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Abstract  

 

 
MICRO-MODEL FOR RESERVING IN NON-LIFE INSURANCE  

WITH THE USE OF GENERALIZED LINEAR REGRESSION MODEL 

EXTENSIONS 

 
This paper develops a deterministic model for individual claim level reserving. The proposed model 

is based on collected literature and its structure is decomposed and presented as a list of variables. 

These variables are firstly defined and then predicted with the usage of generalized linear models 

(GLM) and its extensions in form of Hurdle and Zero-inflated models. These variables are then 

combined and as a result, a deterministic model for individual claim level reserving model is 

obtained. For the practical implementation and evaluation, a dataset of MTPL claims, originating 

from non-insured cars, is used and presented. Based on these claims the estimated reserve is 

obtained. The model is then compared with a traditional Chain-Ladder model reserve estimate. In 

the end the proposed model proved to have very accurate predictions but is biased in comparison 

with the real claim development. The last section suggests how the model can be improved and 

further developed. 

 

 

Keywords: Micro model, Individual claim level model, GLM, Hurdle model, Zero-inflated model. 

 

 

 

 

 

MICRO RESERVING MODEL V NEŽIVOTNÍM POJIŠTĚNÍ S VYUŽITÍM 

ROZŠIŘENÝCH ZOBECNĚNÝCH LINEÁRNÍCH REGRESNÍCH MODELŮ. 
 

 

 

V této práci byl navržen deterministický model určených, pro tvorbu rezerv na základě 

individuálního vývoje škodných událostí. Navržený model je vytvořen na základě představené 

literatury a jeho struktura je představena jako seznam proměnných. Tyto proměnné jsou napřed 

definované, a poté predikované s pomocí zobecněných lineárních regresních modelů (GLM) a jeho 

rozšíření ve formě Hurdle a Zero-inflated modelů. Na základě kombinace těchto proměnných se 

získá model určený pro tvorbu rezerv na základě individuálního vývoje škodných událostí. 

Praktická ukázka a zhodnocení modelu je provedeno na datovém souboru MTPL škodných událostí 

původem z nepojištěných vozidel. Pro tyto události se vytvoří model a jeho výsledky jsou poté 

porovnány s výsledky z tradičního Chain-Ladder modelu. Po porovnaní bylo zjištěno, že navržený 

model má velmi přesné odhady, ale je vychýlený v porovnání s reálným vývojem škod. V závěru 

práce se navrhuje, jak lze tento model vylepšit a dále rozšířit. 

 

 

Klíčová slova: Micro model, Individual claim level model, GLM, Hurdle model, Zero-inflated 

model.  
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1. Introduction 

 

In this section, the objectives of this work will be laid out and the main terms will be briefly 

introduced in the context of the insurance industry.  

1.1 Overview 

The structure of this work is as follows:  

 

• Chapter 1 introduces the basic terms in the context of the insurance industry and 

objectives of this work are laid out.  

• Chapter 2 focuses on the difference between aggregate and individual claim level 

models.  

• Chapters 3 – 7 present the proposed model and study it.  

• Chapter 3 presents the proposed individual claim level. 

• Chapter 4 presents the framework of the GLM models, hurdle models and zero inflated 

models. 

• Chapter 5 describes the provided dataset and model variables in detail.  

• Chapter 6 presents the practical implementation of the chapter 3 model, chapter contains 

descriptions of the model components in detail. 

• Chapter 7 presents model results and compares them with the real claim development 

and a traditional chain ladder model and proposes how the model can be improved. 

• Chapter 8 provides conclusions. 

1.2 Introduction to Insurance 

Insurance is a service that provides coverage, in the form of compensation resulting from loss. 

Loss can be described as damage, injury, treatment or loss. To provide this coverage  

the premium is collected. When determining the premium, the risk is calculated  

as the probability of loss occurrence and the cost to replace the associated loss. 

 

Based on this description the following questions needs to be discussed. 

 

• Who can provide coverage? 

• How to define loss? 

• How to determine the premium? 

• How to calculate the risk? 

 

These questions will be further discussed below. 

Who can provide coverage? 

To be permitted to provide coverage as an insurance company in Czech Republic it is necessary 

to obtain license from the Czech National Bank. In addition, the insurance company needs to 

follow the following laws: 

• Act No. 277/2009 Coll. on Insurance   

• Act No. 38/2004 Coll. on Insurance Intermediaries and Independent Loss Adjusters.  
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Finally, the insurance company behavior is also subjected to the European Parliament Directive 

Solvency II. 

How to define loss? 

The insurance service is always provided based on the contract (insurance policy) and the loss 

definition is presented in this contract. The insurance contract should contain following 

sections. 

 

• Declarations – contract summarization and introduction of contact parties  

• Definitions – definition of insurance terms and phases 

• Terms of Insurance – defines what is the loss, can be presented in two forms: 

o Named Perils Coverage – coverage for only the named perils 

o All-Risk Coverage – coverage for all losses except for exclusions 

• Exclusions – named list of losses that are not covered by the policy, three types: 

o Excluded causes of loss – specific scenarios that are not covered 

o Excluded losses – types of loss that are not covered 

o Excluded property – exclusion of property from the coverage 

• Conditions – list of conditions that apply to the contact 

• Endorsements – contract modifications 

 

The insurance policy should always contain clear definition what a loss is. When provided  

the insurance customer (insured) can be able to ask for coverage when the loss occurs. 

How to determine the premium? 

The pricing actuary is responsible for determining the premium. The following factors  

are commonly determining the premium value: 

 

• type of coverage – the higher number of possible risk to cover, the larger the premium 

• coverage amount – the larger amount to replace, the larger the premium 

• costs – every premium should also pay for the insurance company costs 

• score – increases or decreases in the premium based on the personal history of insured 

• competitiveness – premium can be affected by other insurance company behavior 

 

How these factors are evaluated and how are they combined is mostly dependent on the pricing 

actuary.  

How to calculate the risk? 

The risk evaluation process is done by the reserving actuary. The insurance company does not 

know what size the risk would be. Therefore, it is necessary to create a sufficient reserve.  

The term sufficient means that the reserve will not be too large (unnecessary costs for insurance 

company) or too small (risk of insolvency).  The final reserve is obtained when proper reserving 

process is used. This reserving process is the focus of this work and will be further discussed 

and developed in the following chapters. The following sections will present how the reserving 

process is concluded and what are the requirements of this process as presented by the Solvency 

II Directive. 
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1.3 Reserving Process 

The risk reserving process is trying to predict future liabilities of the insurance company.  

This is also the biggest problem of the insurance business where the liabilities resulting from 

insurance contracts are not known for a long time to the insurance company (insurer).  

This means that technical results of the insurance company for a given period (mostly  a year) 

are not known even after several years. As a result, the insurer needs to hold reserves (technical 

provisions) until all claims are paid out.  

 

This work will focus on these reserves. 

 

• The reserves on claims that occurred and were reported, but are not yet settled (RBNS) 

• The reserves on claims that occurred, but have not yet been reported (IBNR) 

  

The reserving process for each individual claim can be described as follows. 

 

When a claim is reported to the insurer, a claim handler will be selected by the insurer to collect 

all available information and create a reserve. This reserve is an estimate of the ultimate loss 

paid to the customer (insured). This reserve will be updated when more information about  

the claim will become available to the claim handler. Then after a set period or when enough 

information is obtained the claim is settled and will be paid out. If any additional information 

about the loss are found afterwards there still exists the possibility of claim being reopened and 

its reserve adjusted and paid out.  

 

The previous description of the reserving process presents following variables: 

 

• Reserve variable – will be paid out in the future 

• Paid out variable – have been paid out in the past 

 

When these variables are summed for given claim at one point the incurred value is obtained. 

This variable represents the insurers liability for given claim. The main problem is that final 

(ultimate) value of this variable is only known when the claim is settled. 

 

To be able to predict this incurred value the reserving models were developed by the reserving 

actuaries. These models, based on the way how the incurred value prediction is obtained, can 

be categorized as follows.  

 

• Aggregate claim level reserving models. 

• Individual claim level reserving models. 

 

These models provide estimate of the insurer liability which may differ from the reality.  

The ultimate liability can be lower (resulting in additional costs of capital) or be much higher 

(resulting in solvency problems). For this purpose, the volatility of the previous estimate is also 

evaluated. This will provide additional information about the estimate. 

 

Descriptions of these models will be provided in the following chapter. Apart from the model 

description the Solvency II Directive set up a list of requirements the insurance company needs 

to fulfill.  
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1.4 Solvency II 

Solvency II is a European Parliament directive (framework) for insurers and reinsurers which 

requires them to meet certain solvency requirements. These requirements are based  

on analyzing risk profile of each individual insurance company to promote comparability, 

transparency and competitiveness. Its main goals are to:  

 

• Ensure the financial health of insurance undertakings  

• Protect policyholders (consumers, businesses) and the stability of the financial system  

 

The main reason for creating a new directive for an insurance market was the financial crisis, 

which led to severe shocks in the insurance market. The crisis has drawn attention to  

the weaknesses of the current system and developed a need for an improved risk management 

by updating the Solvency framework. The new requirements moved away from a gauche  

"one-model-fits-all" way of estimating capital requirements to more entity-specific 

requirements.  

 

The Solvency II regulatory framework is structured into three pillars:  
 

• Pillar 1 represents the quantitative requirements for evaluating the technical provisions, 

Solvency Capital Requirement (SCR) and Minimum Capital Requirement (MCR), 

measurement of assets and liabilities and determining the required data quality.  

 

• Pillar 2 sets out the qualitative requirements for internal controls, risk management and 

governance. The main part of Pillar II is the Own Risk and Solvency Assessment 

(ORSA) which defines the overall solvency needs related to the specific risk profile of 

the insurance company.  

 

• Pillar 3 focuses on disclosure, reporting and transparency requirements around these 

risks and capital requirements.  

 
Figure 1: Three-pillar structure of Solvency II regulatory framework 

Quantitative 
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Supervisor 

Review
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Requirements

Competition 

requirements

 
 
The directive also states how to determine the MCR and SCR. 
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The Solvency Capital Requirement (SCR) corresponds to the economic capital a (re)insurance 

undertaking needs to hold to limit the probability of ruin over a one-year period to 0,5 %  

(1 in 200 years). SCR is estimated through the Value at Risk (VaR) measure, commonly used 

in financial services to assess the risk associated with a portfolio of assets and liabilities. VaR 

enables to quantify how much money would be lost, if events developed in an adverse and 

unexpected way. In other words, it measures the worst expected loss under normal conditions 

over a specific time interval at a given confidence level. Specifically, for Solvency II 

framework, the VaR is measured over a one-year period at a confidence level of 99.5 %. 

 

The Minimum Capital Requirement (MCR) represents the absolute minimum level of capital 

below which policyholders' interests would be seriously endangered if the undertakings could 

continue to operate. In the case that the Minimum Capital Requirement is breached ultimate 

supervisory action is triggered, i.e. license is withdrawn. Undertakings are therefore required to 

hold eligible basic own funds to cover the Minimum Capital Requirement. 

 

There are two approaches to determine the MCR: 

• As a fixed percentage of SCR * 1/3  

• As a lower confidence for VaR (e.g. 90 %). 

 

When determining the SCR and MCR the directive also states that internal model or standard 

formula approach should be used. Internal model is a model that was created to forecast  

the probability distribution of risks to which (re)insurance undertakings are exposed. This 

model needs to be well documented and approved by the regulatory authorities. The SCR and 

MCR should be obtained from this model. An alternative to the internal model is the standard 

formula approach where SCR and MCR are obtained from formula provided by the directive. 

The internal model and standard formula can be combined to create the partial internal model 

approach. 

Reserve models under Solvency II 

The Directive defines the following principles for the evaluation of the reserves: 

 

1) Technical provisions shall be calculated in a prudent, reliable and objective manner. 

2) Technical provisions calculation shall be based on their current exit value.  

3) Technical provisions calculation shall make use of and be consistent with information 

provided by the financial markets and generally should have available data on insurance 

and reinsurance technical risks. 

 

The second principle is meant for case of buying the insurance liabilities where the current exit 

value is higher than the expected value of the future cash flows. Buyer will need to hold  

an appropriate amount of the solvency capital to continue running the business. Holding  

an extra capital relates to additional costs of capital. 

 

The last principle speaks about the market price of liabilities which is not directly observable 

for insurance liabilities. The estimate of the market price of the insurance liabilities is assessed 

by splitting the insurance liabilities into hedgeable and non-hedgeable obligations.  

The hedgeable obligations are those obligations for which the associated future cash flows can 

be replicated using such financial instruments that their market value is directly observable.  

In those cases, the value of technical provisions shall be determined by their market value.  

In case of non-hedgeable obligations, the sum of best estimate and risk margin can be used.  
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The best estimate is defined as:  

 

'The best estimate shall be equal to the probability-weighted average of future cash-flows, 

taking account of the time value of money (expected present value of future cash-flows), using 

the relevant risk-free interest rate term structure.'  

 

The risk margin is defined as: 

 

'The risk margin shall be such as to ensure that the value of the technical provisions is 

equivalent to the amount insurance and reinsurance undertakings would be expected to require 

taking over and meet the insurance and reinsurance obligations.' 

'The risk margin is defined as the expected cost of future capital required for non-hedgeable 

risks necessary to support the insurance liabilities. Therefore, the risk margin is the probability 

weighted average of future cash flows stemming from the cost of future capital, considering the 

time value of money.' 

 

The directive requires separate calculation of these two components (best estimate and risk 

margin) of the value of the technical provisions for non-hedgeable risk. 

1.5 Objectives of This Work 

With the provided introduction of risk reserving modeling the following objectives will be laid 

out and solved in this work: 

 

1) Research of the existing literature on the topic of the reserve risk models based  

on aggregate claim level and individual claim level. 

2) Define an individual claim level model with the usage of hurdle models and zero inflated 

models. 

3) Practically implement the model on given dataset. 

4) Describe the model results and compare them with alternative approach.  

5) Propose how the model can be improved. 
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2. Literature Overview - Reserve Risk 

Models 
 

In this chapter the collected literature on the topic of reserve risk modelling will be presented. 

Firstly, the aggregate claim level models will be presented. These models are often described 

as the 'traditional' models by the actuarial community. An alternative to aggregate claim level 

models are the individual claim level models. These will also be introduced in the second part 

of this chapter. In the final part of this chapter these models will be compared. This section was 

inspired by the work of Zimmermann 2010.  

2.1 Aggregate Claim Level Models 

The aggregate claim level models are commonly based on the so-called triangle schemes. (see 

figure 2). The triangle scheme is basically a contingency table that contains in the rows 

cumulative value of claims that occurred in an occurrence year, and in columns value of claims 

that appeared in a certain development period (so called incremental triangle) or values  

that occurred up to a certain development period (so called cumulative triangle).  
 

Figure 2: Triangle scheme. 

 
 

         Source: Zimmerman 2010 

 

The historical observations can be found only in the upper left triangle part of the contingency 

table. When considering the incremental claim data (increments) of the total value of the claims 

of the i-th occurrence year in the j-th development period: 

 

 

The table containing 𝐶𝑖,𝑗 is the incremental triangle scheme. Commonly this scheme is used to 

represent the paid, incurred or the reserve value. From the incremental triangle scheme  

the cumulative triangle scheme can be obtained as follows: 

 

0 1 2 3 4 5

2004

2005 Historical Data

2006

2007

2008

2009

Origin Year

Development  Year

Extrapolation

 {𝐶𝑖,𝑗: 𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑛 − 𝑖 + 1 }. (2.1) 
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Cumulative triangle scheme presents the total incurred or paid value up to a certain development 

period for each occurrence year. 

 

The reserving problem can then be understood as the problem of extrapolating the historical 

development to the future to estimate the ultimate value of the claims that have already 

occurred. 

2.2 The Chain-Ladder Method 

The Chain-Ladder method is the prime example of the aggregate claim level reserving method. 

The description of this method provided here was taken from the England and Verrall 2002.  

Chain-ladder method has the following assumptions. 

 

1) Increments of the claims value are independent in the development periods 

 

 

2) Development is stable in time. The development has the same characteristics in each 

occurrence period. 

 

The chain-ladder method estimates the so-called development factors for each development 

period (common for each occurrence period): 

 

 

These are then applied to the latest cumulative claims in each row (𝐷𝑖,𝑛−𝑖+1 ) to produce 

forecasts of future values of cumulative claims: 

 

 

and the reserve yearly estimate: 

 

 

The overall reserve estimate 𝑅̂ is the sum of reserve yearly estimates 𝑅𝑖̂. 

This method is reliable for early development years, but for late development years (years 

where no observations are available) the tail factor estimates are often used. Tail factor estimate 

is a curve extrapolation of the development in late years.  Several authors have set up model 

with known statistical method. These models are presented and compared in the England and 

Verrall (2002). 

 

𝐷𝑖,𝑗 =  ∑ 𝐶𝑖,𝑘

𝑗

𝑘=1

. (2.2) 

 { 𝐶𝑖,1, … , 𝐶𝑖,𝑛}, { 𝐶𝑗,1, … , 𝐶𝑗,𝑛}, 𝑖 ≠ 𝑗 are indenpendent (2.3) 

 
𝜆̂𝑖,𝑗 =  

∑ 𝐷𝑖,𝑗
𝑛−𝑗+1
𝑖=1

∑ 𝐷𝑖,𝑗 − 1
𝑛−𝑗+1
𝑖=1

 . (2.4) 

  𝐷̂𝑖,𝑛−𝑖+2 =  𝐷𝑖,𝑛−𝑖+1 𝜆̂𝑛−𝑖+2, (2.5) 

 𝑅̂𝑖 =  𝐷𝑖,𝑛−𝑖+1 ∗ ( 𝜆̂𝑛−𝑖+1 … 𝜆̂𝑛−1 − 1 ). (2.6) 
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2.3 Mack's Model 

Thomas Mack presented model based on statistical theory in Mack (1993). This model defines 

how the standard error for chain ladder reserve estimate can be obtained.  Mack's model is built 

on the following assumptions: 

  

1) Developing factors  𝜆1, … , 𝜆𝑛−1> 0 exist and the expected cumulative claim value can 

be obtained as 

 

 

2) Cumulative claims variables of different accident years are independent. 

 

 

 

3) The variance can be obtained as 

 

 

No assumptions about the variable distributions are required therefore this model is often called 

„distribution free “. The estimation of the parameter 𝜆𝑗 can be obtained from (2.4) and  

the parameter 𝜎̂𝑗
2 is obtained as follows. 

 

 

Based on the model the mean squared error for the chain ladder reserve yearly estimate as 

 

 

The standard error (𝑠. 𝑒 (𝑅̂𝑖 )) is obtained as the root of the mean squared error. It is not possible 

to obtain the total reserve estimate as the sum of yearly estimates because of correlation via the 

common estimators 𝜆̂𝑖,𝑗 and 𝜎̂𝑗
2 (proof in Mack (1993)). The mean squared error for the chain 

ladder total reserve estimate then obtained as:  

 

  𝐸[𝐷𝑖,𝑗|𝐷𝑖,𝑗−1] =  𝜆𝑗𝐷𝑖,𝑗−1. (2.7) 

 { 𝐷𝑖,1, … , 𝐷𝑖,𝑛}, { 𝐷𝑗,1, … , 𝐷𝑗,𝑛}, 𝑖 ≠ 𝑗 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑛𝑝𝑒𝑛𝑑𝑒𝑛𝑡 (2.8) 

  𝑉𝑎𝑟[𝐷𝑖,𝑗|𝐷𝑖,𝑗−1] =  𝜎2
𝑗𝐷𝑖,𝑗−1. (2.9) 

 

 𝜎̂𝑗
2 =

1

𝑛 − 𝑗
 ∑ 𝐷 𝑖,𝑗 ( 

𝐷 𝑖,𝑗+1

𝐷 𝑖,𝑗
−  𝜆̂𝑗)

2

.

 

𝑛−𝑗+1

𝑖=1

 (2.10) 

 

𝑚𝑠𝑒(𝑅𝑖)̂ =  𝐷̂𝑖,𝑛
2 ∑

𝜎̂𝑘
2

𝜆̂𝑘
2

𝑛−1

𝑘=𝑛−𝑖+1

(
1

𝐷𝑖,𝑘
+

1

∑ 𝐷𝑗,𝑘
𝑛−𝑘
𝑗=1

). (2.11) 

 

 
𝑚𝑠𝑒(𝑅)̂ = ∑{ 

𝑛

𝑖=2

(𝑠. 𝑒 (𝑅̂𝑖 ))2 + 𝐷̂𝑖,𝑛  ( ∑ 𝐷̂𝑗,𝑛

𝑛

𝑗=𝑖+1

) ∑

2𝜎̂𝑘
2

𝜆̂𝑘
2  

∑ 𝐷𝑗,𝑘
𝑛−𝑘
𝑗=1

𝑛−1

𝑘=𝑛+1−𝑖

 } . (2.12) 
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2.4 Over-Dispersed Poisson Model 

The reserving model developed based on the over-dispersed Poisson distribution assumes that 

the variance of the Poisson distribution is not equal to the mean, rather it is proportional to  

the mean. Namely this model assumes that the incremental claims 𝐶𝑖,𝑗 are distributed  

as independent random variables from the Poisson Distribution with mean and variance: 

 

 

where  ∑ 𝑦𝑗 = 1.𝑛
𝑗=1  

The mean 𝜇𝑖,𝑗 has a multiplicative structure and is a product of two factors. The 𝑥𝑖 as  

the expected ultimate claims (observed in the triangle) and 𝑦𝑖 the proportion of ultimate claims 

to emerge each development year. Over-dispersion is introduced in the parameter φ. Allowing 

for over-dispersion does not affect estimation of parameters, but increases their standart error  

by proportion of 𝑦𝑖. 
 

2.5 Predictive Distribution 

The previous models focused on providing the estimate of the expected value and estimation 

error as a measure of the precision of the estimate. By estimating the predictive distribution  

of the expected value additional information are obtained. These are necessary for estimating 

the extreme quantiles (VaR) of the company’s predicted liability as required by the Solvency II 

directive. For these models the prediction error consists of the estimation error and the process 

error.  

 

Simple technique to estimate the predictive distribution is the bootstrapping model which was 

presented in England and Verrall (2002) and developed in England and Verrall (2006).  

The bootstrapping model is created by repeating two steps. Firstly, the estimation error is 

obtained using the bootstrapping method, where residuals are calculated and resampled.  

Then the process error is estimated from an assumed distribution. This is achieved by generating 

a random value from the underlying distribution of the provided residual sample.  These steps 

are then repeated substantial number of times. Result of this model is a predictive distribution 

with estimated parameters and a precision based on the estimation error and process error. 
 

2.6 Individual Claim Level Models 

Individual claim reserve risk modelling (Micro modelling) is the new reserve risk approach  

in non-life insurance. The point of this approach is to evaluate each claim and to predict the 

future claim development on per claim basis. This approach was fundamentally developed by 

work by Norberg (1993), Haastrup and Arjas (1996) and Norberg (1999), Antonio and Plat 

(2013) model the development of individual claims in continuous time. Drieskens et al. (2012), 

Rosenlund (2012) and Pigeon et al. (2013) work in discrete time and the framework for  

the complete micro model was presented in Pigeon, et. al (2014). This section will present  

the few possible approaches how to work with individual claim reserve risk modelling. 

  𝐸[𝐶𝑖,𝑗] =  𝜇𝑖,𝑗 = 𝑥𝑖 𝑦𝑗 , 

   𝑉𝑎𝑟[𝐶𝑖,𝑗] =  φ𝜇𝑖,𝑗 =  φ𝑥𝑖 𝑦𝑗 , 
(2.13) 



 

13 

 

2.7 Marked Poisson Process 

Marked Poisson process as presented in Norberg (1993) is an individual claim level model.  

The individual claims are presented as a random variable: 

 

 

where 𝑂 is the time of claim occurrence (defined as 𝑂 = [0, ∞)) and 𝑍 is the mark describing 

the claim development from the time of occurrence to the final settlement. The mark Z can be 

presented in the following form: 

 

 

where 𝐼 is the waiting time from occurrence until the notification, 𝑇 is the waiting time from 

notification until the final settlement, 𝑈 is the eventual total claim amount (ultimate liability) 

and 𝑈′(𝑣′) is the amount paid within the 𝑣′ time after the notification. The individual claims 

can be then classified (at a present time t ) based on their stage of development as: 

 

• Settled      𝑡 ≥ T 

• Reported but not settled (RBNS)  𝑡 < 𝑇  and 𝑈′(𝑡) < 𝑈 

• Incurred but not reported (IBNR)  𝑡 < 𝐼 

• Covered but not incurred.   𝑡 < 𝑂 

 

The Norberg (1993) then describes the marked Poisson process as:  

The claim process of an insurance business can be described as a random collection of points 

in a claim space {(𝑂𝑡, 𝑍𝑡)}𝑡=1,… ,𝑁 where 𝑡 is the indicator of chronological order from  

0 to N ≤ ∞. This model assumes that the 𝑂𝑡 are generated by an inhomogeneous Poisson 

process with intensity 𝑤(𝑡) at time t > 0 and that the marks are of the form 𝑍𝑡 = 𝑍𝑇 where 

{𝑍𝑡} 𝑡>0  is a family of random elements in Z that are mutually independent and independent of 

the Poisson process, and 𝑍𝑡 ~ 𝑃𝑍|𝑡. We then speak about a marked Poisson process with 

intensity of {𝑤𝑡} 𝑡>0  and Poisson-dependent marking by {𝑃𝑍|𝑡} 𝑡>0 , and write 

 

 

where the 𝑤𝑡 is the intensity of the 𝑂𝑡 and 𝑃𝑍|𝑡 is the join distribution of the  {(𝑂𝑡, 𝑍𝑡)}𝑡=1,…,𝑁 . 

 

Then the claim process outcome can be viewed as a Poisson number of independent and 

identically distributed occurrences and development marks. Firstly, when creating a claim 

process the number of N claims from the Poisson distribution should be generated and a random 

sample of N pairs from the join distribution of a random pair {(𝑂𝑡, 𝑍𝑡)}𝑡=1,…,𝑁 be taken.  

The total loss (sum of all individual final claim amounts 𝑈) of these random pairs has a 

generalized or compound Poisson distribution.  
 

 𝐶 = (𝑂, 𝑍), (2.14) 

 𝑍 = (𝐼, 𝑇, 𝑈, { 𝑈′(𝑣′), 0 < 𝑣′ < 𝑈}), (2.15) 

 {(𝑂𝑡, 𝑍𝑡)}𝑡=1,…,𝑁  ~ 𝑃𝑜(𝑤𝑡, 𝑃𝑍|𝑡;  𝑡 > 0), (2.16) 
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2.8 Dynamic Claims Reserving Model 

Dynamic claims reserving model was presented in Larsen 2007. The author also considers  

a discrete marked Poisson process with the following adjustment done to the claim development 

mark Z: 

 

 

where 𝐽𝑙 is the stochastic reporting delay in years ( 𝐽𝑙 ∈ {1, …, D}),  𝑌𝑘,𝑙 is the stochastic 

incremental incurred value in the development period k (k ∈ {𝐽𝑙, …, D}) and 𝐺𝑙is a discrete 

stochastic characteristic of the claim (claim-type, loss description, etc.). This model assumes 

that claims are settled after D development years. The claim process can be then decomposed 

to the following components: 

 

• The intensity of the Poisson process 𝑤𝑡 (claim generating process). 

• The distribution of 𝐺𝑙  (claim characteristics based on a business mix). 

• The conditional distribution of 𝐽𝑙 , given the value of 𝐺𝑙 (reporting delay for provided claim 

characteristics). 

• The conditional distribution of (𝑌𝐽,𝑙, 𝑌𝐽+1,𝑙, … , 𝑌𝐷,𝑙) given the occurrence year, development 

year, claim characteristics (claim incurred value at given point). 

o Assumptions of this distribution: 

▪ No additional time dependency apart from given variables. 

▪ Conditional distribution depends on its history based on an existing h 

functions as follows: 

 

 

Larsen 2007 also provides an example how to model the discrete claim process based on  

one-year periods using the generalized linear models (GLM). The initial incurred value 𝑌0 is 

obtained from the unconditional distribution and then the incremental incurred values 𝑌𝑘 are 

obtained from the conditional distributions. The initial incurred value distribution is mixture of 

distributions, where the components are a mixture of disjoint events (no initial incurred value 

𝑌0 = 0, large initial incurred value 𝑌0 ≥ L (threshold), small initial incurred value 𝑌0 < L).  

The incremental incurred values are then modelled separately based on the initial incurred value 

(𝑆0 = 0 and 𝑆0 ≠ 0). For the positive initial incurred value 𝑆0 > 0 or previous incurred values 

𝑆𝑘−1, the results can be presented in form of disjoint events. (no change in  𝑌𝑘 = 𝑆𝑘−1, increase 

in 𝑌𝑘 > 𝑆𝑘−1, increase in 𝑌𝑘 > 𝑆𝑘−1 over 𝑌𝑘 > 𝐿, decrease in 𝑌𝑘 < 𝑆𝑘−1 and reserve dismissal  
𝑌𝑘 =  −𝑆𝑘−1 < 0).  

2.9 Individual Claim Loss Reserving 

Taylor, McGuire and Sullivan (2008) focused describing the difference between aggregate 

models and individual models. In their work they presented an individual claim level model 

predicting the total loss reserve as. 

 

 

 𝑍𝑙 = (𝐽𝑙 , 𝑌𝐽,𝑙, 𝑌𝐽+1,𝑙, … , 𝑌𝐷,𝑙, 𝐺𝑙), (2.17) 

 𝑃𝑍:𝑡(𝑌𝑘|𝑌𝑘−1, … , 𝑌𝑗) ~ 𝑃𝑍:𝑡(𝑌𝑘|ℎ(𝑌𝑘−1, … , 𝑌𝑗)),   (2.18) 

 𝑈 = ℎ(𝑋1, 𝑋2, … , 𝑋𝑛, 𝜃),  (2.19) 
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where h is a function, 𝑋𝑖 is a vector of claim-dependent covariates and θ is a vector of 

parameters that are independent of the claims. The author then distinguishes the claim-

dependent covariates into the following categories.  

 

• Static covariates   do not change over life of a claim 

• Time covariates  can change in time, but are predictable. 

• Unpredictable dynamic covariates  can change in time, but are unpredictable 

 

Their work then focuses on these covariates and how the individual model performance changes 

based on which covariates are to be included.  

2.10 Individual Chain Reserving Model 

Individual chain reserving model was presented by Pigeon et al. (2014). This model focuses on 

predicting the ultimate value as a combination of first incurred value and link factors as. 

 

where k is a defined period. The final model can be based on link to link approach (modelling 

changes as they occur) or year to year approach (modelling claim states as the end of each year). 

The difference between these approaches is presented in the following figure:  
 

Figure 3: Comparison of link to link and year to year models. 

 
 

The first model predicts how the claims will develop and presents 𝜆𝑘 link factors where k is in 

1, …, N number of changes that will be modelled. (Chain of changes that have occurred) This 

model requires severity and time components to predict when the claim should change. The 

𝜆𝑘 link factors represent the claim change after a time internal.  For the year to year model the 

change is assumed to be fixed at the length of one year. Therefore, no time component is 

required for this model.  Pigeon et al. (2014) focuses on the link to link model and presents the 

year to year model as an alternative approach. This work will try to further develop this 

approach. 

 𝑈𝑘 = [ 𝑌1  𝜆1  𝜆2 …  𝜆𝑁] ,  (2.20) 
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3. Model Overview  

 

This chapter and the following chapters will provide theoretical introduction of the proposed 

model. The model will be an individual claim level model. This model will focus on developing 

a claim development process. This process will be modelled with a multiple sub models created 

by using generalized linear models (GLM). The goal of this work is to use hurdle (HM) and 

zero-inflated models (ZIM) to obtain better performance on a link factor sub model rather than 

using standard GLM model. For the model evaluation the results will be compared based on  

the estimate of the ultimate incurred value (liability) 𝑌𝑖,∞. 

3.1 Claim Development Process 

Before the model can be presented it is necessary to present the claim development process that 

is assumed. The claim development process is assumed based on the work of Pigeon et al. 

(2014) and its year to year model. This year to year model and its development process is 

presented in the following figure.  

 
Figure 4: Claim development process. 

t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6

Occurrence Reporting Settlement
Development

 
where t represents the year when the policy was sold and the following years t + k contains  

the events of claim occurrence, delay until reporting 𝑑 (𝑡 + 2 in figure 2), claim development 

and the settlement delay 𝑠 (𝑡 + 6 in figure 6). The year to year model focuses on modelling  

the individual claim development process 𝑍 at a fixed time points 𝑡 + 𝑗 which represents  

the end of a year. The j represents the development year of the individual claim after the claim 

have occurred. Under this claim development process, the incurred value 𝑌𝑖,𝑗 can develop as 

follows: 

 

where the first state of 𝑌𝑖,𝑗 = 0, represents claims in the incurred but not reported (IBNR).   

The last state 𝑌𝑖,𝑗 = 𝑌𝑖,∞ is for all settled claim where the incurred value will not change. This 

model does not assume the possibility of claim being reopened. The second state of 𝑌𝑖,𝑗 ≥ 0 

represents the reported but not settled (RBNS) and assumes following equation  
𝑌𝑖,𝑗 ≥ 0 = 𝜆𝑖,𝑗𝑌𝑖,𝑗−1  where the incremental value 𝑌𝑖,𝑗 can be obtained as a combination of the 

previous incremental value 𝑌𝑖,𝑗−1 and the link factor 𝜆𝑖,𝑗. This assumtions leads to the 

multiplicative specification. 

 

 

 𝑌𝑖,𝑗 = 0,        0 < 𝑗 ≤ 𝑡 + 𝑑                          

𝑌𝑖,𝑗 ≥ 0,        𝑡 + 𝑑 < 𝑗 < 𝑡 + 𝑠                   

𝑌𝑖,𝑗 = 𝑌𝑖,∞,    𝑗 ≥ 𝑡 + 𝑠                                                        

(3.1) 

 𝑌𝑖,𝑡+𝑆 =  𝑌𝑖,𝑡+𝑑+1(𝜆𝑖,𝑡+𝑑+2 … 𝜆𝑖,𝑡+𝑠),   (3.2) 
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where the  𝑌𝑖,𝑡+𝑑+1 is the first incurred value in the assumed claim development process.   

Other way how to describe this process can be based on the adjustments of 𝑋𝑖,𝑡 that have 

occurred as 

 

when using this form the final incurred value 𝑌𝑖,𝑡 can be obtained as a sum of all adjustments 

𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑆.  For this claim development process to work the following variables are 

needed to be defined.  

 

• Reporting delay  probability that the claim will reported in the development year t. 

• First incurred value  initial incurred value after the claim has been reported. 

• Claim development  link factor or the claim adjustment in the development year t. 

• Claim settlement  probability that the claim will be closed in the development year t 

• Ultimate incurred value  final incurred value after the claim has been settled. 

 

This claim development process and its variables will be further developed. 

3.2 Individual Claim Level Model 

The individual claim development process 𝑍𝑖 as presented in the previous section can be 

presented as a list of following variables:  

 

 

where 𝑌𝑖,1 is the first positive incurred value, 𝑌𝑖,∞ is the ultimate incurred value, 𝜆𝑖,1, 𝜆𝑖,2, … , 𝜆𝑖,𝑆 

are the individual link factors, 𝑃𝑟(𝑂𝑖,𝑗) is the probability of i-th claim being reported in  

the j-th development year and the 𝑃𝑟(𝑆𝑖,𝑗) is the probability of i-th claim being settled in  

the j-th development year. Each variable in the claim development process will be modelled (in 

chapter 6).  Before the model practical implementation can be provided the generalized linear 

model (GLM), hurdle models (HM) and zero-inflated models (ZIM) needs to be introduced 

(chapter 4). The following section will focus on model variables and their definition. 

3.3 Individual Claim Level Model Variables 

This section will introduce the individual claim level model variables. The variables here are 

those presented in the beginning of this chapter and additional variables that are the sub results 

of the claim development process.  

Ultimate Incurred Value 

The ultimate incurred value 𝑌𝑁 represents the final liability that is associated with the claim. 

The ultimate incurred value can be defined as 

 𝑌𝑖,∞ =  ∑ 𝑋𝑖,𝑗

𝑆𝑖

𝑗=1

+ 𝑌𝑖,1  =  ∏ 𝜆𝑖,𝑗

𝑆𝑖

𝑗=1

𝑌𝑖,1, (3.5) 

 𝑋𝑖,𝑡 =  𝑌𝑖,𝑡 −  𝑌𝑖,𝑡−1    (3.3) 

 𝑍𝑖 = (𝑌𝑖,1, 𝑌𝑖,∞, 𝜆𝑖,1, … , 𝜆𝑖,𝑆, 𝑃𝑟(𝑂𝑖,𝑗) , 𝑃𝑟(𝑆𝑖,𝑗)), (3.4) 
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where the 𝑋𝑖,𝑗 is the yearly incremental adjustment of the i-th claim incurred value after the first 

incurred value 𝑌𝑖,1. Each claim can be open 1, 2, … , 𝑆𝑖 years before it is finally settled (𝑆𝑖 may 

differ for each individual claim). The claim incremental adjustment 𝑋𝑖,𝑗 or link factor 𝜆𝑖,𝑗 can 

result in increase or decrease of the incurred value 𝑌𝑖. This work assumes that the 𝑋𝑖,𝑗 are from 

the Gamma distribution. 

 𝑋𝑖 ~ (𝑘𝑖, 𝜃𝑖),  (3.6) 

where 𝑘𝑖 is the shape parameter and the 𝜃𝑖 is the scale parameter. 

The incremental adjustment 𝑋𝑖 can be of any other continuous distribution which allows 

positive and negative occurences. The incremental adjustments will not be modelled in  

this work. The link factor approach was selected. 

First Incurred Value 

The first incurred value is often a result of an expert estimate or the insurance company standard 

for creating the first reserve. This value is obtained after the claim is reported and enough 

information about the claim is collected.  The first incurred value needs to be a positive 

continuous variable which can be obtained from the Log-normal distribution as 

 𝑌𝑖,1 ~ 𝐿𝑁(𝜇𝑖,  𝜎𝑖
2),  (3.7) 

where 𝜇𝑖 is the mean and 𝜎𝑖 is the standart deviation. This distribution is proposed based on the 

data exploration of the provided dataset. For more information see chapter 4. 

Link Factors 

The link factor represents the relative change between incurred value at the end of the previous 

year and the incurred value at the end of the actual year as 

 𝜆𝑖 = 𝑌𝑖/𝑌𝑖−1,, (3.8) 

The link factor is assumed to be a positive variable, where the following claim states can be 

observed. 

• 𝜆𝑖 = 0    The claim has not been reported yet.  

• 0 < 𝜆𝑖 < 1  The incurred value has decreased. 

• 𝜆𝑖 = 1   The incurred value has not changed or has been closed 

• 𝜆𝑖 > 1   The incurred value has increased. 

The link factor will be assumed to be from the gamma distribution in this work and will be 

subject to the modelling by the GLM, HM and ZIM models (see chapter 3). 

 𝜆𝑖 ~ Г(𝑘𝑖, 𝜃𝑖). (3.9) 

Based on the link factor the following variables can be obtained. 
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Yearly Incurred, Paid and Reserve Value 

Yearly incurred value 𝑌𝑖,𝑗 describes the total liability associated with i-th claim by the j-th 

development year (cumulative incurred value). The yearly incurred value can be decomposed 

as 

 𝑌𝑖,𝑗 =  𝑃𝑖,𝑗 +  𝑅𝑖,𝑗, (3.10) 

where 𝑃𝑖,𝑗 is the yearly paid value (cumulative paid value) from the i-th claim by the j-th 

development year and 𝑅𝑖,𝑗 is the yearly reserve value for the i-th claim in the j-th development 

year. The yearly incurred value can be obtained from the equation (3.15).  

Paid Ratio 

The cumulative paid value from the i-th claim by the j-th development year can be also obtained 

with the use of incurred value to paid value ratio as. 

 𝜍𝑖,𝑗 =
𝑃𝑖,𝑗

𝑌𝑖,𝑗
, (3.11) 

where 𝜍𝑖,𝑗 is the paid ratio. Based on this ratio a model will be introducted in the chapter 6. 

Probability of Claim Being Reported 

The probability of i-th claim being reported in j-th development year can be presented as. 

 𝑃𝑟(𝑂𝑖,𝑗) = 𝑃𝑟(𝑌𝑖,𝑗 > 0 | 𝑌𝑖,𝑗−1 = 0) =  𝑃𝑟(𝑅𝑖,𝑗 > 0 | 𝑅𝑖,𝑗−1 = 0), (3.12) 

where 𝑌𝑖,𝑗 is the incurred value of the i-th claim in j-th year and 𝑅𝑖,𝑗  is the reserve value of the 

i-th claim in j-th development year. Similar works (as presented in chapter 2) focused often on 

the time aspect the difference here is that claim is reported only when its first incurred value 

was observed. This probability will be observed from binary variable 𝐼(𝑂𝑖,𝑗) ~ 𝐵(1, 𝜋). 

Probability of Claim Being Settled 

The probability of i-th claim being settled (closed) in j-th development year can be presented 

as. 

 𝑃𝑟(𝑆𝑖,𝑗) = 𝑃𝑟( 𝑌𝑖,𝑗 =  𝑌𝑖,∞) = Pr(𝑅𝑖,𝑗 = 0 | 𝑅𝑖,𝑗 > 0) , (3.13) 

 

where 𝑌𝑖,𝑗 is the incurred value of the i-th claim in j-th development year and 𝑅𝑖,𝑗  is the reserve 

value of the i-th claim in j-th year. The probability predicts the first year when the reserve value 

should be equal to 0. This assumes that there is no possibility of claim being reopened in  

the following years. This probability will be observed from binary variable 𝐼(𝑆𝑖,𝑗) ~ 𝐵(1, 𝜋). 
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4. Model Framework - Generalized Linear 

Models and Its Extensions 

 

Generalized linear models (GLM) were introduced by Nelder and Wedderburn (1972) and 

extended McCullagh and Nelder (1989). Generalized linear model describe the dependence of 

scalar variable yi (i = 1, …, n) on a vector of regressors xi. The conditional distribution of yi|xi 

is a linear exponential family with probability density function of 

 

 

 
𝑓(𝑦; 𝜆; 𝜙) = exp ( 

𝑦 ∗  𝜆 − 𝑏(𝜆)

𝜙
+ 𝑐(𝑦, 𝜙)) , (4.1) 

 

 

where 𝜆 is the canonical parameter that depends on the regressors via a linear predictor and 𝜙  

is a dispersion parameter that is often known. The function b(.) and c(.) are known and 

determine which member of the family is used. Family can be of Normal, Binomial, Poisson 

or other distribution. The generalized linear model is made up of a linear predictor. 

 

 𝜂𝑖 =  𝛽0 +  𝛽1𝑥1𝑖+ . . . + 𝛽𝑝𝑥𝑝𝑖, (4.2) 

 

where the 𝛽0 is the model intercept and 𝛽𝑖  (i =  1, … , p) are regressor coeficients associated 

the vector of regressors xi when combined they are often a vector of regression coefficients B. 

For coefficients estimation the maximum likelihood (ML) using the iterative weighted least 

squares (IWLS) algorithm is used. At each stage of the iterative algorithm the model is 

increasing goodness-of-fit to the current set of data against increasing complexity of the model. 

The fitting of the parameters at each stage is done by maximizing the likelihood for the current 

model and the matching of the model to the data will be measured quantitatively by the quantity 

-2* L max which is called the deviance. The deviance is measured from that of the complete 

model, so that terms involving constants, the data alone, or the scale factor alone are omitted 

 

Apart from the linear predictor the generalized linear model utilizes two functions. The mean 

function of yi is given by E[yi|xi] = 𝜇i is defined as follows 

 

 𝑔(𝜇𝑖) =  𝜂𝑖, (4.3) 

 

where g(.) is a known link function and the variance function of yi is given by VAR[yi|xi] as 

follows  

 𝑉𝐴𝑅(𝑦𝑖) =  𝜙V(𝜇𝑖), (4.4) 

 

is also called variance function where 𝜙 is the dispersion parameter. The selection of the link 

and variance function depends on the selected family. This model will be utilized multiple times 

during the modelling process in the following sections. 
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4.1 Probability Models 

Probability models are used in predicting a binary (0|1) categorical variable. In case of micro 

claim level modelling these models are often used to predict the probability of a specific event 

occurrence. The events could be for example the claim settlement (probability of claim being 

settled in selected year), claim reopening (probability of claim being reopened after closure), 

claim development change (probability that the claim incurred value the total loss will change 

in any year).  For the purposes of predicting the probability of these events the logistic 

regression model is used. 

Logistic Regression 

The logistic regression (logit regression) is a regression model where the dependent variables 

is binary. This model was developed by David Cox in 1958. Logistic regression can be defined 

as follows. 

 

 𝑓(𝑦; 𝜋) = 𝑙𝑜𝑔𝑖𝑡(𝜋) = log (
𝜋

1 − 𝜋
) = 𝜂 (4.5) 

 

Where 𝜋 is the log odds of the mean (the probability of event occurrence), the 𝜂 is a linear 

predictor as defined in (3.1). The link function in case of the logistic regression model is  

the logit link as described above.  

4.2 Frequency Models 

The frequency models are used in micro claim level modelling for predicting discrete variables 

(count variables). A typical example of discrete variable could be the number of occurred claims 

or the number of policies sold in the future (to predict how the portfolio will change, therefore 

how will it affect the possible number of occurred claims). These models are the Poisson model, 

Quasi-Poisson model and the Negative binomial model. 

Poisson Model  

The simplest distribution used for modeling count data is the Poisson distribution with 

probability density function  

 

 𝑓(𝑦; µ) =  
exp(−µ) ∗ µ𝑦

𝑦!
, (4.6) 

 

where the probability density function is a special case of GLM model. The canonical link is 

g(µ) = log(µ) resulting in a log-linear relationship between mean and linear predictor.  

The variance in the Poisson model is identical to the mean, thus the dispersion is fixed at 𝜙 = 1 

and the variance function is V (µ) = µ. In practice, the Poisson model is often useful for 

describing the mean µi but underestimates the variance in the data.  

Quasi-Poisson Model  

Another way of dealing with over-dispersion is to use the mean regression function and  

the variance function from the Poisson GLM but to leave the dispersion parameter 𝜙 

unrestricted. Thus, φ is not assumed to be fixed at 1 but is estimated from the data. This strategy 
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leads to the same coefficient estimates as the standard Poisson model but inference is adjusted 

for over-dispersion.  

Negative Binomial Models. 

A third way of modeling over-dispersed count data is to assume a negative binomial (NB) 

distribution for yi|xi which can arise as a gamma mixture of Poisson distributions.  

Parameterization of its probability density function is  

 

 𝑓(𝑦; µ;  θ) =  
Γ(y +  θ) 

 Γ(θ)  ·  y!
∗  

µy ∗  θθ

(µ +  θ)y+θ
, (4.7) 

 

 

with mean µ and shape parameter θ. Γ(·) is the gamma function.  It also has φ = 1 but with 

variance function V (µ) = µ + µ·2·θ.  Negative binomial probability density function is also a 

special case of GLM model. 

 

4.3 Severity Models 

The severity models are used in micro claim level modelling for predicting continuous 

variables. These continuous variables are often positive and right-skewed. As an example of  

these variables the claim incurred value, claim paid value or reserve could be presented.  

For these purposes the Gamma, Log-Normal or Poisson models are used.  

Log-normal Model 

The log-normal model is used for predicting positive continuous variables which are right-

skewed. The log-normal model is estimated based on the maximal likelihood function which 

formula is as follows. 

 

 𝑓(𝑦; µ; 𝜎 ) =  
1

𝑦

1

√2𝜋𝜎
𝑒𝑥𝑝 [ − 

(𝑙𝑛(𝑦) −  µ)2 

2𝜎2
 ], (4.8) 

 

where µ = ln(𝛽0 + 𝛽1𝑥𝑖1 + ⋯ +   𝛽𝑝𝑥𝑖𝑝) −
𝜎2

2
. The estimates of 𝛽𝑖 and 𝜎 are obtained during 

algorithm iteration.   

Gamma Model 

The gamma model is used for predicting positive continuous variables as an alternative to  

the log-normal model. The probability density function of the gamma distributed model can be 

described as follows. 

 

 𝑓(𝑦𝑖;  𝛼𝑖;  𝛽𝑖) =
1

𝛽𝑖
𝛼𝑖Г(𝛼𝑖)

 𝑦𝑖
(𝛼𝑖−1)

𝑒−(𝑦𝑖/𝛽𝑖), (4.9) 

 

where Г(. ) is a gamma function, 𝛼𝑖 is the shape parameter and 𝛽𝑖 is the scale parameter of  

the gamma distribution. The mean and variance functions of 𝑦𝑖 are as follows: 
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𝐸(𝑦𝑖) =  𝛼𝑖𝛽𝑖, 
𝑉𝑎𝑟(𝑦𝑖) =  𝛼𝑖𝛽𝑖

2, 
 

(4.10) 

The gamma regression is focused on the scale parameter 𝛽𝑖 (which is the source of variantion). 

For the shape parameter 𝛼𝑖 it is assumed that this parameter is the same for all observations 

therefore the shape parameter is only a multiplier. The inverse value of the shape parameter is 

equal to the inverse of the dispersion parameter 𝜙.  

Beta Model 

The beta regression model is used for predicting rates and proportional variables (between 0 

and 1). The beta density function can be expressed as 

 

  

 𝑓(𝑦𝑖;  𝑝𝑖;  𝑞𝑖) =
Г(𝑝𝑖 + 𝑞𝑖)

Г(𝑝𝑖)Г(𝑞𝑖)
𝑦𝑖

𝑝𝑖−1
(1 − 𝑦𝑖)

𝑞𝑖−1, (4.11) 

 

where 0 < 𝑦𝑖 < 1 and  𝑝𝑖, 𝑞𝑖 > 0 and Г(. ) is a gamma function. The mean and variance 

functions of 𝑦𝑖 are as follows: 

 

 
𝐸(𝑦𝑖) =  𝑝𝑖/(𝑝𝑖 + 𝑞𝑖), 
𝑉𝑎𝑟(𝑦𝑖) = (𝑝𝑖 ∗ 𝑞𝑖)/(𝑝𝑖 + 𝑞𝑖)2(𝑝𝑖 + 𝑞𝑖 + 1) , 

(4.12) 

 

4.4 Hurdle Models 

Hurdle model is an extension of the GLM models that was firstly introduced for count data to 

handle excess zeros and overdispersion. The hurdle model is a multiple-part model  

that specifies one process for no occurrence and another process for positive occurrences.  

The idea is that positive occurrences occur once a threshold is crossed, or put another way,  

a hurdle is cleared. The threshold is not crossed with probability 𝑓1(0) in which case there are 

no occurences. If the threshold is crossed, we observe positive occurrences, with probabilities 

coming from the density 𝑓2(𝑦) with the associated truncated density 𝑓2(𝑦)/ (1 − 𝑓2(0))  

that needs to be multiplied by (1 − 𝑓1(0))  to ensure probabilities sum to one. The resulting 

hurdle is then defined as 

 

 
𝑃(𝑦𝑖) =  {   

     𝑓1(0)                        𝑦𝑖 = 0

1 −  𝑓1(0)

1 − 𝑓2(0)
𝑓2(𝑦𝑖)         𝑦𝑖 > 0.

 

 

(4.13) 

 

The 𝑓1(0) is typically a binary Logistic regression model. This process predicts whether  

an observation takes a positive occurrence or not with the probability of 𝜋1. The 𝑓2(𝑦) is usually 

a truncated/censored Poisson or Negative Binomial (for discrete) or Gamma (for continuous) 

model. The truncated/censored means that model was fitted only of positive occurrences. For 

difference between truncated/censored see Cameron and Trivedi 2013.  The model can have 

multiple hurdles, for example hurdle equal to 0 occurrences, hurdle equal to 1 occurrence and 

truncated model for all other positive occurrences. The graphical description of Gamma hurdle 

model is provided in the following figure. 
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Figure 5: Gamma Hurdle model  

 
 

The black area is the hurdle to be cleared by the binary Logistic regression model 𝑓1  and  

the grey is the truncated/censored Gamma model 𝑓2 variable distribution.  

 

The mean and variance functions of a general hurdle model (in case of two components) can 

be presented as 

 

𝐸(𝑦) = (1 − 𝜋1) 𝐸2(𝑦|𝑦 > 0) , 
𝑉𝑎𝑟(𝑦) = (1 − 𝜋1)𝑉𝑎𝑟2(𝑦|𝑦 > 0) + 𝜋1(1 − 𝜋1)𝐸2(𝑦|𝑦 > 0)  

 
(4.14) 

where 𝜋1 is the probability of positive occurrence, 𝐸2(𝑦|𝑦 ≠ 0) is the mean for positive 

occurrences from the truncated/censored model and  𝑉𝑎𝑟2(𝑦|𝑦 ≠ 0) is the variance of  

the truncated/censored model. For more details on this expression and hurdle models in general, 

see Cameron and Trivedi (2013). 

 

4.5 Zero-inflated Models 

Zero-inflated model is an also extension of the GLM model. The zero-inflated model differs 

from the hurdle model in definition what is the source of the variable no occurrence.  

In the Hurdle model the no occurrences are assumed to be a from an independent source 

(structural origin). The Zero-inflated model assumes than there are two sources of no 

occurrence. The structural origin and the sampling origin. The sampling origin represents that 

no occurrences are the taken from the variable distribution. As a result, the no occurrences are 

generated by two sources. First source is the Logistic regression model (structural) and  

the variable distribution (sampling). The same variable distributions as in case of the hurdle 

model can be assumed. The graphical description of the Zero-inflated model is presented in  

the following figure. 
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Figure 6: Gamma Zero-inflated model 

 
In comparison with the hurdle model the black area is smaller because the no occurrences (= 0) 

are not only generated by the Logistic regression model 𝑓1 but also by the Gamma model 𝑓2. 

The probability for the Zero-inflated model can be presented as 

 

 
𝑃(𝑦𝑖) =  {   

𝜋 + (1 − 𝜋)𝑓2(0)      𝑦𝑖 = 0

(1 − 𝜋)𝑓2(𝑦𝑖)               𝑦𝑖 > 0,
 

 

(4.15) 

where 𝜋 is the proportion of no occurences and this in increased by the probability of  

no occurrences from the second model as (1 − 𝜋)𝑓2(0) to ensure that probabilities sum to one.  

 

The mean and variance functions of a general zero-inflated model (in case of two components) 

can be presented as 

 

 
𝐸(𝑦) =  (1 − 𝜋)𝜇2, 
𝑉𝑎𝑟(𝑦) = (1 − 𝜋)(𝜎2

2 + 𝜋𝜇2
2), 

(4.16) 

where 𝜇2 is the mean and 𝜎2
2 is the variance of the full model 𝑓2. For more details on the zero-

inflated models see Mills (2013) or Cameron and Trivedi (2013). 

 

4.6 Framework Conclusion 

This section provided and overview of the Generalized Linear Models (GLM) and its 

extensions. The GLM framework is used in the practical model implementation (chapter 6). 

The proposed model is comparing the GLM, Hurdle and Zero-inflated models (chapter 7).  

From the presented models the frequency models are not used because the proposed model 

focuses on the severity modelling and therefore frequency modelling is out of scope of this 

work. In the following chapter the provided dataset is prepared and explored.  
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5. Dataset 

 

We have a dataset at our disposal with detailed information on the development of individual 

claims from Motor Third Party Liability (MTPL) line of business which evolves from 

occurrence of the accident until the settlement or censoring of the claim. This dataset was 

obtained from the Czech Insurers‘ Bureau (www.ckp.cz). Dataset contains records from year 

2004 till 2016. The year 2004 till 2010 will be used for model implementation (chapter 6) while 

the years 2011 till 2016 will be used for model evaluation. (chapter 7).  

The table 1 illustrates the structure of individual claims. Each record stores static columns 

Claim ID, Occurrence Date and Registration Date and dynamical columns Change Date, 

Amount in CZK and Log Type columns. Static columns are associated with the Claim ID and 

provide a basic claim description. Static columns value does not change when the claim is 

modelled while the dynamical columns describe the individual claim change in time.  

 
Table 1: Claim Occurrence History Log Data. 

Claim ID 
Occurrence 

Date 

Registration 

Date 

Change 

Date 

Amount 

CZK 
Log Type 

78002 14.03.2005 26.04.2005 02.05.2005 540 000 Reserve 

85134 25.05.2005 28.05.2005 07.05.2005 6 000 Reserve 

78002 14.03.2005 26.04.2005 15.05.2005 -540 000 Reserve 

86514 05.05.2005 17.05.2005 20.05.2005 254 560 Reserve 

78002 14.03.2005 26.04.2005 25.05.2005 540 000 Paid 

85134 25.06.2005 28.06.2005 04.06.2005 12 000 Reserve 

85134 25.06.2005 28.06.2005 15.06.2005 -12 000 Paid 

… … … … … … 

 

5.1  Data Preparation 

For the purposes of analysis, it is necessary to adjust the dataset by changing it from continuous 

time framework to the discrete time framework as described in Pigeon et al. (2014). One-year 

period discrete time framework will be used. All amount changes for each claim will be 

summed by the Log Type. The results for paid changes are as follows.  

 
Table 2: Cumulative paid value at the end of the year for each claim. 

Claim ID 
Occurrence 

Date 
2005 2006 2007 2008 … 

78002 14.03.2005 540 000 540 000 540 000 540 000 … 

85134 25.05.2005 6 000 25 000 72 000 160 000 … 

86514 05.05.2005 0 0 0 0 … 

… … … … … … … 

 

By summing the cumulative paid value and the reserve value at the end of the year the incurred 

value is obtained. The cumulative incurred value development can be described as.  
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Table 3: Cumulative incurred value at the end of the year for each claim. 

Claim ID 
Occurrence 

Date 
2005 2006 2007 2008 … 

78002 14.03.2005 540 000 540 000 540 000 540 000 … 

85134 25.05.2005 18 000 56 000 84 000 160 000 … 

86514 05.05.2005 254 560 124 000 80 200 0 … 

… … … … … … … 

 

For the modelling purposes, it is necessary to prepare data structure describing each claim and 

its variables at the given year. This work proposes the following structure.   

 
Table 4: Analytical table used in model 

Claim ID 
Loss 

Year 

Dev 

Year 
Month 

Prev. 

Incurr. 

Prev. 

Paid. 
Incurred Paid … 

78002 2005 2005 3 0 0 540 000 540 000 … 

78002 2005 2006 3 540 000 540 000 540 000 540 000 … 

78002 2005 2007 3 540 000 540 000 540 000 540 000 … 

… … … … … … … … … 

 

Previous incurred and paid describes the claim state at the start of the year. This year incurred 

and paid describes the claim state at the end of year. The table 5 describes all variables assumed 

to be needed for modelling. 

 
Table 5: Analytical table variables description 

Variable Description 

Claim ID ID of the Claim 

Loss Year Loss Year from the Occurrence Date 

Dev Year Development Year 

Development year Difference between Development Year and Loss Year 

Previous Incurred Cumulative Incurred Value at the end of previous Year 

Previous Paid Cumulative Paid Value at the end of previous Year 

Incurred Cumulative Incurred Value at the end of current Year 

Paid Cumulative Paid Value at the end of current Year 

Reserve Difference between Incurred and Paid 

Ultimate Final cumulative Incurred Value found for the claim 

Reported Binary variable if the Incurred > 0 for the first time. 

Closed Binary variable if the Incurred = Paid and claim settled. 

Order Rank variable based on order of the Occurrence Dates 

Quarter Quarter when the Loss Occurred 

Month Month when the Loss Occurred 

Link Factor Incurred /Previous Incurred 

Paid/Incurred Ratio Paid/Incurred 

Change in Incurred Binary variable if Incurred value changed from Previous Incurred 

Change in Payment Binary variable if Paid value changed from Previous Paid 

 

5.2  Variable Description 

This section describes available variables of the provided dataset (see table 5). These variables 

can be used to create following variable groups. 
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➢ Description variables (Claim ID, Ultimate, Loss Year, Quarter, Month, Order)  

➢ State variables (Incurred, Paid, Reserve, Closed) 

➢ Time variables (Dev Year, Development year) 

➢ Change variables (Link factors variables, Paid to Incurred ratio, Change in variables) 

 

Description variables provide basic information about the individual claim. These variables are 

static and therefore their value does not change during the claim development. Other variable 

groups change its values based on the development year. The state variables present the incurred 

value, paid value and reserve value of the individual claim. The time variable holds information 

about the development year and the difference between loss year and dev year. Lastly  

the change variables hold information about the link factor variable, incurred to paid value ratio 

and the change in incurred value and paid value variables.   

Description Variables 

Claim ID is numerical variable to distinguish between individual claims. There exists 18016 

unique claim IDs in the provided dataset. Each claim ID is represented by multiple rows to 

presents the development history of this claim. The claim ID variable will be used to create  

the training and testing dataset. When the claim ID is randomly selected its complete history is 

moved into the training/testing dataset. 

 

Loss year, quarter, month and order variables are discrete number variables derived from the 

claim original occurrence date. Together with the claim count the claim frequency per year, 

quarter and month. In addition, the occurrence date was used to determine the claim order.  

These variables will be tested in the modelling if they hold additional information that can 

improve the individual claim level model. Finally, the order is obtained as the chronological 

order in which the claims have occurred. 

 

Ultimate is the ultimate incurred value 𝑌𝑖,∞ obtained as the last available incurred value of  

the i-th claim as of year 2016 for the provided claim. This variable will be used in model 

evaluation. 

State Variables 

Each row of the presented dataset contains the incurred, paid and reserve variable. For  

the previous incurred value 𝑌𝑖,𝑗−1and the incurred value 𝑌𝑖,𝑗. Both the previous incurred value 

and incurred value represents the cumulative incurred value of i-th claim at the end of j-1 and 

j-th development year. The difference between these values can be interpreted as  

the incremental adjustment 𝑋𝑖,𝑗 of i-th claim in j-th development year. This description can also 

apply to the variables previous paid value 𝑃𝑖,𝑗−1 and the paid value 𝑃𝑖,𝑗 . The reserve variable 

𝑅𝑖,𝑗 is obtained by applying the formula (3.10). These prediction of variables is the result of  

the claim development process. The closed binary variable 𝐼(𝑆𝑖) represents if the claim has 

already been settled. The claim is settled when the 𝑌𝑖,𝑗 = 𝑌𝑖,𝑁 and 𝑌𝑖,𝑗 > 0. This variable does not 

consider fake claim which ends with 0 ultimate claim value. These claims were removed from 

the dataset. This variable will be predicted with the probability of closure 𝑃𝑟(𝑆𝑖) model. 
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Time Variables 

These variables are containing the time aspect of the state variables. The dev year represents 

the actual year of the state variables. The development year represents the j-th year of i-th claim 

after occurrence. These variables will be tested in the modelling if they hold addititonal 

information that can improve the individual claim level model. 

Change Variables  

These variables represent the change in the state variables that occurred in the j-th development 

year. The link factor 𝜆𝑖,𝑗 presents the relative difference between the incurred value 𝑌𝑖,𝑗 and  

the previous incurred value 𝑌𝑖,𝑗−1. This variable will be predicted with link factor GLM, HM 

and ZIM models. The paid to incurred ratio 𝜍𝑖,𝑗 represents the relative difference between  

the incurred value 𝑌𝑖,𝑗 and 𝑃𝑖,𝑗. This variable will be predicted with the beta regression model. 

The final variable change in incurred value is the binary variable for the HM and ZIM model 

to distinguish development years when the incurred value has not changed. This variable is 

equal to 0 when no change occurred (𝜆𝑖,𝑗 = 1) and 1 when change occurred (𝜆𝑖,𝑗 ≠ 1). 

5.3 Describing Claim Development 

This section will provide basic introduction to the modelled variables and explore their 

development. The proposed variables are presented as they change during the development 

years. Firstly, the number of occurred claims per year will be standardized with the total 

exposition for each year to provide the claim frequency. Then the individual claim development 

of not reported, open and closed claims is considered. Then the development of incurred, paid 

and reserve variables for each development year is presented. Lastly the development of the 

link factor is provided. 

Claim Frequency 

When describing the overall development of the claims for the provided dataset it is important 

to look at how the years differ in their exposure. The dataset contains information about claims 

arising from the Motor Third Party Liability (MTPL) line of business. These claims are 

representing only material damages done by non-insured cars. The total number of claims is 

presented in figure 7. Firstly, it is important to look at the number of occurred claims for each 

year. Number of occurred material claims tend to be very similar with on average 2 976 material 

claims occurred each year with only exception of the years 2009 and 2010 where the number 

of claims occurred has decreased to 2 537 and 2413. The main factor which led to this decrease 

was the overall decrease in number of car accidents occurred. This information is collected by 

the Czech police car accidents statistics1. In year 2008 the total number of car accidents 

registered by Czech police was 160 376 and in the following year 2009 the total number 

decreased to 74 815. The reason for this change is that there is new law enforced which changes 

the rules when the police must attend to the car accident. The main change is that the car 

accident loses must now be more than 100 000 rather than 50 000 before year 2009. Overall the 

number of car accidents was lower but not so much as would the official statistics would 

describe. 

 

                                                 
1 http://www.policie.cz/clanek/statistika-nehodovosti-900835.aspx?q=Y2hudW09OA%3d%3d 
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Figure 7: Claim counts per year. 

 
 

To complete the picture the following figure was created where the total number of occurred 

claims are compared with the estimate total number of non-insured cars. This information is 

presented in the figure 8.  

 
Figure 8: Claim frequency per year. 

 
         Source:  Supin s. r. o. 

The relative number of claims was around 0.015 every year except for the years 2009 and 2010 

where this value was increased to 0.018. This may in fact because of decrease in the exposition 

between year 2008 and 2009. The table 6 presents how the figures 7 and 8 were obtained. 
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Table 6: Claim frequency per year. 

Loss Year 2004 2005 2006 2007 2008 2009 2010 

Claim count 2 750 3 192 2 980 2 983 3 151 2 496 2 413 

Exposure 191 281 191 379 188 389 205 621 214 029 143 725 127 780 

Frequency 0.0144 0.0167 0.0158 0.0145 0.0147 0.0174 0.0189 

 
Source:  Supin s. r. o 

Claim Frequency Development 

Claim frequency in the loss year will be presented in the number of occurred claim per month 

in the loss year. The claim frequency is not uniformly distributed as displayed in the figure 10. 

The highest number of claims was observed in 2005, 2007 and 2008 from July to November 

with the maximum of 325 claims in October of 2008. On the contrary, the lowest number of 

150 claims was observed in March of 2009. The average number of observed claims is 220 

from January to June of the year and 254 from July to December. 

 
Figure 9: Number of material claims occurred per month for each loss year. 

  
 

In addition to the relation between month and loss year the overall claim frequency distribution 

is presented in figure 10. The claim frequency histogram is relatively normally distributed with 

majority of claim counts occurring between 180 and 280 per month. The claim frequency is not 

subject of this work model but the information was included to present complete picture about  

the provided dataset. 
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Figure 10: Claim frequency distribution. 

  

Claim Development by Claim State 

In the previous section the number of occurred claims for each loss year and month was 

presented. This section will focus on individual claim development, i.e. how claims are 

developing during each year. Claim states can be described as: 

 

1) Not Reported 𝐼(𝑆𝑖,𝑗) = 0   

                        Claims that were not reported by the end of year. 

2) Open  𝐼(𝑆𝑖,𝑗) = 1 & 𝐼(𝑂𝑖,𝑗) = 0   

                        Claims that were reported and remained open at the end of year 

3) Closed  𝐼(𝑆𝑖,𝑗) = 1 & 𝐼(𝑂𝑖,𝑗) = 1  

                        Claims that were reported and were closed by the end of year 

 

Not reported is the first state that the claim has until it is reported to the insurance company. 

The not reported claims can remain in this state for several years before they are reported. An 

alternative name for these claims in the literature is the incurred but not reported claims (IBNR). 

The second state the claim can belong to is the open state. The claim is marked as open when 

it is reported to the insurance company but not all payments have been done. An alternative 

name for these claims in the literature is the reported but not settled claims (RBNS). The final 

state for each claim is the closed claim. For these claims all payments are paid out and no further 

development is done to these claims. The proposed dataset was explored and number of claims 

per claim state have been collected and presented in table 7. 
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Table 7:  Claim development by claim state. 

 
 

At the end of the loss year (0 development year) about 20-25 % of claims remain not reported 

and the 75-80 % reported claims are in 30-40 % of cases closed and in 40-45% of cases 

remained open. Not reported claims are by the end of first development year nearly all reported. 

From all the claims about 20 % of claims are long running claims which need more than 2 years 

to be processed while the majority will be closed by the end of first development year. At the 

end of fifth development year only small fraction of claims remain open. There exists a 

possibility of claim being reopened and this occurs in the provided dataset in 1 % of cases but 

the proposed model in chapter 6 is neglecting this option. 

 

By this section the claim frequency exploration is concluded and the individual claim level 

model implementation will focus on the individual claim level development rather than 

modelling the claim frequency.  

0 1 2 3 4 5

Not Reported 650 22 5 1 1 1

Open 1392 483 289 213 168 144

Closed 760 2297 2508 2588 2633 2657

Not Reported 655 39 12 1 0 0

Open 1710 640 406 295 259 44

Closed 875 2561 2822 2944 2981 3196

Not Reported 667 42 12 2 2 0

Open 1410 476 288 218 24 8

Closed 964 2523 2741 2821 3015 3033

Not Reported 643 56 14 7 0 0

Open 1243 535 274 203 50 21

Closed 1144 2439 2742 2820 2980 3009

Not Reported 633 62 15 5 1 1

Open 1361 480 334 260 141 77

Closed 1214 2666 2859 2943 3066 3130

Not Reported 475 49 11 4 1 0

Open 1031 368 299 208 77 0

Closed 1031 2120 2227 2325 2459 2537

Not Reported 475 49 11 4 1 0

Open 1031 368 299 208 77 0

Closed 1031 2120 2227 2325 2459 2537

Not Reported 482 78 19 4 1 0

Open 870 382 285 245 28 4

Closed 1061 1953 2109 2164 2384 2409
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Paid Value Development for Open Claims 

This section will focus on open claims paid value development. The cumulative paid value for 

all the open claims by development year is presented in figure 11. In the first year, there exist 

only few material claims, where payment has occurred and therefore the paid value median is 

equal to 0 and the most of paid values are less than 50 000. In the second year the claims starting 

to be paid out and the median will increase 23 720 and the most of paid values are less than 

100 000. From the development year the increase in median is slower and the median will reach 

26 752 by the sixth development year and the most of paid values will be less than 150 000. 

 

 
Figure 11: Open claims paid value development. 

 
 

The paid value distribution is positively skewed and by each development year the number of 

still open claims is very small (see table 7) therefore the variability is very high in the latter 

development years.  

Reserve Value Development for Open Claims 

This section will focus on reserve value development of open claims. For closed claims,  

the reserve value is always equal to 0. No additional payments are expected arising from these 

claims once they are settled (Reopening is not considered).  The reserve value differs based on 

the moment the claim is reported. For claims reported in the first year the initial reserve is 

created. This reserve will be paid out in the following year therefore in the first development 

year there are very small reserves left. In the following years the number of still open claims is 

very small and therefore the reserve value is visible in comparison with the first development 

year. The reserve value is obtained as a difference between the incurred value and the paid value 

in the modelled year. 
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Figure 12: Open claims reserve value development. 

 

Incurred Value Development for Open Claims 

The development of incurred value for open claims is the mixture of the previous developments. 

The incurred value development is presented figure 13. The median of the incurred value is 

increasing till the third development year. After the third yeas the median of the incurred value 

is relatively the same. In numbers the median is equal to 22500 in the zeroth development year 

and 26875 by the sixth development year.  

 
Figure 13: Open claims incurred value development. 

 
 

The incurred value will not be modelled directly rather it will be result of the previous incurred 

value and a link factor.  

Link Factor Development for Open Claims 

The link factor represents the incurred value change that have occurred in the development year. 

The link factor variable development is presented in the following figure. The link factor 

median for all development yeas is less than 1 which indicates that the change is more often a 
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decrease in the incurred value from the previous year rather than increase as displayed in  

figure 14.  
Figure 14: Open claims link factor development. 

 
 

The figure 14 was created from link factors that were not equal to 1 therefore, only link factors 

that represented a change in the incurred value. In the first development year the median close 

to 1. In the following years the link factor median is decreasing and ending close to 0.8. Based 

on the figure 14 the link factor is assumed to decrease in the following years and therefore, the 

incurred value is expected to decrease if the incurred value should change in later years.  

 

Concluding the Claim Development 

This section focused on presenting the provided dataset and presenting how claims develop in 

the dataset. The section presented how from the standard claim structure the model input table 

was prepared. Then from the model input table the variable development was observed and 

presented in this chapter. The following chapter will present how the proposed model will work 

to predict the future individual claim development. 
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6. Model Implementation 

The individual claim level model implementation will be presented in this chapter. Firstly,  

the model structure is presented. The individual claim level model handles separately based on 

the claim state. For claims in not reported state (IBNR) the incurred but not reported models 

are used. For claims in open state (RBNS) the development models are used. These models 

are based on variables presented in the chapter 4. The presented models are not considering the 

claim frequency as this not the focus of this work. This chapter assumes that the claim counts 

are fixed and only the individual claim level development is assumed and modelled. 

6.1 Individual Claim Level Model 

The practical implementation of the individual claim level model is proposed in this section. 

When modelling the individual claim level model, it is assumed that the available dataset will 

be split to a training and testing part. In the training part the individual models are fitted and 

during the testing part the models are used to predict the individual claim development and save 

the result to the analytical table for years that are unknown. For example, when the model 

contains history for years 2004 and 2016 the model can be used to evaluate claims from year 

2004 to 2010 and train models based on their history in these years. Then in the testing part the 

model will focus on modelling the development of claims originating from years 2004 to 2010 

(claims that were not used in training the model) in the years 2011 to 2016. Then the model 

results are collected and saved to the analytical table. One analytical table is needed for 

predicting the model and the second will be used for model testing. The table 8 contains 

information about the variables that the model uses and how they are obtained when testing the 

model. 
Table 8: Analytical table variables source 

Variable Description 

Claim ID Available at the start of modelling. 

Loss Year Available at the start of modelling. 

Dev Year Updated based on the model. 

Dev Updated based on the model. 

Previous Incurred Calculated with usage of link factor. 

Previous Paid Calculated with usage of paid ratio. 

Incurred Calculated with usage of link factor. 

Paid Calculated with usage of paid ratio. 

Reserve Incurred - Paid 

Ultimate Available at the start of modelling. 

Reported Obtained from probability of claim being reported 

model. 

Closed Obtained from probability of claim closure. 

Order Available at the start of modelling. 

Quarter Available at the start of modelling. 

Month Available at the start of modelling. 

Link Factor Obtained from the link factor model. 

Paid/Incurred Ratio Obtained from the beta regression model. 

Change in Incurred Obtained from probability that incurred value change 

during the year. 

Change in Paid Obtained from probability of payment occurrence model 

 

The variables known at the start of the year are as follows: Loss Year, Development Year, 

Order, Quarter, Month, Previous Year Incurred Value, Previous Year Paid Value.   
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Predicted variables are as follows: This Year Incurred Value, This Year Paid Value, Reserve, 

Closed, Grossing Factor Incurred, Grossing Factor Paid, Change in Paid and Change in 

Incurred value.  

6.2 Modelling Claim Change 

For modelling claim change two support variables 𝐼(𝑂𝑖,𝑗) and 𝐼(𝑆𝑖,𝑗) be used as introducted in 

chapter 2. These variables are used to determine if claim have been reported, is open or has 

been already closed. The 𝐼(𝑂𝑖,𝑗) is an indicator of i-th claim being reported in the j-th 

development year. When the 𝐼(𝑂𝑖,𝑗) = 0 the claim is not reported and therefore only the incurred 

but not reported models are used. On the other hand, in case of 𝐼(𝑂𝑖,𝑗) = 1 the claim has been 

reported and the claim development models are used. After the claim has been reported 

𝐼(𝑂𝑖,𝑗) = 1 the closure model will determine if the claim has been settled as 𝐼(𝑆𝑖,𝑗) = 1 or 

remained open 𝐼(𝑆𝑖,𝑗) = 0 in the j-th development year. When the claim has been settled no 

additional modelling is done in the following years and all reserves are paid out. The following 

figure represents this model. 

 
Figure 15: Modelling claim change in one year. 
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The proposed model parts will be further discussed and presented in detail in this section. 

Examples presented chapter are results of only one model run on the training dataset (on 90 % 

of the dataset) and contains an evaluation of each submodel on the testing dataset (on 10 % of 

the dataset). The complete model is expected to be run multiple times and reevaluated.  

The complete model results and evaluation is available in chapter 7. 

6.3 Incurred but Not Reported Models 

The incurred but not reported models (IBNR) focus on handling individual claims that have not 

yet been reported. The individual claim is firstly subjected to the probability of claim being 

reported 𝑃(𝑂𝑖,𝑗) model and based on this model output the claim is either reported or remain 

unreported. For reported claims the first incurred value is predicted as 𝑌𝑖,𝑗 and in the following 

years the claim is processed by the reported but not settled model until the claim is closed.  

The IBNR model can be viewed as a hurdle model based on how it was implemented. 

Probability of Claim Being Reported 

The probability of claims being reported is predicting the outcome of binary variable 𝐼(𝑂𝑖,𝑗) 

with a logistic regression model (as presented in the section 4.1).  The model was created based 

on the formula (6.1) 

 

 𝐼(𝑂̂𝑖,𝑗) ~ 𝐿𝑜𝑠𝑠 𝑌𝑒𝑎𝑟𝑖 + 𝑀𝑜𝑛𝑡ℎ𝑖 + log(𝑂𝑟𝑑𝑒𝑟𝑖) + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗, (6.1) 

 

where the loss year is the year that the individual claim has occurred, the month is the month 

of the loss year, the order is the chronological id of the provided claim and the development 

year is the difference between the j-th year and the loss year when the claim has occurred. When 

predicting the probability of claim being reported the incurred, reserve and paid value are equal 

to zero and therefore cannot improve the model. The formula (6.1) variables were selected 

based on ANOVA. The variables known at the start of the year were assumed for this model 

and only those that proved to be significant (Pr(>Chi) < 0.001) were kept in the model. The 

ANOVA results are presented in table 9. 

 
Table 9: Probability of claim being reported model variable significance. 

Variable Df Deviance 
Residual 

Df 

Residual 

Deviance 
Pr(>Chi) 

NULL 
  

38 529 53 337 
 

Loss Year 6 69.5 38 523 53 267 0.000000 

Development Year 6 17 248.0 38 517 36 019 0.000000 

Month 11 388.6 38 506 35 631 0.000000 

Order 1 118.9 38 505 35 512 0.000000 

 

 

The development year variable proved to be the most significant from the selected variables but 

even with all these variables the residual deviance is still very large. The model was fitted and 

its results are enclosed in the Appendix.  

 

The model was fitted on the training dataset (90 %) and for the testing dataset (10 %) the model 

will be evaluated. For this purpose, a Confusion matrix was created and presented in table 10.  
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Table 10: Probability of claim being reported confusion matrix. 

Confusion 

Matrix 

Reported               Accuracy : 0.7913           

0 1               95% CI : (0.7787, 0.8036) 

Predicted 

0 1 735 429               Sensitivity : 0.7970           

1 442 1 568               Specificity : 0.7852           

 

The model predicts the 𝐼(𝑂̂𝑖,𝑗) correctly on average in 0.7913 number of cases. When  

the 𝐼(𝑂̂𝑖,𝑗) = 1 the first incurred value model is used to determine the initial 𝑌𝑖,𝑗. 

First Incurred Value Model 

The first incurred value model is used to determine the initial 𝑌𝑖,𝑗 as an outcome of a random 

variable from the Log-normal distribution. The modelled variable from the training dataset is 

presented in the figure 16. The histogram represents the observations of the first incurred value 

and the line represents the estimated Log-normal distribution to fit this variable. The assumed 

Log-normal distribution would have mean on the log scale equal to 10.25 and variance on the 

log scale equal to 0.69. (These values might change depending on the model run). 

 
Figure 16: First incurred value distribution 

 
 

To predict the first incurred value distribution a GLM gaussian model with log link was created. 

The proposed model was fitted based on formula (6.2). 

 

 𝑌̂𝑖,𝑗 ~ 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗 +  log(𝑂𝑟𝑑𝑒𝑟𝑖), (6.2) 

 

where the development year is the difference between the j-th year and the loss year when the 

claim has occurred and the order is the chronological id of the provided claim  

The model was fitted based on the subset of training data (truncated) that has changed its 

incurred value from 0 to higher than 0 in a development year. The formula (6.2) variables were 
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selected based on ANOVA. The variables known at the start of the year were assumed for this 

model and only those that proved to be significant (Pr(>Chi) < 0.1) were kept in the model. The 

lower boundary was set because the assumed variables proved to be an insignificant except for 

the development year. The ANOVA results are presented in table 11. 

 
Table 11: First incurred value model variable significance 

Variable Df Deviance Residual Df Residual Deviance Pr(>Chi) 

NULL 
    18402 87 172 907 892 599   

Development Year 
6 151 542 294 217 18396 87 021 365 598 382 0.00001 

Order 
1 16 730 785 642 18395 87 004 634 812 740 0.06000 

 

 

The development year can explain a small proportion of the variable variance but this it is a 

very poor fit. The order variable was kept in the model to allow for small variable variations. 

The fitted model is provided in the appendix. As expected, the model is not very good at 

estimating the first incurred value. Assumed variables are not enough to explain the variability 

in the first incurred value. The figure 17 represents the observed problem with this model. 

 
Figure 17: First incurred value model performance. 

 
Based on the mean value the both models are very similar, but the GLM model is not able to 

provide necessary variability based on the input variables a therefore its performance is not very 

good. (Nearly all predictions are small adjustments of the variable mean). The final model will 

use this model, but this information will be taken into consideration when evaluating the 

complete model. When this model will be used apart from the prediction the standard error will 

be collected and marked as s. e. 𝑌̂𝑖. The standart error will be used in the model evaluation chapter 7. 
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6.4 Reported but Not Settled Models 

Reported but not settled models predicts how the claim incurred, paid and reserve variable 

changes during the development year after the claim have been reported. The incurred value 

obtained from the link factor model where the link factor is predicted with usage of 

GLM/HM/ZIM models. The paid value is obtained from the paid ratio model where the paid 

ratio is obtained from the HM model.  

Link Factor Models 

The link factor model is presented in 3 scenarios as the generalized linear model (GLM), hurdle 

model (HM) and zero inflated model (ZIM) based on the gamma distribution. These scenarios 

will be compared in the model evaluation chapter. Before the models will be presented in more 

detail the link factor 𝜆𝑖,𝑗  variable is presented in the figure 18. 

 
Figure 18: Link factor distribution for open claims. 

 
 

The left figure presents all link factors observed for all open claims in the training dataset.  

The right figure contains only a subset of link factors that are not equal to 1 (only claims that 

have changed in the development year). The ratio between 𝜆𝑖,𝑗 = 1 and 𝜆𝑖,𝑗 ! = 1 is 11 to 1.  

 

The left figure will be a base for the full gamma model. This model will be fitted based on all 

available open claims. The right figure will be a base for the subset gamma model.  

This model will leave out all open claims based on the condition 𝜆𝑖,𝑗 ! = 1. Both models will 

be fitted based on the formula (6.3). 

 

 𝜆̂𝑖,𝑗 ~ 𝐿𝑜𝑠𝑠 𝑦𝑒𝑎𝑟𝑖 +  𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗 + log(𝑌𝑖,𝑗−1), (6.3) 

 

where the loss year is the year that the individual claim has occurred, the development year is 

the difference between the j-th year and the loss year when the claim has occurred. Finally, the 

𝑌𝑖,𝑗−1  is incurred value at the start of the year. The formula (6.3) variables were selected based 

on ANOVA for the full and truncated gamma model. The variables known at the start of the 

year were assumed for this model and only those that proved to be significant (Pr(>Chi) < 

0.001) were kept in the model. The ANOVA results for the full model are presented in table 12 

and for the truncated model are presented in table 13. 
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Table 12: Full gamma link factor model variable significance. 

Variable Df Deviance Residual Df 
Residual 

Deviance 
Pr(>Chi) 

NULL 
  

20 123 13005.4 
 

Loss Year 6 40.9 20 117 12964.4 0.00000 

Development Year 6 10538.4 20 111 2425.9 0.00000 

Previous Incurred Value 𝑌𝑖,𝑗−1 1 2048.7 20 110 377.1 0.00000 

 

Table 13: Subset gamma link factor model variable significance. 

Variable Df Deviance Residual Df 
Residual 

Deviance 
Pr(>Chi) 

NULL 
  

14 906 5682.4 
 

Loss Year 6 15.2 14 900 5667.2 0.00000 

Development Year 6 3522.5 14 894 2144.7 0.00000 

Previous Incurred Value 𝑌𝑖,𝑗−1 1 1869.9 14 893 274.8 0.00000 

 

 

While at the start the models have different residual deviance when the assumed variables are 

included the models are comparable with the subset model having lower residual deviance with 

less degrees of freedom.  Both fitted models are enclosed in the Appendix section of this work 

the full model is marked as 𝜆̂𝑖,𝑗 and the subset is marked as 𝜆̂𝑖,𝑗|𝜆̂𝑖,𝑗 ! = 1. When testing these 

models based on the testing dataset the following results can be obtained. The GLM models 

predicts reasonably close but they are not able to handle the mass of 𝜆𝑖,𝑗 = 1 in the assumed 

variable. 

 
Figure 19: Predicting link factor for open claims. 

 
These models will serve as a base for the following scenarios. Results of these scenarios will 

be compared in the model evaluation chapter 7.  
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Gamma Link Factor Model 

The gamma link factor model scenario will use the full model 𝜆̂𝑖,𝑗 to predict the change in the 

incurred value. The model scenario will use only the severity model. 

 

• Binary model: None 

• Severity model: Full Gamma Model 𝜆̂𝑖,𝑗 

Zero-inflated Gamma Link Factor Model 

The Zero-inflated gamma link factor model scenario will use a binary variable 𝐼(𝜆̂𝑖,𝑗) to 

determine if change in incurred value has occurred and then the full model 𝜆̂𝑖,𝑗 to predict the 

change in the incurred value. The model scenario will use the following binary and severity 

model. 

 

• Binary model:  Probability of Incurred Value Change Model 𝑰(𝝀̂𝒊,𝒋) 

• Severity model: Full Gamma Model 𝝀̂𝒊,𝒋 

 

Hurdle Gamma Link Factor Model 

The Hurdle gamma link factor model scenario will use a binary variable 𝐼(𝜆̂𝑖,𝑗) to determine if 

change in incurred value has occurred and then the subset model 𝜆̂𝑖,𝑗|𝐼(𝜆̂𝑖,𝑗) = 1 to predict the 

change in the incurred value. The model scenario will use the following binary and severity 

model. 

 

• Binary model: Probability of Incurred Value Change Model 𝑰(𝝀̂𝒊,𝒋) 

• Severity model: Subset Gamma Model 𝝀̂𝒊,𝒋|𝑰(𝝀̂𝒊,𝒋) = 𝟏 

Probability of Incurred Value Change  

This section will introduce the binary variable for the HM and ZIM models as 𝐼(𝜆𝑖,𝑗).  

The modelled link factors 𝜆𝑖,𝑗 contains a mass of occurrences where the link factor is equal to 

1. (as presented in the figure 19). This model will try to determine if change in the incurred 

value have occurred or not. The incurred value change can represent a change in payments or 

reserves. The model is fitted based on formula (6.4). 

 

 
𝐼(𝜆̂𝑖,𝑗) ~ 𝐿𝑜𝑠𝑠 𝑌𝑒𝑎𝑟𝑖 + 𝑀𝑜𝑛𝑡ℎ𝑖 + log(𝑂𝑟𝑑𝑒𝑟𝑖) + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗  +

 log(𝑌𝑖,𝑗−1),  
(6.4) 

 

where the loss year is the year that the individual claim has occurred, the month is the month 

of the loss year, the order is the chronological id of the provided claim and the development 

year is the difference between the j-th year and the loss year when the claim has occurred. 

Finally, the 𝑌𝑖,𝑗−1  is incurred value at the start of the year. When 𝐼(𝜆̂𝑖,𝑗) = 1 it is assumed that 

change has occured in the incurred value and 𝐼(𝜆̂𝑖,𝑗) = 0 that change has not occurred.  The 

ratio between these two states is 1:11 in favor of change has not occurred. The training dataset 

needs to be readjusted. If the model would be fitted for this dataset the model would predict all 

results as not occurred and predict correctly in more than 90 % of cases. For this purpose, the 
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training dataset would be randomly resampled to provide a smaller sample with the same 

number of has occurred and has not occurred. For this purpose, the sample balancing method 

is introduced. 

Sample Balancing Method 

The sample balancing method will ensure that both categories for binary category will have the 

same relative frequency and thus the model will try to predict the difference between category 

rather than giving favor to one category above the other. For this method the first step is to 

estimate the sample size from the following formula. 

 

 𝑐𝑜𝑢𝑛𝑡 = 𝑀𝐼𝑁(𝑐𝑜𝑢𝑛𝑡_𝑧𝑒𝑟𝑜, 𝑐𝑜𝑢𝑛𝑡_𝑜𝑛𝑒) ∗ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑖𝑜 (6.5) 

 

where count_zero and count_one is the absolute category count for the binary variable 

categories and the training ratio as selected (here 0.9) for the model. This count changes will be 

randomly sampled without returning for each of the count_zero and count_one datasets. As a 

result, the new training dataset would equal frequencies for both categories.  

 

The formula (6.5) variables were selected based on ANOVA on this adjusted dataset. The 

variables known at the start of the year were assumed for this model and only those that proved 

to be significant (Pr(>Chi) < 0.001) were kept in the model. The lower boundary was set 

because the assumed variables proved to be an insignificant except for the development year. 

The F-Test results are presented in table 14. 

 
Table 14: Probability of incurred value change model variable significance. 

Variable Df Deviance Residual Df 
Residual 

Deviance 
Pr(>Chi) 

NULL 
  

38529 31916.2 
 

Loss Year 6 80.2 38523 31835.9 0.00000 

Development Year 6 12789.6 38517 19046.3 0.00000 

Previous Incurred Value 𝑌𝑖,𝑗−1 1 1832.7 38516 17213.5 0.00000 

Month 11 275.7 38505 16937.8 0.00000 

Order 1 12.4 38504 16925.3 0.00042 

 

 

The most significant variables proved to be the development year and the previous incurred 

value 𝑌𝑖,𝑗−1. Based on this resampled dataset the model was fitted and presented in the Appendix 

section of this work. The evaluation of this model is provided in the table 15. 

 
Table 15: Probability of incurred value change confusion matrix. 

Confusion 

Matrix 

Incurred value change               Accuracy : 0.7397           

0 1               95% CI : (0.7181, 0.7604) 

Predicted 

0 332 188               Sensitivity : 0.5675           

1 253 921               Specificity : 0.8305           

 

 

The model predicts the 𝐼(𝜆̂𝑖,𝑗) correctly on average in 0.7397 number of cases.  

When the 𝐼(𝜆̂𝑖,𝑗) = 1 the link factor HM or ZIM model is used to determine the change in 𝑌𝑖,𝑗.  
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When 𝐼(𝜆̂𝑖,𝑗) = 0 there is no change in 𝑌𝑖,𝑗 in the development year. This component will only 

be used with the HM and ZIM models for the standard GLM model this component is not 

considered.  

Paid Value Models 

The paid value models predict the paid ratio 𝜍𝑖,𝑗 between the incurred value and the paid value 

at the end of the development year. This variable is presented in the figure 20. 
Figure 20: Paid ratio variable. 

 
 

Based on the left figure the paid value contains two masses. First is the mass of claims where 

no payment has been done yet and the second is the mass of claims where incurred value is 

equal to paid value therefore all losses were paid out. The right figure represents only claims 

where the change has occurred in the development year. This variable will be modelled by 

a hurdle beta regression model with a binary variable 𝐼(𝜍𝑖,𝑗) to determine if change from  

the previous year has occurred and 𝜍𝑖,𝑗 to model the actual variable ratio in case change has 

occurred. The binary variable 𝐼(𝜍𝑖,𝑗) is predicted with the probability of payments being done 

model in a year and the ratio 𝜍𝑖,𝑗 is predicted with the paid beta regression model. These models 

are presented in the following sections. 

Probability of Payment Occurrence Model 

The probability of payment occurrence model is based on predicting the binary variable 𝐼(𝜍𝑖,𝑗) 

outcome. The 𝐼(𝜍𝑖,𝑗) represents if the payment ratio from the previous year have changed 

(𝐼(𝜍𝑖,𝑗) = 1) or remained the same (𝐼(𝜍𝑖,𝑗) = 0).  For this purpose, a Logistic regression model 

will be used.  The model was fitted based on formula (6.6). 

 

 𝐼(𝜍𝑖̂,𝑗) ~ 𝐿𝑜𝑠𝑠 𝑦𝑒𝑎𝑟𝑖 + 𝑀𝑜𝑛𝑡ℎ𝑖 + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗 + log(𝑌𝑖,𝑗), (6.6) 

 

where the loss year is the year that the individual claim has occurred, the month is the month 

of the loss year, the development year is the difference between the j-th year and the loss year 

when the claim has occurred. Finally, the 𝑌𝑖,𝑗 is incurred value at the end of the year (This year 

incurred value). These variables proved to be significant in the assumed model. Before the 

model was fitted, the sample balancing method was used. (As described in the link factor 
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model). The method needed to be used because the ratio between change has occurred and 

change has not occurred was 1:20.   

 

The formula (6.6) variables were selected based on ANOVA on this adjusted dataset. The 

variables known at the end of the year were assumed (after the link factor model is used) for 

this model and only those that proved to be significant (Pr(>Chi) < 0.001) were kept in the 

model. 

 
Table 16: Probability of payment occurrence model variable significance. 

Variable Df Deviance Residual Df 
Residual 

Deviance 
Pr(>Chi) 

NULL 
  

1489 2065.5 
 

Development Year 6 714.2 1483 1351.3 0.00000 

This Year Incurred Value 𝑌𝑖,𝑗 1 86.0 1482 1265.3 0.00000 

Month 11 33.9 1471 1231.3 0.00037 

Order 1 20.3 1470 1211.0 0.00000 

 

The fitted model on the training dataset is enclosed in the Appendix. The main variable affecting 

this probability is the development year and the incurred value at the end of the year. Confusion 

matrix obtained from the testing dataset is presented in the following table. 

 
Table 17: Probability of claim being reported confusion matrix. 

Confusion 

Matrix 

Reported                     Accuracy : 0.8559           

0 1   95% CI : (0.8441, 0.8670) 

Predicted 

0 1 938 473                     Sensitivity : 0.9705           

1 59 1 221                     Specificity : 0.7208           

 

The model predicts the 𝐼(𝜍𝑖̂,𝑗) correctly on average in 0.8559 number of cases. When  

the 𝐼(𝜍𝑖̂,𝑗) = 1 the paid beta model is used to determine the change in 𝑃𝑖,𝑗. When 𝐼(𝜍𝑖̂,𝑗) = 0 

there is no change in 𝑃𝑖,𝑗 in the development year.  

Paid Beta Regression Model 

Paid beta model focuses on modelling the change 𝜍𝑖,𝑗 in the cumulative paid value 𝑃𝑖,𝑗. 

Their relation was described in the (3.13). For modelling the 𝜍𝑖,𝑗 following formula will be used.  

 

 𝜍𝑖̂,𝑗|(𝐼(𝜍𝑖̂,𝑗) = 1) ~ 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑌𝑒𝑎𝑟𝑖,𝑗 + log(𝑌𝑖,𝑗) + 𝑀𝑜𝑛𝑡ℎ𝑖, (6.7) 

 

where the month is the month of the loss year, the development year is the difference between 

the j-th year and the loss year when the claim has occurred and 𝑌𝑖,𝑗  is incurred value at the end 

of the year. The formula (6.7) variables were selected based on ANOVA on this adjusted 

dataset. The variables known at the end of the year were assumed (after the link factor model 

is used) for this model and only those that proved to be significant (Pr(>Chi) < 0.001) were kept 

in the model. The results are presented in table 18. 
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Table 18: Paid beta regression model variable significance. 

Variable Df Chisq Pr(>Chi) 

Development Year 6 6248.0 0.00000 

This Year Incurred Value 𝑌𝑖,𝑗 1 509.6 0.00000 

Month 11 211.1 0.00000 

 

The final model was fitted with a beta regression approach and the model is presented in the 

Appendix section of this work.  The model was used to create prediction on the testing dataset 

and the results are presented in the figure 21. 
 

Figure 21: Predicting paid ratio variable. 

 
 

The same problem as in case of the first incurred value have occurred here. The model is not 

able to represent the variability in the testing dataset. The predicted occurrences are forming 

two groups. The first one is near the mean of 0.6 and the second one is near 0.4. This model 

will be used in the final model. When claim is closed it is assumed that all reserves are paid out 

and therefore the paid value will be set equal to the incurred value. The closure model will be 

presented in the following section. 

Probability of Claim Closure Model 

The probability of claim closure is based on predicting the outcome of binary variable 𝐼(𝑆𝑖,𝑗). 

The 𝐼(𝑆𝑖,𝑗) determines if the individual claim development has been closed (claim have been 

settled) and all losses are paid out or the claim remain open and modelled in the following year. 

When 𝐼(𝑆𝑖,𝑗) = 1 it is assumed that claim have been settled and 𝐼(𝑆𝑖,𝑗) = 0 claim has remained 

open.  For this purpose, a Logistic regression was fitted with formula (6.8). 

 𝐼(𝑆̂𝑖,𝑗) ~ 𝐿𝑜𝑠𝑠 𝑦𝑒𝑎𝑟𝑖 + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗 + log (𝑃𝑖,𝑗)  +  𝑀𝑜𝑛𝑡ℎ𝑖 , (6.8) 

where the loss year is the year when the claim occurred, the month is the month of the loss year, 

the development year is the difference between the j-th year, the loss year when the claim has 

occurred and 𝑃𝑖,𝑗  is paid value at the end of the year. The formula (6.8) variables were selected 
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based on ANOVA on this adjusted dataset. The variables known at the end of the year were 

assumed (after the link factor model and beta regression model is used) for this model and only 

those that proved to be significant (Pr(>Chi) < 0.001) were kept in the model. The results are 

presented in table 19. 

 
Table 19: Probability of Claim Closure model variable significance. 

Variable Df Deviance Residual Df 
Residual 

Deviance 
Pr(>Chi) 

NULL 
  

29477 40865.1 
 

Loss Year 6 74.4 29471 40790.7 0.000000 

Development Year 6 3780.8 29465 37009.8 0.000000 

This Year Loss Paid 𝑃𝑖,𝑗 1 15822.3 29464 21187.4 0.000000 

Month 11 82.1 29453 21105.3 0.000000 

 

The 𝑃𝑖,𝑗 proved to be the most significant variable. Before this model was selected and 

alternative test with the 𝑌𝑖,𝑗 was used. But the model led to claim being closed in the next year 

and there was nearly no claim development observed. The version with the 𝑃𝑖,𝑗 offers an 

alternative where the claims develop before they are closed. The model was fitted on the 

training dataset and the resulting model is enclosed in the Appendix section of this work. The 

evaluation of this model on the testing dataset is provided in the following table. 

 
Table 20: Probability of claim being reported confusion matrix. 

Confusion 

Matrix 

Reported                Accuracy : 0.7257 

0 1                95% CI : (0.7119, 0.7392) 

Predicted 

0 1 602 571                Sensitivity : 0.7362 

1 574 1 427                Specificity : 0.7142 

 

The model predicts the 𝐼(𝑆̂𝑖,𝑗) correctly on average in 0.7257 number of cases. When  

the 𝐼(𝑆̂𝑖,𝑗) = 1, the claim is closed, and all reserves are paid out. When 𝐼(𝑆̂𝑖,𝑗) = 0 the claim 

will remain, open and will be modelled in the following years.  

6.5 Collecting Individual Claim Level Model Results 

This section will present these outputs and describe them how they could benefit. These outputs 

can be described as follows. 

 

• Analytical table 

• Individual model outputs 

• Triangulation scheme output 

• Estimate of the insurance liability and standard error 

 

Analytical table (table 8) provides an overview of the individual claim development. Individual 

model outputs are the sub model’s summary (provided in the Appendix) and the model variable 

significance tests. The year to year model allow to quite easily create output in the form of a 

triangulation schema for the training and testing dataset. The table 21 contains the model output 

for the testing dataset. 
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Table 21: Testing dataset triangulation table. 

Origin Year 

Development Year 

0 1 2 3 4 5 6 

C
u

m
u

l
a
t
i
v
e
 
i
n

c
u

r
r
e
d

 
v
a
l
u

e
 

2004 75 048 485 93 436 674 97 936 130 92 358 384 90 707 263 89 697 918 75 048 485 

2005 95 504 282 120 651 986 119 818 582 119 199 470 115 216 864 111 546 110 95 504 282 

2006 85 008 321 108 952 885 109 079 466 108 598 103 104427 284 104 167 233 85 008 321 

2007 85 009 501 111 630 245 112 187 038 111 326 410 107 509 755 107 258 823 85 009 501 

2008 89 317 790 115 114 926 115 913 322 115 534 218 112 426 730 111 375 194 89 317 790 

2009 73 467 219 85 888 628 86 748 608 86 541 949 84 508 011 83 585 402 73 467 219 

2010 69 746 519 82 709 977 83 158 862 83 049 213 79 504 456 78 886 006 69 746 519 

 

The table contain incurred value development as was observed on the testing dataset.  

The observed means that this is the claim development without the need of modelling.  

This information will be used in the model evaluation part of the work to compare the predicted 

results with the actual results. The results if presented in this form can also be used to compare 

with a traditional aggregate claim level model. The final individual claim level model output is 

the prediction of the insurer liability and the standard error of the prediction. The individual 

model analytical table can be used to create the following output table. 

 
Table 22: Model output table. 

Claim ID 
Loss 

Year 
Incurred 𝑌𝑖 

Predicted Ultimate 

Incurred  𝑌̂𝑖 

Observed 

Ultimate 
Reserve 𝑅̂𝑖 Bias 

3100 2008 
187 047 470 933 432 685 283 886 38 248 

3115 2007 
5 668 5 668 5 668 0 0. 

3120 2008 
20 175 20 175 20 175 0 0 

3127 2009 
46 145 41 856 9 450 - 4288 32 406 

 

The incurred value represents the observed incurred value in 2010, the predicted incurred 

represent the model output as predicted by the individual claim level model in 2016.  

The ultimate is the observed incurred value which was not used in modelling and collected from 

the real claim development. The reserve is obtained as a difference between the predicted 

incurred and the ultimate value. The bias is obtained as the difference between the predicted 

incurred and the ultimate incurred. Based on this the total reserve estimate and the MSE of  

this estimate is obtained as. 

 𝑅̂ =  ∑ 𝑅̂𝑖

𝑁

𝑖=1

, (6.9) 

 

where 𝑅̂𝑖 is the claim reserve estimate obtained from the table 22 and 𝑁 is total number of 

claims (rows) in the table 22. For the MSE of the reserve estimate the traditional form of 

variable variance and bias is used with the addition of the model variance. The MSE estimate 

from the individual claim level model is obtained as follows 

 

 𝑀𝑆𝐸(𝑅̂) =  𝑉𝑎𝑟(𝑅̂𝑖) + [𝐸(𝐵𝑖)]2, (6.10) 

 

where 𝑉𝑎𝑟(𝑅̂𝑖)  is the variability of the predicted reserve value, the 𝐵𝑖 is the bias between  

the predicted reserve value and the real reserve value.  
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6.6 Aggregate Claim Level Model 

This section will present an aggregate claim level model in form of average cost chain ladder 

model. The average cost chain ladder model is based on separating the claim frequency and the 

claim severity modelling as presented in the following formula. 

 

 𝑌𝑖,𝑗 =  𝑁𝑖,𝑗 + 𝐸(𝑌𝑖,𝑗), (6.11) 

 

where 𝑁𝑖,𝑗 is the claim frequency represented with the number of reported claims from the i-th 

origin year by the end of the j-th development year and 𝐸(𝑌𝑖,𝑗) is the average incurred value for 

claims originating in the i-th year by the end of the j-th development year. The claim frequency 

development will be assumed to be known to keep the same assumption as in case of the 

individual claim level model and the only the severity modelling will be done in this work. This 

is assumed for the sake of comparing the model outputs in the model evaluation chapter. All 

examples presented in this section provide an example from one model run (see chapter 7), 

therefore the examples are just for references. The table 23 contain the known claim frequency. 

 
Table 23: Number of reported claims in the training dataset. 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

C
u

m
u

l
a
t
i
v
e
 
 

C
l
a
i
m

 
C

o
u

n
t
 

2004 1 967 2 542 2 558 2 563 2 563 2 563  2 563 

2005 2 365 2 919 2 943 2 955 2 956 2 956 2 956 

2006 2 138 2 712 2 740 2 751 2 752 2 754 2 754 

2007 2 177 2 700 2 736 2 742 2 749 2 749 2 749 

2008 2 313 2 842 2 886 2 894 2 897 2 897 2 897 

2009 1 858 2 237 2 274 2 280 2 283 2 284 2 284 

2010 1 761 2 132 2 184 2 200 2 200 2 200 2 200 

 

On the contrary the claim severity will be modelled based on the average incurred value as 

presented in table 24. For the average incurred value, the development factor and variance 

estimates will be obtained as presented in the chapter 2. As presented the testing dataset is 

equal to the 90 % of the original dataset. 

 
Table 24: Training average incurred value. 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

A
v
e
r
a
g

e
 

I
n

c
u

r
r
e
d

 
V

a
l
u

e
 

2004 44 812 43 875 45 690 43 621 42 743 42 281 41 407 

2005 45 886 47 091 46 519 46 429 45 052 43 906  

2006 44 151 46 364 46 146 45 946 44 400 
 

 

2007 44 834 48 138 47 573 47 108 
  

 

2008 43 682 46 699 46 623 
   

 

2009 44 709 44 405 
    

 

2010 44 837 
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The resulting development factors are presented in table 25. The development factors represent 

a decreasing trend in the average incurred value on average from the first year the average will 

decrease by 5 % by the end of the sixth development year. 

 
Table 25: Developing factors and variance. 

Metric 1 2 3 4 5 6 

Development factor 1.0317 1.0024 0.9848 0.9720 0.9816 0.9793 

LDF 0.9518 0.9226 0.9203 0.9345 0.9614 0.9793 

Variance 69.3 22.3 18.8 2.1 4.7 2.1 

Variance (dev. factor) 8.3 4.7 4.3 1.5 2.2 1.5 

 

These developing factors will be used with the testing dataset to obtain the predicted average 

incurred value. For this purpose, table 26 was created with the usage of testing dataset and the 

grey areas represent the predicted average incurred value.  

Table 26: Predicting the average incurred value for the testing dataset. 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

A
v
e
r
a
g

e
 

I
n

c
u

r
r
e
d

 
V

a
l
u

e
 

2004 44 920 38 287 38 365 37 969 37 558 37 483 36 314 

2005 46 808 47 421 48 929 48 327 48 194 47 674 46 689 

2006 45 064 47 868 48 121 47 654 45 126 44 300 43 384 

2007 45 189 47 926 47 189 46 555 45 254 44 425 43 507 

2008 42 708 51 182 51 429 50 647 49 232 48 330 47 331 

2009 43 718 42 587 42 693 42 044 40 869 40 121 39 292 

2010 44 148 45 548 45 661 44 967 43 710 42 910 42 023 

 

In addition, the assumption about the known claim frequency is still valid and table 27 holds 

number of reported claim in the testing dataset. As presented the testing dataset is equal to the 

10 % of the original dataset. 

 
Table 27: Number of reported claims in the testing dataset 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

C
u

m
u

l
a
t
i
v
e
 
 

C
l
a
i
m

 
C

o
u

n
t
 

2004 214 291 292 293 293 293 293 

2005 260 320 323 324 324 324 324 

2006 237 297 300 302 302 303 303 

2007 250 303 303 303 304 304 304 

2008 257 320 324 325 325 325 325 

2009 209 252 256 256 256 256 256 

2010 200 236 238 239 239 239 239 

 

When these two tables are combined based on the formula (6.11) the cumulative incurred 

value can be obtained. The results are presented in the table 28. This table will be used for 

reserve estimation and the model evaluation. 
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Table 28: Predicted cumulative incurred value for the testing dataset. 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

C
u

m
u

l
a
t
i
v
e
 

I
n

c
u

r
r
e
d

 
V

a
l
u

e
 

2004 9 612 880 11 141 517 11 202 580 11 124 917 11 004 494 10 982 519 10 640 002 

2005 12 170 080 15 174 720 15 804 067 15 657 948 15 614 856 15 446 376 15 127 236 

2006 10 680 168 14 216 796 14 436 300 14 391 508 13 628 052 13 422 900 13 145 352 

2007 11 297 250 14 521 578 14 298 267 14 106 165 13 757 216 13 505 200 13 226 128 

2008 10 975 956 16 378 240 16 662 996 16 460 275 16 000 400 15 707 250 15 382 575 

2009 9 137 062 10 731 924 10 929 408 10 763 264 10 462 464 10 270 976 10 058 752 

2010 8 829 600 10 749 328 10 867 318 10 747 113 10 446 690 10 255 490 10 043 497 

 

The difference between last known value and the grey estimate for each origin year will be used 

to create a reserve estimate. In addition to the reserve estimate it is needed to obtain the 

estimation MSE. The Mack’s model offers and estimate of variability of based on the process 

and parameter variance. In Murphy 2007 the original Mack’s formula (2.12) was adjusted and 

proposed as. 

 𝑀𝑆𝐸(𝑅̂) = 𝑉𝑎𝑟(𝑅𝑖) +  𝑉𝑎𝑟(𝑅̂𝑖) + [𝐸(𝐵𝑖)]2, (6.12) 

 

where 𝑉𝑎𝑟(𝑅𝑖) represents the process varaince, 𝑉𝑎𝑟(𝑅̂𝑖) represents the estimation variance and 

𝐸(𝐵𝑖) is the bias. The variance parameters 𝑉𝑎𝑟(𝑅𝑖) and 𝑉𝑎𝑟(𝑅̂𝑖) are obtained as in the formula 

(2.12). The bias is obtained as the difference between the predicted mean and the observed 

mean. The table 29 presents the aggregate claim level model results. 

 

Table 29: Mack’s model variables obtained from the testing dataset for incurred value. 

Origin Year 
Predicted 

Reserve 

Predicted 

Ultimate 
Real Ultimate MSE(𝑹̂) RMSE(𝑹̂) 

2005 -319 140 15 127 236 15 354 095 113 609 082 650 337 059 

2006 -482 700 13 145 352 13 620 520 196 096 229 364 442 827 

2007 -880 037 13 226 128 13 693 414 357 641 448 561 598 031 

2008 -1 280 421 15 382 575 15 270 836 877 138 140 295 936 556 

2009 -673 172 10 058 752 10 563 771 948 565 824 343 973 943 

2010 1 213 897 10 043 497 10 701 815 3 170 453 021 813 1 780 576 

Total -2 421 573 - - 5 663 503 747 025 2 379 811 

 

 

From the aggregate claim level model, the results contained in the total row will be collected 

and used in the model evaluation chapter for comparison with the individual claim level model. 

The aggregate claim level was proposed to be created based on the same assumptions as the 

individual claim level model to ensure that these scenarios are comparable in the next chapter. 
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7. Model Evaluation 

The previous chapter presented how the individual and aggregate claim level models were 

created. This section will provide an overview of the model performance. The model 

performance is evaluated based on the model MSE and the reserve estimate 𝑅𝑖,𝑗. 

7.1 Model Scenarios 

The following scenarios were assumed a will be compared in this chapter: 

 

• Real claim development  

• Aggregate claim level model 

• Individual claim level model with usage of GLM link factor model 

• Individual claim level model with usage of Hurdle link factor model 

• Individual claim level model with usage of Zero-inflated link factor model 

 

The real claim development scenario will be used as the ideal state that the other scenarios 

needs to achieve. The aggregate claim level model will use the chain ladder method as presented 

in the chapter 6.6. The individual claim level models were introduced in the previous section 

and the evaluation will also compare how these approaches differ in the reserve estimate 𝑅𝑖,𝑗.  

The following subsections present on what bases the conclusive results were obtained. 

Training, Testing and Validation Dataset 

The dataset provided contains claim data from year 2004 till 2016, the claim development in 

the years 2004 to 2010 will be used for model training and 2011 to 2016 will be used for model 

testing, but only for claims originating from years 2004 to 2010. The testing dataset complete 

history is named the real claim development and will be used for validation. 

Handling Large Claims 

Before using the obtained dataset described in table 8. It is also important to identify outliers 

and remove them from the modelling.  For the purposes of this work it is assumed that outliers 

are the identified as follows. 

 

➢ Ultimate value above 300 000  

➢ Link factor above 2  

 

The ultimate threshold is selected as the approximate 99 % quantile of the ultimate incurred 

value. The link factor threshold is selected as the approximate 95 % quantile of the link factor 

distribution (figure 18). This assumption was created based on data exploration (chapter 5) and 

modelling done (chapter 6). Without these assumptions the model scenarios tend to be biased. 

Cross-Validator Technique 

For model validation the k-fold cross-validation technique is used. From the available dataset 

the claim identification numbers were collected and randomly split into 10 folds (subsets) of 

equal sizes. One of these folds is used for testing (10 % of the dataset) while the rest is used for 

training (90 % of the dataset) when the model runs. The model will be run 10 times and results 



 

55 

 

from each run will be collected and averaged. The following figure 22 represents how the Cross-

Validator model is used in context with the models proposed in the chapter 6. 

 
Figure 22: Cross-Validator model schema 

Dataset

Fold 1

Fold 2 

Fold 3 

Fold 4 

Fold 5 

Fold 6 

Fold 7 

Fold 8 

Fold 9 

Fold 10 

Gamma model

Hurdle gamma model

Zero-inflated gamma model

Real Claim Development

Average 

Result

Model Outputs

 
 

For each Cross-Validator model run the assumed dataset is randomly split into 10 equal folds. 

The proposed models (individual and aggregate) are fitted on the 9 folds of the dataset and then 

used on the 1 testing fold to obtain the model outputs. In addition, the 1 testing fold real claim 

development is saved. These results are then averaged with previously saved results. In the next 

run the testing fold is replaced with another fold that has not yet been used for testing. Therefore, 

each fold is used 9 times for training and once for testing.  

7.2 Model Outputs 

For each scenario the results are collected after the cross-validator model is used. The table 30 

contains the real claim cumulative incurred values that have occurred in the testing dataset.  
 

Table 30: Real claim development cumulative incurred value. 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

C
u

m
u

l
a
t
i
v
e
 
I
n

c
u

r
r
e
d

 

V
a
l
u

e
 

2004 10 013 117 12 162 379 12 405 710 12 171 836 11 979 058 11 842 755 11 561 307 

2005 12 208 533 15 106 886 15 474 011 15 390 073 15 061 192 14 739 202 14 643 054 

2006 10 653 298 14 116 260 14 257 084 14 301 143 13 812 341 13 688 150 13 687 959 

2007 10 875 158 14 366 687 14 247 702 14 080 010 13 689 056 13 664 087 13 530 505 

2008 11 209 994 15 504 833 15 812 278 15 833 735 15 652 287 15 467 671 14 911 026 

2009 9 439 013 11 227 606 11 538 964 11 485 594 11 316 661 11 224 439 11 224 439 

2010 8 699 292 10 595 126 10 814 164 10 755 689 10 415 215 10 290 598 10 290 598 
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The table 31 contain the difference (deviations) between the real cumulative incurred value and 

the predicted cumulative incurred value from the chain ladder model. The Chain-Ladder 

method overestimates the cumulative incurred value in the years 2005, 2008 and 2010 while it 

underestimates in the years 2006, 2007 and 2009. 

 
Table 31: Aggregate claim level model cumulative incurred value deviations. 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

D
e
v
i
a
t
i
o

n
 

2004 0 0 0 0 0 0 0 

2005 0 0 0 0 0 0 4 848 

2006 0 0 0 0 0 -30 799 -115 774 

2007 0 0 0 0 -28 114 -156 469 -106 990 

2008 0 0 0 -135 909 -422 092 -408 688 54 742 

2009 0 0 -195 988 -225 393 -391 267 -421 416 -489 053 

2010 0 491 101 385 910 363 108 -372 554 375 990 309 695 

 

Tables 32, 33 and 34 contain the deviation for the individual claim level model scenarios. The 

link factor models tend to heavily overestimate the cumulative incurred value (possible bias). 

The largest overestimation was observed for claims originating from year 2008. 

 
Table 32: Individual claim level model cumulative incurred value deviations. 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

D
e
v
i
a
t
i
o

n
 

2004 0 0 0 0 0 0 0 

2005 0 0 0 0 0 0 326 991 

2006 0 0 0 0 0 172 378 218 517 

2007 0 0 0 0 590 789 603 454 728 803 

2008 0 0 0 680 848 1 081 722 1 224 483 1 750 640 

2009 0 0 408 733 423 310 551 356 605 238 584 541 

2010 0 444 325 159 368 129 457 377 262 444 645 418 360 

 
Table 33: Hurdle individual claim level model cumulative incurred value deviations. 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

D
e
v
i
a
t
i
o

n
 

2004 0 0 0 0 0 0 0 

2005 0 0 0 0 0 0 164 248 

2006 0 0 0 0 0 110 475 114 936 

2007 0 0 0 0 243 323 228 265 346 228 

2008 0 0 0 68 905 -61 808 5 691 503 709 

2009 0 0 28 602 79 503 45 131 34 178 -9 493 

2010 0 731 404 494 901 550 963 125 427 36 447 -66 835 
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Table 34: Zero-inflated individual claim level model cumulative incurred value deviations. 

Origin Year 

  

Development Year 

0 1 2 3 4 5 6 

D
e
v
i
a
t
i
o

n
 

2004 0 0 0 0 0 0 0 

2005 0 0 0 0 0 0 326 991 

2006 0 0 0 0 0 141 341 169 985 

2007 0 0 0 0 551 753 564 942 690 584 

2008 0 0 0 68 912 327 773 472 483 1 000 651 

2009 0 0 23 800 75 007 206 908 268 926 256 093 

2010 0 490 378 214 710 270 720 458 550 538 173 512 889 

 

 

The source of the overestimation for the link factor models is the first incurred value model, 

because the first incurred value plays the significant role in the claim development and in the 

following years only small adjustments are done to the incurred value (as presented in the 

chapter 5). The following section presents the reserve estimate and MSE of the estimate. 

7.3 Scenario Evaluation 

This section will compare the assumed scenarios based on their reserve estimate and MSE 

estimate. (see chapter 6 how these values were obtained). The conclusive results 10 model runs 

are presented in the table 35. The RMSE is the root of the MSE. 

 
Table 35: Final model output comparison. 

Model Reserve MSE RMSE 

Real claim development 248 498 - - 

Aggregate claim level model -408 871 5 544 337 129 982 2 354 642 

Gamma individual claim level model 3 819 217 254 191 833 15 943 

Hurdle Gamma individual claim level model 1 038 327 78 423 089 8 856 

Zero-inflated Gamma individual claim level model 2 953 073 104 435 716 10 219 

 

Firstly, the real claim development average reserve is equal to 248 498. When comparing the 

real claim development with the aggregate claim level model the expected reserve from this 

model is negative therefore, the model expects that the incurred value will decrease in the 

following years. This would lead to an underestimation and may result in possible loss for the 

insurance company. The MSE obtained from the Mack’s model is large in comparison with the 

individual claim level model. The individual claim level model tends to heavy overestimate the 

expected reserve. The smallest reserve is the hurdle gamma individual claim level model where 

the expected reserve is equal to 1 038 327 while the MSE is very small with 78 423 089. The 

individual claim level model MSE is very small because all predictions done by the previously 

proposed sub models are very close to the mean and on the overall these models have very high 

accuracy. The following chapter describes how the individual claim level model can be 

improved. 
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7.4  Model Improvements 

As of now the individual claim level model estimations are biased in comparison with the real 

claim development. When creating the individual claim level models, the following issues were 

found and if assessed can improve the model.  

 

• Not enough variables usable for prediction. 

o The current dataset needs to be adjusted and additional external information 

about the claim is needed to improve the prediction power of the severity 

models. (Link factor, Beta Regression, First incurred value models) 

 

• Predicting first incurred value need to be improved. 

o The first incurred value prediction is critical for the final reserve estimation. 

o The choice of distribution was not explored.  

o Another possibility is to categorize incoming claims into groups based on the 

possibility  fast claim, large claim, other, then predict the incurred value 

based on the development of these subcategories 

 

• Handling large claims and outliers. 

o As of now these were left out, but should be also handled by the model. 

o Possible the claims could be split to more groups as there seem to be different 

patterns of claim development. 

 

• Combining models from multiple runs. 

o As of now the models are being recalculatd each time the Cross-Validator 

model is run and only the results are combined, but not the created models.  

o This could be achieved with the usage of Bayesian methods or Assembling 

approach. 

 

Apart from directly improving the actual model, it is also important to consider the other aspects 

of the reserving process. There are two additional aspects of the claim reserving process which, 

were not addressed in this work that should be addressed in the following works. 

 

• Claim frequency modelling 

o The proposed individual claim level model assumed that claim frequency was 

fixed. Which is not the case and the individual level model needs to provide 

claim frequency estimation for IBNR and RBNS claims. 

 

• Reserve variable predictive distribution  

o As presented in this work the reserve estimate and a MSE is not enough to be 

usable in claim reserving. The next step is to create predictive distribution of 

the reserve variable to be able to obtain the Value at Risk (VaR) 

o The VaR is a requirement for the Solvency Capital Requirement (SCR) and the 

Minimal Capital Requirement (MCR) by the Solvency II. 
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8. Conclusion 

 

The work proposed an individual claim level model based on an example proposed by Pigeon 

et al. (2014). In their work they developed the link to link model and proposed the year to year 

model. This work tried to develop the year to year model which predicts the individual claim 

value at the end of year development year (very similar to chain ladder). This approach is 

assuming that time factor of the individual claim level models is fixed (in comparison with link 

to link model where the time factor is also modelled). This work focused on creating the year 

to year model and presenting it in three different scenarios. The simple model with GLM model 

usage for modelling the individual claim value change and the more complex Hurdle and Zero-

inflated models. The Hurdle and Zero-inflated models were introduced to handle cases when 

there is no development in the individual claim. 

 

Before these models could be presented it was important to provide overview of the insurance 

business and the regulatory framework that exist (chapter 1). The regulatory framework is  

the reason why these models were developed in the first place to provide a better and more 

robust estimate of the insurer liability. In the chapter 2 the work focused on presenting  

the existing literature. These two chapter concludes the first work objective to research the 

existing literature on the topic of the reserve risk models based on aggregate claim level and 

individual claim level. The first objective was partially completed because apart from the 

presented models there exist more source on this topic that could be put into this work therefore, 

only the most relevant sources were included. Based on the existing literature the individual 

claim level model was proposed as a combination of variables in chapter 3. These variables 

were suggested based on the provided literature and own research done when creating this work. 

These variables were modelled with the usage of Generalized linear models (GLM) and their 

extensions in form of Hurdle and Zero-inflated model (definition in chapter 4). These two 

chapters presented the second objective of this work to define an individual claim level model 

with the usage of hurdle models and zero inflated models. The second objective was 

completed and a model was presented in these chapters. The chapter 5 proposed how the 

dataset should be prepared before the variables can be obtained. This approach is based on the 

own research done when creating this work. These variables were explored from the claim 

development point of view and findings were presented. In the chapter 6 the model structure 

was presented and for each variable a sub model was proposed and fitted (examples are 

provided in the Appendix) and presented based on its prediction power. The three scenarios 

were equal in all sub models except for the link factor model where the change between the 

insurer liability at the start and of the year and at the end of the year is modelled. For these 

scenarios the GLM, Hurdle and Zero-inflated models were used. As a result, the model provides 

an estimate of the insurer liability. These two chapters presented the third objective of this work 

and proposed how to practically implement the model. The third objective was completed and 

steps by step described how the model would be implemented.  For comparison purposes a 

chain-ladder model was presented at the end of chapter 6. The chain-ladder model, and 

individual claim level models were then compared with the real liability development in 

chapter 7. The comparison proved that the individual claim level model as proposed is not a 

very good fit of the insurer liability (the model overestimates the insurer liability). The chapter 

7 ended with presenting the fundamental issues that were found when creating the model and 

what should be improved in the following studies. The final two objectives were presented in 

this chapter. The final two objectives were completed and presented a way how to compare 

these models and how to improve the individual claim level model.  
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Appendix 

 

Probability of Claim Being Reported Model 

 
Formula:   Model: Logistic Regression 

     

𝐼(𝑂̂𝑖,𝑗) ~ 𝐿𝑜𝑠𝑠 𝑌𝑒𝑎𝑟𝑖 + 𝑀𝑜𝑛𝑡ℎ𝑖 + log(𝑂𝑟𝑑𝑒𝑟𝑖) + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗, 

      

Deviance Residual      

Min 1Q Median 3Q Max  

-2.150 -0.793 -0.105 0.686 3.354 
 

      

Regressor Coefficients Std. Error t-value Pr(>|t|])   

Intercept 3.31562 0.15976 20.754 0.00000 *** 

Loss Year 2005 0.04010 0.04813 0.833 0.40473 
 

Loss Year 2006 0.06791 0.04930 1.378 0.16831 
 

Loss Year 2007 0.13841 0.04987 2.775 0.00552 ** 

Loss Year 2008 0.15217 0.04943 3.079 0.00208 ** 

Loss Year 2009 0.11642 0.05248 2.218 0.02653 * 

Loss Year 2010 0.13530 0.05338 2.535 0.01125 * 

Development Year 1 -2.12351 0.02778 -76.444 0.00000 *** 

Development Year 2 -3.90196 0.07157 -54.517 0.00000 *** 

Development Year 3 -4.81175 0.13288 -36.212 0.00000 *** 

Development Year 4 -6.12380 0.29069 -21.067 0.00000 *** 

Development Year 5 -6.65133 0.57868 -11.494 0.00000 *** 

Development Year 6 -6.13665 0.71060 -8.636 0.00000 *** 

February 0.12922 0.08823 1.465 0.14302 
 

March 0.18525 0.09050 2.047 0.04066 * 

April 0.18525 0.09294 1.970 0.04879 * 

May 0.16731 0.09356 1.788 0.07374 . 

June 0.15168 0.09480 1.600 0.10959 
 

July 0.09069 0.09646 0.940 0.34711 
 

August 0.06093 0.09820 0.620 0.53499 
 

September -0.01534 0.09877 -0.155 0.87659 
 

October -0.06246 0.10071 -0.620 0.53509 
 

November -0.05161 0.10227 -0.505 0.61379 
 

December -0.04327 0.10419 -0.415 0.67792 
 

Order -0.30015 0.02808 -10.688 0.00000 *** 

      

Null deviance: 53337  on 38529  degrees of freedom  

Residual deviance:  35512  on 38505  degrees of freedom  

AIC: 35562     
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First Incurred Value Model 

 
Formula:   Model: Log-normal  
      

log(𝑌̂𝑖,𝑗) ~ 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗 +  log(𝑂𝑟𝑑𝑒𝑟𝑖), 

      

Deviance Residual      

Min 1Q Median 3Q Max  

-89 822 -29 211 -16 704 5 051 4 679 915 
 

      

Regressor Coefficient Std. Error t-value Pr(>|t|])   

Intercept 10.87548 0.08037 135.313 0.00000 *** 

Development Year 1 -0.00003 0.03185 -0.001 0.99919 
 

Development Year 2 0.37126 0.07147 5.194 0.00000 *** 

Development Year 3 0.46839 0.12150 3.854 0.00011 *** 

Development Year 4 0.33265 0.29853 1.114 0.26516 
 

Development Year 5 -2.57843 11.81942 -0.218 0.82731 
 

Development Year 6 1.01198 0.39973 2.531 0.01136 * 

Order -0.02300 0.01181 -1.946 0.05163 . 

      

Null deviance: 87 172 907 892 599 on 18402  degrees of freedom  

Residual deviance:  87 004 634 812 740 on 18395  degrees of freedom  

AIC: 462 201    
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Probability of Claim Incurred Value Change 

 
Formula:   Model: Logistic Regression 

 

𝐼(𝜆̂𝑖,𝑗) ~ 𝐿𝑜𝑠𝑠 𝑌𝑒𝑎𝑟𝑖 + 𝑀𝑜𝑛𝑡ℎ𝑖 + log(𝑂𝑟𝑑𝑒𝑟𝑖) + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗 +

 log(𝑌𝑖,𝑗−1),  

      

Deviance Residual     

Min 1Q Median 3Q Max  

-2.4542 
0.0000 0.0000 0.4258 2.3007  

      

Regressor Coefficient Std. Error t-value Pr(>|t|])   

Intercept 19.4533 131.0762 0.148 0.00001 *** 

Loss Year 2005 0.1521 0.0663 2.293 0.02182 * 

Loss Year 2006 0.4543 0.0738 6.155 0.00000 *** 

Loss Year 2007 0.2555 0.0733 3.483 0.00049 *** 

Loss Year 2008 0.1414 0.0703 2.011 0.04433 * 

Loss Year 2009 0.1630 0.0757 2.153 0.03133 * 

Loss Year 2010 0.1145 0.0770 1.487 0.13693  

Development Year 1 -15.1480 131.0762 -0.116 0.90799  

Development Year 2 -16.9912 131.0762 -0.130 0.89686 
 

Development Year 3 -17.6590 131.0762 -0.135 0.89283 
 

Development Year 4 -16.3879 131.0762 -0.125 0.90050 
 

Development Year 5 -16.2553 131.0762 -0.124 0.90130 
 

Development Year 6 -15.0911 131.0763 -0.115 0.90834  

Previous Year Loss Incurred 𝑌𝑖,𝑗−1 -0.3692 0.0156 -23.653 0.00000 *** 

February -0.0089 0.1230 -0.073 0.94217 
 

March 0.0031 0.1257 0.025 0.98008 
 

April 0.0980 0.1296 0.756 0.44946 
 

May 0.0637 0.1286 0.496 0.62017 
 

June 0.1949 0.1318 1.479 0.13922 
 

July 0.2818 0.1345 2.095 0.03620 * 

August 0.4939 0.1374 3.594 0.00032 *** 

September 0.6325 0.1391 4.547 0.00032 *** 

October 0.5729 0.1403 4.083 0.00004 *** 

November 0.6969 0.1441 4.837 0.00000 *** 

December 0.6738 0.1497 4.500 0.00000 *** 

Order 0.0928 0.0388 2.393 0.01669 * 

      

      

Null deviance: 31 916 on 38 529 degrees of freedom 

Residual deviance:  16 925 on 38 504 degrees of freedom 

AIC: 16 977 
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Full Gamma Link Factor Model 

 
Formula:   Model: Gamma (Log)  
      

𝜆̂𝑖,𝑗 ~ 𝐿𝑜𝑠𝑠 𝑌𝑒𝑎𝑟𝑖 + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑌𝑒𝑎𝑟𝑖,𝑗 + log(𝑌𝑖,𝑗−1) 

 

      

Deviance Residual      

Min 1Q Median 3Q Max  

-1.6175 
-0.0048 -0.0026 0.0027 1.4038  

      

Regressor Coefficients Std. Error t-value Pr(>|t|])   

Intercept -1.6121 0.0026 -606.4890 0.00000 *** 

Loss Year 2005 0.0057 0.0034 1.6651 0.09590 . 

Loss Year 2006 0.0011 0.0036 0.3051 0.76027  

Loss Year 2007 -0.0035 0.0036 -0.9567 0.33872   

Loss Year 2008 0.0053 0.0035 1.4930 0.13543  

Loss Year 2009 0.0040 0.0038 1.0421 0.29736  

Loss Year 2010 0.0075 0.0039 1.9314 0.05344 . 

Development Year 1 0.0613 0.0037 16.2518 0.00000 *** 

Development Year 2 0.0167 0.0051 3.2225 0.00127 *** 

Development Year 3 0.0015 0.0056 0.2787 0.78040  

Development Year 4 -0.0056 0.0070 -0.8100 0.41791  

Development Year 5 -0.0045 0.0096 -0.4722 0.63678  

Development Year 6 -0.0064 0.0197 -0.3251 0.74510  

Previous Year Loss Incurred 𝑌𝑖,𝑗−1 0.1463 0.0003 370.4295 0.00000 *** 

      
Null deviance: 13 005 on 19 196 degrees of freedom  
Residual deviance: 377 on 19 172 degrees of freedom  
AIC: -66 579  

      
(Dispersion parameter for Gamma family taken to be 0.01964572369) 
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Subset Gamma Link Factor Model 

 
Formula:   Model: Gamma (Log)  

      

𝜆̂𝑖,𝑗|(𝐼(𝜆̂𝑖,𝑗) = 1) ~ 𝐿𝑜𝑠𝑠 𝑌𝑒𝑎𝑟𝑖 + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑌𝑒𝑎𝑟𝑖,𝑗 + 𝑀𝑜𝑛𝑡ℎ𝑖 + log(𝑌𝑖,𝑗−1) 

 

      

Deviance Residual      

Min 1Q Median 3Q Max  

-1.6588 
-0.0040 -0.0000 0.0009 1.3695  

      

Regressor Coefficients Std. Error t-value Pr(>|t|])   

Intercept -1.6158 0.0028 -559.8186 0.00000 *** 

Loss Year 2005 0.0072 0.0038 1.8663 0.06201 . 

Loss Year 2006 0.0054 0.0040 1.3611 0.17348 
 

Loss Year 2007 0.0056 0.0040 1.3769 0.16855 
 

Loss Year 2008 0.0104 0.0040 2.5985 0.00937 ** 

Loss Year 2009 0.0064 0.0043 1.4846 0.13766 
 

Loss Year 2010 0.0113 0.0044 2.5709 0.01015 * 

Development Year 1 0.0285 0.0037 7.5836 0.00000 *** 

Development Year 2 -0.0316 0.0074 -4.2500 0.00002 *** 

Development Year 3 -0.1100 0.0137 -7.9859 0.00000 *** 

Development Year 4 -0.3675 0.0248 -14.8146 0.00000 *** 

Development Year 5 -0.3218 0.0514 -6.2563 0.00000 *** 

Development Year 6 -0.2504 0.0481 -5.1977 0.00000 *** 

Previous Year Loss Incurred 𝑌𝑖,𝑗−1 0.1537 0.0004 331.3332 0.00000 *** 

      

Null deviance: 5 682 on 14 906 degrees of freedom 
 

Residual deviance:  274 on 14 893 degrees of freedom 
 

AIC:  -60 900  

    

  

(Dispersion parameter for quasipoisson family taken to be 0.01841842095) 
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Probability of Payment Occurrence 

 
Formula:   Model: Logistic Regression 

     

𝐼(𝜍𝑖̂,𝑗) ~ 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑌𝑒𝑎𝑟𝑖,𝑗 + log(𝑌𝑖,𝑗) + 𝑀𝑜𝑛𝑡ℎ𝑖 + log(𝑂𝑟𝑑𝑒𝑟𝑖)  

      

Deviance Residual     

Min 1Q Median 3Q Max  

-2.7261 -0.0001 0.0390 0.7573 1.7677 
 

     

 

Regressors Coefficients Std. Error t-value Pr(>|t|])   

Intercept -17.4850 513.3713 -0.034 0.97283 
 

Development Year 1 20.2389 513.3704 0.039 0.96855 
 

Development Year 2 21.2090 513.3704 0.041 0.96704 
 

Development Year 3 22.0783 513.3704 0.043 0.96569 
 

Development Year 4 20.0769 513.3704 0.040 0.96776 
 

Development Year 5 21.0753 513.3705 0.041 0.96725 
 

Development Year 6 22.8006 513.3710 0.044 0.96457  

This Year Loss Incurred 𝑌𝑖,𝑗 0.4430 0.0826 5.358 0.00000 *** 

February 0.3625 0.5662 0.640 0.52203 . 

March 1.6397 0.6476 2.532 0.01134 * 

April 1.6465 0.5850 2.814 0.00489 ** 

May 1.7470 0.5850 2.986 0.00282 ** 

June 2.0309 0.6094 3.332 0.00086 *** 

July 2.1936 0.6138 3.574 0.00035 *** 

August 2.2392 0.6187 3.654 0.00025 *** 

September 2.3664 0.6187 3.825 0.00013 *** 

October 2.2302 0.6362 3.506 0.00045 *** 

November 1.8247 0.6427 2.839 0.00452 ** 

December 1.7994 0.6634 2.712 0.00667 ** 

Order -1.2752 0.1926 -6.620 0.00000 *** 

      

Null deviance: 
 2 065 on 1 489 degrees of freedom    

Residual deviance:  
 1 211 on 1 470 degrees of freedom    

AIC:  
 1 251    
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Paid Beta Regression Model 

 
Formula:   Model: Beta  
      

𝜍𝑖̂,𝑗|(𝐼(𝜍𝑖̂,𝑗) = 1) ~ 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑌𝑒𝑎𝑟𝑖,𝑗 + log(𝑌𝑖,𝑗) + 𝑀𝑜𝑛𝑡ℎ𝑖  

      

Deviance Residual     

Min 1Q Median 3Q Max  

-2.8914 
-0.7180 -0.6162 0.6641 3.8846  

      

Regressor Coefficients Std. Error t-value Pr(>|t|])   

Intercept -3.3729 0.1271  -26.520 0.00000 *** 

Development Year 1 0.9429 0.0258 36.474 0.00000 *** 

Development Year 2 1.6966 0.0318 53.292 0.00000 *** 

Development Year 3 1.9844 0.0357 55.440 0.00000 *** 

Development Year 4 2.1144 0.0498 42.450 0.00000 *** 

Development Year 5 2.1302 0.0747 28.505 0.00000 *** 

Development Year 6 1.9934 0.1598 12.473 0.00000 *** 

This Year Loss Incurred 𝑌𝑖,𝑗 0.2102 0.0113 18.555 0.00000 *** 

February -0.2212 0.0605 -3.656 0.00025 *** 

March -0.2026 0.0590 -3.430 0.00060 *** 

April -0.2745 0.0578 -4.742 0.00000 *** 

May -0.2617 0.0549 -4.764 0.00000 *** 

June -0.3144 0.0540 -5.823 0.00000 *** 

July -0.3926 0.0533 -7.359 0.00000 *** 

August -0.4182 0.0527 -7.929 0.00000 *** 

September -0.4378 0.0514 -8.511 0.00000 *** 

October -0.4618 0.0511 -9.029 0.00000 *** 

November -0.5097 0.0518 -9.836 0.00000 *** 

December -0.5815 0.0566 -10.259 0.00000 *** 
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Probability of Claim Closure 

 
Formula:   Model: Logistic Regression 

     

𝐼(𝑆̂𝑖,𝑗) ~ 𝐿𝑜𝑠𝑠 𝑦𝑒𝑎𝑟𝑖 +  𝑀𝑜𝑛𝑡ℎ𝑖 + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑖,𝑗 + log (𝑃𝑖,𝑗) 

      

Deviance Residual      

Min 1Q Median 3Q Max  

-3.2474 
-0.9347 -0.0807 0.9289 2.2149  

      

Regressor Coefficients Std. Error t-value Pr(>|t|])   

Intercept 1.23252 0.18525 6.653 0.00000 *** 

Loss Year 2005 0.04075 0.04806 0.848 0.39641   

Loss Year 2006 0.31092 0.05012 6.204 0.00000 *** 

Loss Year 2007 0.40896 0.05030 8.129 0.00000 *** 

Loss Year 2008 0.35108 0.04931 7.119 0.00000 *** 

Loss Year 2009 0.35223 0.05231 6.733 0.00000 *** 

Loss Year 2010 0.39361 0.05302 7.423 0.00000  

Development Year 1 1.78050 0.03415 52.137 0.00000 *** 

Development Year 2 0.20974 0.04791 4.377 0.00000 *** 

Development Year 3 -0.51746 0.06387 -8.101 0.00000 *** 

Development Year 4 0.77407 0.06683 11.582 0.00000 *** 

Development Year 5 1.12523 0.09806 11.475 0.00000 *** 

Development Year 6 2.27334 0.19388 11.725 0.00000 *** 

This Year Loss Paid 𝑃𝑖,𝑗 0.16503 0.00629 26.225 0.00000 *** 

February 0.21008 0.08070 2.603 0.00923 ** 

March 0.28963 0.08364 3.462 0.00053 *** 

April 0.34547 0.08728 3.958 0.00000 *** 

May 0.19399 0.08835 2.196 0.02811 * 

June 0.24846 0.09063 2.741 0.00611 ** 

July 0.11198 0.09288 1.206 0.22793 * 

August 0.11632 0.09507 1.223 0.22114  

September -0.01205 0.09617 -0.125 0.90026   

October -0.17788 0.09823 -1.811 0.07017   

November -0.10865 0.10011 -1.085 0.27777   

December 0.14751 0.10260 1.438 0.15046  

      

Null deviance: 40865 on 29477 degrees of freedom  

Residual deviance:  21105 on 29453 degrees of freedom  

AIC: 21155     

 


