is that it is picking the parameter values that are the best for modeling 

the training data; but if the data is noisy, such parameters often result in complex 

functions. In order to prevent overfitting, we should use regularization. 
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Figure 3.2: Gradient descent method (Credit towardsdatascience.com webpage) 

 

Regularization is any modification we make to a learning algorithm that is intended to 

reduce its generalization error but not its training error. In intuitive terms, we can think 

of regularization as a penalty against complexity. Increasing the regularization strength 

penalizes large weight coefficients. Our goal in an unregularized model is to minimize 

the cost function, i.e., we want to find the weights that correspond to the global cost 

minimum. Now, if we regularize the cost function, we add an additional to our cost 

function that increases as the value of your parameter weights w increase: 

𝐽(𝒘) = 𝑁𝐿𝐿(𝒘) + λ𝒘𝑇𝒘 (𝟒. 𝟖) 

where λ controls the strength of the regularization. This type of regularization is known 

as L2 regularization. 

3.2.2 Decision trees 

Decision trees are defined by recursively partitioning the input space and defining a 

local model in each resulting region of input space. This can be represented by a tree, 

with one leaf per region. Decision trees can be applied to both regression and 

classification problems, but we will focus on classification decision trees only. 

A general schema that represents a decision tree can look as a diagram in figure 3.3. 
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Figure 3.3: Schema of a decision tree (Credit www.analyticsvidhya.com webpage) 

 

Root node represents entire population or sample and it is divided then into two or more 

homogeneous sets. Decision node is a sub-node that splits further into other sub-nodes. 

Leaf or terminal node is a node that has no sub-nodes. 

Basic algorithm for building a decision tree looks as follows: 

1. Start with all the data in the root node. 

2. Find some criteria, which splits outcomes the best way 

3. Divide the data into two groups 

4. Repeat until the groups are too small or sufficiently homogeneous 

5. Prediction of a terminal node is the most common outcome (in case of 

classification task) or the mean of outcomes (in case of regression task) 

There are several criteria that measure the quality of the split for classification decision 

trees. 

Misclassification error is the fraction of the training observations in the node that do 

not belong to the most common class: 

𝐸 = 1 − max
𝑘

(�̂�𝑚𝑘) (4.9) 
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where �̂�𝑚𝑘 represents the proportion of training observations in the mth node that are 

from the kth class. However, misclassification error is not sufficiently sensitive for tree-

growing, and in practice two other measures are used. 

The Gini index is defined by: 

𝐺 = ∑ �̂�𝑚𝑘

𝐾

𝑘=1

(1 − �̂�𝑚𝑘) (4.10) 

The Gini index is a measure of total variance across the K classes. It takes a small value 

if all of the �̂�𝑚𝑘 are close to zero or one. For this reason the Gini index is referred to as 

a measure of node purity - a small value indicates that a node contains generally 

observations from a single class. 

An alternative to the Gini index is cross-entropy, given by: 

𝐻 = − ∑ �̂�𝑚𝑘

𝐾

𝑘=1

ln �̂�𝑚𝑘 (4.11) 

One can show that the cross-entropy will take on a value near zero if the �̂�𝑚𝑘 are all 

near zero or near one. Therefore, like the Gini index, the cross-entropy takes a small 

value if the mth node is pure. 

For example, if we have two classes and �̂�𝑚1 = 𝑝, then: 

 Misclassification error: min(𝑝, 1 − 𝑝) 

 Gini index: 2𝑝 ∙ (1 − 𝑝) 

 Cross-entropy: −𝑝 ∙ ln 𝑝 − (1 − 𝑝) ∙ ln(1 − 𝑝) 

This situation is shown in figure 3.4. 
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Figure 3.4: Node impurity measures for binary classification (Credit 

github.com/diefimov/MTH594_MachineLearning webpage) 

 

To prevent overfitting, we can stop growing the tree if the decrease in the error is not 

sufficient to justify the extra complexity of adding an extra subtree. The standard 

approach, however, is to grow a full tree, and then to perform pruning. To determine 

how far to prune back, we can evaluate the cross-validated error on each subtree, and 

then pick the tree whose CV error is within 1 standard error of the minimum (Murphy 

2012). 

Decision tree models are popular for several reasons: they are easy to interpret, they can 

easily handle mixed discrete and continuous inputs, they perform automatic variable 

selection, they are relatively robust to outliers, they scale well to large data sets, and 

they can be modified to handle missing inputs. 

On the other hand, decision trees have some disadvantages. First, they do not have the 

same level of predictive accuracy as other kinds of model. Another problem is that trees 

can be unstable. In other words, a slight change in the input data can lead to a large 

change in the final tree. However, by aggregating many decision trees, using methods 

like bagging and boosting, the predictive performance of trees can be substantially 

improved. 
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3.2.3 Bagging and boosting 

Usually, with increasing complexity of the model prediction error reduces due to lower 

bias in the model. But at some point, the variance starts to increase and at the end the 

model is overfitted. It is imported to maintain a balance between these two types of 

errors. This is known as the trade-off management of bias-variance errors, which is 

shown in figure 3.5. 

 

Figure 3.5: Optimal model complexity (Credit www.analyticsvidhya.com webpage) 

 

One way to reduce the variance of an estimate is to average together many estimates. 

For example, we can train M different trees on different subsets of the data, chosen 

randomly with replacement, and then compute the ensemble: 

𝑓(𝑥) = ∑
1

𝑀
𝑓𝑚(𝑥)

𝑀

𝑚=1

(4.12) 

where fm is the mth tree. This technique is called bootstrap aggregation or bagging.  

Unfortunately, repeating run of the same learning algorithm on different subsets of the 

data can lead to highly correlated predictors, which limits the amount of variance 

reduction that is possible. Random forests provide an improvement over bagged trees by 

decorrelating the trees. As in bagging, we build a number forest of decision trees on 
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bootstrapped training samples. But when building these decision trees, each time a split 

in a tree is considered, a random sample of m predictors is chosen as split candidates 

from the full set of p predictors. The split is used only for those m predictors. In practice 

usually 𝑚 = √𝑝 is used (James, Witten, Hastie and Tibshirani 2013). 

Another approach for improving the predictions from a decision tree is boosting, which 

is a generally can be applied to many statistical learning methods. Boosting works in a 

similar way to bagging, except that the trees are grown sequentially: each tree is grown 

using information from previously grown trees. Boosting does not involve bootstrap 

sampling. Instead each tree is fit on a modified version of the original data set. 

One of the realization of the boosting is gradient boosting algorithm. The basic 

principles of gradient boosting are as follows: given a loss function and a weak learner 

(e.g., regression trees), the algorithm seeks to find an additive model that minimizes the 

loss function. The algorithm is typically initialized with the best guess of the response. 

The gradient is calculated, and a model is then fit to the residuals to minimize the loss 

function. The current model is added to the previous model, and the procedure 

continues for a specified number of iterations. 

Gradient boosting is a greedy algorithm and can overfit a training dataset quickly. That 

is why an important part of gradient boosting are regularization methods that penalize 

various parts of the algorithm and generally improve the performance of the algorithm 

by reducing overfitting. There are several regularization methods for gradient boosting 

such as tree constraints, shrinkage, random sampling and penalized learning. 

There are a number of ways that the trees can be constrained: 

 Number of trees. The general rule is to keep adding trees until no further 

improvement is observed. 

 Tree depth. In practice, usually, shorter trees are preferred. 

 Number of nodes can constrain the size of the tree. 

 Number of observations per split sets a minimum constraint on the amount of 

training data at a training node before a split can be considered. 

 Minimum improvement to loss is a constraint on the improvement of any split 

added to a tree. 
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Another constrain on a learning process is shrinkage. Instead of adding the predicted 

value for a sample to previous iteration’s predicted value, only a fraction of the current 

predicted value is added to the previous iteration’s predicted value. This fraction is 

commonly referred to as the learning rate and is parameterized by the symbol, λ. This 

parameter can take values between 0 and 1 and becomes another tuning parameter for 

the model. 

There is a modification of the gradient boosting algorithm called stochastic gradient 

boosting. It involves a random sampling scheme: at each iteration a subsample of the 

training data is drawn at random (without replacement) from the full training dataset. 

The randomly selected subsample is then used, instead of the full sample, to fit the base 

learner. 

Another useful regularization techniques for gradient boosted trees is to penalize tree 

complexity using L1 or L2 regularization of the leaf weight values of the trees. 

3.2.4 Artificial neural networks 

Artificial neural networks (ANNs) are computing systems inspired by the biological 

neural networks that constitute animal brains. An ANN is based on a collection of 

connected units or nodes called artificial neurons (a simplified version of biological 

neurons in an animal brain). Each connection (a simplified version of a synapse) 

between artificial neurons can pass a signal from one to another.  

The most common type of neural networks is feedforward neural network or multilayer 

perceptron (MLP). The goal of a feedforward network is to approximate some function 

f∗. For example, for a classifier, y = f∗(x) maps an input x to a category y. A feedforward 

network defines a mapping y = f(x; w) and learns the value of the parameters w that 

result in the best function approximation. 

An example of a multilayer perceptron’s structure is shown in figure 3.6. 
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Figure 3.6: An example of a feedforward network with 1 hidden layer (Credit 

www.learnopencv.com webpage) 

 

Given neural network has an input layer, an output layer, and a hidden layer. In general, 

there can be multiple hidden layers. Each node, called neuron, in the layer can be 

thought as the basic processing unit. A schematic diagram of the process unit is given in 

figure 3.7. 

 

Figure 3.7: An example of a neuron showing the input (x1…xn), their corresponding 

weights (w1…wn), a bias (b) and an activation function applied to the weighted sum of 

the inputs (Credit www.learnopencv.com webpage) 
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As seen above, a neuron calculates the weighted sum of its inputs and then applies an 

activation function that can be linear or nonlinear. There are three most used activation 

functions:  

1. Already known sigmoid function: 𝜎(𝒘𝑇𝑿) =
1

1+𝑒−𝒘𝑇𝑿
 

2. Hyperbolic tangent function: 𝑡𝑎𝑛ℎ(𝒘𝑇𝑿) = 2𝜎(2𝒘𝑇𝑿) − 1 

3. Rectified Linear Unit (ReLU): 𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) 

The training of a feedforward network is carried out using the backpropagation 

algorithm. The training samples are passed through the network and the output obtained 

from the network is compared with the actual output to compute the value of some 

predefined error function. The error is then fed back through the network. Using this 

information, the algorithm adjusts the weights of each connection in order to reduce the 

value of the error function by some small amount. After repeating this process for a 

sufficiently large number of training cycles, the network will usually converge to some 

state where the error of the calculations is small. To adjust weights properly a gradient 

descent algorithm is used. The derivative of the error function with respect to the network 

weights should be calculated, and the weights are changed such that the error decreases. 

The other type of neural networks that is of interest for the thesis are recurrent neural 

networks. RNNs are a family of neural networks for processing sequential data. 

A typical RNN is shown in figure 3.8. 

 

 

Figure 3.8: A general structure of a recurrent neural network (Credit colah.github.io 

webpage) 
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As can be seen from the graph above the output of the hidden layer in a recurrent neural 

network is fed back into itself. For learning RNNs an extension of a backpropagation 

algorithm is used. It is called backpropagation through time or BPTT. BPTT works by 

unrolling all input timesteps. Each timestep has one input timestep, one copy of the 

network, and one output. Errors are then calculated and accumulated for each timestep. 

The network is rolled back up and the weights are updated. 

For recurrent neural networks, we would want to have long memories, so the network 

can connect data relationships at significant distances in time. However, the more time 

steps we have, the more chance we have that backpropagation gradients will either 

accumulate and explode or vanish down to nothing. This issue can be resolved by 

applying modified form of RNNs – the Long Short-Term Memory Networks or LSTM. 

LSTM networks are a special kind of RNN that is capable of learning long-term 

dependencies. They were introduced by Hochreiter & Schmidhuber (1997), and then 

were popularized by many people in following work. LSTMs work well on a large 

variety of problems and are now widely used. 

 

 

Figure 3.9: The repeating module of LSTM that has four interacting layers (Credit 

colah.github.io webpage) 
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LSTMs also have this chain like structure, but the repeating module has a different 

structure. Instead of having a single neural network layer, they have four. The structure 

of LSTMs is shown in figure 3.9. 

A common architecture is composed of a memory cell, an input gate, an output gate 

and a forget gate. 

A forget gate is responsible for removing information from the cell state. It is a sigmoid 

function that takes an output vector from the previous cell ht-1 and the input vector xt: 

𝒇𝒕 = 𝝈(𝑾𝒇𝒙𝒕 + 𝑼𝒇𝒉𝒕−𝟏 + 𝒃𝒇) (4.13) 

where Wf and Uf are weights matrices and bf is a bias vector. 

A memory cell or a cell state consists of two parts. First, a sigmoid layer called the input 

gate controls which values will be updated: 

𝒊𝒕 = 𝝈(𝑾𝒊𝒙𝒕 + 𝑼𝒊𝒉𝒕−𝟏 + 𝒃𝒊) (4.14) 

Next, a tanh layer creates a vector of new candidate values, �̃�𝒕, that could be added to 

the state: 

�̃�𝒕 = tanh(𝑾𝑪𝒙𝒕 + 𝑼𝑪𝒉𝒕−𝟏 + 𝒃𝑪) (4.15) 

Then a new cell state is created in the following way: 

𝑪𝒕 = 𝒇𝒕 ∗ 𝑪𝒕−𝟏 + 𝒊𝒕 ∗ �̃�𝒕 (4.16) 

where operator ∗ denotes Hadamard product. 

The output vector is based on another sigmoid layer called output gate and the cell state 

filtered by tanh activation function: 

𝒐𝒕 = 𝝈(𝑾𝒐𝒙𝒕 + 𝑼𝒐𝒉𝒕−𝟏 + 𝒃𝒐) (4.17) 

𝒉𝒕 = 𝒐𝒕 ∗ tanh(𝑪𝒕) (4.18) 

Such a complicated structure allows the error to remain in the LSTM unit's memory 

when error values are back-propagated from the output. This transition continuously 

feeds error back to each of the gates until they learn to cut off the value. Thus, 

backpropagation through time is effective at training an LSTM unit to remember values 

for long durations. 
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Chapter 4. Stock returns prediction 

Stock returns prediction 

In Chapter 4 we apply models described in previous chapters to make predictions of 

stock returns. In the first section we describe methodology of how experiments are 

conducted and methods for obtaining and preprocessing data. In the second section we 

present the results of ARMA and GARCH models application. The third section is 

devoted to the outcomes of machine learning methods application. 

4.1  Methodology 

In order to achieve the goals of the thesis we have to automate the process of modeling 

and forecasting. Therefore we used R and Python programming languages.  

R was chosen for ARMA and GARCH modeling because it has comprehensive libraries 

such as tseries and rugarch. These libraries allow to easily build and fit ARMA and 

GARCH models with optimal parameters and to make forecasts conveniently. 

PerformanceAnalytics library has a wide range of indicators for measuring performance 

of strategies based on our predictions.  

On the other hand, Python offers rich and efficient libraries for applying machine 

learning methods. We used Python version 3.6 with pandas and numpy libraries for data 

manipulation. Scikit-learn library contains a variety of machine learning methods and it 

was used for logistic regression. LightGBM library was developed by Microsoft for 

building gradient boosted trees. The library uses computationally efficient algorithms 

therefore the time needed for training a model is lower than in other libraries. Keras and 

Tensorflow libraries were used for constructing LSTM neural networks. Keras is an API 

for Tensorflow therefore it makes easier to build ANNs. 

Making precise point predictions of stock returns is a very complicated task. Therefore, 

much more useful information for us is the sign of that prediction, whether return is 

positive or not. The direction of a future stock movement gives us an information to 

make a trading decision whether to buy or to sell a stock. That is why we consider stock 

returns prediction task as a classification problem. 

The process for making time series modeling consists of the following steps: 
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1. Download the stock data containing daily information about Open, High, Low, 

Close prices and Volume. 

2. Compute daily log returns from adjusted Close prices. This is the only column 

used for modeling. 

3. Split the data into train and test datasets. 

4. Fit ARMA and GARCH models on train + rolling window dataset. As we make 

1-day ahead prediction we need to extend our train dataset by 1 day from test set 

on each iteration. 

5. Make a prediction for the following day. If the prediction is positive then we 

expect upward direction of the stock movement and go long, otherwise we go 

short. 

6. Calculate returns of the strategy based on the predicted direction and realized 

return on the respective day. 

7. Calculate accuracy and Gini coefficient for measuring the quality of 

classification. 

8. Calculate performance metrics for the strategy based on our predictions and for 

the benchmark Buy & Hold strategy: total return; return per annum; return per 

trade (per day); Sharpe ratio (annualized); Maximum Drawdown; p-value for t-

test whether the return per trade is greater than 0. 

9. Save the results to a csv file. 

The general process for machine learning methods is quite similar: 

1. Download the stock data containing daily information about Open, High, Low, 

Close prices and Volume. 

2. Compute daily log returns from adjusted Close prices and generate several extra 

predictors from the original data:1-day lagged Open and Close prices; difference 

between Open and 1-day lagged Close prices; number of month, day and day of 

week. These features along with Open, High, Low, Close prices and Volume can 

possibly help algorithms to learn better. 

3. Split the data into train and test datasets. 

4. Transform the data using Standard Scaler from the Scikit-learn library. 

5. Train models on the train dataset using 10-folds cross-validation for finding 

optimal input parameters. It means that we train our models on 9 folds and then 

validate the result on 10th. This operation repeats 10 times in order to validate 
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on all the folds. Then we choose parameters for the model which demonstrated 

the best average score on the validation data and the model on the entire train 

dataset. For splitting the train data into 10 folds we use TimeSeriesSplit function 

from the Scikit-learn library. This function keeps the time structure of the data 

and prevents from training on the future data and validate on the past one. 

6. Make predictions of stock movement’s direction for the test data. If the 

prediction is 1 then we go long. If the prediction is −1 we go short. 

7. Calculate returns of the strategy based on the predicted direction and realized 

return on the respective day. 

8. Calculate accuracy and Gini coefficient for measuring the quality of 

classification. 

9. Calculate performance metrics for the strategy based on our predictions. 

10. Save the results to a csv file. 

At the end all the results are merged into one table to compare the models with each 

other and the benchmark. 

4.2  Data 

We conducted experiments on 20 stocks from a list of the biggest companies by market 

capitalization that are traded on New York Stock Exchange and NASDAQ Stock 

Exchange. All data were downloaded from Quandl. It is a service that provides financial 

data including historical stock prices. Quandl has R and Python APIs that allows to 

download data from their servers in convenient format.  

Companies and their tickers used in the thesis are listed in the table 4.1. 

Table 4.1: List of stocks used in experiments 

Company Ticker 

Apple Inc. AAPL 

Amazon.com, Inc. AMZN 

Alphabet Inc. GOOGL 

Microsoft Corporation MSFT 

JPMorgan Chase & Co. JPM 

Johnson & Johnson JNJ 

Exxon Mobil Corporation XON 

Walmart Inc. WMT 
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Intel Corporation INTC 

Chevron Corporation CVX 

International Business Machines Corporation IBM 

The Procter & Gamble Company PG 

The Boeing Company BA 

The Coca-Cola Company KO 

PepsiCo, Inc. PEP 

NVIDIA Corporation NVDA 

McDonald’s Corporation MCD 

Amgen, Inc. AMGN 

General Electric Company GE 

Honeywell International Inc. HON 

 

Our datasets cover the period from 03/01/2006 to 29/12/2017. We split the data into 

train and test sets. The train data covers the period from 03/01/2006 to 30/12/2014 

(2264 observations). The test data covers the period from 31/12/2014 to 29/12/2017 

(754 observations), which is approx. 20% of all observations.  

In the process description for machine learning methods we mentioned that the data 

should be transformed using Standard Scaler. It standardizes features by removing the 

mean and scaling to unit variance. 

𝑥′ =
𝑥 − �̅�

𝜎
(4.1) 

Centering and scaling happen independently on each feature by computing the relevant 

statistics on the samples in the training set. Standardization of a dataset is a common 

requirement for many machine learning estimators: they might behave badly if the 

individual feature do not look like standard normally distributed data.  

4.3  Quality and performance metrics 

The results of our experiments should be quantified in order to understand how good 

our prediction models are. To do that we use two groups of metrics. The first one 

defines the quality of classification. Metrics in this group are accuracy and Gini 

coefficient. 
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Accuracy or Fraction Correct (FC) is the simplest statistic for measuring the quality of 

binary classification. Accuracy should not be confused with Accuracy Ratio (AR), 

which is also called Gini coefficient. Accuracy it is the ratio of the number of correct 

classifications to the total number of correct or incorrect classifications: 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
(4.2) 

Gini coefficient is a quantitative measure of the discriminatory power in classification 

models. Gini coefficient can be calculated using  cumulative accuracy profile (CAP). 

The CAP of a model represents the cumulative number of positive outcomes along the 

y-axis versus the corresponding cumulative number of a classifying parameter along the 

x-axis. An example of CAP curve is shown in figure 4.1. 

 

Figure 4.1: CAP curve (Credit www.researchgate.net webpage) 

 

Gini coefficient is defined as the ratio of the area AC between the CAP of the validating 

model and the CAP of the random model, and the area AP between the CAP of the perfect 
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model and the CAP of the random model. However, for the purposes of the thesis we will 

use another formula for computation of Gini coefficient: 

𝐺𝑖𝑛𝑖 = 2𝐴𝑈𝐶 − 1 (4.3) 

The reason for using this formula is that the Scikit-learn library allows to compute ROC 

AUC score only. 

The second group of metrics are strategy performance metrics. Since our goal is to predict 

returns in order to make a trading decision we want to measure how good the strategy 

based on our predictions is. 

Total return is return gained for all period when strategy operated. In our case this is a 

return gained for entire test period. Total return can be obtained as a sum of daily log 

returns. Return per annum is an annual return. It can be calculated as an average yearly 

log returns. Return per trade is an average daily log return. 

The Sharpe ratio is the average return earned in excess of the risk-free rate per unit of 

volatility. 

𝑆 =
�̅�𝑡 − 𝑟𝑓

𝜎𝑟

(4.4) 

Sharpe ratio represents risk-adjusted return and allows to compare strategies with almost 

the same rate of return. Generally, the greater the value of the Sharpe ratio, the more 

attractive the risk-adjusted return. 

Maximum Drawdown (MDD) is another measure of the risk of the strategy. MDD is the 

maximum loss from a peak to a trough of a portfolio, before a new peak is reached. MDD 

is calculated as a percentage: 

𝑀𝐷𝐷 =
𝑇𝑟𝑜𝑢𝑔ℎ 𝑣𝑎𝑙𝑢𝑒 − 𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒

𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒
(4.5) 

MDD is used to compare the relative riskiness of one strategy with another. Usually, the 

more maximum drawdown is the more risky the strategy is. 

The last metric we use in the thesis is a p-value of the t-test. T-test is a statistical test. One 

sample t-test can be used for testing whether the mean of a population has a value 

specified in the null hypothesis. This is two-sided test therefore we can conduct a one-

sided test to define whether the mean return is greater than 0 or not. The outcome of the 

t-test is p-value. P-value determines a probability that the null hypothesis is true with 
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some significance level α. If p-value is greater than α then the null hypothesis is not 

rejected. If the p-value is less than α, then the null hypothesis is rejected in favor of the 

alternative hypothesis. We set the significance level to 5% in our thesis. If the p-value 

from t-test conducted for our strategies is less than 5% then we can say that the average 

return per trade is greater than 0. 

4.4  Results of time series models 

As we already mentioned we fit ARMA and GARCH models on the train and window 

rolling data. It means that for each day of prediction we should add one day to the train 

data in order to extend the set on which we fit the models. But first we should detect the 

orders of ARMA and GARCH models. The common approach for GARCH models on 

stock markets is to use (1,1) orders. 

In case of ARMA we can apply auto.arima function from the forecast package. This 

function selects the best model from the specified range of p and q orders by minimum 

AIC. By default the maximum value for p and q is 5. Empirically we identified that 

higher orders usually do not demonstrate lower AIC values so we keep default 

maximum ARMA orders. Then selected ARMA orders enter the specification of 

GARCH model which is available in rugarch package. This library allows to construct 

GARCH models and include ARMA as a mean model in its specification. 

Once the specification is constructed we can carry out the fitting of the model using the 

ugarchfit function, which takes the specification object and numerical optimization 

solver. We have chosen hybrid regime, which tries different solvers in order to increase 

the likelihood of convergence. If the ARMA-GARCH model does not converge then we 

produce a positive prediction, which is obviously a guess, but in most cases the model 

converges. 

The process of fitting ARMA-GARCH models is highly time consuming. It took 

approx. 15-20 minutes to make all predictions for the test data of a one ticker. When all 

predictions are computed we calculate all performance metrics and merge them into one 

table. We conducted the same procedure of calculating performance metrics for 

Buy&Hold as well in order to have the results as a benchmark. The results of the 

benchmark and ARMA-GARCH models ordered by accuracy are presented in the 

following tables. 
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Table 4.2: The results of Buy & Hold strategy 

Ticker Model Accuracy Gini 

coefficient 

Total 

return 

Average return 

per trade 

Return 

p.a. 

Sharpe ratio 

(annualized) 

Maximum 

Drawdown 

T-test  

(p-value) 

MCD Buy & Hold 0.5610 -0.0703 0.6917 0.0009 0.2312 1.4475 -0.1152 0.0062 

NVDA Buy & Hold 0.5597 -0.0109 2.2960 0.0030 0.7674 1.9337 -0.1895 0.0004 

BA Buy & Hold 0.5570 -0.1099 0.9053 0.0012 0.3026 1.4177 -0.2910 0.0072 

HON Buy & Hold 0.5451 -0.0627 0.4861 0.0006 0.1625 0.9850 -0.1419 0.0444 

INTC Buy & Hold 0.5432 -0.0772 0.3365 0.0004 0.1126 0.5205 -0.3272 0.1843 

AMZN Buy & Hold 0.5418 -0.0346 1.3266 0.0018 0.4440 1.5773 -0.2019 0.0033 

GOOGL Buy & Hold 0.5345 -0.0179 0.6857 0.0009 0.2292 1.0490 -0.1092 0.0350 

MSFT Buy & Hold 0.5345 -0.0783 0.6865 0.0009 0.2294 1.0200 -0.1705 0.0390 

WMT Buy & Hold 0.5332 -0.1032 0.2158 0.0003 0.0721 0.3712 -0.4308 0.2605 

PEP Buy & Hold 0.5332 -0.0807 0.3160 0.0004 0.1056 0.8077 -0.1010 0.0814 

AMGN Buy & Hold 0.5279 0.0093 0.1546 0.0002 0.0517 0.2162 -0.2556 0.3542 

KO Buy & Hold 0.5265 -0.0799 0.1728 0.0002 0.0577 0.4518 -0.1212 0.2174 

AAPL Buy & Hold 0.5219 -0.0423 0.4786 0.0006 0.1602 0.6989 -0.3048 0.1137 

JPM Buy & Hold 0.5186 -0.0073 0.6141 0.0008 0.2053 0.9631 -0.2330 0.0481 

IBM Buy & Hold 0.5172 -0.0133 0.0628 0.0001 0.0210 0.1102 -0.3304 0.4244 

JNJ Buy & Hold 0.5106 0.0038 0.3724 0.0005 0.1245 0.8973 -0.1348 0.0605 

XOM Buy & Hold 0.5080 -0.0734 0.0061 0.0000 0.0020 0.0112 -0.2840 0.4923 

CVX Buy & Hold 0.5053 -0.1215 0.2269 0.0003 0.0758 0.3384 -0.4473 0.2792 

PG Buy & Hold 0.5027 -0.0525 0.1043 0.0001 0.0348 0.2511 -0.2774 0.3321 

GE Buy & Hold 0.4987 0.1206 -0.2795 -0.0004 -0.0934 -0.4688 -0.4557 0.7911 
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Table 4.3: The results of time series models 

Ticker Model Accuracy Gini 

coefficient 

Total 

return 

Average return 

per trade 

Return p.a. Sharpe ratio 

(annualized) 

Maximum 

Drawdown 

T-test  

(p-value) 

MCD ARMA-GARCH 0.5623 -0.0397 0.6694 0.0009 0.2237 1.4006 -0.1267 0.0078 

NVDA ARMA-GARCH 0.5597 -0.0109 2.2960 0.0030 0.7674 1.9337 -0.1895 0.0004 

HON ARMA-GARCH 0.5517 -0.0395 0.5408 0.0007 0.1807 1.0964 -0.1436 0.0291 

AMZN ARMA-GARCH 0.5511 0.0209 1.1753 0.0016 0.3933 1.3960 -0.1834 0.0080 

BA ARMA-GARCH 0.5411 -0.1237 0.7148 0.0009 0.2389 1.1176 -0.3871 0.0268 

WMT ARMA-GARCH 0.5371 -0.0221 0.4787 0.0006 0.1600 0.8243 -0.1894 0.0772 

GOOGL ARMA-GARCH 0.5345 -0.0179 0.6857 0.0009 0.2292 1.0490 -0.1092 0.0350 

PEP ARMA-GARCH 0.5345 -0.0298 0.3903 0.0005 0.1305 0.9985 -0.1321 0.0423 

MSFT ARMA-GARCH 0.5252 -0.0369 0.5222 0.0007 0.1745 0.7752 -0.2362 0.0902 

PG ARMA-GARCH 0.5252 0.0061 0.3075 0.0004 0.1028 0.7413 -0.2528 0.1001 

INTC ARMA-GARCH 0.5232 -0.0946 0.2393 0.0003 0.0801 0.3701 -0.2697 0.2613 

XOM ARMA-GARCH 0.5186 -0.0245 0.0109 0.0000 0.0036 0.0200 -0.3009 0.4862 

KO ARMA-GARCH 0.5186 -0.0829 0.1116 0.0001 0.0373 0.2918 -0.1282 0.3070 

AAPL ARMA-GARCH 0.5166 -0.0458 0.5625 0.0007 0.1882 0.8217 -0.2478 0.0780 

AMGN ARMA-GARCH 0.5106 0.0067 0.3420 0.0005 0.1143 0.4784 -0.2265 0.2041 

IBM ARMA-GARCH 0.5066 -0.0288 0.1004 0.0001 0.0336 0.1762 -0.3446 0.3803 

JPM ARMA-GARCH 0.5053 -0.0070 0.3035 0.0004 0.1015 0.4754 -0.1642 0.2056 

JNJ ARMA-GARCH 0.5053 0.0039 0.2912 0.0004 0.0973 0.7010 -0.2266 0.1128 

GE ARMA-GARCH 0.5053 0.0740 0.0972 0.0001 0.0325 0.1630 -0.1860 0.3890 

CVX ARMA-GARCH 0.4960 -0.1288 -0.0644 -0.0001 -0.0215 -0.0960 -0.6901 0.5659 
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The largest accuracy was demonstrated by MCD ticker (McDonald’s Corporation): 

56.23%. The lowest accuracy has CVX (Chevron Corporation): 49.60%, meaning that 

model correctly predicted direction in less than 50% cases. Also we can see that the 

tickers from the top of the table mostly have p-values for t-test lower than 5%, meaning 

we can accept alternative hypothesis that average return per trade is greater than zero. 

In order to investigate the dependencies between accuracy and strategy performance 

metrics better we can build a correlation matrix. 

 

Figure 4.6: Correlation plot for performance metrics 

 

As we can see from the plot there is a strong positive correlation between accuracy and 

returns gained from the strategy.  
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In order to visualize the results we can also plot cumulative returns of ARMA-GARCH 

model in comparison to Buy & Hold strategy over entire test period for several best and 

worst performed tickers. 

 

Figure 4.2: Cumulative returns of the stock with the largest accuracy - MCD  

 

 

Figure 4.3: Cumulative returns of the HON stock 
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As we can from the plots above stocks with the most accurate models almost replicated 

the curve for Buy & Hold strategy. 

  

Figure 4.4: Cumulative returns of the GE stock 

 

 

Figure 4.5: Cumulative returns of the CVX stock 
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ARMA-GARCH strategy for the CVX stock could not demonstrate higher total return 

than Buy & Hold strategy, but in case of GE ticker, the model was able to reach better 

performance than the benchmark despite low value of accuracy. 

We can also calculate performance metrics for a portfolio of all stocks in order to see 

how good our models are in terms of portfolio trading. Prices of our stocks do not lay 

on the same scale and much different from each other. Therefore we construct a 

portfolio in such a way that initial investment to each stock is approx. 1000 USD. Then 

we apply trading rules according to our models separately for each stock and recalculate 

the value if the portfolio for each day in the testing period. It allows us to derive returns 

for the whole portfolio and to compute performance metrics. Metrics for measuring the 

quality of classification are not applicable in this case. 

Performance metrics of the portfolio for Buy & Hold and ARMA-GARCH strategies 

are shown in the table 4.4. 

Table 4.4: Performance metrics of the portfolio for ARMA-GARCH and benchmark 

strategies 

Model  Total return  Average return per 

trade  

Return p.a. 

Benchmark 

(Buy&Hold)  
0.6927 0.0009 0.2315 

ARMA-GARCH  0.6744 0.0009 0.2254 
    

Model  Sharpe ratio 

(annualized)  

Maximum 

Drawdown  

T-test (p-value)  

Benchmark 

(Buy&Hold)  
1.6256 -0.1196 0.0025 

ARMA-GARCH  1.7747 -0.1088 0.0011 

 

We can see that Buy & Hold strategy seems to be more profitable in a portfolio view. 

On the other hand, maximum drawdown is lower in ARMA-GARCH models and 

Sharpe ratio is a bit higher. This tells us that the strategy based on time series models’ 

predictions could be considered as less risky strategy. However, the results of both 

strategies are very close to each other. 



46 

 

4.5  Results of machine learning methods 

First, we build a logistic regression model. Using Scikit-learn package the process of 

building is straightforward. In order to find best parameters of the model we use 10-fold 

cross-validation. Then we select parameters that demonstrated the best mean accuracy 

score. The only parameter we optimize is L2-regularization term called C. Lower values 

of C means stronger regularization. Therefore we specify a range of the regularizer as a 

linear space of 20 values between 0.001 and 1. Results of the parameter selection and 

respective validation and test accuracies for all stocks are shown in the table 4.4. 

Table 4.5: The best regularization parameters for all stocks 

Ticker C Validation accuracy Test accuracy 

AAPL 0.8423 0.5161 0.5265 

AMZN 0.0010 0.5132 0.5424 

GOOGL 0.7371 0.5249 0.4861 

MSFT 0.6845 0.5098 0.4662 

JPM 0.0010 0.5078 0.5285 

JNJ 0.7371 0.5180 0.5099 

XOM 0.0536 0.5141 0.5563 

WMT 0.2113 0.5132 0.5073 

INTC 1.0000 0.5137 0.5504 

CVX 0.0536 0.5273 0.5139 

IBM 0.4742 0.5083 0.5232 

PG 1.0000 0.5161 0.4967 

BA 0.3165 0.5102 0.5536 

KO 0.1062 0.5249 0.5086 

PEP 0.2639 0.5220 0.4914 

NVDA 0.9474 0.5244 0.4808 

MCD 0.0010 0.5356 0.5616 

AMGN 0.2639 0.5049 0.5430 

GE 1.0000 0.5224 0.4993 

HON 0.1062 0.5068 0.5391 
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Selected parameters are then used to train the models on the entire train dataset and to 

make predictions for the test data. Performance metrics of the logistic regression models 

for all stocks ordered by accuracy are shown in the table 4.6. 

The best accuracy was gained by MCD ticker as in the time series models. But among 

top of the list we can also see XOM and INTC tickers, which improved their accuracy 

against time series models from 51.86% to 55.57% and from 52.32% to 54.98% 

respectively. On the other hand, NVDA and MSFT tickers dropped to the down 

demonstrating accuracy lower than 50%. 

In order to see an impact of changed classification quality on profitability we can plot 

cumulative returns of the strategy in comparison to the benchmark for several stocks. 

We can see in figures 4.6 and 4.7 that the logistic regression model for XOM and INTC 

stocks managed to significantly outperform Buy & Hold strategy.  

 

 

Figure 4.6: Cumulative returns of the XOM stock 
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Table 4.6: The results of logistic regression models 
Ticker Model Accuracy Gini 

coefficient 

Total 

return 

Average return 

per trade 

Return 

p.a. 

Sharpe ratio 

(annualized) 

Maximum 

Drawdown 

T-test  

(p-value) 

MCD Logistic regression 0.5610 0.0033 0.6308 0.0008 0.2108 1.3193 -0.1216 0.0114 

XOM Logistic regression 0.5557 0.1083 0.4757 0.0006 0.1590 0.8735 -0.1657 0.0656 

BA Logistic regression 0.5531 0.0039 0.9158 0.0012 0.3061 1.4342 -0.2456 0.0067 

INTC Logistic regression 0.5498 0.0464 0.7714 0.0010 0.2582 1.1962 -0.1659 0.0195 

AMGN Logistic regression 0.5424 0.0564 0.5018 0.0007 0.1677 0.7023 -0.2580 0.1124 

AMZN Logistic regression 0.5418 0.0085 0.8033 0.0011 0.2688 0.9522 -0.2888 0.0501 

HON Logistic regression 0.5385 0.0028 0.3253 0.0004 0.1087 0.6585 -0.2596 0.1275 

JPM Logistic regression 0.5279 0.0218 0.7576 0.0010 0.2532 1.1893 -0.2552 0.0200 

AAPL Logistic regression 0.5272 0.0298 0.7556 0.0010 0.2529 1.1049 -0.1398 0.0283 

IBM Logistic regression 0.5225 0.0311 0.4030 0.0005 0.1347 0.7076 -0.3208 0.1107 

CVX Logistic regression 0.5133 0.0197 0.4633 0.0006 0.1548 0.6916 -0.5376 0.1160 

JNJ Logistic regression 0.5093 -0.0024 0.3747 0.0005 0.1252 0.9027 -0.1124 0.0594 

KO Logistic regression 0.5080 -0.0260 0.1526 0.0002 0.0510 0.3990 -0.1264 0.2452 

WMT Logistic regression 0.5066 -0.0275 -0.3170 -0.0004 -0.1059 -0.5455 -0.8446 0.8271 

GE Logistic regression 0.5000 -0.0010 -0.3110 -0.0004 -0.1039 -0.5216 -0.3928 0.8164 

PG Logistic regression 0.4960 -0.0095 -0.0795 -0.0001 -0.0266 -0.1914 -0.1775 0.6297 

PEP Logistic regression 0.4920 -0.0340 0.0309 0.0000 0.0103 0.0789 -0.1778 0.4457 

GOOGL Logistic regression 0.4867 -0.0162 0.3333 0.0004 0.1114 0.5090 -0.3086 0.1894 

NVDA Logistic regression 0.4814 0.0195 -1.1944 -0.0016 -0.3992 -1.0005 -1.2405 0.9580 

MSFT Logistic regression 0.4668 0.0003 -0.5218 -0.0007 -0.1744 -0.7747 -0.6179 0.9097 
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Figure 4.7: Cumulative returns of the INTC stock 

 

However, NVDA and MSFT stocks demonstrated very poor performance. 

 

Figure 4.8: Cumulative returns of the NVDA stock 
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Figure 4.9: Cumulative returns of the MSFT stock 

 

Cumulative returns for them are almost mirrored with respect to the benchmark. The 

reason of such poor performance may be the fact that returns in the train period were 

mostly negative and the model is not able to predict positive directions. 

Portfolio performance of the logistic regression models in comparison with the 

benchmark are shown in table 4.7. 

Table 4.7: Performance metrics of the portfolio for logistic regression and benchmark 

strategies 

Model  Total return  Average return per 

trade  

Return p.a. 

Benchmark 

(Buy&Hold)  
0.6927 0.0009 0.2315 

Logistic regression  0.3723 0.0005 0.1244 
    

Model  Sharpe ratio 

(annualized)  

Maximum 

Drawdown  

T-test (p-value)  

Benchmark 

(Buy&Hold)  
1.6256 -0.1196 0.0025 

Logistic regression  1.7331 -0.0620 0.0014 
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In the table above we observe that logistic regression models demonstrated poorer 

performance. However, the maximum drawdown is almost 2 times lower. This results in 

higher Sharpe ratio compared to the benchmark. Therefore the strategy based on logistic 

regression can be considered as less risky providing higher risk-adjusted returns. 

The next model is gradient boosted trees (GBT). We use LightGBM  package to build 

the trees. This package is built on very effective algorithms that makes the process of 

training models faster than in other packages. GBT have more input parameters and 

process of finding optimal values for them can take a huge amount of time. Therefore 

we kept some parameters constant and tried to find optimal values only for two of them. 

Our goal during parameters selection is prevent overfitting so we set the maximum 

depth of the tree to 3, number of leaves to 5 and number of trees to 1000. Higher 

number of trees usually increase the generalization ability of the model. Also we set 

subsample ratio to 0.8, which is the fraction of observation to be selected for each tree. 

The two parameters we are selecting are learning rate for boosting algorithm and 

colsample_bytree – subsample ratio of columns for constructing each tree. Results of 

GBT’s predictions are shown in the table 4.8. 

At first glance, obviously there is a poorer overall performance. Almost half of the 

stocks achieved accuracy lower than 50% and only three stocks have an average return 

per trade greater than 0 according to the results of t-test. MCD stock, which had the best 

accuracy in time series and logistic regression models now shows the worst. Similarly, 

AMZN and BA tickers dropped from the top to the down. However, AAPL stock 

significantly improved accuracy and demonstrated the highest total return among all the 

stocks. 
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Table 4.8: The results of gradient boosted trees 
Ticker Model Accuracy Gini 

coefficient 

Total 

return 

Average return 

per trade 

Return 

p.a. 

Sharpe ratio 

(annualized) 

Maximum 

Drawdown 

T-test  

(p-value) 

INTC LightGBM 0.5511 0.0549 0.7999 0.0011 0.2677 1.2406 -0.2290 0.0162 

AMGN LightGBM 0.5504 0.0857 0.3868 0.0005 0.1293 0.5412 -0.2896 0.1747 

HON LightGBM 0.5451 0.0314 0.5974 0.0008 0.1997 1.2118 -0.1212 0.0182 

AAPL LightGBM 0.5445 0.1025 1.0314 0.0014 0.3452 1.5114 -0.1465 0.0046 

IBM LightGBM 0.5212 0.0220 0.1615 0.0002 0.0540 0.2834 -0.3305 0.3121 

XOM LightGBM 0.5199 0.0394 0.0074 0.0000 0.0025 0.0136 -0.2127 0.4906 

WMT LightGBM 0.5106 0.0174 0.0030 0.0000 0.0010 0.0052 -0.2645 0.4964 

JNJ LightGBM 0.5093 -0.0021 0.3262 0.0004 0.1090 0.7857 -0.1547 0.0873 

KO LightGBM 0.5027 -0.0321 0.1716 0.0002 0.0574 0.4488 -0.1338 0.2189 

PG LightGBM 0.5000 0.0000 0.1712 0.0002 0.0572 0.4125 -0.1488 0.2379 

PEP LightGBM 0.5000 0.0254 0.0389 0.0001 0.0130 0.0993 -0.2570 0.4318 

NVDA LightGBM 0.4920 0.0115 -1.1626 -0.0015 -0.3886 -0.9738 -1.1718 0.9537 

GE LightGBM 0.4854 -0.0295 -0.1715 -0.0002 -0.0573 -0.2875 -0.4463 0.6904 

MSFT LightGBM 0.4841 0.0171 0.0779 0.0001 0.0260 0.1155 -0.3894 0.4209 

JPM LightGBM 0.4814 -0.0341 -0.4120 -0.0005 -0.1377 -0.6455 -0.5363 0.8677 

GOOGL LightGBM 0.4801 0.0041 -0.4735 -0.0006 -0.1582 -0.7235 -0.5511 0.8944 

CVX LightGBM 0.4801 -0.0422 -0.2488 -0.0003 -0.0831 -0.3711 -0.7129 0.7394 

BA LightGBM 0.4775 0.0441 -0.2803 -0.0004 -0.0937 -0.4373 -0.5565 0.7752 

AMZN LightGBM 0.4622 -0.0038 -1.0278 -0.0014 -0.3440 -1.2196 -1.0452 0.9823 

MCD LightGBM 0.4536 0.0142 -0.3443 -0.0005 -0.1151 -0.7184 -0.5107 0.8928 
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Plots of cumulative returns of several stock are shown on the following figures. 

 

Figure 4.10: Cumulative returns of the AAPL stock 

 

We can notice from the plot of the AAPL cumulated returns that the strategy based on 

GBT gained the major return during downward trend of the actual returns. In the same 

time there is a negative performance during the upward trend at the beginning of 2017. 

The reason of that the model learnt to predict downward directions because the training 

data can possess higher fraction of negative returns than positive. 

In figure 4.11 we see that at the beginning of the test period the LightGBM model 

demonstrated higher returns against benchmark but then started to fail when cumulative 

returns of the benchmark went up. 
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Figure 4.11: Cumulative returns of the MCD stock 

 

 

Figure 4.12: Cumulative returns of the AMZN stock 

 

We see the similar picture with the AMZN stock. Again, the reason of such behavior of 

the model may lie in the different structure of returns in the train and test data. 
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We can compare performance metrics of the portfolio for LightGBM and benchmark 

strategies in the table 4.9. 

Table 4.9: Performance metrics of the portfolio for LightGBM and benchmark 

strategies 

Model  Total return  Average return per 

trade  

Return p.a. 

Benchmark 

(Buy&Hold)  
0.6927 0.0009 0.2315 

LightGBM  0.1189 0.0002 0.0398 
    

Model  Sharpe ratio 

(annualized)  

Maximum 

Drawdown  

T-test (p-value)  

Benchmark 

(Buy&Hold)  
1.6256 -0.1196 0.0025 

LightGBM  0.8006 -0.0740 0.0833 

 

Total return of the strategy based on LightGBM’s prediction is much lower that the 

benchmark. According to T-test the average daily return of LightGBM model is not 

higher than 0 on the 95% confidence level.  

The last machine learning method that we used is Long Short-Term Memory neural 

network. We used Keras API with Tensorflow library as a backend. Our neural network 

consists of one LSTM layer and one sigmoid layer, which takes an output of the LSTM 

layer and makes a binary prediction of the next day’s direction. Our input training data 

should be a three dimensional tensor in the following format [samples, timesteps, 

features]. Samples is a number of our observations, timesteps is a size of a look-back 

window. After several experiments we set timesteps parameter to 10 (this represent two 

business weeks) as a relatively stable window for different time structures of the stocks. 

We also fixed a size of batch and number of epochs in order to have training time on an 

acceptable level. Two parameters that we wanted to optimize are dropout and number of 

units in the LSTM layer. The dropout represents a fraction of the units to drop for the 

linear transformation of the inputs and of the recurrent state. This parameter is needed to 

prevent early overfitting. We used for dropout values of 0.2, 0.4, 0.6 and number of 

units were 5, 10, 20. The time needed to find optimal parameters and make predictions 

for all stocks was almost 4.5 hours. Results of LSTM neural networks are presented in 

the table 4.10. 
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Table 4.10: The results of LSTM neural networks 
Ticker Model Accuracy Gini 

coefficient 

Total 

return 

Average return 

per trade 

Return 

p.a. 

Sharpe ratio 

(annualized) 

Maximum 

Drawdown 

T-test  

(p-value) 

MCD LSTM 0.5477 0.0473 0.5078 0.0007 0.1697 1.0606 -0.0927 0.0335 

HON LSTM 0.5477 0.0087 0.5598 0.0007 0.1871 1.1351 -0.1713 0.0250 

BA LSTM 0.5451 -0.0079 0.7519 0.0010 0.2513 1.1760 -0.3235 0.0211 

INTC LSTM 0.5445 0.0038 0.3113 0.0004 0.1042 0.4815 -0.3514 0.2027 

PEP LSTM 0.5332 0.0004 0.3422 0.0005 0.1144 0.8750 -0.0784 0.0653 

AMGN LSTM 0.5318 0.0120 0.1137 0.0002 0.0380 0.1590 -0.3450 0.3917 

GOOGL LSTM 0.5305 -0.0008 0.6329 0.0008 0.2115 0.9680 -0.1346 0.0472 

IBM LSTM 0.5239 0.0458 0.2079 0.0003 0.0695 0.3647 -0.2330 0.2642 

WMT LSTM 0.5212 -0.0075 -0.1429 -0.0002 -0.0477 -0.2457 -0.4119 0.6645 

JPM LSTM 0.5199 0.0028 0.6255 0.0008 0.2090 0.9810 -0.2230 0.0451 

JNJ LSTM 0.5199 0.0199 0.4010 0.0005 0.1340 0.9663 -0.2517 0.0475 

AAPL LSTM 0.5193 -0.0037 0.3035 0.0004 0.1016 0.4429 -0.4406 0.2221 

KO LSTM 0.5186 -0.0083 0.2387 0.0003 0.0798 0.6246 -0.0847 0.1402 

AMZN LSTM 0.5139 -0.0260 0.0495 0.0001 0.0166 0.0586 -0.3696 0.4597 

GE LSTM 0.5119 0.0227 0.3001 0.0004 0.1003 0.5034 -0.1903 0.1921 

XOM LSTM 0.5053 0.0068 0.3214 0.0004 0.1074 0.5896 -0.4323 0.1541 

PG LSTM 0.4775 -0.0478 -0.3020 -0.0004 -0.1009 -0.7282 -0.4158 0.8959 

MSFT LSTM 0.4708 -0.0191 -0.0428 -0.0001 -0.0143 -0.0635 -0.3609 0.5437 

CVX LSTM 0.4682 -0.0683 -0.1427 -0.0002 -0.0477 -0.2128 -0.4363 0.6436 

NVDA LSTM 0.4576 -0.0289 -0.9308 -0.0012 -0.3111 -0.7791 -1.0329 0.9109 
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The results in table clearly show that LSTM networks could not reach better accuracy 

and performance than other models. The highest accuracy score 54.77% has MCD 

ticker but it is less than in logistic regression and ARMA-GARCH models. At the down 

of the list we again can see MSFT and NVDA stocks. Highly likely that these results 

that demonstrated each machine learning method can be explained by different patterns 

in train and test data for these tickers. 

 

Figure 4.13: Cumulative returns of the NVDA stock 

 

We see on the plot above that behavior of cumulative returns of NVDA stock for the 

LSTM network is very similar to other machine learning models. 

When we take a look at cumulative returns of stocks with highest accuracy we can 

observe that LSTM networks make their predictions very close to Buy & Hold strategy. 

This case is shown in figure 4.14. 
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Figure 4.14. Cumulative returns of the HON stock 

Portfolio results for LSTM networks in comparison to the benchmark are shown in the 

table 4.11. 

Table 4.11: Performance metrics of the portfolio for LSTM and benchmark strategies 

Model  Total return  Average return per 

trade  

Return p.a. 

Benchmark 

(Buy&Hold)  
0.6927 0.0009 0.2315 

LSTM  0.3234 0.0004 0.1081 
    

Model  Sharpe ratio 

(annualized)  

Maximum 

Drawdown  

T-test (p-value)  

Benchmark 

(Buy&Hold)  
1.6256 -0.1196 0.0025 

LSTM  1.3919 -0.1372 0.0081 

 

Profitability of LSTM networks is not as good as the benchmark. In the same time this 

is the only one model that demonstrated higher maximum drawdown compared to 

Buy & Hold. 

In order to compare all models we created merged table with all results in the following 

pages.
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Table 4.12: The results of all models and the benchmark strategy 
Ticker Model Accuracy Gini 

coefficient 

Total 

return 

Average return 

per trade 

Return 

p.a. 

Sharpe ratio 

(annualized) 

Maximum 

Drawdown 

T-test  

(p-value) 

AAPL 

Buy & Hold 0.5219 -0.0423 0.4786 0.0006 0.1602 0.6989 -0.3048 0.1137 

ARMA-GARCH 0.5166 -0.0458 0.5625 0.0007 0.1882 0.8217 -0.2478 0.0780 

Logistic regression 0.5299 0.0346 0.8076 0.0011 0.2703 1.1814 -0.1298 0.0207 

LightGBM 0.5445 0.1025 1.0314 0.0014 0.3452 1.5114 -0.1465 0.0046 

LSTM 0.5193 -0.0037 0.3035 0.0004 0.1016 0.4429 -0.4406 0.2221 

AMZN 

Buy & Hold 0.5418 -0.0346 1.3266 0.0018 0.4440 1.5773 -0.2019 0.0033 

ARMA-GARCH 0.5511 0.0209 1.1753 0.0016 0.3933 1.3960 -0.1834 0.0080 

Logistic regression 0.5418 0.0085 0.8033 0.0011 0.2688 0.9522 -0.2888 0.0501 

LightGBM 0.4622 -0.0038 -1.0278 -0.0014 -0.3440 -1.2196 -1.0452 0.9823 

LSTM 0.5139 -0.0260 0.0495 0.0001 0.0166 0.0586 -0.3696 0.4597 

GOOGL 

Buy & Hold 0.5345 -0.0179 0.6857 0.0009 0.2292 1.0490 -0.1092 0.0350 

ARMA-GARCH 0.5345 -0.0179 0.6857 0.0009 0.2292 1.0490 -0.1092 0.0350 

Logistic regression 0.5053 0.0171 0.5386 0.0007 0.1800 0.8233 -0.1979 0.0774 

LightGBM 0.4801 0.0041 -0.4735 -0.0006 -0.1582 -0.7235 -0.5511 0.8944 

LSTM 0.5305 -0.0008 0.6329 0.0008 0.2115 0.9680 -0.1346 0.0472 

MSFT 

Buy & Hold 0.5345 -0.0783 0.6865 0.0009 0.2294 1.0200 -0.1705 0.0390 

ARMA-GARCH 0.5358 -0.0237 0.2823 0.0004 0.0943 0.4187 -0.2271 0.2346 

Logistic regression 0.4602 -0.0184 -0.8752 -0.0012 -0.2925 -1.3021 -0.9024 0.9877 

LightGBM 0.4841 0.0171 0.0779 0.0001 0.0260 0.1155 -0.3894 0.4209 

LSTM 0.4708 -0.0191 -0.0428 -0.0001 -0.0143 -0.0635 -0.3609 0.5437 
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JPM 

Buy & Hold 0.5186 -0.0073 0.6141 0.0008 0.2053 0.9631 -0.2330 0.0481 

ARMA-GARCH 0.5053 -0.0070 0.3035 0.0004 0.1015 0.4754 -0.1642 0.2056 

Logistic regression 0.5385 0.0607 0.4782 0.0006 0.1598 0.7494 -0.2081 0.0976 

LightGBM 0.4814 -0.0341 -0.4120 -0.0005 -0.1377 -0.6455 -0.5363 0.8677 

LSTM 0.5199 0.0028 0.6255 0.0008 0.2090 0.9810 -0.2230 0.0451 

JNJ 

Buy & Hold 0.5106 0.0038 0.3724 0.0005 0.1245 0.8973 -0.1348 0.0605 

ARMA-GARCH 0.5053 0.0039 0.2912 0.0004 0.0973 0.7010 -0.2266 0.1128 

Logistic regression 0.5093 -0.0003 0.2995 0.0004 0.1001 0.7212 -0.1747 0.1063 

LightGBM 0.5093 -0.0021 0.3262 0.0004 0.1090 0.7857 -0.1547 0.0873 

LSTM 0.5199 0.0199 0.4010 0.0005 0.1340 0.9663 -0.2517 0.0475 

XOM 

Buy & Hold 0.5080 -0.0734 0.0061 0.0000 0.0020 0.0112 -0.2840 0.4923 

ARMA-GARCH 0.5080 -0.0533 -0.1316 -0.0002 -0.0440 -0.2413 -0.3445 0.6617 

Logistic regression 0.5305 0.0665 0.3520 0.0005 0.1177 0.6460 -0.1734 0.1321 

LightGBM 0.5199 0.0394 0.0074 0.0000 0.0025 0.0136 -0.2127 0.4906 

LSTM 0.5053 0.0068 0.3214 0.0004 0.1074 0.5896 -0.4323 0.1541 

WMT 

Buy & Hold 0.5332 -0.1032 0.2158 0.0003 0.0721 0.3712 -0.4308 0.2605 

ARMA-GARCH 0.5199 -0.0535 0.1113 0.0001 0.0372 0.1915 -0.2834 0.3703 

Logistic regression 0.5119 -0.0140 -0.3570 -0.0005 -0.1193 -0.6143 -0.8392 0.8559 

LightGBM 0.5106 0.0174 0.0030 0.0000 0.0010 0.0052 -0.2645 0.4964 

LSTM 0.5212 -0.0075 -0.1429 -0.0002 -0.0477 -0.2457 -0.4119 0.6645 
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INTC 

Buy & Hold 0.5432 -0.0772 0.3365 0.0004 0.1126 0.5205 -0.3272 0.1843 

ARMA-GARCH 0.5246 -0.0935 0.1172 0.0002 0.0392 0.1813 -0.3669 0.3770 

Logistic regression 0.5153 -0.0070 0.1178 0.0002 0.0394 0.1822 -0.4087 0.3764 

LightGBM 0.5511 0.0549 0.7999 0.0011 0.2677 1.2406 -0.2290 0.0162 

LSTM 0.5445 0.0038 0.3113 0.0004 0.1042 0.4815 -0.3514 0.2027 

CVX 

Buy & Hold 0.5053 -0.1215 0.2269 0.0003 0.0758 0.3384 -0.4473 0.2792 

ARMA-GARCH 0.5027 -0.0995 -0.3628 -0.0005 -0.1213 -0.5414 -0.6997 0.8253 

Logistic regression 0.5133 0.0195 0.3094 0.0004 0.1034 0.4616 -0.5478 0.2124 

LightGBM 0.4801 -0.0422 -0.2488 -0.0003 -0.0831 -0.3711 -0.7129 0.7394 

LSTM 0.4682 -0.0683 -0.1427 -0.0002 -0.0477 -0.2128 -0.4363 0.6436 

IBM 

Buy & Hold 0.5172 -0.0133 0.0628 0.0001 0.0210 0.1102 -0.3304 0.4244 

ARMA-GARCH 0.5212 0.0081 0.2506 0.0003 0.0838 0.4398 -0.2249 0.2235 

Logistic regression 0.5000 -0.0123 0.1495 0.0002 0.0500 0.2623 -0.3710 0.3251 

LightGBM 0.5212 0.0220 0.1615 0.0002 0.0540 0.2834 -0.3305 0.3121 

LSTM 0.5239 0.0458 0.2079 0.0003 0.0695 0.3647 -0.2330 0.2642 

PG 

Buy & Hold 0.5027 -0.0525 0.1043 0.0001 0.0348 0.2511 -0.2774 0.3321 

ARMA-GARCH 0.5040 -0.0411 0.0996 0.0001 0.0333 0.2400 -0.2327 0.3391 

Logistic regression 0.5040 0.0067 0.1597 0.0002 0.0534 0.3848 -0.1384 0.2529 

LightGBM 0.5000 0.0000 0.1712 0.0002 0.0572 0.4125 -0.1488 0.2379 

LSTM 0.4775 -0.0478 -0.3020 -0.0004 -0.1009 -0.7282 -0.4158 0.8959 
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BA 

Buy & Hold 0.5570 -0.1099 0.9053 0.0012 0.3026 1.4177 -0.2910 0.0072 

ARMA-GARCH 0.5570 -0.1099 0.9053 0.0012 0.3026 1.4177 -0.2910 0.0072 

Logistic regression 0.5557 0.0289 1.0037 0.0013 0.3355 1.5732 -0.1967 0.0033 

LightGBM 0.4775 0.0441 -0.2803 -0.0004 -0.0937 -0.4373 -0.5565 0.7752 

LSTM 0.5451 -0.0079 0.7519 0.0010 0.2513 1.1760 -0.3235 0.0211 

KO 

Buy & Hold 0.5265 -0.0799 0.1728 0.0002 0.0577 0.4518 -0.1212 0.2174 

ARMA-GARCH 0.5252 -0.0687 0.1713 0.0002 0.0572 0.4479 -0.1212 0.2194 

Logistic regression 0.5066 -0.0282 0.2083 0.0003 0.0696 0.5447 -0.1117 0.1732 

LightGBM 0.5027 -0.0321 0.1716 0.0002 0.0574 0.4488 -0.1338 0.2189 

LSTM 0.5186 -0.0083 0.2387 0.0003 0.0798 0.6246 -0.0847 0.1402 

PEP 

Buy & Hold 0.5332 -0.0807 0.3160 0.0004 0.1056 0.8077 -0.1010 0.0814 

ARMA-GARCH 0.5424 -0.0164 0.2269 0.0003 0.0758 0.5796 -0.1229 0.1582 

Logistic regression 0.4814 -0.0514 0.0734 0.0001 0.0245 0.1874 -0.1718 0.3730 

LightGBM 0.5000 0.0254 0.0389 0.0001 0.0130 0.0993 -0.2570 0.4318 

LSTM 0.5332 0.0004 0.3422 0.0005 0.1144 0.8750 -0.0784 0.0653 

NVDA 

Buy & Hold 0.5597 -0.0109 2.2960 0.0030 0.7674 1.9337 -0.1895 0.0004 

ARMA-GARCH 0.5610 -0.0110 2.2782 0.0030 0.7614 1.9185 -0.1895 0.0005 

Logistic regression 0.4814 0.0189 -1.2040 -0.0016 -0.4024 -1.0085 -1.2480 0.9593 

LightGBM 0.4920 0.0115 -1.1626 -0.0015 -0.3886 -0.9738 -1.1718 0.9537 

LSTM 0.4576 -0.0289 -0.9308 -0.0012 -0.3111 -0.7791 -1.0329 0.9109 
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MCD 

Buy & Hold 0.5610 -0.0703 0.6917 0.0009 0.2312 1.4475 -0.1152 0.0062 

ARMA-GARCH 0.5623 -0.0397 0.6694 0.0009 0.2237 1.4006 -0.1267 0.0078 

Logistic regression 0.5610 0.0033 0.6308 0.0008 0.2108 1.3193 -0.1216 0.0114 

LightGBM 0.4536 0.0142 -0.3443 -0.0005 -0.1151 -0.7184 -0.5107 0.8928 

LSTM 0.5477 0.0473 0.5078 0.0007 0.1697 1.0606 -0.0927 0.0335 

AMGN 

Buy & Hold 0.5279 0.0093 0.1546 0.0002 0.0517 0.2162 -0.2556 0.3542 

ARMA-GARCH 0.5093 -0.0012 0.0754 0.0001 0.0252 0.1055 -0.2879 0.4277 

Logistic regression 0.5424 0.0564 0.4874 0.0006 0.1629 0.6821 -0.2605 0.1192 

LightGBM 0.5504 0.0857 0.3868 0.0005 0.1293 0.5412 -0.2896 0.1747 

LSTM 0.5318 0.0120 0.1137 0.0002 0.0380 0.1590 -0.3450 0.3917 

GE 

Buy & Hold 0.4987 0.1206 -0.2795 -0.0004 -0.0934 -0.4688 -0.4557 0.7911 

ARMA-GARCH 0.5093 0.0872 -0.0425 -0.0001 -0.0142 -0.0713 -0.2701 0.5490 

Logistic regression 0.5106 0.0205 -0.2512 -0.0003 -0.0839 -0.4212 -0.3173 0.7668 

LightGBM 0.4854 -0.0295 -0.1715 -0.0002 -0.0573 -0.2875 -0.4463 0.6904 

LSTM 0.5119 0.0227 0.3001 0.0004 0.1003 0.5034 -0.1903 0.1921 

HON 

Buy & Hold 0.5451 -0.0627 0.4861 0.0006 0.1625 0.9850 -0.1419 0.0444 

ARMA-GARCH 0.5398 -0.0667 0.2767 0.0004 0.0925 0.5600 -0.1935 0.1665 

Logistic regression 0.5398 0.0067 0.3638 0.0005 0.1216 0.7367 -0.2823 0.1015 

LightGBM 0.5451 0.0314 0.5974 0.0008 0.1997 1.2118 -0.1212 0.0182 

LSTM 0.5477 0.0087 0.5598 0.0007 0.1871 1.1351 -0.1713 0.0250 
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In a similar way we can summarize performance metrics of the portfolio for all models 

in the table 4.13. 

Table 4.13: Portfolio results for all models 

Model  Total return  Average return per 

trade  

Return p.a. 

Benchmark 

(Buy&Hold)  
0.6927 0.0009 0.2315 

ARMA-GARCH  0.6744 0.0009 0.2254 

Logistic regression  0.3723 0.0005 0.1244 

LightGBM  0.1189 0.0002 0.0398 

LSTM  0.3234 0.0004 0.1081 
    

Model  Sharpe ratio 

(annualized)  

Maximum 

Drawdown  

T-test (p-value)  

Benchmark 

(Buy&Hold)  
1.6256 -0.1196 0.0025 

ARMA-GARCH  1.7747 -0.1088 0.0011 

Logistic regression  1.7331 -0.0620 0.0014 

LightGBM  0.8006 -0.0740 0.0833 

LSTM  1.3919 -0.1372 0.0081 

 

Also we can plot cumulative returns of the portfolio of all models. 

 

Figure 4.15. Portfolio cumulative returns 
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According to the table the most profitable strategy is Buy & Hold. However, ARMA-

GARCH and logistic regression models demonstrated better risk-adjusted returns 

according to the Sharpe ratios. We can also see in the figure 4.15 that ARMA-GARCH 

model almost replicates Buy & Hold curve. This explains very close performance 

results. 

Development of logistic regression curve is smooth and much less volatile than ARMA-

GARCH and Buy & Hold curves. That is why logistic regression reached similar 

Sharpe ratio as ARMA-GARCH while having much lower total return. 

LightGBM model has the worst performance among all models. In the first half f the 

testing period the curve moves similarly to logistic regression curve. But then it starts to 

go down. 

LSTM networks could not provide better results than other machine learning methods in 

spite of their effectiveness on sequential data. Usually, neural networks demonstrate 

good results when there are large amounts of the training data. However, the size of 

historical daily stock data is not enough for LSTM networks to learn complex 

structures. Supposedly LSTM networks can be successfully applied to lower timeframes 

such as hours or minutes. However, it is a subject of further research. 
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Conclusion 

The main goal of thesis was to use time series models and several machine learning 

methods for prediction of stock returns and to test whether applied models can 

outperform simple Buy & Hold strategy. Also we aimed to compare performance of the 

models between each other and to explore the potential of machine learning algorithms 

on financial markets. 

In this thesis we described theoretical background of time series models for modeling 

stock returns such as ARMA and GARCH models for modeling volatility. Also we 

introduced basic principles of machine learning field and tasks that can be solved using 

machine learning approaches. We described several methods for classification such as 

logistic regression and gradient boosted trees. Likewise we investigated theoretical 

framework of Long Short-Term Memory neural networks that became very popular in 

recent times by their effectiveness on sequential data. 

In the empirical part of the thesis we applied selected models on the real stock data of 

20 tickers, which were chosen from the list of top companies by market capitalistion on 

the New York Stock Exchange and NASDAQ. We used daily stock data over a period 

from 01.01.2006 to 31.12.2017. The entire period we divide into train (from 01.01.2016 

to 31.12.2014) and test (from 01.01.2015 to 31.12.2017) parts. The train data were split 

into 10 folds for conducting a cross-validation during the training in order to select the 

best meta parameters of the models. The selected and fitted parameters then were used 

in models on the test data for making predictions. 

In case of time series models only logarithmic returns were used as predictors. To the 

contrary, machine learning methods allow us to use more predictors so we used all set 

of stock data such as Adjusted Close, Open, High and Low prices, Volumes. Also we 

generated some additional features such as log returns, 1-day lagged Open and Close 

prices, difference between Open and 1-day lagged Close prices, number of month, day 

and day of week. 

To assess the quality of our models we used accuracy and Gini coefficient metrics. For 

measuring performance of strategies based on predictions produced by the models we 

used such metrics as total return, return p.a., average return per trade, annualized Sharpe 
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ratio, maximum drawdown and t-test on whether average return per trade is greater than 

zero. These metrics allow us to consider our models from different points of view. 

The results of ARMA-GARCH models were very close to the results of Buy & Hold 

strategy. If we look at the cumulative return curve of the portfolio of all stocks we can 

notice that it almost replicates the development of Buy & Hold strategy. Even if we 

investigate the results for each stock individually we cannot observe some significant 

outperform or underperform of Buy & Hold strategy. However, ARMA-GARCH 

models demonstrated slightly less riskiness in terms of maximum drawdown. 

Logistic regression models demonstrated poorer performance than Buy & Hold strategy 

and ARMA-GARCH. The total return of the portfolio of the stocks was almost 2 times 

less than the benchmark (Buy & Hold). In the same time individual stocks had very 

different results. While several stocks significantly outperformed Buy & Hold the other 

stocks demonstrated almost mirrored development of the cumulative returns. However, 

from the portfolio point of view the riskiness of logistic regression models was much 

lower than of  Buy & Hold and ARMA-GARCH. That allowed to reach similar risk-

adjusted returns as the benchmark. 

Gradient boosted trees showed the worst performance and quality of classification 

among all models. For almost half of the stock the accuracy of predictions was under 

50%. From the portfolio point of view the average return per trade according to t-test is 

not greater than zero on the 95% confidence level. 

LSTM networks also did not demonstrate higher performance than Buy & Hold 

strategy. The reason of that may be the fact that such complicated neural networks 

usually give good results when there is a big amount of data for training. Unfortunately, 

daily stock data do not have sufficient number of observations. 

We should also note that in the thesis we did not count any commissions or fees in 

calculation of performance so in real world profitability of the strategies  would be even 

worse. 

Generally we can conclude that stock markets seem to be relatively effective and 

described models are not able to beat the market systematically. In several cases some 

models demonstrated positive prediction power but the question is whether they can 

sustain these results in the future.  
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Appendix 

R code: 

 
library(Quandl) 
library(tseries) 
library(forecast) 
library(rugarch) 
library(ggplot2) 
library(MLmetrics) 
library(PerformanceAnalytics) 
 
 

stocks = 
c('AAPL','AMZN','GOOGL','MSFT','JPM','JNJ','XOM','WMT','INTC','CVX','IBM' 
,'PG','BA','KO','PEP','NVDA','MCD','AMGN','GE','HON') 
 
path = 'University/Data/' 
Quandl.api_key('-ssfpXQYbXiJG1FnjoUE') 
 
# Downloading stock prices 
for (stock in stocks){ 
  assign(paste(stock), Quandl(paste('WIKI/', stock, sep=''), start_date = 
  "2006-01-01", end_date = "2017-12-31", type = "xts")) 
} 
 
# Fitting ARMA+GARCH models and forecasting returns for each stock 
for (stock in stocks){ 
 
  # Calculate log returns and add additional columns 
  data = get(stock) 
  data$LogReturns = Return.calculate(data$`Adj. Close`, method = 'log') 
  data$LogReturns[1] = 0 
  data$TrueDirection = ifelse(data$LogReturns < 0, -1, 1) 
  data$PredictedReturns = 0 
  data$PredictedDirection = 0 
  test_data = data['2015-01-01/'] 
  predictionsLength = length(data$LogReturns) - 
  length(data$LogReturns['/2015-01-01']) 
 
  # Find optimal arma model 
  arimaModel = auto.arima(data$LogReturns['/2015-01-01'], ic = 'aic', 
  stepwise = F) 

  garch = ugarchspec(variance.model = list(garchOrder = c(1,1)), 
  mean.model = list(armaOrder = 
  arimaorder(arimaModel)[c(1,3)], include.mean = TRUE), 
  distribution.model = 'std') 
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  # Make predictions 
  for (i in 0:(predictionsLength-1)){ 
    window = length(data$LogReturns['/2015-01-01'])+i 
    trainReturns = data$LogReturns[1:window] 
    garchFit = tryCatch(ugarchfit( 
      garch, trainReturns, solver = 'hybrid' 
      ), error=function(e) e, warning=function(w) w) 
 
    if(is(garchFit, "warning")) { 
    test_data$PredictedDirection[index(data$LogReturns[(window+1)])]=1 
    print(paste(stock,index(trainReturns[window]),1,"warning",sep=",")) 
    } else { 
    garchForecast = ugarchforecast(garchFit, n.ahead=1) 
    prediction = garchForecast@forecast$seriesFor 
    test_data$PredictedDirection[index(data$LogReturns[(window+1)])] = 
    ifelse(prediction[1] < 0, -1, 1) 
    print(paste(stock, colnames(prediction), ifelse(prediction[1] < 0, 
    -1, 1), sep=",")) 
    } 
  } 
 
  # Calculate cumulative returns and save data to csv files 
  test_data$PredictedReturns = 
  test_data$LogReturns*test_data$PredictedDirection 
  test_data$CumulativeReturns = cumsum(test_data$LogReturns) 
  test_data$CumulativePredictedReturns = 
  cumsum(test_data$PredictedReturns) 
  assign(paste(stock, '_test', sep=''), test_data) 
  write.zoo(get(paste(stock, '_test', sep='')), 
  paste(path,stock,'_test.csv',sep=''), sep = ',') 
} 
 
# Calculating performance metrics for each stock 
for(stock in stocks){ 
  test_data = get(paste(stock, '_test', sep='')) 
  results = data.frame() 
  results[1:2,'Ticker'] = stock 
  results[1, 'Model'] = 'Benchmark (Buy&Hold)' 
  results[2, 'Model'] = 'ARMA+GARCH 

  results[1, 'Accuracy'] = Accuracy(rep(1, length(test_data$LogReturns)), 
  as.numeric(test_data$TrueDirection)) 
  results[2, 'Accuracy'] = 
  Accuracy(as.numeric(test_data$PredictedDirection), 
  as.numeric(test_data$TrueDirection)) 
  results[1, 'Gini coefficient'] = Gini(rep(1, 
  length(test_data$LogReturns)), as.numeric(test_data$TrueDirection)) 
  results[2, 'Gini coefficient'] = 
  Gini(as.numeric(test_data$PredictedDirection), 
  as.numeric(test_data$TrueDirection)) 
  results[1, 'Total return'] = Return.cumulative(test_data$LogReturns, 
  geometric = F) 
  results[2, 'Total return'] = 
  Return.cumulative(test_data$LogReturns*test_data$PredictedDirection, 
  geometric = F) 
  results[1, 'Average return per trade'] = mean(test_data$LogReturns) 
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  results[2, 'Average return per trade'] = 
  mean(test_data$PredictedReturns) 
  results[1, 'Return p.a.'] = Return.annualized(test_data$LogReturns, 
  scale = 252, geometric = F) 
  results[2, 'Return p.a.'] = 
  Return.annualized(test_data$LogReturns*test_data$PredictedDirection, 
  scale = 252, geometric = F) 
  results[1, 'Sharpe ratio (annualized)'] = 
  SharpeRatio.annualized(test_data$LogReturns, scale = 252, geometric=F) 
  results[2, 'Sharpe ratio (annualized)'] = 
  SharpeRatio.annualized(test_data$PredictedReturns, scale = 252, 
geometric = F) 
  results[1, 'Maximum Drawdown'] = maxDrawdown(test_data$LogReturns, 
  geometric = F, invert = F) 
  results[2, 'Maximum Drawdown'] = 
  maxDrawdown(test_data$PredictedReturns, geometric = F, invert = F) 
  results[1, 'T-test (p-value)'] = 
  t.test(as.vector(test_data$LogReturns), alternative = 
  'greater')$p.value[1] 
  results[2, 'T-test (p-value)'] = 
  t.test(as.vector(test_data$PredictedReturns), alternative = 
  'greater')$p.value[1] 
  assign(paste(stock,'_results',sep=''), results) 
  write.table(get(paste(stock, '_results', sep='')), 
  paste(path,stock,'_results.csv',sep=''), sep = ',', row.names = F) 
} 

 

Python code: 

import pandas as pd 
import numpy as np 
import quandl 
from sklearn.linear_model import LogisticRegression 
from sklearn.preprocessing import StandardScaler 
from sklearn.model_selection import TimeSeriesSplit, GridSearchCV 
from sklearn.pipeline import Pipeline 
from sklearn.metrics import accuracy_score, roc_auc_score 
from scipy.stats import ttest_1samp 
import seaborn as sns 
import matplotlib.pyplot as plt 
import lightgbm as lgb 
import warnings 
from tensorflow import set_random_seed 
from keras.models import Sequential 
from keras.layers import LSTM, Dense 
from keras.optimizers import RMSprop 
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def max_drawdown(cum_returns, invert = True): 
""" 
Function to calculate maximum drawdown 
""" 
highest = [0] 
ret_idx = cum_returns.index 
drawdown = pd.Series(index = ret_idx) 
 
for t in range(1, len(ret_idx)): 

cur_highest = max(highest[t-1], cum_returns[t]) 
highest.append(cur_highest) 
drawdown[t]= (1 + cum_returns[t]) / (1 + highest[t]) - 1 

 
if invert: 

return -1 * drawdown.min() 
else: 

return drawdown.min() 

def onesided_ttest(returns, mean = 0, alternative = 'greater'): 
""" 
Function returns p-value of one-sided t-test 
""" 
ttest = ttest_1samp(returns, mean) 
if alternative == 'greater': 

if ttest[0] > 0: 
return ttest[1]/2 

else: 
return 1 - ttest[1]/2 

 
if alternative == 'less': 

if ttest[0] > 0: 
return 1 - ttest[1]/2 

else: 
return ttest[1]/2 

def gini_coef(y_true, y_pred): 
""" 
Function to calculate Gini coefficient 
""" 
return 2*roc_auc_score(y_true, y_pred)-1 

 
def Sharpe(returns, n=252): 

""" 
Function to calculate Sharpe ratio 
""" 
sharpe = returns.mean() * np.sqrt(n) / returns.std() 
return sharpe 

 
def train_test_split(df): 

""" 
Function to split stock data into train and test data sets 
""" 
X_train, X_test = df.drop('Tomorrow Direction', axis=1)[:'2014-12- 
30'], \ 
df.drop('Tomorrow Direction', axis=1)['2014-12-31':] 



75 

 

y_train, y_test = df['Tomorrow 
Direction'].loc[X_train.first_valid_index():'2014-12-30'], \ 
df['Tomorrow Direction']['2014-12-31':] 
return X_train, X_test, y_train, y_test 

def lstm_train_test_split(df, window = 10): 
""" 
Function to split stock data into train and test data sets for LSTM 
model 
""" 
X_train, X_test = df.drop('Tomorrow Direction', 
axis=1)[len(df[:'2006-01-03'])-window:len(df[:'2014-12-30'])], \ 
df.drop('Tomorrow Direction', axis=1)[(len(df[:'2014- 
12-31'])-window):len(df[:'2017-12-28'])] 
y_train, y_test = df['Tomorrow Direction'].loc['2006-01-03':'2014-12- 
30'], \ 
df['Tomorrow Direction']['2014-12-31':'2017-12-28'] 
return X_train, X_test, y_train, y_test 

def lstm_preprocess(df): 
""" 
Function to preprocess stock data for LSTM model 
""" 
 
# Select only Adjusted columns 
df_copy = df[['Adj. Open','Adj. High','Adj. Low','Adj. Close','Adj. 
Volume']] 
df_copy = df_copy.rename(columns={'Adj. Open':'Open','Adj. 
High':'High','Adj. Low':'Low', 
'Adj. Close':'Close','Adj. 
Volume':'Volume'}) 
 
# Compute log returns 
df_copy['Log Returns'] = np.log(df_copy['Close']) - 
np.log(df_copy['Close'].shift(1)) 
df_copy['Log Returns'][0] = 0 
 
# Add difference between today's Open and yesterday's Close; 
yeasterday's Open and Close 
df_copy['Open_Close'] = df_copy['Open'] - df_copy['Close'].shift(1) 
df_copy['Open_Lag_1'] = df_copy['Open'].shift(1) 
df_copy['Close_Lag_1'] = df_copy['Close'].shift(1) 
 
# Add month, day and day of week columns 
df_copy['Month'] = df_copy.index.month 
df_copy['Day'] = df_copy.index.day 
df_copy['Day_of_week'] = df_copy.index.dayofweek 
df_copy = df_copy.dropna() 
 
# Create a target column, which we want to predict 
df_copy['Tomorrow Direction'] = np.where(df_copy['Log 
Returns'].shift(-1) < 0, 0, 1) 
 
return df_copy 
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def preprocess(df): 
""" 
Function to preprocess stock data 
""" 
# Select only Adjusted columns 
df_copy = df[['Adj. Open','Adj. High','Adj. Low','Adj. Close','Adj. 
Volume']] 
df_copy = df_copy.rename(columns={'Adj. Open':'Open','Adj. 
High':'High','Adj. Low':'Low','Adj. Close':'Close','Adj. 
Volume':'Volume'}) 
 
# Compute log returns 
df_copy['Log Returns'] = np.log(df_copy['Close']) - 
np.log(df_copy['Close'].shift(1)) 
df_copy['Log Returns'][0] = 0 
 
# Add difference between today's Open and yesterday's Close; 
yeasterday's Open and Close 
df_copy['Open_Close'] = df_copy['Open'] - df_copy['Close'].shift(1) 
df_copy['Open_Lag_1'] = df_copy['Open'].shift(1) 
df_copy['Close_Lag_1'] = df_copy['Close'].shift(1) 
 
# Add month, day and day of week columns 
df_copy['Month'] = df_copy.index.month 
df_copy['Day'] = df_copy.index.day 
df_copy['Day_of_week'] = df_copy.index.dayofweek 
df_copy = df_copy.dropna() 
 
# Create a target column, which we want to predict 
df_copy['Tomorrow Direction'] = np.where(df_copy['Log 
Returns'].shift(-1) < 0, -1, 1) 
return df_copy 

def build_score_model(X_train, y_train, X_test, y_test, units=10, 
dropout=0.2): 

""" 
Function to compute average validation accuracy for LSTM model 
""" 
 
timesteps = X_train.shape[1] 
features = X_train.shape[2] 
model = Sequential() 
model.add(LSTM(units, dropout=dropout, recurrent_dropout=dropout, 
input_shape=(timesteps, features))) 
model.add(Dense(1, activation='sigmoid')) 
model.compile(loss='binary_crossentropy', 
optimizer=RMSprop(lr=0.001), 
metrics=['accuracy']) 
hist = model.fit(X_train, y_train, batch_size=10, epochs=10, 
validation_split=0.1, shuffle=False, verbose=0) 
 
acc = np.array(hist.history['val_acc']).mean() 
return acc 

quandl.ApiConfig.api_key = '-ssfpXQYbXiJG1FnjoUE' 
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stocks = 
['AAPL','AMZN','GOOGL','MSFT','JPM','JNJ','XOM','WMT','INTC','CVX','IBM', 
'PG','BA','KO','PEP','NVDA','MCD','AMGN','GE','HON'] 

# Download stock data 
for stock in stocks: 

vars()[stock] = quandl.get('WIKI/' + stock, start_date='2006-01-01', 
end_date='2017-12-31') 

# Fit Logistic regression and predict for all stocks 
best_conf = [] 
for stock in stocks: 

# Preprocess data 
df = preprocess(globals()[stock]) 
X_train, X_test, y_train, y_test = train_test_split(df) 
 
# Find optimal parameters, train model and make predictions 
cv = TimeSeriesSplit(n_splits=10) 
scaler = StandardScaler() 
logreg = LogisticRegression(random_state=42) 
pipeline = Pipeline([ 
('scaler', scaler), 
('logreg', logreg) 
]) 
param_grid = { 
'logreg__C': np.linspace(0.001,1,20) 
} 
grid = GridSearchCV(pipeline, cv=cv, param_grid=param_grid, 
scoring='accuracy') 
grid.fit(X_train,y_train) 
pred = grid.predict(X_test) 
 
# Prepare table for test data 
df_test = globals()[stock][['Adj. Open','Adj. High','Adj. Low','Adj. 
Close','Adj. Volume']] 
df_test = df_test.rename(columns={'Adj. Open':'Open','Adj. 
High':'High','Adj. Low':'Low','Adj. Close':'Close','Adj. 
Volume':'Volume'}) 
df_test['Log Returns'] = np.log(df_test['Close']) - 
np.log(df_test['Close'].shift(1)) 
df_test = df_test['2015-01-01':] 
df_test['True Direction'] = np.where(df_test['Log Returns'] < 0,-1,1) 
df_test['Predicted Direction'] = pred[:-1] 
df_test['Predicted Returns'] = df_test['Predicted Direction'] * 
df_test['Log Returns'] 
df_test['Cumulative Returns'] = df_test['Log Returns'].cumsum() 
df_test['Cumulative Predicted Returns'] = df_test['Predicted 
Returns'].cumsum() 
 
best_conf.append([stock, grid.best_params_['logreg__C'], 
grid.best_score_, grid.score(X_test, y_test)]) 
vars()[stock+'_log'] = df_test 
df_test.to_csv('Data/'+stock+'_log.csv') 
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# Save best parameters for Logistic regression in a csv file 
best_conf = pd.DataFrame(data=best_conf, 
columns=['Ticker','C','Validation accuracy','Test accuracy']) 
best_conf.to_csv('Data/Best_conf_log.csv') 

# Calculate total results for ARMA-GARCH + Logistic regression 
total_results = pd.DataFrame(columns=['Ticker','Model','Accuracy','Gini 
coefficient','Total return','Average return per trade', 
'Return p.a.','Sharpe ratio (annualized)','Maximum Drawdown','T-test 
(pvalue)']) 
for stock in stocks: 

df_test = globals()[stock+'_log'] 
df_results = pd.read_csv('Data/' + stock + '_results_arma.csv') 
df_results.loc[len(df_results), 'Model'] = 'Logistic regression' 
df_results.loc[(len(df_results)-1), 'Ticker'] = stock 
df_results.loc[(len(df_results)-1), 'Accuracy'] = 
accuracy_score(df_test['True Direction'], df_test['Predicted 
Direction']) 
df_results.loc[(len(df_results)-1), 'Gini coefficient'] = 
gini_coef(df_test['True Direction'], df_test['Predicted Direction']) 
df_results.loc[(len(df_results)-1), 'Total return'] = 
df_test['Predicted Returns'].sum() 
df_results.loc[(len(df_results)-1), 'Average return per trade'] = 
df_test['Predicted Returns'].mean() 
df_results.loc[(len(df_results)-1), 'Return p.a.'] = 
df_test['Predicted Returns'].mean() * 252 
df_results.loc[(len(df_results)-1), 'Sharpe ratio (annualized)'] = 
Sharpe(df_test['Predicted Returns']) 
df_results.loc[(len(df_results)-1), 'Maximum Drawdown'] = 
max_drawdown(cum_returns=df_test['Cumulative Predicted Returns'], 
invert=False) 
df_results.loc[(len(df_results)-1), 'T-test (p-value)'] = 
onesided_ttest(returns=df_test['Predicted Returns']) 
df_results.to_csv('Data/' + stock + '_results_log.csv', index=False) 
total_results = total_results.append(df_results) 
vars()[stock+'_results_log'] = df_results 
 

total_results.reset_index(drop=True, inplace=True) 
total_results.to_csv('Data/total_results_log.csv', index=False) 

# Fit LightGBM and predict for all stocks 
best_conf = [] 
for stock in stocks: 

warnings.filterwarnings(action='ignore', category=DeprecationWarning) 
 
# Preprocess data 
df = preprocess(globals()[stock]) 
X_train, X_test, y_train, y_test = train_test_split(df) 
 
# Find optimal parameters, train and make predictions 
cv = TimeSeriesSplit(n_splits=10) 
lgbm = lgb.LGBMClassifier(random_state=42, max_depth=3, 
n_estimators=1000, num_leaves=5, subsample=0.8) 
param_grid = {'learning_rate': [0.0001,0.001,0.01,0.1], 
'colsample_bytree': [0.1,0.25,0.5,0.75,1]} 
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grid = GridSearchCV(lgbm, cv=cv, param_grid=param_grid, 
scoring='accuracy') 
grid.fit(X_train,y_train) 
pred = grid.predict(X_test) 
 
# Prepare table for test data 
df_test = globals()[stock][['Adj. Open','Adj. High','Adj. Low','Adj. 
Close','Adj. Volume']] 
df_test = df_test.rename(columns={'Adj. Open':'Open','Adj. 
High':'High','Adj. Low':'Low','Adj. Close':'Close','Adj. 
Volume':'Volume'}) 
df_test['Log Returns'] = np.log(df_test['Close']) - 
np.log(df_test['Close'].shift(1)) 
df_test = df_test['2015-01-01':] 
df_test['True Direction'] = np.where(df_test['Log Returns'] < 0,-1,1) 
df_test['Predicted Direction'] = pred[:-1] 
df_test['Predicted Returns'] = df_test['Predicted Direction'] * 
df_test['Log Returns'] 
df_test['Cumulative Returns'] = df_test['Log Returns'].cumsum() 
df_test['Cumulative Predicted Returns'] = df_test['Predicted 
Returns'].cumsum() 
best_conf.append([stock, grid.best_params_['learning_rate'], 
grid.best_params_['colsample_bytree'], grid.best_score_, 
grid.score(X_test, y_test)]) 
vars()[stock+'_gbm'] = df_test 
df_test.to_csv('Data/'+stock+'_gbm.csv') 
print(stock + ' - Done!') 

# Write the best parameters to a csv file 
best_conf = pd.DataFrame(data=best_conf, columns=['Ticker','Learning 
rate','Subsample ratio of columns', 
'Validation accuracy','Test accuracy']) 
best_conf.to_csv('Data/Best_conf_gbm.csv') 

# Calculate total results for ARMA-GARCH + Logistic regression + LightGBM 
total_results = pd.DataFrame(columns=['Ticker','Model','Accuracy','Gini 
coefficient','Total return','Average return per trade', 
'Return p.a.','Sharpe ratio (annualized)','Maximum Drawdown','T-test 
(pvalue)']) 
for stock in stocks: 

df_test = globals()[stock+'_gbm'] 
df_results = pd.read_csv('Data/' + stock + '_results_log.csv') 
df_results.loc[len(df_results), 'Model'] = 'LightGBM' 
df_results.loc[(len(df_results)-1), 'Ticker'] = stock 
df_results.loc[(len(df_results)-1), 'Accuracy'] = 
accuracy_score(df_test['True Direction'], df_test['Predicted 
Direction']) 
df_results.loc[(len(df_results)-1), 'Gini coefficient'] = 
gini_coef(df_test['True Direction'], df_test['Predicted Direction']) 
df_results.loc[(len(df_results)-1), 'Total return'] = 
df_test['Predicted Returns'].sum() 
df_results.loc[(len(df_results)-1), 'Average return per trade'] = 
df_test['Predicted Returns'].mean() 
df_results.loc[(len(df_results)-1), 'Return p.a.'] = 
df_test['Predicted Returns'].mean() * 252 
df_results.loc[(len(df_results)-1), 'Sharpe ratio (annualized)'] = 
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Sharpe(df_test['Predicted Returns']) 
df_results.loc[(len(df_results)-1), 'Maximum Drawdown'] = 
max_drawdown(cum_returns=df_test['Cumulative Predicted Returns'], 
invert=False) 
df_results.loc[(len(df_results)-1), 'T-test (p-value)'] = 
onesided_ttest(returns=df_test['Predicted Returns']) 
df_results.to_csv('Data/' + stock + '_results_gbm.csv', index=False) 
total_results = total_results.append(df_results) 
vars()[stock+'_results_gbm'] = df_results 

 
total_results.reset_index(drop=True, inplace=True) 
total_results.to_csv('Data/total_results_gbm.csv', index=False) 

# Train LSTM network and make predictions for all stocks 
for stock in stocks: 

# Preprocess data 
window = 10 
df = lstm_preprocess(globals()[stock]) 
X_train, X_test, y_train, y_test = lstm_train_test_split(df, 
window=window) 
scaler = StandardScaler() 
X_train_scaled = scaler.fit_transform(X_train) 
X_test_scaled = scaler.transform(X_test) 
 
# Transform data to tensors 
X_train, y = [], [] 
for i in range(window,X_train_scaled.shape[0]+1): 

X_train.append(X_train_scaled[i-window:i]) 
y.append(y_train[i-window]) 

X_train = np.array(X_train) 
y_train = np.array(y) 
X_test, y_t = [], [] 
for i in range(window,X_test_scaled.shape[0]+1): 

X_test.append(X_test_scaled[i-window:i]) 
y_t.append(y_test[i-window]) 

X_test = np.array(X_test) 
y_test = np.array(y_t) 
 
# Train LSTM network for different input parameters 
df_params = [] 
for unit in [5,10,20]: 

for drop in [0.2,0.4,0.6]: 
score = build_score_model(X_train, y_train, X_test, y_test, 
unit, drop) 
df_params.append([unit,drop,score]) 
 

df_params = 
pd.DataFrame(data=df_params,columns=['Units','Dropout','Accuracy']) 
 
# Select the best parameters 
best_units = df_params[df_params['Accuracy'] == 
df_params['Accuracy'].max()]['Units'].values[0] 
best_drop = df_params[df_params['Accuracy'] == 
df_params['Accuracy'].max()]['Dropout'].values[0] 
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# Train LSTM network on training data with best parameters 
timesteps = X_train.shape[1] 
features = X_train.shape[2] 
batch = 10 
model = Sequential() 
model.add(LSTM(best_units, dropout=best_drop, 
recurrent_dropout=best_drop, input_shape=(timesteps, features))) 
model.add(Dense(1, activation='sigmoid')) 
model.compile(loss='binary_crossentropy', 
optimizer=RMSprop(lr=0.001), 
metrics=['accuracy']) 
model.fit(X_train, y_train, batch_size=batch, epochs=10, 
shuffle=False, verbose=1) 
 
# Make predictions 
pred = np.where(model.predict_classes(X_test, batch_size=batch) == 0, 
-1, 1) 
 
# Prepare table for test data 
df_test = globals()[stock][['Adj. Open','Adj. High','Adj. Low','Adj. 
Close','Adj. Volume']] 
df_test = df_test.rename(columns={'Adj. Open':'Open','Adj. 
High':'High','Adj. Low':'Low','Adj. Close':'Close','Adj. 
Volume':'Volume'}) 
df_test['Log Returns'] = np.log(df_test['Close']) - 
np.log(df_test['Close'].shift(1)) 
df_test = df_test['2015-01-01':] 
df_test['True Direction'] = np.where(df_test['Log Returns'] < 0,-1,1) 
df_test['Predicted Direction'] = pred 
df_test['Predicted Returns'] = df_test['Predicted Direction'] * 
df_test['Log Returns'] 
df_test['Cumulative Returns'] = df_test['Log Returns'].cumsum() 
df_test['Cumulative Predicted Returns'] = df_test['Predicted 
Returns'].cumsum() 
 
best_conf.append([stock, best_units, best_drop, 
df_params['Accuracy'].max(),model.evaluate(X_test, y_test, 
batch_size=batch)[1]]) 
 
vars()[stock+'_lstm'] = df_test 
df_test.to_csv('Data/'+stock+'_lstm.csv') 
print(stock + ' - Done!') 
 
# Write best parameters to a csv file 
best_conf = pd.DataFrame(data=best_conf, 
columns=['Ticker','Units','Dropout','Validation accuracy','Test 
accuracy']) 
best_conf.to_csv('Data/Best_conf_lstm.csv') 

# Calculate total results for ARMA-GARCH + Logistic regression + LightGBM 
+ LSTM 
total_results = pd.DataFrame(columns=['Ticker','Model','Accuracy','Gini 
coefficient','Total return','Average return per trade', 
'Return p.a.','Sharpe ratio (annualized)','Maximum Drawdown','T-test 
(pvalue)']) 
for stock in stocks: 
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df_test = globals()[stock+'_lstm'] 
df_results = pd.read_csv('Data/' + stock + '_results_gbm.csv') 
df_results.loc[len(df_results), 'Model'] = 'LSTM' 
df_results.loc[(len(df_results)-1), 'Ticker'] = stock 
df_results.loc[(len(df_results)-1), 'Accuracy'] = 
accuracy_score(df_test['True Direction'], df_test['Predicted 
Direction']) 
df_results.loc[(len(df_results)-1), 'Gini coefficient'] = 
gini_coef(df_test['True Direction'], df_test['Predicted Direction']) 
df_results.loc[(len(df_results)-1), 'Total return'] = 
df_test['Predicted Returns'].sum() 
df_results.loc[(len(df_results)-1), 'Average return per trade'] = 
df_test['Predicted Returns'].mean() 
df_results.loc[(len(df_results)-1), 'Return p.a.'] = 
df_test['Predicted Returns'].mean() * 252 
df_results.loc[(len(df_results)-1), 'Sharpe ratio (annualized)'] = 
Sharpe(df_test['Predicted Returns']) 
df_results.loc[(len(df_results)-1), 'Maximum Drawdown'] = 
max_drawdown(cum_returns=df_test['Cumulative Predicted Returns'], 
invert=False) 
df_results.loc[(len(df_results)-1), 'T-test (p-value)'] = 
onesided_ttest(returns=df_test['Predicted Returns']) 
df_results.to_csv('Data/' + stock + '_results_lstm.csv', index=False) 
total_results = total_results.append(df_results) 
vars()[stock+'_results_lstm'] = df_results 

 
total_results.reset_index(drop=True, inplace=True) 
total_results.to_csv('Data/total_results_lstm.csv', index=False) 

#Calculating portfolio performance metrics 
port_res = pd.DataFrame() 
temp = [] 
for stock in stocks:  
    df_test = globals()[stock+'_log'] 
    price = df_test['Close'][0] 
    pcs = round(1000/price) 
    amounts = [price*pcs,] 
    for each in df_test['Log Returns'][1:]: 
        amounts.append(amounts[-1]*np.exp(each)) 
        if (df_test[df_test['Log Returns'] == each].index[0] == 
pd.Timestamp('2017-08-04 00:00:00') \ 
        or df_test[df_test['Log Returns'] == each].index[0] == '2017-08-
04') and df_test.shape[0] == 753: 
            amounts.append(amounts[-1]) 
    temp.append(amounts) 
     
df_benchmark = pd.DataFrame(temp) 
df_benchmark = df_benchmark.transpose() 
df_benchmark.columns = stocks 
 
df_benchmark['Portfolio'] = df_benchmark.apply(sum, axis=1) 
df_benchmark['Log Returns'] =  np.log(df_benchmark['Portfolio']) - 
np.log(df_benchmark['Portfolio'].shift(1)) 
df_benchmark['Log Returns'][0] = 0 
df_benchmark['True Direction'] = np.where(df_benchmark['Log Returns'] < 
0, -1, 1) 



83 

 

df_benchmark['Predicted Direction'] = 1 
df_benchmark['Cumulative Log Returns'] = df_benchmark['Log 
Returns'].cumsum() 
portfolio = df_benchmark[['Portfolio','Log Returns','True 
Direction','Predicted Direction','Cumulative Log Returns']] 
 
results = [] 
results.append('Benchmark')  
results.append('Portfolio') 
results.append(accuracy_score(portfolio['True Direction'], 
portfolio['Predicted Direction'])) 
results.append(gini_coef(portfolio['True Direction'], 
portfolio['Predicted Direction'])) 
results.append(portfolio['Log Returns'].sum()) 
results.append(portfolio['Log Returns'].mean()) 
results.append(portfolio['Log Returns'].mean() * 252) 
results.append(Sharpe(portfolio['Log Returns'])) 
results.append(max_drawdown(cum_returns=portfolio['Cumulative Log 
Returns'], invert=False)) 
results.append(onesided_ttest(returns=portfolio['Log Returns']))                
port_res = port_res.append(pd.DataFrame(results).transpose()) 
 
for stock in stocks: 
    vars()[stock+'_arma'] = pd.read_csv('../Data/' + stock + '_arma.csv', 
index_col='Index') 
    vars()[stock+'_arma'] = vars()[stock+'_arma'].iloc[:,7:] 
    vars()[stock+'_arma'].columns = ['Open', 'High', 'Low', 'Close', 
'Volume', 'Log Returns','True Direction','Predicted Returns', 'Predicted 
Direction','Cumulative Returns','Cumulative Predicted Returns'] 
 
for model in ['arma','log','gbm','lstm']: 
    temp = [] 
    for stock in stocks:  
        df_test = globals()[stock+'_'+model] 
        price = df_test['Close'][0] 
        pcs = round(1000/price) 
        amounts = [price*pcs,] 
        for each in df_test['Predicted Returns'][1:]: 
            amounts.append(amounts[-1]*np.exp(each)) 
            if (df_test[df_test['Predicted Returns'] == each].index[0] == 
pd.Timestamp('2017-08-04 00:00:00') \ 
               or df_test[df_test['Predicted Returns'] == each].index[0] 
== '2017-08-04') and df_test.shape[0] == 753: 
                amounts.append(amounts[-1]) 
        temp.append(amounts) 
 
    df_temp = pd.DataFrame(temp) 
    df_temp = df_temp.transpose() 
    df_temp.columns = stocks 
     
    df_temp['Portfolio'] = df_temp.apply(sum, axis=1) 
    df_benchmark['Predicted Returns_'+model] =  
np.log(df_temp['Portfolio']) - np.log(df_temp['Portfolio'].shift(1)) 
    df_benchmark['Predicted Returns_'+model][0] = 0 
    df_benchmark['Predicted Direction_'+model] = 
np.where(df_benchmark['Predicted Returns_'+model] < 0, -1, 1) 
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    df_benchmark['Cumulative Predicted Returns_'+model] = 
df_benchmark['Predicted Returns_'+model].cumsum() 
    portfolio = df_benchmark[['Portfolio','Log Returns','True 
Direction','Predicted Direction_'+model,'Predicted Returns_'+model, 
                              'Cumulative Log Returns','Cumulative 
Predicted Returns_'+model]] 
     
    results = [] 
    results.append(model)  
    results.append('Portfolio') 
    results.append(accuracy_score(portfolio['True Direction'], 
portfolio['Predicted Direction_'+model])) 
    results.append(gini_coef(portfolio['True Direction'], 
portfolio['Predicted Direction_'+model])) 
    results.append(portfolio['Predicted Returns_'+model].sum()) 
    results.append(portfolio['Predicted Returns_'+model].mean()) 
    results.append(portfolio['Predicted Returns_'+model].mean() * 252) 
    results.append(Sharpe(portfolio['Predicted Returns_'+model])) 
    results.append(max_drawdown(cum_returns=portfolio['Cumulative 
Predicted Returns_'+model], invert=False)) 
    results.append(onesided_ttest(returns=portfolio['Predicted 
Returns_'+model]))                
    port_res = port_res.append(pd.DataFrame(results).transpose()) 
 
port_res.columns = ['Model','Ticker','Accuracy','Gini','Total 
Return','Avg Return','Return p.a.','Sharpe','Max DD','T-test'] 
 
port_res.to_excel('../Data/portfolio_results.xlsx', index=False) 
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