
Vysoká škola ekonomická v Praze

Fakulta finanćı a účetnictv́ı

Katedra bankovnictv́ı a pojǐst’ovnictv́ı

Studijńı obor: Finance

Application of Artificial Intelligence

Techniques in Credit Risk

Autor bakalářské práce: Martin Rýpar

Vedoućı práce: Ing. Milan Fičura

Rok obhajoby: 2018

Prohlášeńı

Prohlašuji, že jsem bakalářskou práci zpracoval samostatně a že jsem uvedl všechny

použité prameny a literaturu, ze které jsem čerpal.

V Praze dne 25. května 2018 .

Podpis studenta

1

Poděkováńı

Rád bych poděkoval Ing. Milanu Fičurovi za ochotu a vedeńı při psańı této bakalářské

práce.

2

Abstrakt

Tato bakalářská práce se zabývá metodami umělé inteligence a jejich využit́ım při mo-

delováńı kreditńıho rizika, konkrétně při modelováńı pravděpodobnosti defaultu. V teo-

retické části práce jsou popsány použité metody, tedy logistická regrese, náhodné lesy,

support vector machines a neuronové śıtě. V praktické části jsou tyto metody implemen-

továny a vytrénovány na datech z online peer-to-peer platformy Lending Club a na datech

z online soutěž́ıćı platformy Kaggle. V závěru jsou prezentovány výsledné hodnot́ıćı me-

triky, kde je ilustrováno, že metody UI mohou dosahovat lepš́ıch výsledk̊u oproti běžně

už́ıvanému standardu - logistické regresi.

Kĺıčová slova

strojové učeńı, umělá inteligence, neuronové śıtě, kreditńı riziko, pravděpodobnost de-

faultu

Abstract

This bachelor thesis describes artificial intelligence methods and their application in cre-

dit risk modelling, particularly in probability of default modelling. In theoretical part

are described methods used in practical part, namely logistic regression, random forests,

support vector machines and neural networks. In practical part are those methods imple-

mented and trained on data from online peer-to-peer platform Lending Club and on data

from online competition platform Kaggle. In the end are presented evaluation metrics,

where is showed that AI methods can reach better results compared to commonly used

standard - logistic regression.

Keywords

machine learning, artificial intelligence, neural networks, credit risk, probability of default

3

Contents
List of Figures 5

List of Tables 5

Introduction 6

1 Short Introduction to Machine Learning and Artificial Intelligence 7

2 Methodology 9

2.1 Logistic Regression . 9

2.2 Random Forests . 11

2.2.1 Decision Trees . 11

2.2.2 Bagging . 14

2.2.3 Random Forests . 15

2.3 Support Vector Machines . 17

2.3.1 Maximal Margin Classifier . 17

2.3.2 Support Vector Machines and Kernels 19

2.4 Neural Networks . 21

2.4.1 Activation functions . 23

2.4.2 Backpropagation . 24

3 Development of Models 28

3.1 Data Wrangling . 28

3.2 Cross-Validation, Regularization and Hyper-parameters 29

3.3 Variable Selection . 32

3.4 Evaluation Metrics . 33

3.5 Empirical Results . 35

Conclusion 38

List of References 41

4

List of Figures

1 Venn diagram (source: [1]) . 8

2 Sigmoid function (source: own processing) 10

3 CART partitioning (source: [5]) . 12

4 Data separability (source: own processing) 17

5 Optimal hyperplane (source: [9]) . 18

6 Linearly non-separable example (source: [5] 20

7 Single neuron (source: own processing) . 22

8 A 2-layer Neural network (source: own processing) 23

9 Tanh (source: own processing) . 24

10 ReLU (source: own processing) . 24

11 10-fold splitting for first two iterations (source: own processing) 31

12 Confusion matrix (source: own processing) 34

13 ROC curve (source: own processing) . 35

List of Tables

1 Optimized hyper-parameters . 36

2 Results on Kaggle Dataset . 36

3 Results on Lending Club Dataset . 37

5

Introduction

The artificial intelligence experiencing huge amount of attention in recent years. This wave

of interest is mainly driven by research and its findings in the field of machine learning.

The development in recent years was so rapid, that things considered as futuristic a few

years ago, are perceived without surprise today. There are applications or its possibility

which widely penetrated not only academic discussion, but also public discussion. Such

topics are self-driving cars or dominance of computers in games like Chess or Go. But

those are the exposed examples, there exists many different applications which are not

so well known within public. Those can be, besides many others, optimization in search

engines, software enhancements, programs trading on the financial markets or programs

for credit risk assessment.

This thesis focuses on application AI methods only in banking, exactly in a credit

risk assessment. In choosing a subject of this thesis, both topicality and mainly personal

interest in this field were key motivations for the choice. The first goal is to create several

classification models, which can predict whether the loan applicant will repay the debt

or not. And the second goal is to compare these models, mainly in terms of significant

differences in accuracy of predictions. Particularly, compare the predictive capability of

industry standard methods, such as logistic regression, with non-standard methods.

Structure of the thesis is divided into three sections, the first two parts are both

theoretically focused, compared to the third part, which is more practical. The first section

introduce some of the basic terms of machine learning and artificial intelligence. The

second part describes some of the frequently used methods in credit risk assessment. Then

in the third part are the theoretically described methods from second part implemented

and compared.

6

1 Short Introduction to Machine Learning and Arti-

ficial Intelligence

In this part are introduced some of the very basics of machine learning (ML), artificial

intelligence (AI) and its relationship, in order to gain some basic familiarity with the

topic. Generally, machine learning algorithms can be divided into three subgroups. The

most often used way how to divide them is as follows [1]:

1. Supervised learning algorithms experience a dataset of many observations with a

number of features, where each observation is associated with a label or target. Also

called the learning with a guide. Such examples are classification tasks like image

recognition models or credit worthiness of loan applicant and regression problems

as well.

2. Unsupervised learning algorithms experience a dataset containing many observations

with a number of features, but without any label or target. Then algorithm learns

useful properties of the structure of the dataset without a guide. Such as clustering

tasks, where the goal is to find the datapoints with certain similarities hidden in the

data or learning the entire probability distribution that generated the dataset.

3. Reinforcement learning algorithms those are algorithms which interact with an envi-

ronment, so there is a feedback loop between the learning system and its experiences.

Self-driving cars or ALphaGo Zero – program playing the game of Go, which learned

how to play by playing against earlier version of similar program AlphaGo [2], are

examples of reinforcement learning.

It should be noticed, that those terms above are not formally defined and the edges

between them are not sharp. Nevertheless, they are frequently used and helps with

orientation in the field of ML.

To illustrate relationship between AI and ML, I found myself very useful the Venn

diagram showed on Figure 1. From the figure is clear that ML is included in AI, thus

the ML can be considered as a discipline of AI or an approach to AI. That applies for

representation learning and deep learning as well.

Machine learning refers to an ability of AI system. The ability to acquire knowledge

by extracting patterns from raw data. This capability is very beneficial when tackling

7

Figure 1: Venn diagram (source: [1])

real-world problems. Well known ML algorithms are Logistic regression, Naive Bayes or

Decision Trees. Representational learning is mainly concerned by finding an appropriate

representation of data with goal to perform ML task. You can imagine that as having

linearly non-separable data on input, then task for representation learning is to find

its better representation in order to make them linearly separable. Deep learning is

an approach to AI, which by constructing complex model composed of related simpler

units poses great power and flexibility. [1] The model as a interconnected hierarchy is

represented by neural network to which will be devoted more space in the next part.

8

2 Methodology

Since the question whether the loan applicant is credible in terms of debt repayment has

yes/no answer, we can call it a classification task. In other words, there is a demand on

the model to correctly output which of K categories some input belongs to. In case of

credit risk assessment or default modelling the output is binary, thus the we can call it a

binary classification task. Some of the below described methods are possible to use, with

some adjustments, as a regression model as well. In regression task is model asked to

output a numerical value for some input, where the output is real number. This section

includes a theoretical description of methods which will be implemented in the third part

of the thesis.

2.1 Logistic Regression

Logistic regression is very well known and often used method within risk analysts and risk

managers, where this approach is considered as a standard, due to its relatively simple

interpretation of calculation steps and undemanding implementation. Opposite to classic

linear regression, which is usually very easy to use, this method is more appropriate as

it is more suitable when analyzing the binary dependent variable. Subsection is mainly

based on this source: [3].

In case of probability of default modelling, the logistic regression is used to model

probability that vector of features for i-th applicant xi belongs to the default class Y=1,

or formally

P (xi) = P (yi = 1|xi) (1)

The P(xi) term represents the conditional probability of default for a given input vector of

features xi. Where under features are coded particular characteristics of given applicant.

For the logistic regression is used mathematical function, which is often referred as the

sigmoid function and may be denoted as

P (zi) = ezi

1 + ezi
= 1

1 + e−zi
. (2)

Since the output of sigmoid function may be interpreted as a probability, see that the

same notation P is kept for both conditional probability and sigmoid function. The zi is

9

real-valued number and latent credit score of i-th loan applicant, the βT is transformed

vector of coefficients.

zi = βT · xi. (3)

The logistic function offers very convenient properties as it is a S-shape curve which maps

any real-valued number into a value between 0 and 1. In a sense it compress the (−∞,∞)

interval into (0, 1) which may be easily interpreted as a probability. And thus equation

(2) can be rewritten into this form

P (xi) = eβ
T ·xi

1 + eβT ·xi
= 1

1 + e−βT ·xi
. (4)

−11−10−9−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11
0

1

f(x) = 1
1+ e−x

Figure 2: Sigmoid function (source: own processing)

Further is crucial to define odds function as a ratio of defaults and non-defaults, this is

often referred as logit function as well

odds(x) = P (x)
1− P (x) . (5)

One can verify that this ratio is after several steps possible rewrite as exi·βT . With goal

to get linear expression on the right side of the previous equation, the whole equation is

logarithmized in order to get so called log-odds function

10

ln P (x)
1− P (x) = βT · xi. (6)

The parameters of logistic function could be estimated using Ordinary Least Squares

(OLS) or Weighted Least Squares (WLS), but the Maximum Likelihood Estimation

(MLE) is a better choice. [3] Assuming independence of observations, the estimation

b based on the maximization of log-likelihood function is

lnL(b) =
∑
i

[yi · ln(P (−bT · xi)) + (1− yi) · ln(1− P (−bT · xi))]. (7)

2.2 Random Forests

Random forests, with which Breiman officially came in paper from 2001 [4], is one of

the tree-based algorithms with variety of possible applications. But before giving a more

accurate description of method itself, there is need to define its building blocks – decision

trees and bagging, which will be done in the following subsections.

2.2.1 Decision Trees

Decision trees, the core part of the Random Forest, are supervised learning method which

may be used for classification and regression as well. Contrary to logistic regression,

decision trees are non-linear method. The aim is to create a model that predicts the

value or class of a given variables by learning simple decision rules inferred from the data.

The advantage of this approach is its interpretability as the method itself is very close

simulation of real-person decision-making process. However, there are naturally some

shortcomings of tree-based methods such as high sensitivity to training data, where even

small change in the training dataset can result in a very different set of splits. This

subsection is particularly based on materials from [5] and [6].

For the description of tree-based methods will be used popular classification and re-

gression tree model or shortly CART [6], even though there are many other variations

such as C4.5 or ID3. The CART algorithm provides partition of the features space into

a set of rectangles and then fit a simple model (such as constant) in each one. To illus-

trates a recursive partitioning of the input space hand in hand with the corresponding

tree structure, see Figure 3.

11

(a) Two dimensional input space partition (b) Decision tree corresponding to partition

Figure 3: CART partitioning (source: [5])

More formally, consider a dataset of N observations and P inputs, which is (xi, yi) and

for each observation i = 1, . . . , N with input vector xi = (xi1, . . . , xiP) is given output

variable yi. In case of classification the output variables would look like this, yi = 1, . . . , K

where K denotes a number of classes, but for now we stay with the regression. Then

suppose that the tree is partitioned into M regions R1, . . . , RM and response as a constant

cm in each region is modelled.

f(x) =
M∑
m=1

cm · I(x ∈ Rm). (8)

Using sum of squares ∑(yi − f(xi))2 as the minimization criteria, one can reach the

conclusion that the best constant separator ĉm is simply the average of yi in the region

Rm. [5]

ĉm = avg(yi|xi ∈ Rm). (9)

The algorithm needs to, besides choosing input variables for each split and appropri-

ate separators, determine the optimal tree structure. Combinatorically large number of

possible solutions usually makes minimization using sum of squares error computationally

unfeasible. That is reason why is so called greedy optimization employed – starting the

growing with a single root node, corresponding to the whole input space, and then one

by one node the tree greedy grows. Consider a splitting variable j and split point s, then

we can define the pair of half-planes

12

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj ≥ s}. (10)

Then below expression is solved by finding optimal variable j and s, and as we already

know the sum of squares error is optimized by an average, thus the inner minimization

might be rewriten as an average of ci in the specific region Rm.

min
j,s

[min
c1

∑
xi∈R1(j,s)

(yi − c1)2 +min
c2

∑
xi∈R2(j,s)

(yi − c2)2] (11)

Finding an optimal separator enables to split the data into two resulting regions and

repeat the partition on each of those two regions. In case of applying this process, without

any adjustment, to all resulting regions, we might end up with too big and overfitted tree

which fails in predicting new observations or otherwise only with a small tree not capable

of capturing the important structure. As the tree size is a tuning parameter, representing

complexity of the model and which should be adaptively chosen from the data[5], there

arise an obvious question. How to ensure that tree reaches the optimal or at least close to

optimal size? Generally preferred approach is to grow a large tree T0 using minimum node

size as a stopping criteria and then prune it. The minimal node size is usually another

finetuned parameter and refers to minimal number of datapoints in each node. The

pruning process, which is described below, balances the residual error against a measure

of model complexity.

Let’s define a subtree T ⊂ T0 as any tree that can be obtained by pruning T0, that is

cutting off any number of its internal (non–terminal) nodes. And terminal nodes indexed

by m, giving |T | terminal nodes from total number of T nodes. The cost complexity

criterion is given by

Cα(T) =
|T |∑
m=1

∑
xi∈Rm

(yi − ĉm)2 + α · |T |, (12)

denoting ∑
xi∈Rm

(yi − ĉm)2 as Qm(T) we can simply write

Cα(T) =
|T |∑
m=1

Qm(T) + α · |T |. (13)

The above function Cα(T) is minimized by finding optimal tree T and thus we obtain

a tree size of the final model as well. The regularization parameter α determines the

trade-off between the overall residual sum of squares error and the complexity of the

13

model measured by the number |T |. High α penalizes more the bigger trees (trees with

more terminal nodes), thus optimal tree will be relatively smaller and vice versa for small

α. To estimate the optimal hyper-parameter α, cross-validation is usually used. [5]

For classification trees, the output variable yi taking values 1, . . . , K where K denotes

a number of classes, as was already mentioned. The process of growing and pruning of

classification tree is very similar to regression tree, only the sum of squares error functions

is replaced by a more appropriate measure of error. These three measures, are according

to [5], better measures of impurity :

Misclassification error = 1
Nm

∑
i∈Rm

I(yi 6= k(m)) = 1− p̂mk(m), (14)

Gini index =
K∑
k=1

p̂mk(1− p̂mk), (15)

Cross-entropy = −
K∑
k=1

p̂mk · log p̂mk. (16)

Where p̂mk denotes the proportion of class k observations in node m, given that node m

represents region Rm with Nm observations

p̂mk = 1
Nm

∑
xi∈Rm

I(yi = k), (17)

The function I or so called indicator function is equal to one if the argument is true.

Then the class of all observations in node m will be classified according to the majority

class given by k(m) = argmaxk p̂mk in the node m.

All of the above measures are similar, though only Gini index and Cross-entropy are

differentiable and thus more suitable to numerical optimization. Those two functions

are also more sensitive to the node probabilities, which make them advantageous when

growing the tree.

2.2.2 Bagging

Bagging or bootstrap aggregation is called a technique for reducing the variance of an

estimated prediction function [5]. Decision trees are suitable for bagging as this technique

works usually very well for high-variance, low-bias procedures, such as trees. Suppose

training data Z = {(x1, y1), (x2, y2), . . . , (xN , yN)} and fitted model to those data pre-

dicting f̂(x) at input x. Indicator vector f̂(x) with predictions for K-class response with

14

single one and K-1 zeroes. Then vector f̂(x)b is produced for each bootstrap sample Zb

which is drawn from training set, with replacement, and b = 1, 2, . . . B giving in total

B different predictions based on different samples. Breiman in [7] also emphasizes that

random inputs and random features produce good results in classification, but less so in

regression.

In regression is the bagging estimate produced by averaging all the estimates based

on bootstrapped samples, in classification is rather used „votes“ counting. Suppose tree

based classifier Ĝ(x) for a K-class response, such that Ĝ(x) = argmaxk f̂(x). Then

the bagged estimate f̂bag(x) is K-vector p1(x), p2(x), . . . , pK(x) where pk(x) is equal to

proportion of trees predicting class k at x. The selected class is then the one with the

highest number of „votes“ picked by bagged classifier from the B trees.

Instead of exact classification, often is required to have the class-probability estimates

at x. And even though proportions pk(x) are tempting to treat as estimates of these

probabilities, it simply will not work as it shows in [5]. Suppose two-class classifier and

true probability of class 1 at x is 0.75, and each of the bagged classifiers accurately predict

a 1. Then p1(x) will be equal to 1, which is incorrect. However, there exists an underlying

function f̂(x) for a number of classifiers Ĝ(x), which estimates the class probabilities at

x. For trees, those are the class proportions in the terminal node. Instead of using the

indicator vector, averaging those could improve the estimates of the class probabilities

and especially for small B, it tends to produce bagged classifiers with lower variance.

2.2.3 Random Forests

After introducing both crucial parts of random forests, let’s focus more on the method

itself. The random forests combine or ensemble multiple techniques, which is the reason

why it belongs among ensemble methods. The group of algorithms called ensemble has

the goal to combine the predictions of several base estimators built with a given learning

algorithm in order to improve robustness over a single estimator. Ensemble methods could

be separated into two families – averaging methods and boosting methods. In averaging

methods, the aim is to build several estimators independently and then average their

predictions. On average, the combined estimator is usually better than any of the single

base estimator as Breiman in [4] indicated. The improvement of predictions is caused by

reduction in variance, which is often issue accompanying decision tree model. In boosting

15

methods, base estimators are built sequentially and in order to reduce the bias of the

combined estimator. The motivation is to combine several weak models to produce a

powerful ensemble.

Breiman builds on his paper from 1996 [7] and use bagging in order to bootstrap

samples out of the training data. Then in [4] follows on that by adding random input

selection. Therefore bagging as well as random input selection are used to grown the

trees. By adding the random variable selection is, instead of all input variables, used only

low number of randomly generated variables to split at each node. Random forests using

random variable selection enables to produce classifier relatively robust to outliers and

noise, which is at the same time faster than bagging or boosting. Application of bagging

has its reasons as well. It can be used to give ongoing estimates of classification error

rate of the combined ensemble of trees and also estimates of correlation and strength as

Breiman denotes in [4]. All of these estimates are done based on out-of-bag data, which

is described further. Out-of-bag estimates are results of out-of-bag classifier trained on

the data which was not drawn in the bagging process when training a particular tree.

Therefore the out-of-bag estimate for the error rate is the error rate of the out-of-bag

classifier on the training set. It is possible to think of it as an alternative to test set

and generally cross-validation, which is in this case unnecessary. Breiman in [4] further

supports the use of out-of-bag estimates due to that they are unbiased opposite to cross-

validation. See that using bagging offers very convenient way of estimating generalization

error.

Random forests is large collection of de-correlated trees, where each tree is trained on

the bootstrapped data. In each node is selected random subset of input variables until

minimal node size is reached. Out of that random subset is selected one variable giving

the best split in the node and then the split is executed. When training the random

forests classifier there are few parameters whose optimal value should be found by fine-

tuning. Those are number of randomly selected inputs m, for classification usually chosen

m = √p where p is the total number of input variables or even m = 1. Possible, though

very unlikely, are even higher values, depending on the situation. [5] Minimum node size,

in classification usually recommended to use nmin = 1, but again should be treated as

fine-tuning parameter and its optimal value depends on the problem.

16

2.3 Support Vector Machines

Support vector machines (SVM) is supervised learning method used for classification,

regression and outliers detection. It was extensively developed by Vladimir Vapnik and

his colleagues, who came up with generalization of this method. [8] The method was

previously applicable only for linearly separable datasets, but due to the improvement,

the method produces nonlinear boundaries which makes possible to work with linearly

nonseparable data as well. The difference between linearly separable data and linearly

non-separable data is illustrated on the Figure 4. In the case of two dimensional linearly

separable data, there exists possibility to draw a line, that separates all the observations

of the class. In non-separable data that is not possible, the classes overlap. The idea of

the method presented in the paper from 1995 is as follows, input vectors are non-linearly

mapped to very high dimension feature space. In the feature space is constructed linear

decision surface and everything is reversely transformed back to original space.

2.0 2.5 3.0 3.5 4.0 4.5
X

1

2

3

4

5

Y

(a) Linearly separable data

2.0 2.5 3.0 3.5 4.0 4.5
X

1

2

3

4

5

Y

(b) Linearly non-separable data

Figure 4: Data separability (source: own processing)

In the following subsections will be described classifier for case of linearly separable data

and its generalization to nonseparable data.

2.3.1 Maximal Margin Classifier

In SVM is operated with one crucial concept – margin. Margin is the smallest distance

between decision boundary and any of the samples, see Figure 5. In this case, the opti-

17

Figure 5: Optimal hyperplane (source: [9])

mization objective is to maximize margin, since bigger margin creates more robust decision

boundary. As the motivation is to found maximal possible margin, therefore SVM is also

called Maximal Margin Classifier.

Using [5], to denote it more formally. Given training data with N observations pairs

(x1, y1), . . . , (xN , yN) with xi ∈ IRP and yi ∈ {−1, 1}. Hyperplane defined by

f(x) = xTβ + β0 = 0, (18)

where β is unit vector and thus ||β|| = 1. Then classification function using f(x)

G(x) = sign(xTβ + β0). (19)

One can quickly verify that output of f(xi) is > 0 when the data point i lies above the

hyperplane and in opposite f(xi) is < 0 when the point i lies below the hyperplane. In

this case are data linearly separable, thus the function f(x) = xTβ + β0 for which apply

yif(xi) > 0 ∀i. Hence is possible to find hyperplane maximalizing the margin between

the two output classes.

maximize M
β,β0,‖β‖=1

subject to yi(xTβ + β0) ≥M, i = 1, . . . , N . (20)

18

Or it could be rephrased, due to that margin M = 1
‖β‖ as

minimize ‖β‖
β,β0,

subject to yi(xTβ + β0) ≥1, i = 1, . . . , N . (21)

The second form in equation (21) gives convex function opposite to non-convex function

in the equation (20). As convex optimization is more efficient compared to non-convex,

preferred is the second form.

This approach works well for linearly separable data, but it is a serious limitation as

in many real-world problems linear separation between classes cannot be found. In that

case could be used more robust method introduced by Cortes and Vapnik [8], named

Soft Margin Classifier. This method tolerates to some extend outliers and noise in the

data, but beside that is similar to Maximal Margin Classifier. Getting back to the previous

equations, we allow some misclassifications on the training data by relaxing the constraint

in equation (20) or (21). Lets define slack variables ξi where ∀i, ξi ≥ 0, ∑N
i=1 ≤ constant.

Notice that misclassification occur when ξi > 1 and total number of misclassification is

limited by some constant number. We can use those as a further cost and by doing so get

yi(xTβ + β0) ≥ 1− ξi ∀i. (22)

Thus we can redefine the classifier from equation (21) as

minimize ‖β‖ subject to

yi(xTβ + β0) ≥ 1− ξi, ∀i,

ξi ≥ 0,
∑

ξi ≤ constant.
(23)

More thorough description can be found in [5], [10] or [8].

2.3.2 Support Vector Machines and Kernels

Algorithms covered in the previous section construct hyperplanes in the input feature

space. To get a potentially better representation of the data, we can map the data points

into an alternative higer-dimensional space. Then we need to transform the n-dimensional

input vector x into an N-dimensional feature vector using some N-dimensional vector

function φ [8]:

φ : IRn → IRN. (24)

19

Consider these two classes shown on Figure 6(a), they are linearly nonseparable in the

two dimensional space. After execution of transformation into higher-dimensional space,

using radial basis function, see Figure 6(b), the separation is possible. The data are

separated again by maximizing the margin and then transformed back to original space,

Figure 6(c).

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(a) Linearly non-separable data

0.0 0.5 1.0 1.5 2.0

70

80

90

100

110

(b) Data transformed to higher dimension using

RBF

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(c) Separated using SVM

Figure 6: Linearly non-separable example (source: [5]

As is showed in [5], there is no need to specify the transformation φ at all. There is only

necessary to know the kernel function

K(x, x′) =< φ(x), φ(x)′ > , (25)

20

which computes inner products in the transformed space. Worth to mention that K

should meet certain conditions – it should be symmetric positive definite or semi-definite.

These are popular choices for kernel function according to [5]:

dth-Degree polynomial: K(x, x′) = (1+ < x, x′ >)d,

Radial basis (RBF): K(x, x′) = exp(−γ||x− x′||2),

Neural network: K(x, x′) = tanh(κ1 < x, x′ > +κ2).

(26)

2.4 Neural Networks

Neural networks (NN) becomes more and more frequently used method nowadays as their

dominance is spread across many different fields. The causes why are NN so popular today

are almost identical within the literature. Jeremy Howard presents three key reasons of

high relevance of NN. First, NN are in essence universal approximation machines. That

was proved for NN with sigmoid activation function in [11] and in 1991 Kurt Hornik

[12] showed that it is not the specific choice of the activation function which gives NN

the potential of being universal approximators, but rather the multilayer feedforward

architecture itself. Second, using gradient descend and backward propagation enables to

fit any parameters given training data to do so. Then any theoretical function could be

approximated and applied. Third, speed and scalability. As NN intesively uses matrix

operations which could be done very fast using graphics processing units (GPU – part

of the graphic card) compared to standard central processing unit (CPU). And mainly

due to gaming industry we have solid computational power within the graphic cards for

reasonable prices.

Neural networks were originally mainly inspired by the goal of modeling biological

neural systems, therefore biological terminology. But achieving good results in machine

learning tasks, they gained popularity among engineers too. NN are consisted of neurons

(units), which are the basic building blocks. Neuron receives input signal x from other

neurons (or as an input feature) and multiply it with its learnable weights w. This product

is summed with bias b and if the sum is above certain threshold, then is produced output

signal by activation function. See the single neuron model on the Figure 7, which is called

a perceptron.

In case of we use sigmoid σ(x) = 1/(1+e−x) as an activation function and appropriate loss

function on the neuron’s output, perceptron can be turned into a linear classifier. Then

21

Figure 7: Single neuron (source: own processing)

σ(∑
iwixi + b) can be interpreted as the probability of one of the classes P (yi = 1|xi;w)

and thus probability of the other class would be P (yi = 0|xi;w) = 1 − P (yi = 1|xi;w),

since they must sum to one. Then using cross-entropy loss (mentioned in 2.2.1) and its

optimization gives us the classifier. In essence, we recreated here logistic regression using

simple NN, or we can use fancier name – Binary Softmax classifier.

But the real power of NN comes with the more complex networks. If we build on

a single perceptron and create a whole network of perceptrons, we receive the Multi

Layer Perceptron (MPL). That network can be represented by directed acyclic graph see

Figure 8. The graph is constructed by layers, where we recognize the three basic types

of layers: input layer, hidden layer and output layer. The network can have any number

of hidden layers, but only one input and one output layer. More formally, considering

the layers as functions enables us to rewrite the model from figure as this chain f(x) =

f (3)(f (2)(f (1)(x))). Then input layer is f (1), hidden layer is f (2) and output layer is f (3).

The overall length of this chain is depth of NN. Certain architectures can extend to many

layeres, therefore is this field called deep learning. [1] Below is ploted a 2-layer fully

connected NN (one hidden and one output layer), notice that in naming convention is not

count with input layer.

See that flow of informations within both models is only in one way, there are no

22

Figure 8: A 2-layer Neural network (source: own processing)

feedback connections that would feed the output back into network. Thus, these models

are called feedforward neural networks. During training is NN provided by input x with

its label y, then goal is to get each output f ∗(x) of NN as much close as possible to its

true label y. This is done by training the weights inside the network.

2.4.1 Activation functions

Activation functions provides model with non-linearity as it performs certain mathemat-

ical operation and computes the hidden layer values. Besides sigmoid, which is already

described in the logistic regression part, there exist better choices. For example, tanh

g(z) = e2z−1
e2z+1 which squashes real-valued number to (-1,1) interval. Tanh is preferred to

the sigmoid due to that is zero centered. [13]

However, most widely used is non-linearization called Rectified Linear Unit (ReLU), con-

sidered as the default activation function. ReLU has fancy name, though its defined

by simple function g(z) = max(0, z). The function, even though is non-linear, is very

close to linear transformation and therefore preserves many of its properties. Those prop-

erties make optimization using gradient-based methods easier and enable linear models

generalize well, which are significant benefits. [1]

Moreover ReLU activation function makes training several times faster, as is shown in.[14]

23

Figure 9: Tanh (source: own processing)

−11−10−9−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11
−1

0

1
f(x) = tanh(x)

Figure 10: ReLU (source: own processing)

−11−10−9−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11
0
1
2
3
4
5
6
7
8
9

10

f(x) =max(0, x)

Though disadvantage can be higher sensitivity to training data. As with wrongly set up

learning rate, the weights can be updated in such way that neuron will not activate on

any given input again. The problem occurs when a substantial part of the network is

„dead“. The probability of this issue is minimized by setting appropriate learning rate,

which will be discussed in the next part. Ian Goodfellow with colleagues in [15] come with

the generalized ReLU function that does not suffer by dying neurons issue. But on the

other hand it lacks the simplicity of ReLU when significantly increases the total number

of parameters.

2.4.2 Backpropagation

More than once was mentioned a learning of the weights, now lets look how it is done. By

learning is meant finding the optimal weights and biases given some optimization criteria.

24

The term called backpropagation or shortly backprop has within the literature different

meanings. In this thesis is term backpropagation used as reference to technique, which

propagates the prediction error through the network and adjusts weights and biases, in

order to improve the quality of the model.

Backpropagation is composed of two distinct stages. First, the forward stage where

derivatives of an error function with respect to the weights and biases are evaluated. That

gives us the gradient ∇E = [∂E
∂w(1) ,

∂E
∂b(1) ,

∂E
∂w(2) ,

∂E
∂b(2) , · · · , ∂E

∂w(n)]. Secondly, the backward

stage where are computed adjustments to be made to the weights using the computed

derivatives from the forward stage. [16]

Consider the following error function, which is for one observation calculated as squared

difference of an output from the output layer L and a desired output y

E = 1
2(z(L) − y)2, (27)

where zl is vector of outputs in layer l and h is some non-linear activation function

z(l) = h(a(l)), (28)

al is calculated as

aL =

w
(l)
1,1 w

(l)
1,2 · · · w

(l)
1,n

w
(l)
2,1 w

(l)
2,2 · · · w

(l)
2,n

...

w
(l)
k,1 w

(l)
k,2 · · · w

(l)
k,n

z
(l−1)
0

z
(l−1)
1
...

z(l−1)
n

+

b
(l)
0

b
(l)
1
...

b
(l)
k

(29)

or using matrix and vectors notation, where W(l) is matrix of weights (mapping function)

from layer l-1 to layer l and vector b(l) is vector of biases in layer l

a(l) = (W(l)z(l−1) + b(l)). (30)

In forward pass is for each unit computed a weighted sum of its inputs and summed with

bias as showed above. In computation of the gradient is extensively used the chain rule for

partial derivative. Gradient of the error function with respect to the weights and biases

is computed as follows.

∂E

∂w(l) = ∂E

∂z(l)
∂z(l)

∂a(l)
∂a(l)

∂w(l) , (31)

25

and by each part
∂E

∂z(l) = (z(l) − y), (32)

∂z(l)

∂a(l) = h′(a(l)), (33)

∂a(l)

∂w(l) = z(l−1), (34)

and with respect to biases in layer l

∂E

∂b(l) = ∂E

∂z(l)
∂z(l)

∂a(l)
∂a(l)

∂b(l) . (35)

Then applying same logic for previous layers and chaining the above terms, we can obtain

the whole gradient ∇E

∂E

∂w(l−1) = ∂E

∂z(l)
∂z(l)

∂a(l)
∂a(l)

∂z(l−1)
∂z(l−1)

∂a(l−1)
∂a(l−1)

∂w(l−1) . (36)

However, above calculations are illustrated for one observation. Including the whole set

of observations, partial derivations are computed as an average over all observations in

the set
∂E

∂wl
= 1
n

n∑
k=1

∂Ek
∂wl

. (37)

and similar for error function, which will be sum of squared errors

E = 1
2

∑
n

(z(L)
n − yn)2, (38)

Here comes the second stage, while having all the partial derivations calculated, one

have information how nudging the weights or biases affect the error function. Those

informations are contained in gradient ∇E. In propagating the error from output layer L

through the network is used those derivatives. Firstly, lets introduce δ(L) as difference in

output of each unit and its desired value

δ(L) = (z(L)
n − yn)� h′(a(L)), (39)

then those errors are propagated as follows

δ(l−1) = (W(L))T δ(L) � h′(a(L−1)). (40)

26

where � denotes Hadamard product, defined as
v1

v2

v3

�

t1

t2

t3

 =

v1 · t1
v2 · t2
v3 · t3

 . (41)

27

3 Development of Models

In this section are described the crucial steps of development of models explained in

previous part. For the purpose of this thesis, two datasets were used – data from

peer-to-peer lending platform Lending Club [17], which contains more than million ob-

servations. This dataset was simplified by random sampling down to 200 000 obser-

vations, due to substantial requirements on time and computational power. And sec-

ond dataset from Kaggle - platform for data science competitions - consisting of 150

000 observations [18]. The empirical part was created using Python programming lan-

guage [19] and its libraries, from which worth to mention Scikit-learn [20], Pandas [21],

Numpy [22] and Keras [23]. The source codes are available in github repository along

with further description of features from both datasets, both available on this address:

https://github.com/ryparmar/bachelor-thesis.

3.1 Data Wrangling

When dealing with some real-world dataset, there is in most of the cases necessary to

execute certain steps related to data itself before any further work on modelling. Those

steps can be cleaning the data from missing values or transformation of the data into

different format. A set of those steps is usually called a data wrangling or data munging

and it is an inseparable piece of any reasonable work with data.

Usually first, explanatory data analysis is executed in order to get some intuition

about the data and uncover potential shortcomings or clear mistakes within the dataset.

To reveal those mistakes, outliers detection can be used, as there is usually always some

expected range in which should a number get in. An example of clearly incorrect data

record can be age of 500, which is several orders of magnitude from expected value and

reality as well. Or more general approach is to count missing values per observation

and per feature, then if the number is above certain level of threshold remove the whole

observation or feature. Those actions result in removing some features with no information

value – for example index columns – and observations with evident mistakes in order to

improve data quality for modelling.

In the first part are found some missing data in both datasets. In case of Lending club

dataset, which have almost 150 features in total were all the features missing more than

28

20 % of records removed. Similarly, each observation with more than 30 missing values

are removed. This approach may be radical, however it is possible. After this cleaning

lending club dataset contains approximately 140 000 observations. In kaggle dataset is

chosen different approach as the number of features is much lower. If observation contains

more than one missing feature then is removed, rest of the missing data are replaced by

median. The replacement of missing data by median affects only one feature at the end

– monthly income. Total amount of observation from previous 150 000 is after execution

of above steps approximately 146 000.

Next step is encoding of qualitative (or categorical) features, into more convenient

form for learning algorithms. Each observation of such features is labeled by some discrete

number. Consider sex for example, there are two possible values – ”male” labeled as 1 and

”female” labeled as 0. Though, there is often no ordinal relationship within the features,

which apply for sex variable as well. Therefore there is no obvious reason to have higher

number for male than for female. A preferred choice is to binarize labeled observations,

so the ”male” is represented by an array [1, 0] and ”female” by [0, 1]. Beside appropriate

representation of categorical variables, the machine learning estimators usually requires

standardization of quantitative variables. In case of significant difference to normally

distributed data for the individual features, the estimators might behave badly and have

lower predictive ability opposite to case with normalized data. Therefore quantitative

variables in both datasets are standardized into [-1, 1] range.

Since the probability of total repayment converge very fast to zero in case of borrower

is past due with his or her payments, one can approach it with certain flexibility and

define the default state by himself. In the kaggle dataset is the outcome variable – serious

delinquency in two years – defined as whether a person experienced 90 days (or more)

past due delinquency or not. In the case of lending club dataset is a default loan defined

as a loan which is not up to date on all outstanding payments for more than 120 days.

[24]

3.2 Cross-Validation, Regularization and Hyper-parameters

Cross-validation (CV) is called a widely used process for estimating prediction error. The

ability of model to be as accurate as possible not only on training data, but more impor-

tantly on the yet-unseen data is in real-world applications absolutely crucial. Therefore,

29

CV can be perceived as a way of simulating exposition to yet-unseen data. The process

is as follows – based on data splitting, part of the data is used for fitting each competing

model and the rest of the data is used to measure predictive performances of the models by

calculating validation errors. The model with the best overall performance is selected.[5]

Executing CV has further benefits, the very significant one is it minimizes a chance

of overfitting the model. Consider the situation, that model has very good performance

on training data, but poor performance on yet-unseen data, in this situation the model is

probably overfitted.

Overfitting is highly undesirable situation as one does not intend to develop a model,

which perfectly predicts what is already known, but is useless in case of predicting with

new data. In other words, the model should be able to generalize well.

It is a common practice in supervised learning to separate the dataset into a training

set and a validation set, where the actual splitting is possible to do in many ways. The

simplest approach would be to separate the dataset into two parts, train the model on a

first part and calculate the test error on the remaining part. An optimal splitting ratio

between train set and test set depends on the situation, usually 70% – 80% training set

and rest for testing works fine.

Another often used approach is K-Fold cross-validation, more appropriate choice in

case of scarce data. We split dataset into K parts of roughly equal size, for example

K = 10 and iterate through the data, where in each iteration the test set is changed as

depicted below. This approach generates 10 separate folds of predictions with prediction

errors, which are averaged in order to get a final test error. In this thesis were data

randomly split to 80% for training and validation set and 20% for testing. For

finding hyper-parameters was used 10-fold cross-validation.

Test set and validation set are sometimes used interchangeably, however it is not

completely correct approach. Ideally, the model should be evaluated on a sample, that was

not used in training nor the parameter tuning, so it can be reached unbiased performance

evaluation. Dividing dataset into training, validation and test set provide that unbiased

evaluation. Comprehensible definition of training set, validation set and test set taken

from [25] is as follows:

1. Training Dataset the sample of a dataset used in training to fit the model

2. Validation Dataset the sample of a dataset used to during tuning model hyper-

30

parameters to provide an unbiased evaluation of a model fit on the training data

3. Test Dataset the sample of a dataset used to give an unbiased evaluation of final

model fit on the training dataset

Figure 11: 10-fold splitting for first two iterations (source: own processing)

Other possibilities how to avoid overfitting are reducing the number of used features or

so called regularization. Regularization keeps all the features, but penalizes the complexity

of a model by penalizing weights in proportion to weights size. So the bigger weights are

penalized more compared to smaller weights. Consequence is that lower number of features

affects the number of weights and thus also model complexity. As a result, an ideal model

tends to use all the features a bit instead of using only a few ones a lot. Regularization is

deployed in optimization algorithms searching for optimal hyper-parameters and weights

of the model. It has form of regularization parameter increasing some cost function in

proportion with growing model complexity.

Usually a model have some hyper-parameters, which affect training process and thus

can affect predictions as well. There is difference between hyper-parameters and param-

eters of model, where the hyper-parameters need to be set up before training and can

not be changed during training. In case of using same algorithm with different hyper-

parameters, there is a solid chance of having different predictions within those two models.

Compared to parameters of model, or weights how it is also called, which are changed

during a training process based on optimization algorithm.

31

Hyper-parameters tuning was done using scikit-learn library, particularly by Grid-

SearchCV and RandomizedSearchCV functions. Both functions search a predefined grid

of parameters and try either all the combinations (GridSearchCV) or some given number

of randomly chosen combinations (RandomizedSearchCV). Based on that process the best

performing combination of parameters is chosen for a given model. For neural networks

exist very elegant way of reducing overfitting by randomly omitting a certain fraction of

the both hidden and visible units. This technique is called dropout and was introduced

by Hinton in [26]. Another way is to make architecture simpler by reducing number of

units in hidden layers. For tree-based model can be set for example maximal number of

features considered when looking for the best split or maximal depth of tree, which help

to prevent overfitting.

Regularization parameter, mentioned earlier, can be considered as a hyper-parameter

likewise. For logistic regression was tuned parameter C which is inverse of regularization

parameter. Similarly for SVM was tuned identical parameter C For random forest model

are besides maximal depth of tree and maximal number of features fine-tuned also mini-

mum number of samples required to split an internal node, minimum number of samples

required to be at leaf node, number of trees in the forest and measure of quality of a split

function.

Since it was not intention to provide description of above techniques in its full complex-

ity, dedicated space to those steps is limited and offer only basic explanation. However the

importance of those steps is substantial and their correct execution can have significant

effect on final performance of models.

3.3 Variable Selection

One can think of a selecting variables into the model as a marginal part, though it is

exactly opposite. Not all the features necessarily bear relevant information, but they

can made the predictions even worse. Without feature selection exist higher chance of

introducing bias into a model, which can result in overfitting and thus worse performance

of model. There are three objectives of feature selection – improve the prediction per-

formance of the model, provide faster and more cost-effective models and provide better

understanding of the underlying process that generated the data.[27]

There exist several classes of methods to select important variables. Wrapper methods

32

– searching through the set of different combinations of features, evaluating and comparing

them to each other. As evaluating all the possible combinations might be hardly feasible,

depending on the number of features, the searching may use some heuristic method or

stochastic method. Often used example of wrapper is recursive feature elimination algo-

rithm. The second class is filtering methods. Those methods select the best features based

on their scores in various statistical tests for their correlation with the outcome variable.

Last class is embedded methods, which are more complex and combines qualities of the

previous methods.

However, not all the methods described in the previous part can benefit from feature

selection. Decision trees perform internal feature selection as an integral part of the

procedure. Therefore they are resistant to the inclusion of many irrelevant variables.

Similarly neural networks find the relevant and irrelevant variables in the training process

internally, which is done by learning appropriate weights for them. In this thesis, feature

selection was deployed for both logistic regression and SVM where the categorical features

were chosen based on filtering methods using Chi-Square test. Numerical variables were

chosen using random forest method measuring importance.

3.4 Evaluation Metrics

For the purpose of comparison of the predictive quality of classification models, there

exist a number of different, more or less convenient, metrics. Further are covered only the

metrics used in this thesis. The very first and basic method is simply calculate accuracy

of predictions as

accuracy = #correct predictions
#total predictions . (42)

Accuracy is very quick and easy metric, however in case of a classification task, where one

of the possible outcomes occurs rarely opposite to another outcome, can lead to distortion.

Consider an example of 1000 observations of given loans, where 50 of them are defaulted

and the rest are non-defaulted. Then a model which would predicts that all the customers

(1000 observations) are non-defaulted, would obtain accuracy of 95%, which is not bad at

all. But the model is completely useless as it does not help with the classification of those

defaulting customers. Therefore it is more convenient to use different more informative

metrics.

More appropriate metrics are so called recall score and precision score. To illustrate

33

those terms, confusion matrix is very helpful in doing so.

Figure 12: Confusion matrix (source: own processing)

Then recall and precision are calculated as

recall = TP
total actual positives = TP

TP + FN, (43)

precision = TP
total predicted positives = TP

TP + FP. (44)

Precision shows what percentage of predicted positives are actual positives and recall

denotes percentage of positives which a model predicted correctly out of total actual

positives. Hand in hand with recall and precision is usually calculated F1 score, which

can be interpreted as a weighted average of precision and recall.

F1 = 2 ∗ precision ∗ recall
precision + recall (45)

The last used evaluation metrics are Receiver Operating Characteristic (ROC) and

Area Under Curve (AUC). A ROC curve is plotting True Positive Rate (TPR) against

False Positive Rate (FPR), where

TPR = TP
TP + FN, (46)

FPR = FP
FP + TN (47)

and the more the ROC have a leaning towards the upper-left corner where TPR = 1, the

better quality of the model. AUC is just the area under the ROC curve, so for a perfect

model is AUC = 1 and completely random guessing would have AUC = 0.5.

34

Figure 13: ROC curve (source: own processing)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve example

Logistic Regression (AUC = 0.73)

For all above mentioned metrics apply that values gain number from interval [0, 1]

and the higher the value is the better the model is. Above mentioned metrics are only a

few representatives of wide class of evaluation metrics and besides them, it is possible to

define evaluation metrics by yourself, in case of need.

3.5 Empirical Results

In this subsection are presented evaluations of trained models. For both datasets apply

that data were randomly split in two parts 80% for training and validation and 20% for

testing. Then on the first part were models trained and validated using 10-fold cross-

validation to obtain hyper-parameters. Following results are calculated on the testing

part of the data. After split of the dataset, upsampling algorithm SMOTE [28] was

applied in order to get output classes approximately equally represented in the training

and validation splits. This technique can improve training on imbalanced datasets that

learnt patterns can better differentiate the output classes and thus obtain better prediction

accuracy.

Regarding the dataset from Kaggle, which contains only 10 numerical features. For

SVM was used linear kernel due to a substantial computational complexity of this algo-

rithm. For feed forward neural network was used fully connected architecture with one

35

Method List of optimized hyper-parameters

Logistic Regression C

Neural Network (MLP) number of hidden units, weight initialization, dropout,

batch size

Random Forest number of estimators, maximal depth, minimum number

of samples to split, minimum number of samples in leaf,

maximum number of features

Support Vector Machines C

Table 1: Optimized hyper-parameters

hidden layer consisting of 512 hidden units, applied 50% dropout and ReLU activation.

Output layer with a single output unit and sigmoid activation. Model was optimized

using root mean square prop (RMSprop) with binary crossentropy loss function and was

trained in 15 epochs.

Method Accuracy Precision Recall F1 score AUC

Logistic Regression 76.4 17.4 65.4 27.5 71.3

Neural Network (MLP) 80.9 21.9 69.2 33.2 75.5

Random Forest 92.3 42.5 33.5 37.5 65.1

Support Vector Machines 63.5 11.7 66.3 19.9 64.8

Table 2: Results on Kaggle Dataset

Regarding dataset from lending club, for SVM, logistic regression and neural network

was used feature selection, where was selected top 27 features based on feature impor-

tance reached in random forest. Models with notation wo feature selection were trained

with 76 features. For random forest is feature selection unnecessary as the method can

choose relevant features internally. For SVM was again used linear kernel because of

computational complexity. Neural network consists of one hidden layer with 10 units,

50% dropout, ReLU activation function and single output unit with sigmoid activation.

Model was optimized using root mean square prop (RMSprop) with binary crossentropy

loss function and trained in 15 epochs.

36

Method Accuracy Precision Recall F1 score AUC

Logistic Regression wo FS 67.4 17.9 72.7 28.8 69.8

Logistic Regression with FS 64.3 16.8 74.5 27.4 68.9

Neural Network (MLP) wo FS 82.0 21.1 38.0 27.2 62.6

Neural Network (MLP) with FS 82.0 21.1 38.4 27.3 62.3

Random Forest 85.7 18.0 30.0 22.5 58.2

SVM wo FS 66.7 17.7 73.4 28.5 69.7

SVM with FS 63.5 16.6 75.3 27.2 68.9

Table 3: Results on Lending Club Dataset

37

Conclusion

Artificial intelligence (AI) and machine learning (ML) are again widely used and popular

terms nowadays. Mainly due to combination of factors like exponential increment of data

in the world, hardware development and universal applicability of neural networks. The

range of possible applications of AI and ML methods is very wide, thus their penetration

into world of finance is not a surprise. This thesis focuses on application of those methods

in credit scoring modelling. The score for each applicant can be calculated using age,

income, purpose of the loan, previous delinquency and many other variables, then based

on a reached score the bank decide whether to lend the money or not.

In this thesis were described some of the methods from wide family of artificial intel-

ligence techniques. Particularly random forest, neural network (multilayer perceptron),

support vector machines and industry standard logistic regression. All methods were im-

plemented for two public datasets – dataset from online lending platform Lending Club

and dataset from online data science platform Kaggle.

Results of this thesis showed that artificial intelligence methods can outperform logistic

regression, however results are not consistent across datasets. Comparison is based on

F1 score and AUC metrics. Despite the fact that the results reached in this thesis do

not imply any general validity, the artificial intelligence methods should be implemented

along with the industry standard methods mainly because of two reasons. Firstly, they

can often increase accuracy of predictions and secondly they can work as a quality check

of currently using methods.

In future research would worth to examine entity embeddings of categorical variables

[29] and its potential in probability of default modelling.

38

References

[1] Goodfellow Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. Available

from: http://www.deeplearningbook.org. MIT Press, 2017. isbn: 978-0-262-

03561-3.

[2] David Silver et al. ”Mastering the game of Go without human knowledge“. In:

Nature 550.7676 (2017), p. 354. url: https://www.gwern.net/docs/rl/2017-

silver.pdf.

[3] Witzany Jǐŕı. Credit risk management - Pricing, Measurement, and Modeling.

Švýcarsko: Springer International Publishing, 2017. isbn: 978-3-319-49799-0.

[4] Leo Breiman. ”Random Forests“. In: Machine Learning 45.1 (2001), pp. 5–32. issn:

0885-6125. doi: 10.1023/A:1010933404324. url: https://link.springer.com/

content/pdf/10.1023/A:1010933404324.pdf.

[5] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning : data mining, inference, and prediction. Springer New York Inc., 2009.

isbn: 978-0-387-84857-0.

[6] Leo Breiman. ”Classification and Regression Trees“. In: (1984).

[7] Leo Breiman. ”Bagging Predictors“. In: Machine Learning 24.2 (1996), pp. 123–140.

issn: 0885-6125. doi: 10.1007/BF00058655. url: https://www.stat.berkeley.

edu/%7B˜%7Dbreiman/bagging.pdf.

[8] Corinna Cortes and Vladimir Vapnik. ”Support-vector networks“. In: Machine

learning 20.3 (1995), pp. 273–297. url: https://link.springer.com/content/

pdf/10.1007/BF00994018.pdf.

[9] G. Bradski. The OpenCV Library, Introduction to Support Vector Machines. [online].

[cit 21-March-2018]. Available from: "www.docs.opencv.org/2.4/doc/tutorials/

ml/introduction_to_svm/introduction_to_svm.html".

[10] Christopher JC Burges. ”A tutorial on support vector machines for pattern recog-

nition“. In: Data mining and knowledge discovery 2.2 (1998), pp. 121–167.

[11] G Cybenkot. ”Approximation by Superpositions of a Sigmoidal Function“. In:

Math. Control Signals Systems 2 (1989), pp. 303–314. url: https : / / pdfs .

semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf.

39

[12] Kurt Hornik. ”Approximation capabilities of multilayer feedforward networks“. In:

Neural networks 4.2 (1991), pp. 251–257.

[13] Andrej Karpathy. Stanford University CS231n: Convolutional Neural Networks for

Visual Recognition. [online]. [cit 24-February-2018]. Available from: "https : / /

cs231n.github.io/".

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ”Imagenet classification

with deep convolutional neural networks“. In: (2012), pp. 1097–1105. url: http:

/ / papers . nips . cc / paper / 4824 - imagenet - classification - with - deep -

convolutional-neural-networks.pdf.

[15] Ian J Goodfellow et al. ”Maxout networks“. In: arXiv preprint arXiv:1302.4389

(2013).

[16] Bishop Christopher M. Pattern Recognition and Machine Learning. Springer New

York Inc., 2006. isbn: 978-0387-31073-2.

[17] Lending Club. All Lending Club Loan Data. [online]. [cit 16-February-2018]. Avail-

able from: "https://www.lendingclub.com/info/download-data.action".

[18] Kaggle. Kaggle competition dataset: Give Me Some Credit. [online]. [cit 16-February-

2018]. Available from: "https://www.kaggle.com/c/GiveMeSomeCredit/data".

[19] Python Software Foundation. Python Language Reference, version 3.6. [online]. [cit

21-March-2018]. Available from: https://www.python.org/.

[20] F. Pedregosa et al. ”Scikit-learn: Machine Learning in Python“. In: Journal of Ma-

chine Learning Research 12 (2011), pp. 2825–2830.

[21] Wes McKinney. ”Data Structures for Statistical Computing in Python“. In: Pro-

ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and

Jarrod Millman. 2010, pp. 51–56.

[22] Travis E Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006.

[23] François Chollet et al. Keras. [online]. [cit 5-March-2018]. Available from: "https:

//github.com/fchollet/keras".

[24] Lending Club. What do the different Note statuses mean? [online]. [cit 10-April-

2018]. Available from: "https://help.lendingclub.com/hc/en-us/articles/

215488038-What-do-the-different-Note-statuses-mean-".

40

[25] Jason Brownleen. What is the Difference Between Test and Validation Datasets?

[online]. [cit 1-March-2018]. Available from: https://machinelearningmastery.

com/difference-test-validation-datasets.

[26] Geoffrey E Hinton et al. ”Improving neural networks by preventing co-adaptation

of feature detectors“. In: arXiv preprint arXiv:1207.0580 (2012).

[27] Isabelle Guyon and André Elisseeff. ”An introduction to variable and feature selec-

tion“. In: Journal of machine learning research 3.Mar (2003), pp. 1157–1182.

[28] Nitesh V Chawla et al. ”SMOTE: synthetic minority over-sampling technique“. In:

Journal of Artificial Intelligence Research 16 (2002), pp. 321–357.

[29] Cheng Guo and Felix Berkhahn. ”Entity Embeddings of Categorical Variables“. In:

arXiv preprint arXiv:1604.06737 (2016).

[30] Vincenzo Pacelli and Michele Azzollini. ”An artificial neural network approach for

credit risk management“. In: Journal of Intelligent Learning Systems and Applica-

tions 3.02 (2011), p. 103.

[31] Gang Wang et al. ”A comparative assessment of ensemble learning for credit scor-

ing“. In: Expert systems with applications 38.1 (2011), pp. 223–230.

[32] Bušo Bohumı́r. Porovnanie metód machine learningu pre analýzu kreditného rizika.

Diplomová práce. Vysoká škola ekonomická v Praze, Fakulta finanćı a účetnictv́ı,

katedra bankovnictv́ı a pojǐst’ovnictv́ı. Praha, 2016.

[33] Jan Ř́ıha. Artificial Intelligence Approach to Credit Risk. Diplomová práce. Uni-

verzita Karlova v Praze, Fakulta sociálńıch studíı, Institut ekonomických věd. Praha,

2016.

[34] Rachel Thomas Jeremy Howard. Fast ai lesson 1 notes. [online]. [cit 4-March-2018].

Available from: http://wiki.fast.ai/index.php/Lesson_1_Notes.

[35] Michael Nielsen. How the backpropagation algorithm works. [online]. [cit 22-March-

2018]. Available from: http://neuralnetworksanddeeplearning.com/chap2.

html.

41

