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Introduction

Interest rate is one of the most important variables in finance. Its future evolution
is unknown and that has provoked a need for models of interest rate.

Interest rate modeling has begun with short rate models. Many short rate models
appeared, each with different features. These models work with a theoretical instan-
taneous rate, which is highly unpractical for the real world. In the 1990s, a new
framework of market models is introduced to solve this and other problems. LIBOR
market model belongs to the class of market models and it has become the industry
standard over the years.

There have been many extentions proposed to the LIBOR market model. This
thesis focuses on the lognormal LIBOR market model.

The goal of this thesis is to calibrate the LIBOR market model and then use it
to price a financial derivative.

It is organized as follows:
The first chapter introduces the theoretical background. It presents basic no-

tions of the interest rates and is also devoted to the description of the phenomenon
of negative interest rates that has been present on markets for several years.

The second chapter is devoted to the presentation of the interest rate derivatives
as a whole and also presenting the most important interest rate derivatives for this
thesis, mainly swaptions.

The third chapter discusses models of the interest rate. At first, some notions
as the Brownian motion or the change of numeraire are introduced, so that the
background of the models is understandable and then the most important models
are introduced, as they appeared in time.

In the fourth chapter, the calibration of the LIBOR market model is performed.
It is done with market data taken in April 2018 and the results of the calibration
are presented.

The fifth chapter uses the same data to calibrate the Hull-White model, which
is a simpler model of interest rates that uses different assumptions. It is done to
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compare the two models.
In the sixth chapter, a pricing of a swaption will be performed with given

parameters and to do this, we use both LIBOR market model and Hull-White model.
We then compare the results.

The conclusion summarizes the results and we propose further steps that can
be done.

All the computations are performed in the Matlab software.
A significant problem that has to be mentioned are the negative interest rates

that are present on markets. This new phenomenon is observable since 2014. Several
models of interest rates have the capability to model negative interest rate. Until
now, it has been treated as an imperfection, but recent market development puts it
in a different light and even models unable to model negative interest rate need to
be enhanced in some ways to get this virtue.
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Chapter 1

Theoretical background

In this section, we will present some of the basic notions of financial mathematics,
an overview of interest rate derivatives that the thesis focuses on, an overview of how
modeling of the interest rate evolved over time and some problems associated with
modeling the interest rate at the moment.
This chapter relies mainly on the theory described by Brigo, Mercurio and Rebonato.
The notation that is used should correspond to the notation used by Brigo and
Mercurio. The list of important abbreviations can be found at the end of this thesis.

1.1 Zero-coupon bond

Before defining a zero-coupon bond, we will establish the foundation of the
money-market account B(t). The initial value of the money-market account is 1,
B(0) = 1.

dB(t) = rtB(t)dt. (1.1)

in this equation, rt is the instantaneous rate (also called short rate) and is a
positive function of time.

The discount factor is defined as a value at time t of a single unit that will be paid
at time T . The instantaneous rate rt being stochastic, the price of the zero-coupon
bond can be expressed as the expected value of the discount factor:

P (t, T ) = E[e
∫ T
t
r(s)ds] (1.2)

A zero-coupon bond is one of the basic notions in financial mathematics. It is a
financial instrument that pays one unit of currency at maturity T . P (t, T ) represents
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the price of a zero-coupon bond at time t < T . It does not pay any coupon and no
intermediate payments associated with zero-coupon bond. At time t, the contract
pays the present value of one unit of currency.

The price of the zero coupon bond is defined as:

P (t, T ) = 1
1 + L(t, T )τ(t, T ) , (1.3)

where τ(t, T ) is the difference between t and T , therefore τ(t, T ) = T − t and is
in years.

From this equation, we can define the spot interest rate as:

L(t, T ) = 1− P (t, T )
τ(t, T )P (t, T ) (1.4)

The price of the zero-coupon bond is the discounted value of its face value. A zero
coupon bond is usually used as an example of a risk-free investment. The value of
the zero-coupon bond at time t is important because of its relationship with interest
rates.

1.2 Interest rates

An interest rate is the amount of money defined as a proportion of the principal
that the borrower promises to pay the lender. There is a possibility, that the borrower
will not repay the loan and that is a risk for the borrower. The level of the interest
rate is dependent on the risk that the lender enters. The other important factor for
the level of interest rate is maturity.
The level of interest rate is different for currencies, and even in a single economy,
there are many interest rates.

These types can be listed as: Government interest rate (known as Treasury rate
in the US) is the rate at which bonds are issued. Interbank interest rate is the rate
at which banks borrow money to each other. The most important interbank rate is
LIBOR, which wil will be presented later in detail. A specific type of interest rate
is the key interest rate, which is defined by the central bank in the economy.
A simply compounded spot interest rate will be noted as L(t, T ).

Another difference in the interest rate theory lies in the interest rate compound-
ing. The frequency of the compounding can make a significant difference in the
calculations.
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The continous compounding is used mainly in theory. It is defined as:

R(t, T ) = − lnP (t, T )
τ(t, T ) (1.5)

and therefore

1 = eR(t,T )τ(t,T )P (t, T ) (1.6)

and

P (t, T ) = e−R(t,T )τ(t,T ) (1.7)

The annual compounding represents the situation where we invest an amount
A today and we get A = 1 ∗ (1 + Y ), with the interest rate being Y exactly one year
from today.

Formally:

Y (t, T ) = 1
P (t, T )1/τ(t,T ) − 1 (1.8)

The k-times per year compounding is defined as:

Y k(t, T ) = k

P (t, T )1/kτ(t,T ) − k (1.9)

1.3 Forward interest rate

From now on, we will have to differentiate between the spot and the forward
interest rate.

Forward interest rates are associated to Forward rate agreements (FRAs). For-
ward rate agreement is a contract fixed at time t, that fixes the interest rate for both
parties at time T , which is the FRA expiry. The contract matures at time S. A
FRA allows to fix the interest rate between time T and time S.
At time S, the payoff of the contract is:

Nτ(T, S)(K − L(T, S)).

At time t, the value of the contract corresponds to:
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FRA(t, T, S, τ(T, S), N,K) = N [P (t, S)τ(T, S)K − P (t, T ) + P (t, S)],

where K is the fixed rate and N is the nominal value of the contract.
In general, forward rate is the rate at which money can be borrowed in the future,

but is fixed today. Forward rate is therefore characterized by three moments in time:
present time t, the time T in the future where the loan begins T and the time S in
the future, when the loan ends.

A forward interest rate is defined as:

F (t, T, S) := 1
τ(T, S)

(
P (t, T )
P (t, S) − 1

)
, (1.10)

where τ(T, S) is analogous to the definition of τ(t, T ) and is the difference of time
between T and S.

1.4 Term structure of interest rates

The term structure of interest rate, also called zero-coupon curve or the yield
curve [2] is probably the most famous curve in finance. It is a graphical representation
of several interest rates varying in their maturities and it can be obtained from
the market. One could assume that the term structure of interest rate is always
increasing in time, however, that is not always the case and the yield curve can have
many shapes.

Figure 1.1 and Figure 1.2 are a representation of several shapes of the yield curve.
Figure 1.1 represents the term structure from March 28, 2018 for the euro-area. It
can be found on the website of European Central Bank [20]. We can see two separate
curves. The solid line is derived from a selection of AAA government bonds (which
means that only the most trustworthy bonds were selected). On the other hand,
the dashed line represents the yields for all government bonds. It is only logical
that the compensation for these bonds is higher, because they represent a more
risky investment in comparison to the selection of AAA bonds. The graph of the
spot rate is a representation of L, we can see spot rates with different maturities,
the shortest being 3M (three months from today) and the longest being 30Y (30
years from today). Figure 1.2 is a representation of instantaneous forward rates
corresponding to different residual maturities. According to the methodology of the
European Central Bank, "the instantaneous forward rate contracted at time t for
duration d measures the short-term interest rate that investors can lock-in at time t
in order to be received at time t+ d." [21]. Analogically to the Figure 1.1., the solid
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line represents the yield of only AAA bonds and the dashed line is the yield of all
bonds for the instantaneous forward rate.

We can see, that the spot yield, as well as the instantaneous forward yield start
below zero. The curve of the spot rate attains zero for bonds with maturities of 4
to 5 years and the curve of the instantaneous forward rate attains zero for bonds
with maturities of more than 2 years maturities (for all bonds). This phenomenon
of negative interest rates will be discussed later.

Figure 1.1: Euro area yield curves - Spot rates. Source: European Central Bank
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Figure 1.2: Euro area yield curves - Instantaneous forward rates. Source: European
Central Bank

1.5 LIBOR

As already stated, interbank rates are the interest rates, which is used by banks
for lending money to other banks. These rates are known as IBOR. The most com-
mon and used example is LIBOR, this case stands for London Inter-Bank Offered
Rate. LIBOR was officially introduced in 1986. LIBOR is the average interest rate
that most important banks are willing to lend money at the London inter-bank mar-
ket. LIBOR is settled for several currencies and for different time periods. Alongside
LIBOR, there are rates settled on other markets, we can mention EURIBOR (Eu-
ropean Inter-bank Offered Rates), which consists of an agreement of more than 20
european banks, or PRIBOR (Prague Inter-bank Offered Rates). All of them are an
example of a simply compounded spot interest rate.

LIBOR rate serves as a benchmark for other short rates and as a reference rate
for many derivatives, including swaptions.

The simply compounded forward LIBOR rate at time t for maturity pair T1, T2

8



is denoted as F (t, T1, T2).

1.6 Negative interest rates

"The fact that lending money must be rewarded somehow, so that receiving a
given amount of money tomorrow is not equivalent to receiving exactly the same
amount today, in indeed common knowledge and wisdom." [2]

In the 1990s, the interest rates in Europe have been very low and the earnings
on bonds have been very low as well. The decline of interest rates on markets has
been visible since 1990s. After the financial crisis of 2008, countries have experi-
mented with different policies for stimulating their economies. Several central banks
in Europe have tried negative interest rates experiment in the name of reducing the
borrowing costs for firms and households. This policy is an interesting turn of events,
because it turned out that zero is not the lowest point for interest rates.

A negative interest rate basically means, that the lender pays to the borrower.
Interest rates below zero deny the theory of time value of money (that assumes that
money is more valuable now than in the future, and thus creating the notion of
a (positive) interest rate, that the borrower has to pay) and were considered very
unusual. The goal of this policy is to induce banks to borrow money, instead of
keeping it.

European central bank (ECB) has adopted the policy of negative overnight rates
in mid-2014. Target inflation in the eurozone is set by ECB to 2 %. However, the
inflation has been very low (it has dropped below zero several times since 2014), the
nominal interest rates were low as well and ECB felt the need to intervene. As a
reaction to this policy, Swiss central bank was next to do the same thing. In the first
half of 2016, the inflation seems to get back on its track. The rates on the deposit
facility have been growing lower since 2008 (with the highest value in 2008 of 3.25%).
Currently (April 2018), ECB still holds the policy of negative interest rates. The
overnight credit for banks (deposit rate) is now -0.40 percent p.a., which was set in
2016. The ECB’s refinancing rate has been zero for quite some time now.

ECB was not the only institution to adopt such an unconventional policy. Central
banks in Sweden, Denmark, Switzerland and Japan have also resorted to this.

For decades, the general assumption was that zero is the lowest interest rate that
is possible. It is a difficult to assess, whether the negative interest rate policy had
the desired effect. However, it has certainly shifted the paradigm on markets.

It was also a twist for theoretical modeling of the interest rate. Several models
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have the ’ability’ to model a negative interest rate, but until now, it has been treated
as a disadvantage and an imperfection of the model.
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Chapter 2

Interest Rate Derivatives

A financial derivative is a product with an underlying asset. The price of the
derivative is closely linked with the price of the asset. An interest rate derivative
is a financial instrument whose payoff depends on the level of interest rate and the
expected trend in the future. Interest rate derivatives are a product with a finite
lifetime. Derivatives can be traded on exchange or off exchange (OTC market).
Trading of interest rate derivatives became very popular and has multiplied in volume
in the 1980s and 1990s.

As it is apparent from Figure 2.1, interest rate derivatives represent the most
important group among OTC derivatives. In the first half of 2017, Bank of Interna-
tional Settlements (BIS) claims that interest rate derivatives to make approximately
67 % of the total value of OTC derivatives. The most important interest rate deriva-
tives (also relevant for this thesis) are caps, floors, caplets, floorlets and swaptions.
This thesis focuses on swaptions and for this reason, swaptions will be discussed in
detail.

2.1 Interest rate swaps

An interest rate swap is a simple contract between two parties. A specified
amount of money N is settled at the beginning, it is known as the notional. The
notional is never exchanged. Counterparties only exchange the interest rates on
this amount. The floating leg is fixed on a reference interest rate (in most cases
LIBOR), the fixed rate is fixed in the contract. There are predefined time moments
Ti for the exchange of payments. Interest rate swaps are popular among corporations
and companies, which use this derivative to protect themselves against interest rate
exposure on financial markets.
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Figure 2.1: Market value of OTC derivatives from 1997 to 2017. Source: Bank of
International Settlements
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Tα is the time of the swap beginning. At each time Ti that belongs to the time
series from Tα+1 to Tβ, the fixed leg pays NτiK, K being the fixed rate, and the
floating leg pays NτiF (Ti−1, Ti), so N only serves as a base amount of money.

The net cash flow of a payer swap at time Ti is defined as:

NτP (t, Ti)(F (t, Ti−1, Ti)−K) (2.1)

and the value of the payer swap at time t is

Nτ
n∑

i=α+1
P (t, Ti)(F (t;Ti−1, Ti)−K) (2.2)

The value of a receiver swap at time t is defined as the same expression multi-
plied by -1:

Nτ
n∑

i=α+1
P (t, Ti)(K − F (t;Ti−1, Ti)) (2.3)

If we set the price of the swap to be 0 at time t, and therefore the price of the
swap to be fair for both parties of the contract, we come to the rate K and to the
forward swap rate. We define the forward swap rate Sα,β(t) at time t for times T as

Sα,β(t) = P (t, Tα)− P (t, Tβ)∑β
i=α+1 τiP (t, Ti)

(2.4)

or in terms of forward rates

Sα,β(t) =
1−∏β

j=α+1
1

1+τjFj(t)∑β
i=α+1 τi

∏ß
j=α+1

1
1+τjFj(t)

(2.5)

2.2 Caps and Floors

Caps and floors are traded among the main interest rate derivatives. The two
parties agree on a strike price and the buyer of the cap receives payments, if the
interest rate is above this strike price K. A floor is analogous and the buyer receives
payments, if the interest rate is lower than the strike price. The starting payment in
the contract happens at time Tα and the payments happen until Tβ. These derivatives
are used to protect against the interest rate changes.

A cap can be decomposed to a series of caplets. A single caplet is a call option
on interest rate.
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The cash flow of a caplet at time Ti is:

τ(L(Ti−1, Ti)−K)+ (2.6)

We denote Cpl(t;Ti−1, Ti) the price of the caplet at time t and therefore the price
of a cap at time t is:

Cp(t) =
n∑

i=α+1
Cpl(t;Ti−1, Ti) (2.7)

The cash flow at time Ti of a floorlet is:

τ(K − L(Ti−1, Ti))+ (2.8)

and analogously, the price of the floor is defined with the price of floorlets denoted
Fll(t;Ti−1, Ti):

Fl(t) =
n∑

i=α+1
Fll(t;Ti−1, Ti) (2.9)

2.3 Swaptions

A swaption is an OTC derivative, that combines an option and an interest rate
swap. Swaptions have been present on markets since 1980s and are usually used
by banks and hedge funds. They provide the guarantee that the interest rate on
a loan will not exceed a given level and are basically used as a protection against
raising interest rates. A swaption gives the right to enter in an interest rate swap at
a certain date in the future.

We distinguish between a payer and a receiver swaption. A (European) payer
swaption gives the holder the option to enter a swap at a time Tα, where the payer
would pay the fixed rate and get the floating rate. Tα is the time of the swaption
maturity and it can be the first payment date. A receiver swaption represents the
opposite – receiver pays the floating rate payments.

The parameters of a swaption are:

• The notional amount

• The frequency of payments

• The length of the option period

14



• The fixed rate and the rate it will be compared to (which is usually LIBOR)

There are several types of swaptions: European, American and Bermudan. The
differentiation is analogous to the one of options.

With European swaptions, the holder is allowed to enter the swap only at the
expiration date Tα. European swaptions are considered to be a vanilla derivative.

An American swaption represent a interest rate derivative, where the holder
can enter the swap at any time during the maturity of the swaption.

A Bermudan swaption gives the holder the right to enter the swap at predefined
dates until the maturity of the swaption Tα. Bermudan swaptions are considered to
be exotic derivatives.

In the fixed leg, there is a fixed interest rate K and the owner gets Kτj.
The maturity of a swaption corresponds to Tα. A tenor of a swaption is Tβ −Tα.

At time Tβ, the interest rate swap expires.
The value of a payer swaption payoff at maturity Tα is:

N
β∑

i=α+1
P (Tα, Ti)τi(F (Tα;Ti−1, Ti)−K)

The discounted value of a payer swaption is given by:

ND(t, Tα)
 β∑
i=α+1

P (Tα, Ti)τi(F (Tα;Ti−1, Ti)−K)
+

At time 0, the value of a payer swaption priced with Black’s formula is:

PSBlack(0, T , τ, N,K, σα,β) = NBl(K,Sα,β(0), σα,β
√
Tα, 1)

β∑
i=α+1

τiP (0, Ti), (2.10)

where τ are the payment dates and σα,β is the volatility of the swaption price.
Swaptions will be used later to perform the calibration of the LIBOR market

model. In the last part, swaptions will be priced, the pricing will be presented later
in detail.
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Chapter 3

Modeling the interest rate in
theory

In this chapter, we will present some important notions necessary to understand
the modeling of the interest rate and a brief history of important models of interest
rate from their introduction until now.

The forward interest rate is crucial for pricing interest rate derivatives. Forward
interest rate, as already mentioned, is the interest rate fixed at time t for a period in
future, with the expiry at time T1 and the maturity at time T2, where t ≤ T1 ≤ T2.

3.1 Brownian motion

Randomness is an important notion in interest rate models. The interest rate
models are based on the fact that financial processes they have a component of
randomness (a stochastic process). This randomness is usually captured by a Lévy
process, specifically the Brownian motion.
Brownian motion is a concept that has its origins in biology. It was first described in
1828 by a Scottish Robert Brown, when he discovered that pollen suspended in water
were moving when the water itself was still. This movements were explained by a
physicist Jean Perrin in 1909 as collisions of water molecules. Brownian motion was
later mathematically formulated by Norbert Wiener and it was used by Bachelier,
who used this process in finance to price options.

It has found its significance in the theory of randomness in mathematics or
physics. It is the key object of probability theory and is widely used in finance,
for example with solving stochastic differential equations. Today, the term Brown-
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ian motion serves as a synonym for random movements.
In 1930s, Kolmogorov defined the probability space (Ω,F , (Ft)t,P) and that con-

tributed to the usage of the language of probability theory to finance.
The Brownian motion satisfies the conditions of:

• a martingale, meaning that today’s value is the best estimate of the future
value

• a Markov process, meaning it has no memory and the historical development
does not affect future development

A standard Brownian motion, also known as Wiener process, is a time con-
tinuous stochastic process Wt : t ≥ 0 that will be denoted as Wt. [12]

The properties of the Standard Brownian motion are:

1. Wt has independent increments for all times 0 ≤ t1 ≤ t2 ≤ ... ≤ tn

2. Wt has stationary increments

3. Wt has continuous sample paths

4. Wt starts at 0, W0 = 0

A process follows a geometric Brownian motion, if it can be described by the
following equation:

St = S0e
(µ− 1

2σ
2)t+σWt (3.1)

where µ represents the drift parameter and σ the volatility parameter, for the
stochastic differential equation

dSt = µStdt+ σStdWt. (3.2)

3.2 Change of numeraire technique

The assumption in financial models is that there is no opportunity of arbitrage.
Risk neutral measure is heavily used in finance. It is a probability measure, that
allows the expression of the price of an asset/numeraire to be equal to its discounted
price as of today. This allows the price process of the asset to become a martingale
(a process without a drift).
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The Girsanov theorem is closely related to this approach. If the underlying
probability measure changes, Girsanov theorem defines the changes in the stochastic
differential equation (SDE) that is used to describe the evolution of a specific process.
It helps to modify the drift coefficient and is used for the transition to risk neutral
measure. It allows the changing of a Wiener process with a drift to a Wiener process
without a drift (which will be a martingale).

A particular probability measure P is defined in the probability space (Ω,F , (Ft)t,P).
We will consider the second measure P∗ on the space (Ω,F , (Ft)t).

P∗ v P is a sign of the equivalence of the two measures. The conditions of the
equivalence can be found in [2]. When two measures are equivalent:

P∗(A) =
∫
A
ρt(ω)dP(ω), A ∈ Ft

or we can simplify:

P∗

P

∣∣∣∣∣
Ft

= ρt,

where ρt is a martingale on (Ω,F , (Ft)t,P), and it is the Radon Nikodym deriva-
tive of P∗ with respect to P restricted to Ft.

The expected value becomes:

E∗[X] =
∫

Ω
X(ω)dP(ω) =

∫
Ω
X(ω)dP∗

dP (ω)dP(ω) = E
[
X

dP∗
dP

]
,

the expected values with respect to the probability measures P,P∗ are indicated
as E, E∗.

For the conditional expectation:

E
[
X dP∗

dP |Ft
]

ρt
= E∗[X|Ft],

Let the asset price dynamics be described by a SDE under a real world probability
measure P:

dXt(ω) = µXt(ω)dt+ σXt(ω)dWt(ω)

dP∗
dP (ω)

∣∣∣∣∣
Ft

= exp
{
−1

2

(
µ− r
σ

)2
t− µ− r

σ
Wt(ω)

}
.

with the risk neutral measure, the process will become:

dXt(ω) = rXt(ω)dt+ σXt(ω)dW ∗
t (ω),
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where dW ∗
t (ω) is the Brownian motion under P∗.

As defined by Brigo and Mercurio, a numeraire is "any positive non-dividend
paying asset" [2]. The choice of the numeraire depends on several factors, most
common is the money market account or a bond. The approach of changing the
numeraire was used by Merton in 1973.

3.3 Before LIBOR market model

With the need to model the future development of the interest rate, interest rate
models appeared. Interest rate models are also crucial to price derivatives. In this
field, the work of Black, Scholes and Merton was related to the precious research of
Bachelier and remained very significant until today. Black-Scholes formula was
introduced in 1973. It determines the theoretical price of a European call option,
thus it is not designed to model the interest rate directly. The disadvantage of this
approach was that it needs a constant volatility of the underlying, but the volatility
of a bond is not constant during its life.

The formula for calculating the price of a call option (that pays no dividend) in
the Black-Scholes model is:

C = SN(d1)−N(d2)Ke−r(T−t), (3.3)

where N is the CDF of the standardized normal distribution, S is the price of
the underlying, K is the strike price of the option and d1 and d2 are given by:

d1 = 1
σ
√
T − t

(
ln( S

K
) + (r + σ2

2 )(T − t)
)

(3.4)

d2 = d1 − σ
√
T − t, (3.5)

where σ is the volatility parameter.
Even if the model is not designed to determine the interest rate directly, it is very

closely linked to Black’s formula, presented in 1976.

3.3.1 Black’s model

In 1976, Black’s model (alternatively called Black’s formula, Black-76 model)
was introduced. It is a variation of previously introduced Black-Scholes formula for
option pricing.
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It assumes a lognormal distribution of the future price of the underlying asset.
Apart from pricing stocks, it is also used for valuing swaptions and caps.

Black’s model, however popular, has several limitations: there is no way for this
approach to take into account the correlation between forward prices of different
assets (even if they belong to different assets, the correlation is still present) and it
assumes that the volatility in the model is a constant number, however in reality, it
varies over time.

Black’s model is not able to take into account negative interest rates. For this
reason, there has been a proposition of a shifted Black’s model. It is also known as
the displaced diffusion model. In shifted models, the forwart rate Ft is replaced with
a forward rate with a shift Ft + s.

Black’s model is practical for pricing interest rate derivatives, mainly swaptions,
and it has become very popular for practitioners.

As already stated, the price of a payer swaption according to this model is:

PSBlack(0, τ, N,K, σα,β) = NBl(K,Sα,β(0), σα,β
√
Tα, 1)

β∑
i=α+1

τiP (0, Ti). (3.6)

There are two reason why we mention Black’s model in detail: first, this model
is the basic approach to price swaptions. Second, it represents a foundation that
LIBOR market model is build on.

3.3.2 Short rate models

The first generation of interest rate models appeared in the late 70’s. They
are now called the "short rate models" and they assume a instantaneous interest
rate, that is a theoretical value. The hypothetical short rate approximation is the
overnight rate. It was was the first generation of models to model the interest rate
coherently. In these models, there is a perfect correlation among all forward rates.
The models that will be mentioned were described by Vašíček, Cox-Ingersoll-Ross,
Ho-Lee and Hull-White. All of the interest rate dynamics are under risk-neutral
measure. The short rate models describe the possible movement of the interest rate
with a stochastic differential equation. It is not difficult to derive the price of a
zero-coupon bond P (t, T ) and it can be found in the literature, for example in [7].

Vašíček’s model was introduced in 1977. The dynamics of the process is de-
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scribed by:

dr(t) = k[θ − r(t)]dt+ σdW (t), (3.7)

where k[θ − r(t)] is the drift parameter and r(0) = r0.
Vašíček’s model has a property of mean reversion. These models are now used

mainly in the academic sphere. In the Vašíček’s model, the modeled interest rate
can go below zero.

Cox, Ingersol and Ross model (CIR) is a one factor short rate model. The
difference with the previous model is that CIR does not allow the interest rates to
be negative. The CIR process dynamics is defined as:

dr(t) = k[θ − r(t)]dt+ σ
√
r(t)dW (t) (3.8)

and k[θ − r(t)] is the same drift parameter as in Vašíček’s model.
A no-arbitrage model is porposed by Ho and Lee in 1986.
In 1986, Ho and Lee have proposed a model, that fits the initial (today’s) term

structure of interest rates and therefore eliminates one of the inconveniences of the
previous models. The class of models that have this ability is called no-arbitrage.
The dynamics of the model is presented as:

dr(t) = θ(t)dt+ σdW (t) (3.9)

In this case, the element θ(t) is not a constant, but a function of time and it is
designed to fit the initial term structure. It is expressed as

θ(t) = Ft(t, T ) + σ2t (3.10)

Hull and White combined the features of Vasicek and Ho and Lee model in a
sense that it contains a mean reversion a, but is in the class of no-arbitrage models.

dr(t) = [ϑ(t)− a(t)r(t)]dt+ σ(t)dW (t), (3.11)

where ϑ is a function that allows to fit the initial term structure of r and a is the
mean reversion rate. It has a form

ϑ(t) = Ft(t, T ) + aF (t, T ) + σ2

2a(1− e−2at) (3.12)

In these models, there is exactly one source of uncertainty (randomness) and
because of this property, they are called single factor models. Another class of models
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to appear was two-factor interest rate models. These models were enhanced
to include another source of uncertainty. The other stochastic process modeled is
often volatility. In a single factor version, the volatility is a constant. Two-factor
models give us the possibility to include a correlation structure, where we can include
the information that interest rates with maturities closer together have a higher
correlation than interest rates with maturities further apart.

The two-factor Gaussian-Vašíček model is described by:

r(t) = x(t) + y(t)

dx(t) = kx(θx − x(t))dt) + σxdW1(t)

dy(t) = ky(θy − y(t))dt) + σydW2(t)

(3.13)

The two Brownian motions dW1(t) and dW1(t) are correlated, the instantaneous
correlation is defined ρdt = dW1(t)dW2(t).

In the beginning of the 90’s, exotic derivatives were really gaining importance
and new types of derivatives were appearing. There was an increasing need to model
the whole term structure of the interest rate.

The second generation of models, mainly represented byHeath-Jarrow-Morton
(HJM) model the whole forward curve. HJM also belongs to the class of no-arbitrage
model that is capable to fit today’s term structure. Some of the principles of short
rate models were kept (for example mean reversion).

We begin with the simple equation

dr(t) = θdt+ σdW (t), r0. (3.14)

and for the instantaneous forward rate, we can get

df(t, T ) = σ2(T − t)dt+ σdW (t) (3.15)

and in general

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t)

f(0, T ) = fM(0, T )
(3.16)

where T → fM(0, T ) is the curve of instantaneous forward rate at time t, α is
an adapted process, σ(t, T ) is a vector of adapted processes, W = (W1, ...,WN) is a
N -dimensional Brownian motion.
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If we want to attain a risk-neutral measure for this dynamics, than

α(t, T ) = σ(t, T )
∫ T

t
σ(t, s)ds (3.17)

and

f(t, T ) = f(0, T ) +
N∑
i=1

∫ t

0
σi(u, T )

∫ T

u
σi(u, s)dsdu+

N∑
i=1

∫ t

0
σi(s, T )dWi(s) (3.18)

3.4 Market models - LIBOR market model

Traditional short rate models offer only a framework, where forward rates are
perfectly correlated ρi,j(t) = 1. The need to price interest rate derivatives that have
several payments scheduled in the future (swaptions) has been rising and short rate
models were unable to properly fulfil this task. This has lead to the introduction
of more complex models, one of them being the LIBOR market model. They offer
much more suitable framework for pricing such derivatives.

“LIBOR market model is not a model; rather, it is a set of no-arbitrage conditions
among forward rates (or discount bonds).” [8]

Market models were introduced in the 1990s and became the third generation of
interest rate models. They are much more advanced then the previous generations.
It happened after the theory of numeraire and change of measure was introduced.
Market models are very popular in practice. It was a breakthrough and “ (it) cre-
ates an environment which makes calibration of a model relatively straightforward
compared with models from arising alternative frameworks.” [1], mainly because
LIBOR forward rates are observable directly on markets and the model does not
predict a theoretical short rate. Also, market models were the first models, that
were compatible with Black’s formula for pricing caps. LIBOR in the title does not
refer specifically to LIBOR, but it can indicate another interbank rate, for example
EURIBOR.

The framework of LIBOR market model was created in 1994 by Brace, Gatarek
and Musiela and has been developing since. It is an interest rate model based on the
development of LIBOR forward rates. It has become popular because it is consistent
with practice and it has become the industry standard.

The model predicts the evolution of forward rates, based on the instantaneous
volatilities of forward rates and correlations among these rates. It assumes a log-
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normal distribution of interest rates and a correct change of measure needs to be
implemented and each forward rate is driftless under a specific measure.

As already said, the model is consistent with the standard market approach of
Black formula for pricing caps. In fact, it is a collection of Black models under a
single measure. The inputs to the model are: the volatility structure of interest rates
and the correlation of stochastic processes. There are several methods to determine
this volatility:

1. from historical data

2. bootstrapped directly from correlation-sensitive market-quoted instruments,
for example european swaptions

3. the analyst predicts them based on his assumptions about the markets in the
future

Usually, the first two are preferred.
The drift of the process naturally depends on the choice of numeraire. We can

chose a forward numeraire (a zero coupon bond) or a spot numeraire (rolling bank
account).

LIBOR market model is an improvement in comparison to Black’s formula: it
captures the correlation structure among the forward rates, Black’s formula does
not have the ability. It is therefore used in pricing fixed income derivatives products
that can be decomposed as a set of forward rates, such as caps (collection of caplets),
floors or swaptions. LIBOR market model is compatible with Black’s formula for
caps. However, it is not compatible with Black’s formula for swaptions. For this
reason, numerical approximations appeared and it can be dealt with.

LIBOR market model does not produce perfectly correlated forward rates, which
is an improvement in comparison to short rate models. The real data however shows,
that the level of correlation between forward rates (especially with two consecutive
rates).

"In the most basic setting of the LIBOR market model, the only source of ran-
domness in the market is a d-dimensional standard Brownian motion. (...). There
exists a spot martingale measure Q, under which all bonds discounted with the
money market account B are martingales." [16]

In most cases, the term LIBOR market model refers to a lognormal LIBOR mar-
ket model with deterministic volatility. Over time, several extensions of LIBOR
market model were added to deal with some of its imperfections. The extensions are
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described in more detail in the section 3.5, and we distinguish:

• Standard lognormal LMM with deterministic volatility - assumes that the evo-
lution of a forward interest rate has a lognormal distribution

• LMM with stochastic volatility

• LMM with Local Volatility Extension
I. Enhanced with a constant elasticity of variance (CEV), proposed by Ander-
sen and Andreason
II. Enhanced with displaced diffusion (DD), when the lognormal process is re-
placed by displaced diffusion, proposed by Joshi and Rebonato

Brigo and Mercurio distinguish the lognormal forward-LIBOR market model and
the lognormal swap market model.

Considering the negative interest rates observable on markets, they produce a
problem for LMM, since "The main assumption underlying these models is that each
rate is log-normal under the corresponding forward measure." [3]

3.4.1 LIBOR market model formula

We will follow the definition of Brigo and Mercurio. Let t = 0 be the present.
We will consider a set of moments in time T := {T0, ..., TM} with pairs of dates
that signify the time expiry-maturity (Ti−1, Ti). Let τi be the year fraction, that
corresponds to a certain pair of expiry-maturity (Ti−1, Ti) and τ0 being the time
from settlement to T0. We set T−1 :=0 and that gives that Ti will be the time period
in years.

We assume a general forward rate Fk(t) = F (t, Tk−1, Tk), k = 1, ...,M, that is
defined until time Tk−1, when it corresponds to the spot rate Fk(Tk−1) = L(Tk−1, Tk).

We consider the price of the bond with maturity in the same time as the maturity
of a forward rate to be P (·, Tk). We associate to this price a probability measure Qk.

Under this forward measure Qk, Fk(t) has the dynamics:

dFk(t) = σk(t)Fk(t)dW k(t), t ≤ Tk−1, (3.19)

where Fk(t) is a martingale (without a drift) and where W k(t) represents a
M-dimensional Brownian motion with the covariance ρ = ρi,j, i, j = 1, ...,M ,
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ρdt = dW k(t)dW k(t)T and σk(t) is the horizontal M-dimensional vector of the volatil-
ity of the forward rate Fk(t).

Each vector σj(t) has on j-th place only one non-dead element σj(t).
We can transform the previous equation:

dFk(t) = σk(t)Fk(t)dW k
k (t), t ≤ Tk−1. (3.20)

where W k
k (t) represents the k-th element of the M-dimensional Brownian motion

W k.
We can simulate the forward rates with the following:

dFk(t) = σk(t)Fk(t)
k∑

j=α+1

ρj,kτjσk(t)Fj(t)
1 + τjFj(t)

dt+ σk(t)Fk(t)Wk(t), (3.21)

where ρj,k is the correlation between forward rates Fj and Fk.
We consider a forward rate Fk(t), with a probability measure Qk that is different

from the measure Qi, we will get the following forward-measure dynamics for the
LIBOR market model:

i < k, t ≤ Ti : dFk(t) = σk(t)Fk(t)
k∑

j=i+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

dt+ σk(t)Fk(t)dWk(t),

i = k, t ≤ Tk−1 : dFk(t) = σk(t)Fk(t)dWk(t),

i > k, t ≤ Tk−1 : dFk(t) = −σk(t)Fk(t)
i∑

j=k+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

dt+ σk(t)Fk(t)dWk(t)

(3.22)
where Wk is a standard Brownian motion under the measure Qi.
For i = k, the distribution of the forward rates is lognormal, and therefore we

denote this model as lognormal LIBOR market model. For i 6= k, the distribution
is not lognormal and is not known.

Another way is to use the spot-measure dynamics.
The numeraire in this case is Bd, which is a bank account that is balanced at

times defined in the tenor structure and is called the spot LIBOR measure. It has
the following form:

Bd(t) = P (t, Tβ(t)−1)∏β(t)−1
j=1 P (Tj−1, Tj)(3.23)
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and leads to the following equation

dFk(t) = σk(t)Fk(t)
k∑

j=β(t)

τjρj,kσj(t)Fj(t)
1 + τjFj(t)

dt+ σk(t)Fk(t)dW d
k (t) (3.24)

3.4.2 Overview of the LIBOR market model - Strengths and
weaknesses

Market models can be seen as a breaktrough in the field of interest rate modeling
and thus the pricing of interest rate derivatives. The long term use of Black’s model
for swaption valuation could be replaced with a model that is theoretically valid.
Since the 1990s, the LIBOR market model has become a market standard for several
reasons:

• it is the first model that is consistent with Black’s formula

• it models rates that can be directly observed on markets

• it is relatively easy to calibrate

It still has several imperfections. It cannnot properly model the volatility smile.
It assumes the lognormal distribution of forward rates, and this assumption is very
oversimplifying if compared to real market data.

3.5 Dealing with smile in LMM

“In 1998, after Russian crisis, cap and swaption markets started to show evident
volatility smile and skew”[5]. The problem with the standard lognormal LMM is that
it does not cover the phenomenon of volatility smile/skew observable on markets and
the volatility structure produced in the LIBOR market model is flat. However, it
can be dealt with in several ways. The possible solutions are:

• The shifted lognormal model

• The constant elasticity of variance model

• Stochastic volatility LIBOR market model

• SABR-LIBOR market model
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The shifted lognormal model lets the forward rate evolve under:

dFj(t) = β(t)(Fj(t)− α)dWt (3.25)

The distribution becomes shifted lognormal and the density of this distribution
can be found in [2]. The α parameter produces a difference in the volatility sturcture.
The shifted lognormal model has an interesting feature of non-zero probability of
the negative interest rates to be below zero, that today does not seem as such an
inconvenience.

The CEV model lets Fj follow:

dFj(t) = σj(t)[Fj(t)]γdWt, Fj = 0 (3.26)

with γ lying between 0 and 1.
The stochastic volatility models assume that the ϑ parameter in the following

function is a stochastic function:

dF (t, T1, T2) = ϑ(t, F (t, T1, T2))dWt (3.27)

SABR is a simple model designed to describe the price evolution of one asset. It
is able to capture the volatility smile on the markets. It belongs to a class of constant
elasticity of variance models with stochastic volatility. As proposed by Rebonato, the
LMM-SABR combines the advantages of both models. The existence of a developed
market for traded derivatives is necessary for this calibration.

The SABR model dynamics:

dL(t) = σ(t)C(L(t))dW1(t), dσ(t) = ασdW2(t) (3.28)
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Chapter 4

LMM calibration

Once the model has been chosen, the parameters need to be set. Following the
work of Myska [13], we can distinguish between a static and a dynamic method of
calibration. The calibration performed with the help of historical values is considered
to be dynamic, and the calibration to current market data is called a static method
of calibration. The calibration can be also done by estimating the parameters from
experience. The difference between the predicted price and the price observed on
markets is minimized using a numerical optimization algorithm. The number of
factors (parameters) needs to be specified at the beginning. The ideal calibration
should indeed estimate the parameters of the model as precisely as possible. However,
in general, the more precise is the model, the more demanding it is in terms of
computational cost.

LIBOR market model is specified when correlation functions and instatnaneous
volatility is set.

4.1 Correlation matrix

The instantaneous correlations in this this model are a representation of the
correlation between the changes of the forward rates. Therefore for example, the
correlation between F2(t) and F3(t) is:

ρ2,3 = dF2(t)dF3(t)
Std(dF2(t))Std(dF3(t)) (4.1)

The whole correlation structure is given in a form of a matrix.
In general, a correlation matrix is:

1. symmetrical: ρi,j = ρj,i for all i, j
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2. normalized: ρi,j ≤ 1 for all i, j

3. positive semidefinite: x′ρx ≤ 0 for all x

4. maximum correlation for maximum dependance: ρi,i = 1 for all i

The correlation matrix has M(M − 1)/2 values. In LIBOR market model,
the matrix can produce a problem with too many values, that have excessive
demanding regarding the computational cost. Either the matrix is used in the
full form, or we can perform some kind of a reduction, that tries to use less
values, but at the same time to minimize the information loss.

In LIBOR market model, the correlation of the forward rates is positive. The
correlation matrix can be both an input and an output to the model.

Instantaneous correlation matrix is the representation of the correlation be-
tween various forward rates. On of the reason we do not use the full rank
correlation matrix is, that the the structure of LIBOR forward rates shows a
high level of correlation. This fact is used in the model and the correlation
matrix is usually used in a reduced rank form.

Rebonato proposes a reduction of parameters. We re-write the correlation ma-
trix as

ρ = PHP ′,

with P being an orthogonal matrix, PP ′ = IM and H being a diagonal matrix
with the eigenvalues of ρ. We denote Λ the square roots of components of H
and A = PΛ and we get:

AA′ = ρ,A′A = H

The correlation ρ corresponds to ρB = BB′ defined below.

The i-th row component is suggested to be for i = 1, ...,M :

bi,1 = cosθi,1

bi,k = cosθi,ksinθi,1...sinθi,k−1 for 1 < k < n

bi,n = sinθi,1...sinθi,n−1
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In case of n = 2, the matrix B will have the following form:

B =


cosθ1 sinθ1

cosθ2 sinθ2
... ...

cosθM sinθM



and the matrix ρB will have the elements

ρBi,j = cos(θi − θj)

and that leaves us with a correlation matrix of M parameters.

If the correlation matrix is an output, it is theoretically computed and therefore
is very smooth. Figure 4.1 is an example of a theoretically computed correlation
matrix. We can see that the depiction of the theoretical matrix is symmetrical
and it is full of ones on the diagonal.

Figure 4.1: A theoretical correlation matrix. Source: Matlab
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4.2 Instantaneous volatility

σk(t) represents the parameter of the instantaneous volatility. We will assume
that the instantaneous volatility of the forward interest rate is a continuous
function by parts.

Table 4.1. shows a table of instantaneous volatilities, according to Brigo and
Mercurio:

Table 4.1: Instantaneous volatilities

Instant. Vols
Fdw. rate Time intervals

(0, T0) (T0, T1) (T1, T2) . . . (TM−2, TM−1)
F1(t) σ1,1 Dead Dead . . . Dead
F2(t) σ2,1 σ2,2 Dead . . . Dead
... ... ... ... . . . ...

FM(t) σM,1 σM,2 σM,3 . . . σM,M

We will try to reduce the high number of parameters.

Assuming that:
σk(t) = σk,β(t) := ηk−(β(t)−1), (4.2)

Table 4.2 is the representation of the parameters after the use of this equation.

Table 4.2: Instantanous volatilities 2

Instant. Vols
Fdw. rate Time intervals

(0, T0) (T0, T1) (T1, T2) . . . (TM−2, TM−1)
F1(t) η1 Dead Dead . . . Dead
F2(t) η2 η1 Dead . . . Dead
... ... ... ... . . . ...

FM(t) ηM ηM−1 ηM−2 . . . η1

If again, we assume:

σk(t) = σk,β(t) := φkψk−(β(t)−1) (4.3)
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where β(t) = k + 1 for Tk−1 ≤ t ≤ Tk.

From this, we get the Table 4.3.

Table 4.3: Instantaneous volatilities 3

Instant. Vols
Fdw. rate Time intervals

(0, T0) (T0, T1) (T1, T2) . . . (TM−2, TM−1)
F1(t) φ1ψ1 Dead Dead . . . Dead
F2(t) φ2ψ2 φ2ψ1 Dead . . . Dead
... ... ... ... . . . ...

FM(t) φMψM φMψM−1 φMψM−2 . . . φMψ1

4.2.1 Swaption volatility matrix

Table 4.4 shows us the swaption volatility matrix, taken from Thomson Reuters
on 11/04/2018. This matrix will be serving as an input for the calibration of
the model. This matrix contains swaptions expiries in rows and underlying
swap maturities in columns. For the calibration, we will be using swaption
volatilities for at-the-money swaptions with maturities of: 1,2,3,4,5,7, and 10
years. with the underlying swap length of 1,2,3,4,5,7,10 years. This matrix
contains information about the market of swaptions denominated in Euro.
The prices of swaptions are included in the swaption volatility matrix taken
from the market.

How accurate is the swaption volatility matrix? One of the problems of matrix
can be that it contains data from both liquid and non-liquid markets. Usually,
the swaptions with closer exercise dates are considered to be more liquid and
therefore the price changes accurately with the market situation. However, the
swaptions with exercise dates further from today do not have to be liquid and
therefore their price does not necessarily reflect the situation on the market
accurately. However, in this thesis, we will be not taking into account this
issue, because there is no way for us to get a more accurate information about
the swaptions market.

The swaption volatility is usually approximated for the purpose of computa-
tions. We will introduce Rebonato’s formula for volatility of swaptions,
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EU
R

1Y
2Y

3Y
4Y

5Y
6Y

7Y
8Y

9Y
10Y

15Y
20Y

25Y
30Y

1M
0

0
333.66

100.48
68.16

54.33
46.54

41.64
37.28

34.38
26.22

23.42
22.81

22.76
3M

0
0

208.81
95.71

70.38
57.35

49.77
44.68

40.07
36.90

28.47
25.47

24.61
24.31

6M
0

0
146.01

88.71
68.86

57.71
51.10

46.39
42.15

39.17
30.81

28.00
27.18

26.92
1Y

0
181.10

97.95
76.30

64.80
56.31

50.99
46.72

42.85
40.09

32.65
30.37

29.82
29.72

2Y
142.01

78.87
67.28

59.64
53.81

49.57
46.14

43.77
41.32

39.32
33.78

32.21
32.01

32.09
3Y

84.40
62.84

56.81
52.15

48.88
45.94

43.09
41.48

39.79
38.35

33.76
32.89

32.89
33.18

4Y
70.56

56.33
51.48

48.04
44.87

42.64
40.57

39.35
38.17

37.16
33.36

32.85
32.94

33.35
5Y

60.29
50.23

47.20
44.27

42.09
40.28

38.91
37.79

36.82
36.07

33.01
32.79

32.93
33.42

7Y
47.64

42.10
40.25

38.52
37.23

36.30
35.55

35.05
34.72

34.45
32.28

32.28
32.49

32.90
10Y

36.63
34.83

34.32
33.80

33.48
33.39

33.36
33.38

33.42
33.47

32.36
32.30

32.47
32.81

15Y
32.57

32.70
33.01

33.32
33.67

34.04
34.43

34.80
35.11

35.36
34.17

33.53
33.41

34.36
20Y

35.38
36.62

37.37
38.04

38.58
38.95

39.17
39.28

39.27
39.17

36.81
35.16

35.80
34.80

Table
4.4:

Swaption
volatilities,Source:

T
hom

son
R
euters,11/04/2018
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which defines the approximated volatility as:

(vLFMα,β )2 =
β∑

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j
Sα,β(0)2

∫ Tα

0
σi(t)σj(t)dt (4.4)

This volatility (vLFMα,β )2 can be understood as an approximation for the Black’s
volatility of swaptions of the swap rate Sα,β and where wi(t) corresponds to:

wi(t) = τiFP (t, Tα, Ti)∑β
k=α+1 τkFP (t, Tα, Tk)

=
τi
∏i
j=α+1

1
1+τjFj(t)∑β

k=α+1 τk
∏k
j=α+1

1
1+τjFj(t)

(4.5)

4.3 Cascade calibration suggested by Brigo,
Mercurio

Brigo and Mercurio suggest a swaption calibration and illustrate it on an ex-
ample of exactly six swaptions for simplification.

The following equation combines the market swaption volatility and Rebonato’s
formula:

(Vα,β)2 =
β∑

i,j=α+1

ωi(0)wj(0)Fi(0)Fj(0)ρi,j
Sα,β(0)2Tα

α∑
h=0

τh−1,hσi,h+1σj,h+1 (4.6)

where τh−1,h = Th − Th−1 and T−1 = 0.

Table 4.5: Table of swaption volatilities with six swaptions

Length 1 year 2 years 3 years
Maturity
T0 = 1 year V0,1, V0,2, V0,3,

σ1,1 σ1,1 σ1,1

σ2,1 σ2,1

σ3,1

T1 = 2 years V1,2, V1,3 -
σ2,1 σ2,2 σ2,1σ2,2

σ3,1 σ3,2

T2 = 3 years V2,3 - -
σ3,1σ3,2 σ3,3
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Following equations will be stemming from the table 4.5. and from the equation
4.6.

It will lead us to the following evaluation with respect to rows:

(a) We start with the first row which leads us to evaluate sequently σ1,1, σ2,1

and σ3,1.

i. σ1,1

We begin from V0,1 which represents a swaption that matures at time
T0 and the underlying swap ending at T1

S0,1(0) = w1(0)F1(0) ⇒ (V0,1)2 ≈ σ2
1,1.

The parameter σ1,1 is calibrated.
ii. σ2,1

V0,2 involves two rates F1, F2.
For the only unknown parameter σ2,1, we assume that is a solution to
an algebraic equation of second order (assumes a positive solution):

S0,2(0)2(V 2
0,2) ≈ w1(0)2F1(0)2σ2

1,1 + w2(0)2F2(0)2σ2
2,1

+2ρ1,2w1(0)F1(0)w2(0)F2(0)σ1,1σ2,1.

iii. σ3,1

V0,3 involves the rates F1, F2 and the rate F3.
A solution to an algebraic second order equation

S0,3(0)2(V0,3)2 ≈ w1(0)2F1(0)2σ2
1,1 + w2(0)2F2(0)2σ2

2,1

+w3(0)2F3(0)2σ2
3,1

+2ρ1,2w1(0)F1(0)w2(0)F2(0)σ1,1σ2,1

+2ρ1,3w1(0)F1(0)w3(0)F3(0)σ1,1σ3,1

+2ρ2,3w2(0)F2(0)w3(0)F3(0)σ2,1σ3,1.

for the unknown σ3,1
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(b) We shift to the second row.
V1,2, the only rate considered is F2.
the two subintervals [0, T0] and [T0, T1]

i. σ2,2

T1(V1,2)2 ≈ τ0σ
2
2,1 + τ1σ

2
2,2,

where the unknown is σ2,2.
ii. σ3,2

we move to V1,3.

T1S1,3(0)2(V 2
1,3) ≈ w2(0)2F2(0)2(τ0σ

2
2,1 + τ1σ

2
2,2)

+w3(0)2F3(0)2(τ0σ
2
3,1 + τ1σ

2
3,2)

+2ρ2,3w2(0)F2(0)w3(0)F3(0)(τ0σ2,1σ3,1 + τ1σ2,2σ3,2).

with the only unknown σ3,2.

(c) And finally the only one term left in the third row V1,2, the only rate
considered is F2 with the three subintervals [0, T0] , [T0, T1] and [T1, T2]

i. σ3,3

T2(V2,3)2 ≈ τ0σ
2
3,1 + τ1σ

2
3,2 + τ2σ

2
3,3.

with the only unknown σ3,3.

4.4 Calibration and the results

The initial interest rates can be seen in Table 4.6.

We will now perform a calibration of the LIBOR market model to market
data. The model minimises the difference between the theoretical price of the
swaption and the actual price of the swaption on markets. As alrady said, the
data involves the swaption volatility matrix and zero rates. The source of the
data is Thomson Reuters and Patria. The swaption volatility matrix involves
EUR at-the-money swaptions and was taken on 11/04/2018.

The volatility functional form is given by

σi(t) = ki[(a(Ti − t) + b)ec(Ti−t) + d)]. (4.7)
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Table 4.6: Table of initial rates

Expiry Interest rate
1y -0.7003
2y -0.6083
3y -0.4513
4y -0.2733
5y -0.0917
7y 0.2120
10y 0.5507

Figure 4.2: The iterations. Source: Matlab

The correlation functional form is given by

ρi,j = e−β|i−j|. (4.8)

The difference in the predicted and in market volatilities are minimized using
a nonlinear least-squares algorithm.

The criteria for the parameters a, b, c and d are:

(a+ d)>0; c>0; d>0;

The computation of the iterations can be seen on Figure 4.2.

The computed correlation matrix is displayed in the Figure 4.3.
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Figure 4.3: The correlation function. Source: Matlab

The quality of the fit is defined by the difference between the the theoretical
price of the swaption and the actual price of the swaption. The optimization
algorithm stops, after it reaches the function tolerance and thus the difference
is minimized to an acceptable value. This is presented on Figure 4.4.

Figure 4.4: LMM calibration - the optimization details. Source: Matlab

The program computes the parameters:

a = 0.9238,
b = 0.3635,
c = 0.7680,
d = 0.2945,
β = 0.0158.
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The volatility function is presented at the Figure 4.5.

Figure 4.5: The volatility function. Source: Matlab

Figure 4.6 is a representation of the prediction of the model, which is again a
three-dimensional graph, with Tenor in years on the x-axis, time on y-axis and
the interest rate on the z-axis.
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Figure 4.6: Output - the evolution of the zero curve. Source: Matlab
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Chapter 5

Hull-White calibration

For comparison, we will use a simple short rate model. As already presented,
the Hull-White model is a one-factor short rate model. It has one source of
uncertainty and is capable of fitting the initial term structure. The process is
driven by following equation:

dr(t) = [ϑ(t)− a(t)r(t)]dt+ σ(t)dW (t) (5.1)

The input data used to calibration of the model will be identical to the data
used in the previous chapter. We will proceed to a calibration of the model.
The function lsqnonlin used to minimize the difference between the market
data and modeled values.

The parameters computed were:

a = 1.4*10−7

σ = 0.0042

The algorithm usually stopped after 7 iterations.

The optimization details are presented by Figure 5.1.

Figure 5.2 shows us the zero curve from April 2018. Figure 5.3 shows us the
prediction of the model, which is again a three-dimensional graph, with Tenor
in years on the x-axis, time on y-axis and the interest rate on the z-axis. It
shows how the The Hull-White model produces the forecast.

Figure 5.3 shows how the The Hull-White model produces the forecast.

45



Figure 5.1: Hull White calibration - optimization details. Source: Matlab

Figure 5.2: Hull White zero curve. Source: Matlab

Figure 5.3: Hull White calibration. Source: Matlab
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Chapter 6

Pricing a swaption

A swaption is an interest rate derivative with a finite lifetime and with the
underlying asset being a swap. We will be focusing on two types of swaptions:
European and Bermudan. To remind, the European (vanilla) type of swaption
represents a much simpler contract than a Bermudan swaption. The European
swaption has exactly one date when the holder can decide, whether to enter
to a contract of a swap. On the other hand, the Bermudan type of contract
has several dates that offer this possibility to the holder and is therefore more
complicated.

The contract of a Bermudan swaption gives the holder another advantage in
comparision to the European swaption. This advantage should be reflected
by the market and should value the Bermudan swaption above the European
swaption (in theory).

In this Chapter, we will focus on pricing these types of contracts with LIBOR
market model and with Hull-White model and compare the results of the two.

6.1 Pricing a swaption in LIBORmarket model

The aim of this chapter is to price a swaption with LIBOR market model.

„The LIBOR market model framework does not allow for an exact closed-form
swaption pricing formula.“ As already stated, LIBOR market model does not
provide the analytical solution to price swaptions. To solve this issue, the
suggested method are numerical approximations.
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In general, Monte Carlo simulation represents a class of algorithms, where
pseudorandom numbers are used. They are typically used, when there are is
no analytical solution for computation. The method is consuming regarding
computational capacity. Monte Carlo simulations usually generate a number of
scenarios. Each simulation allows to form many paths of a stochastic process.

Black’s formula became the market standard for pricing swaptions for practi-
tioners. It was not stated theoretically. LIBOR market model was developed
to fill this gap.

We have already presented the forward rate dynamics in the model under the
measure Qα :

dFk(t) = σk(t)Fk(t)
k∑

j=α+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

dt+ σk(t)Fk(t)dWkd(t) (6.1)

WithM = β−α forward rates, we need to performm realizations of Fα+1(Tα), ..., Fβ(Tα).

By applying the Ito’s formula, we can get

lnF∆t
k (t+∆t) = lnF∆t

k (t)+σk(t)
k∑

j=α+1

ρk,jτjσj(t)F∆t
j (t)

1 + τjF∆t
j (t) ∆t−σk(t)

2

2 ∆t+σk(t)(Wk(t+∆t)−Wk(t))

(6.2)

and that brings us to

Eα{|lnF∆t
k (Tα)− lnFk(Tα)|} ≤ c(Tα)∆t (6.3)

for all ∆t ≤ δ0.

A swaption is an OTC derivative and therefore does not have to be standard-
ized. We will consider a swaption with an exercise date of five years from now
and with the underlying swap with the length of five years.

The parameters of the swaption that we will be pricing are:

The starting date of the swaption: 11/04/2018

The exercise date of the swaption: 11/04/2023

The maturity of the swaption: 11/04/2028

The strike price of the instrument: 0.045
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6.2 Pricing a swaption in Hull-White model

The input data used to price the swaption will be the same as the data used in
the previous chapter. The swaption in this model will be priced with the aid
of a trinominal tree.

The trinominal tree that models the evolution of the interest rate can be
constructed as follows:

We denote T the time horizon, and the times 0 ≤ t0 ≤ t1 ≤ ... ≤ T and set
∆ti = ti+1 − ti. The indexes i, j represent the tree nodes. The state xi,j is
the state of the process in the node i, j. In general, we can model a diffusion
process X

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (6.4)

where we set a constant step ∆xi and xi,j = j∆xi. At time ti, we are at the
point of xi,j. From this point, we pass to time ti+1 and with the following
probabilities p, we will get to the point:

with probability pu : xi+1,k+1 = (k + 1)∆xi+1

with probability pm : xi+1,k = k∆xi+1

with probability pd : xi+1,k−1 = (k − 1)∆xi+1

At time ti+1, we need to find the following mean and variance considering the
probabilities:
Mi,j = E{X(ti+1) | X(ti) = xi,j}
V 2
i,j =Var{X(ti+1) | X(ti) = xi,j}

By knowing that pu + pm + pd = 1 and by setting ηj,k = Mi,j − xi+1,k and
∆xi+1 = Vi

√
3, Brigo and Mercurio conclude:

pu = 1
6 + η2

j,k

6V 2
i

+ ηj,k
2
√

3Vi

pm = 2
3 −

η2
j,k

3V 2
i

pd = 1
6 + η2

j,k

6V 2
i
− ηj,k

2
√

3Vi
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In the case of Hull-White trinominal tree, the time differences between ti and
ti+1 do not have to be of the same length.

The mean and the variance of the process with respect to the filtration Fs:

E{r(t) | Fs} = r(s)e−a(t−s) + α(t)− α(s)e−a(t−s)

Var{r(t) | Fs} = σ2

2a [1− e−2a(t−s)]

We have x(t) that equals r(t)− α(t), and thus

Mi,j = E{x(ti+1) | x(ti) = xi,j} = xi,je
−a∆ti

V 2
i =Var{x(ti+1) | x(ti) = xi,j} = σ2

2a [1− e−2a(∆ti)]

The next step is to describe the displacement that we need to model the inter-
est rate r. It will be denoted αi and the present value of an instrument that
pays 1 at node (i, j) and has no payoff if this node is not reached is denoted Qi,j.

Qi+1,j = ∑
hQi,hq(h, j)exp(−(αi + h∆xi)∆ti)

Finally, Brigo and Mercurio conclude the value of ri,j to be equal to xi,j + αi

and the process of ri,j has the following progress:

with probability pu : ri+1,k+1 = xi+1,k+1 + αi+1

with probability pm : ri+1,k = xi+1,k + αi+1

with probability pd : ri+1,k−1 = xi+1,k−1 + αi+1

6.3 Review of the results

The swaption parameters are the same, so it is possible to compare the results
of the two models. The results are summarized in Table 6.1.

Table 6.1: The price of the European swaption

Strike price 0.055 0.045 0.030 0.010 0.005 0.001
LIBOR market model 0.0283 0.0541 0.1120 1.3557 2.4498 4.4791
Hull-White model 0.00 0.00 0.1181 1.5385 3.069 4.5999
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These results are a product of a Monte Carlo simulation and thus differ in
every trial. Table 6.1 shows the average of 5 results.

We can see that the two models price the swaption differently. In the Hull-
White model, the swaption price becomes 0 when the price is 0.045 or higher.
However, if the strike price declines, Hull-White produces higher prices than
the LIBOR market model.

The smaller the strike price, the smaller becomes the difference in pricing.
This is what we can see with the strike price 0.001 and lower, the difference in
results of the two models is small. However, when the strike price is higher than
0.01, the difference becomes more observable. The prices are also presented
graphically on Figure 7.1.
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Chapter 7

Pricing a Bermudan swaption

Swaptions pricing depends on the type of swaption. In general, there exists a
formula for European type of derivative. However, it is not possible to price
derivatives with early exercise option, such as American or Bermudan type of
derivative like this, and in this case, numerical approximations are selected.
Swaptions have been priced with Black’s formula for a long time and LIBOR
market model is compatible with this formula.

Bermudan swaptions are swaptions with early exercise option. The valuation
of such instruments is tricky and methods have been developed specifically for
the purpose of valuing the Bermudan swaptions. We will describe the approach
of Longstaff and Schwartz and the proposed Monte Carlo regression.

The first note is that they suggest using bond prices and their volatilities. The
approach can be described with the example of a Bermudan swaption with an
underlying swap with the maturity of 10 years. There will be 19 exercise dates,
if the swap resets twice a year.

The zero coupon bond prices are put in a vector:

P (·, 0.5y), P (·, 1y), ..., P (·, 10y)

The vector of 20 dimensions gets smaller in dimensions after every exercise
date passes.

The corresponding interest rate, which is compounded continously:
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r(t) ≈ −2lnP (t, t+ 0.5y)

The approximated dynamics:

dP (t, Ti) = −2lnP (t, t+ 0.5y)P (t, Ti)dt+ σPi(t)P (t, Ti)dWi(t) (7.1)

where Ti = 0.5i and i = 1, ..., 20.

The Brownian motion Wi is correlated, the vector W is twenty-dimensional:

dZidZj = exp(−k | i− j |)dt

Finally, the algorithm basis function at time Ti,

1, P (·, Ti), ..., P (·, T20), 1−P (Ti,T20)∑20
j=i+1 0.5P (Ti,Tj)

, [ 1−P (Ti,T20)∑20
j=i+1 0.5P (Ti,Tj)

]2,

[ 1−P (Ti,T20)∑20
j=i+1 0.5P (Ti,Tj)

]3

with the first, second and third power of the swap rate Si,20 as the last three
terms in the expression.

The swaption parameters are:

The starting date of the swaption: 11/04/2018

The exercise date of the swaption: 11/04/2023

The maturity of the swaption: 11/04/2028

The strike price of the instrument: 0.045

There has been 40 000 Monte Carlo simulations performed.

Table 7.1: The price of the Bermudan swaption

Strike price 0.055 0.045 0.030 0.010 0.005 0.001
LIBOR market model 0.1267 0.2116 0.4805 2.3315 3.9148 6.0293
Hull-White model 0.0004 0.0067 0.1815 2.7097 4.6105 6.6798
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Figure 7.1: Results of pricing European and Bermudan swaptions in Hull-White and
LIBOR market model. Source: Matlab

Again, we can see that LIBOR market model and the Hull-White model predict
slightly different prices, which is caused by the different methodology of the
models.

A final summary can be seen in Figure 7.1. We can see that the Bermudan type
of swaption with otherwise same features is valued above the European type
of contract by both models. This theoretical assumption has been confirmed.
The Bermudan swaption gives the holder an advantage of more exercise dates
and this possibility is valued by the market by the difference in the prices of
the two.

The yellow and the blue line represent the results for the Hull-White model.
We can see that in the case of European, as well as Bermudan swaption, it
results of the computations are in general higher than in the case of LIBOR
market model (the red and the purple line), with the only exception being the
Bermudan swaption with strike price 0.03 and higher.

55



56



Conclusion

We have presented the evolution of interest rate models from short rate models
to market models, with a focus on market models, especially LIBOR market
model, as well as several notions that are related to calibration of the model.

We have performed a calibration of LIBOR market model. It has the ability to
fit today’s term structure of the interest rates and thus has gained popularity
in practice.

Interest rate derivatives play a major role among derivatives. They can be used
for speculation, risk hedging or as an opportunity for arbitrage.

In the thesis, we have priced a European and a Bermudan swaption using one of
the short rate models and a market model. The Hull-White model can be seen
as less convenable for pricinge an interest rate derivative such as a swaption
than a market model.

We can conclude that Hull-White model and LIBOR market model produce
slightly different results. This can be assigned to the fact that these two models
present a very different approach to interest rate modeling and the theory
behind the two models is very different. At this point, we are not able to tell
which results are more reliable and it requires further research.

In theory, LIBOR market model offers a more sophisticated approach and
therefore should offer a more reliable results in comparison to Hull-White
model.

We have worked with the basic form of LIBOR market model. Some of the ex-
tensions of LIBOR market model that have been suggested since its appearing
and are presented in the section 3.5 of this thesis. They could offer a further
research on this topic.
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List of abbreviations Damiano Brigo · Fabio Mercurio Interest Rate Models
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• ATM = At the money;

• CC(A) = Cascade Calibration (Algorithm);

• HW = Hull-White model;

• IRS = Interest Rate Swap (either payer or receiver);

• ITM = In the money;

• LFM = Lognormal forward-Libor model (Libor market model, BGM
model);

• LSM = Lognormal forward-swap model (swap market model);

• MC = Monte Carlo;

• OTM = Out of the money;

• PV BP = Present Value per Basis Point (or annuity);

• RCCA = Rectangular Cascade Calibration Algorithm;

• TSV = Term Structure of Volatilities;

• SDE = Stochastic differential equation;

• In: the n× n identity matrix;

• B(t), Bt: Money market account at time t, bank account at time t ;

• D(t, T ): Stochastic discount factor at time t for the maturity T ;

• P (t, T ): Bond price at time t for the maturity T ;

• r(t), rt: Instantaneous spot interest rate at time t;

• R(t, T ): Continuously compounded spot rate at time t for the maturity
T ;
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• L(t, T ): Simply compounded (LIBOR) spot rate at time t for the maturity
T ;

• f(t, T ): Instantaneous forward rate at time t for the maturity T ;

• F (t;T, S): Simply compounded forward (LIBOR) rate at time t for the
expiry. maturity pair T, S;

• F f (t;T, S): Foreign simply compounded forward (LIBOR) rate at time t
for the expiry -maturity pair T, S;

• T1, T2, . . . , Ti−1, Ti, . . .: An increasing sequence of maturities;

• τi: The year fraction between Ti−1 and Ti;

• Fi(t) : F (t;Ti.1, T i);

• S(t;Ti, T j), Si, j(t): Forward swap rate at time t for a swap with first
reset date Ti and payment dates Ti+1, . . . , Tj ;

• Ci, j(t): Present value of a basis point (PVBP) associated to the for-
ward.swap rate Si,j(t), i.e.

∑j
k=i+1 τkP (t, Tk);

• Q0: Physical/Objective/Real.World measure;

• Q: Risk-neutral measure, equivalent martingale measure, risk-adjusted
measure;

• Qd: Spot LIBOR measure, measure associated with the discretely rebal-
anced bank-account numeraire;

• Wt, Zt: Brownian motions under the Risk Neutral measure;

• 1A, 1{A}: Indicator function of the set A;

• E: Expectation under the risk-neutral measure;

• EQ: Expectation under the probability measure Q;

• Corri(X, Y ): correlation between X and Y under the Ti forward adjusted
measure Qi;

• V ari(X): Variance of X under the Ti forward adjusted measure Qi; i can
be omitted if clear from the context or under the risk-neutral measure;

• Covi(X): covariance matrix of the random vector X under the Ti forward
adjusted measure Qi;

• Stdi(X): standard deviation (acting componentwise) of the random vec-
tor X under the Ti forward adjusted measure Qi;
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• N (µ, V ): Multivariate normal distribution with mean vector µ and co-
variance matrix V ; Its density at x is at times denoted by N (µ, V )(x).

• Bl(K,F, v): The core of Black’s formula:

• PFS(t, T , τ, N,R): Price at time t of a payer forward-start interest rate
swap at times T = [T1, . . ., Tn] with first reset date T1 and payment dates
T2, . . . , Tn at the fixed rate R; As usual τi is the year fraction between
Ti−1 and Ti and can be omitted, and N is the nominal amount and can
be omitted;

• RFS(t, T , τ, N,R): Same as above but for a receiver swap;

• PS(t, T, T , τ, N,R): Price of a payer swaption maturing at time T , which
gives its holder the right to enter at time T an interest rate swap with
first reset date T1 and payment dates T2, . . . , Tn (with T1 ≥ T ) at the
fixed strike-rate R; As usual τi is the year fraction between Ti−1 and Ti

and can be omitted, and N is the nominal amount and can be omitted;

• RS(t, T, T , τ, N,R): Same as above but for a receiver swaption;

• ES(t, T, T , τ, N,R, ω): Same as above but for a general European swap-
tion; ω is +1 for a payer and ω −1 for a receiver, and can be omitted.

• FSCpl(Tj, Tk−1, Tk, τk, δ): Price at time 0 of a call option, with maturity
Tk, on the LIBOR rate Fk(Tk.1), with Tk−1 > Tj , where the strike price
is set as a proportion δ of either the spot or forward LIBOR rate at time
Tj.

• LSO(t, Ti−1, Ti, τi, N,K, ω, ψ): Price at time t of the spread option on
two-currency LIBOR rates

• LP (t, Ti−1, Ti, τi, N,K, ω): Price at time t of the option on the product of
the two LIBOR rates L(Ti−1, Ti) and Lf (Ti−1, Ti), whose payoff at time
Ti, in domestic currency,

• Instantaneous (absolute) volatility of a process Y is η(t) in dYt = (. . .)dt+
η(t)dWt.

• Instantaneous level-proportional (or proportional or percentage or relative
or return) volatility of a process Y is σ(t) in dYt = (. . .)dt+ σ(t)YtdWt.

• Level-proportional (or proportional or percentage or relative) drift (or
drift rate) of a process Y is
mu(t) in dYt = σ(t)Ytdt+ (. . .)dWt.
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item DC(Y ): 1 × n vector diffusion coefficient of a diffusion process Y
driven by the vector (correlated) Brownian motion Z with dZ = CdW ,
with C a n × n matrix, C”C ′ = ρ , the n × n instantaneous correlation
matrix, andW vector n-dimensional standard Brownian motion. In other
terms, if dYt = (. . .)dt+ vtCdWt = (. . .)dt+ vtdZt. then DC(Y ) = vt.

• Fn(t;T, S): Simply compounded forward (LIBOR) rate at time t for the
expiry. maturity pair T, S in the nominal economy;

• Fr(t;T, S): Simply compounded forward (LIBOR) rate at time t for the
expiry. maturity pair T, S in the real economy;

• Tenor: the length of the underlying swap, Tβ − Tα
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