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Abstract 

The thesis reviews the most commonly used volatility forecasting models from the 

ARCH/GARCH, realized volatility and stochastic volatility forecasting frameworks, with the 

main focus being placed on Stochastic-Volatility Jump-Diffusion (SVJD) models, on the 

ways of how high-frequency power-variation estimators can be used in SVJD model setting, 

and on the use of Bayesian methods for the estimation of SVJD model parameters and latent 

states. SVJD-RV-Z class of models is developed, utilizing the realized variance for better 

estimation of the stochastic variances, and the non-parametric Z-Estimator for more accurate 

estimation of price jumps. Several adapted particle filters, specifically designed for latent-

state filtering in SVJD models, are derived, and a Sequential Gibbs Particle Filter (SGPF) 

algorithm is developed for the sequential learning of their parameters. In the empirical study, 

four SVJD models (with intraday data, self-exciting jumps in prices and volatility, as well as 

multiple volatility components) are applied for the task of realized volatility forecasting on 

the time series of 7 foreign exchange rates and 10 ETF/ETN securities in the daily, weekly 

and monthly forecast horizon. The performance of the SVJD models is compared with 3 

GARCH models (GARCH, EGARCH and GJRGARCH), 15 HAR model specifications 

(HAR, AHAR, SHAR, HARJ and HARQ), and 15 Echo State Neural Network (ESN) based 

volatility models developed by the author. The SVJD-RV-Z models with jumps in volatility 

and prices are shown to exhibit the highest out-sample predictive power, comparable to the 

best HAR and ESN model specifications. 
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Abstrakt 

Disertační práce rozebírá nejpoužívanější modely volatility (modely ARCH/GARCH, 

modely realizované volatility a modely stochastické volatility), a dále se podrobněji zaměřuje 

na modely stochastické volatility a skoků (SVJD), na možnosti využití vysoko-frekvenčních 

odhadů mocninných variací v rámci SVJD modelů, a na Bayesovské metody odhadu SVJD 

modelů a jejich latentních stavových proměnných. Autor v práci vyvíjí třídu tzv. SVJD-RV-Z 

modelů, využívajících realizovanou volatilitu pro přesnější odhad stochastické volatility, a 

neparametrický Z-Estimátor skoků pro přesnější odhad cenových skoků. V práci je vyvinuto 

několik adaptovaných částicových filtrů, odvozených speciálně pro účely přesnějšího 

filtrování latentních stavových proměnných v SVJD modelech, a dále Sequential GIbbs 

Particle Filter (SGPF) algoritmus, umožňující sekvenciální odhad parametrů SVJD modelů. 

V provedené empirické studii jsou vyvinuty 4 SVJD modely (využívající intradenní data, 

samo-excitující se skoky v ceně i ve volatilitě, i více komponent pro spojitou volatilitu), které 

jsou aplikovány pro účely predikce realizované volatility na časových řadách 7 měnových 

kurzů a 10 ETF/ETN aktiv, v denním, týdenním a měsíčním horizontu. Prediktivní síla SVJD 

modelů je porovnána s 3 GARCH modely (GARCH, EGARCH a GJR-GARCH), 15 HAR 

modely (HAR, AHAR, SHAR, HARJ a HARQ, plus jejich logaritmické a odmocninové 

verze), a 15 modely založených na Echo State Neuronových sítích (ESN). SVJD-RV-Z 

modely se skoky v ceně a ve volatilitě dosáhly mezi testovanými modely nejvyšší prediktivní 

síly, srovnatelné s nejlepšími zástupci HAR a ESN modelů. 
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Introduction 

Volatility of financial asset returns, commonly represented by their variance or 

standard deviation, plays a crucial role in many areas of finance, such as asset pricing, 

portfolio optimization, Value at Risk estimation, derivatives valuation and quantitative 

trading. Modelling and forecasting of volatility is complicated by the fact that it is an 

unobservable quantity with relatively complex dynamics that includes volatility clustering, 

long memory, price and volatility jumps, jump clustering, asymmetries, contagion effects, as 

well as stochastic variability of the volatility itself (Andersen et al, 2005). The interplay 

between these effects has a dramatic effect on the shape of the asset return distribution in 

different horizons, leading to the effects of fat tails (increased kurtosis) and asymmetry 

(increased skewness) that tend to vary through the time. As the knowledge of the expected 

return distribution plays an essential role in areas such as option pricing and Value at Risk 

estimation, the development of volatility modelling and forecasting methods capable of 

capturing all the empirically observed effects of the volatility process is of high importance. 

In the presented study, different approaches of volatility estimation and modelling will 

be reviewed, including the ARCH/GARCH models, Stochastic volatility models, Realized 

volatility models, Option-based volatility models, and neural network based approaches. The 

focus will be placed in particular on the Stochastic-Volatility Jump-Diffusion (SVJD) models, 

on the ways of how non-parametric high-frequency based estimators can be integrated into 

them, and on the Bayesian estimation methods such as Markov-Chain Monte-Carlo (MCMC) 

and Particle Filters that can be used for the estimation of the SVJD models. 

While SVJD models represent a theoretically powerful tool for the modelling and 

forecasting of stochastic volatility and jumps, the difficulties of their estimation – especially 

regarding the fact that they view volatility and jumps as latent time series that need to be 

estimated – caused them to often got outperformed by simpler approaches in the empirical 

studies in the past. Especially in the recent years, Realized Volatility models, utilizing high-

frequency estimators such as the realized variance and bi-power variation, computed from 

intraday returns, exhibited an excellent performance in volatility forecasting studies and 

outperformed most of the other volatility forecasting methods, including the GARCH models 

(Andersen and Bollerslev, 1998) and Stochastic Volatility models (Deo et al., 2006), while 

being on par with the option-based forecasts (Pong et al, 2004, Koopman et al., 2005). 
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One of the main contributions of the author is thus to introduce the SVJD-RV and 

SVJD-RV-Z models (proposed in Fičura and Witzany, 2015 and Fičura and Witzany, 2017), 

which operate under the theoretically appealing SVJD model framework, while using the non-

parametric, high-frequency based power-variation estimators of volatility and jumps as 

additional sources of information. The idea stems from the research in Takahashi, Omori and 

Watanabe (2009), which will be extended to the case of models with jumps. The SVJD-RV 

model uses the realized variance (Andersen and Bollerslev, 1998) as an additional source of 

information for the estimation of the stochastic variance, while the SVJD-RV-Z model uses 

also the Z-Estimator of jumps (Barndorff-Nielsen and Shephard, 2004) as an additional 

source of information for the estimation of the times of jump occurrences. 

The author presents an MCMC algorithm to estimate SVJD models with self-exciting 

jumps, that was first proposed in Fičura and Witzany (2016) for the SVJD models and 

extended in Fičura and Witzany (2017) for the SVJD-RV and SVJD-RV-Z models.  

In this thesis, the MCMC estimation approach will be contrasted with an alternative 

estimation approach based on Particle Filters, stemming from the recently popularized 

framework of particle learning (Carvalho et al., 2010). The final estimation of the proposed 

SVJD models will then be performed with the newly developed Sequential Gibbs Particle 

Filter (SGPF) (Fičura and Witzany, 2018), that builds on the earlier particle learning 

algorithms, especially the Gibbs Particle Filters developed in Gilks and Berzuini (2001), the 

Particle MCMC of Andrieu et al. (2010), and the Marginalized Re-Sample Move algorithm 

developed in Fulop and Li (2013).  

Another area explored in the thesis is the notion of adaptation of Particle Filter 

proposal distributions to the observed returns (and possibly the realized variances and the Z-

Statistics as well), with the goal of improving their performance with regards to the estimation 

of the latent states of SVJD models. The author derives the adapted proposal distributions for 

the price jump occurrences and sizes, as well as volatility jump occurrences in a SVJD model 

with self-exciting jumps, and subsequently verifies the supreme performance of the adapted 

particle filter compared to the un-adapted one in a series of simulation studies. 

As an additional contribution, not related to SVJD models, the author extends on his 

work in Fičura (2017) on the use of Echo State Neural Networks (ESN) for the purpose of 

realized variance forecasting, and performs an empirical test of different versions of the ESN 

model with alternative power-variation based predictors, such as realized variance, bi-power 
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variation based jump variance estimates, realized semi-variance and realized quarticity. The 

proposed ESN models are included as benchmark models in the performed empirical study. 

In the empirical study, the author applies four SVJD and SVJD-RV-Z models, with 

features such as self-exciting jumps in returns and volatility and multiple volatility 

components, to the time series of 7 major currency exchange rates over the period from 

1.11.1999 to 15.6.2015, and to the time series of 10 most commonly traded ETF/ETN funds 

over the period from 2.1.1998 to 1.6.2018, for the purpose of forecasting the realized variance 

in the 1-Day, 5-Day and the 22-Day horizon. As benchmark models, 15 different 

specifications of the ESN model, three most commonly used GARCH model specifications 

(GARCH, EGARCH and GJR-GARCH), and 18 specifications of the HAR-RV model (HAR, 

AHAR, SHAR, HARJ, HARQ, plus their logarithmic and square-root versions) are used. The 

accuracy of the realized variance forecasts of all the models is then assessed with the R-

Squared criterion, showing that the proposed SVJD and ESN models exhibit comparable or 

better predictive power than the best benchmark models from the HAR model family. 

 The rest of the study is organized as follows. In Section 1 the main volatility 

modelling frameworks and individual models are discussed. In Section 2, the four SVJD 

models used in the empirical part of the study are specified. Section 3 explains the Bayesian 

estimation methods used for SVJD model estimation, parameter learning and latent states 

filtering. Section 4 contains a simulation study and an empirical study in order to assess the 

filtering performance and the convergence properties of the proposed particle filters and the 

SGPF method. In Section 5 is the main empirical study of the predictive power of different 

volatility forecasting models. Section 6 contains conclusion of the main results and discussion 

about the topic for future research. Appendix in section 7 contains a derivation of several 

approximately adapted particle filters, whose performance is tested in the simulation study in 

Section 5. 
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1. Volatility models 

The unobservable character of volatility of financial time series led the development of 

several different frameworks of its modelling. These are most commonly categorized into 

four groups, known as ARCH/GARCH models, Stochastic Volatility models, Realized 

Volatility models and Option-Based volatility models (Andersen et al, 2005). 

1.1. Historical development 

The ARCH/GARCH modelling framework models volatility (i.e. the conditional 

variance of market returns) as a deterministic function of the squared returns in the past, 

computed on the same time-frequency. Models of this kind include the EWMA model, the 

ARCH model (Engle, 1982), and its generalized version, the GARCH model (Bollerslev, 

1986). Over the years, large number of ARCH/GARCH model extensions have been 

proposed, striving capture additional features of the volatility dynamics. Among the most 

commonly used ones are the asymmetric GARCH models, designed to capture the negative 

correlation between volatility and returns, observable especially on the equity markets (Black, 

1976). The models of this kind include the AGARCH model (Engle and Ng 1990), TGARCH 

model (Zakoian, 1994), QGARCH model (Sentana, 1995), GJR-GARCH model (Glosen, 

Jagannathan and Runkle, 1993) or the EGARCH model (Nelson, 1991). Another important 

feature of volatility dynamics is the long-memory, causing the autocorrelation function of 

squared returns to decay in a slow hyperbolic way instead of the exponential way assumed by 

the short-memory models. Extensions of the GARCH model striving to capture the long-

range dependencies include the FIGARCH model (Bailie, Bollerslev and Mikkelsen, 1996), 

CGARCH (Engle and Lee, 1999) model or the HARCH model (Muller and Dacorogna, 

1997).  For an overview of ARCH/GARCH models see Bollerslev (2008), while a large-scale 

study of predictive power of different ARCH/GARCH model specifications can be found in 

Hansen and Lunde (2005). 

An alternative framework represent Stochastic Volatility models (Shephard, 2004), 

modelling volatility as a latent stochastic process with its own random component. The fact 

that volatility is viewed as an unobservable latent state variable significantly complicates the 

estimation of these models, as it requires the estimation of the whole historical evolution of 

the stochastic volatility latent states (Andersen et al., 2005). To perform this task, 

computationally intensive estimation methods have been proposed, such as EMM (Andersen, 

Benzoni and Lund, 2002, Chernov, 2003), MCMC (Jacquier, Polson and Rossi, 1994, Kim, 
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Shephard and Chib, 1998, Eraker, Johannes and Polson, 2003, Eraker, 2004) or Particle 

Filters (Danielsson, 1994, Sandmann and Koopman, 1998, Golightly, 2009, Fulop and Li, 

2013, or Fulop, Li and Yu, 2015). 

Based on the works of Clark (1973), Taylor (1986) formulated the first genuinely 

stochastic volatility model, commonly known as Log-SV, in which the logarithm of the 

variance follows an AR(1) process. Correlation between volatility and returns can easily be 

captured in the SV models by introducing a correlation parameter between the random 

component of the return and volatility stochastic processes. Extensions capturing the long-

memory include the LMSV model (Breidt, Crato and De Lima, 1998, Harvey, 1998), the 

multiple-component SV model (Shephard, 1996, Barndorff-Nielsen and Shephard, 2002), as 

well as regime-switching approaches, such as the MSSV model (So, Lam and Li, 1998) or the 

Markov-Switching Multifractal (MSM) model of Calvet and Fisher (2001).  

Stochastic-Volatility Jump-Diffusion (SVJD) models add a discontinuous component 

(jumps), into the price or the volatility equation, with the goal of better capturing the extreme 

tails of the asset return distribution. Andersen, Benzoni and Lund (2002) and Chernov et al. 

(2003) use the EMM method to estimate models with jumps in returns, while Eraker, 

Johannes and Polson (2003) and Eraker (2004) incorporate jumps in returns as well as 

volatility and estimate them with the MCMC method. Models with self-exciting jumps have 

further been proposed in Fulop, Li and Yu (2015) and Fičura and Witzany (2016) and 

estimated with particle filters and MCMC respectively. 

With the increased availability of high-frequency financial data, a third volatility 

modelling framework emerged, known as Realized Volatility models, striving to estimate the 

underlying stochastic volatility from the intraday returns (Andersen et al., 2005). The first 

estimator of this kind was the Realized Variance, proposed by Andersen and Bollerslev 

(1998), which estimates the quadratic variation of the price process over the given day, by 

summing up all squared high-frequency returns over the given day. Due to the relatively low 

levels of noise of these estimates, Andersen et al. (2003) propose to use them as a directly 

observable proxy of the stochastic variance and use time series models such as ARIMA, or 

the long-memory ARFIMA for their modelling. Similar approach is used in the HAR model 

of Corsi (2008), which captures the long-memory of the realized variance in an approximate 

way, and due to its simple estimation (via OLS linear regression) and high performance in 

empirical studies has became the industry benchmark. 
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With further developments in the asymptotic theory of realized power variations, 

estimators were developed that enable the decomposition of the realized variance into its 

continuous and discontinuous components (Barndorff-Nielsen and Shephard 2004, Andersen, 

Bollerslev and Diebold 2007), the most common of which is the bi-power variation estimator 

of the integrated variance, and the associated Z-Estimator of jumps. As the continuous and the 

discontinuous components of quadratic variation tend to exhibits different levels of 

persistence (with the jumps being far less persistent than the stochastic volatility), the 

decomposition can be used to achieve improved forecasts (Andersen et al., 2007). 

Additional estimators have further been proposed such as the realized semi-variance, 

enabling to capture the asymmetry of the realized variance (Barndorff Nielsen et al., 2010, 

Patton and Shephard, 2005), or the realized quarticity, associated with the volatility of its 

noise (Barndorff Nielsen and Shephard, 2002, Bollerslev, Patton and Quadvlieg, 2015). 

In the recent years, models that view the realized variance as a noisy estimator of the 

stochastic variance started to become more common. This includes the GARCH-RV model 

(Hansen and Lunde, 2012), operating in the GARCH model framework, or the HARQ model 

(Bollerslev, Patton and Quadvlieg, 2015) and the HARS model (Bekierman and Manner, 

2018), which view the noise of the realized variance as heteroskedastic and use the realized 

quarticity for its estimation. 

The SV-RV model, utilizing the realized variance as additional source of information 

in the stochastic-volatility model setting was first proposed in Takahashi, Omori and 

Watanabe (2009). The model into a SVJD-RV model, for return process with jumps, in Fičura 

and Witzany (2015) and Fičura and Witzany (2017), who also proposed to use the Z-

Estimator (Barndorff-Nielsen and Shephard 2004) as an additional source of information for 

the jump estimation, giving rise to the SVJD-RV-Z model. Dobrev and Szerszen (2010) and 

Koopman and Scharth (2013) have further explored the utilization of realized variance 

estimators in stochastic volatility models, while Maneesoonthorn, Forbes and Martin (2017) 

provide an alternative extension to the SVJD model setting. 

The fourth volatility modelling framework represent the option-based volatility 

models, which derive the future volatility expected by the market participants, from the 

publicly traded option prices. This can be done either with the Black-Scholes formula (Black 

and Scholes, 1973), or in a more advanced way with the Model-Free volatility (Neuberger and 

Britten-Jones, 2000 and Jiang and Tian, 2005), which is valid for a wide variety of asset price 
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processes, while the Black-Scholes model assumes the price to follow specifically the 

Geometric Brownian Motion process.  

As the option prices include the volatility risk premium (Bakshi and Kapadia, 2003, 

Eraker, 2009), the option-based volatility forecasts are valid only under the risk-neutral 

probability measure and tend to over-estimate the future volatility under the real-world 

probability measure (Carr and Wu, 2008). To cope with this problem, the option-based 

forecasts need to be adjusted as shown in Muzzioli (2008). Numerous studies have confirmed 

that the option-based volatility forecasts tend to perform on a similar level to the best of the 

realized volatility models (Poon and Granger, 2003, Pong et al, 2004, Koopman et al., 2005). 

Additionally, their performance could further be increased if the time-varying character of the 

volatility risk premium was taken into account. The time-variability of the volatility risk 

premium has been studied in Carr a Wu (2008), Todorov (2009), Chen a Poon (2013) or 

Fičura (2014). 

1.2. ARCH/GARCH models 

The traditional volatility modelling framework encompasses the moving average 

models (EWMA) as well as the family of ARCH and GARCH models. The models operate on 

a single frequency (usually daily) and model the conditional variance of asset returns as a 

deterministic function of the past squared returns (or alternatively residuals, if the conditional 

mean of the return process is modelled as well). 

1.2.1. Assumed price process 

Let 𝑝𝑡 denote the logarithm of the asset price at time 𝑡 and assume that the daily 

logarithmic returns 𝑟𝑡 = 𝑝𝑡 − 𝑝𝑡−1 are governed by the following generally defined 

stochastic process: 

Where 𝜇𝑡|𝑡−1 denotes the conditional mean, 𝜎𝑡|𝑡−1 the conditional volatility (square 

root of the conditional variance) and 𝑧𝑡 ~ 𝑖. 𝑖. 𝑑., 𝐸(𝑧𝑡 ) = 0, 𝑉𝑎𝑟(𝑧𝑡 ) = 1 is a white noise 

variable, usually assumed to be Gaussian or Student-t distributed. 

 𝑟𝑡 = 𝜇𝑡|𝑡−1 + 𝜀𝑡 = 𝜇𝑡|𝑡−1 + 𝜎𝑡|𝑡−1 𝑧𝑡 

(

(1) 



Ing. Milan Fičura Dissertation thesis 26.8.2018 

17 

 

The quantity that we will strive to model and predict is the conditional variance 𝜎𝑡|𝑡−1
2 . 

As the underlying 𝜎𝑡|𝑡−1
2  is unobservable, the traditional volatility models utilize the fact that 

squared residuals 𝜀𝑡
2 represent an unbiased estimate of 𝜎𝑡|𝑡−1

2 : 

The conditional variance is then modelled as a deterministic function of the past 

squared residuals, i.e. 𝜎𝑡|𝑡−1
2 = 𝑓(εt−1

2 , εt−2
2 , … , ε1

2). 

As the conditional mean 𝜇𝑡|𝑡−1 is for most financial time series close to zero, it is often 

assumed that 𝜇𝑡|𝑡−1 = 0 and the models are formulated with respect to the squared daily 

returns as 𝜎𝑡|𝑡−1
2 = 𝑓(𝑟𝑡−1

2 , 𝑟𝑡−2
2 , … , 𝑟1

2). 

i.e. if 𝜇𝑡|𝑡−1 ≈ 0, then: 

1.2.2. Moving Average models 

A simple approach of how to model the conditional variance is to apply moving 

average models to the squared daily residuals (or returns). The most commonly used averages 

for that purpose are the Simple Moving Average (SMA), Weighted Moving Average (WMA) 

and the Exponentially Weighted Moving Average (EWMA). 

The SMA model estimates the conditional variance as a simple arithmetic average of 

the squared residuals over the last 𝑛 days, with 𝑛 being the parameter of the model: 

The main drawback of the model is that it assigns the same weights to all of the 

squared returns in the utilized moving window, which does not correspond to the fact that 

more recent returns tend to influence the current conditional variance more. 

 𝐸(εt
2)  =  𝐸(𝜎𝑡|𝑡−1

2  𝑧𝑡
2) =  𝜎𝑡|𝑡−1

2  

(

(2) 

 𝐸(𝑟t
2)  =  𝐸(𝜎𝑡|𝑡−1

2  𝑧𝑡
2) =  𝜎𝑡|𝑡−1

2  

(

(3) 

 𝜎̂𝑡
2 = 𝑛−1 ∑(𝑟𝑡−𝑖 −  𝜇)2 

𝑛−1

𝑖=0

= 𝑛−1 ∑ 𝜀𝑡−𝑖
2  

𝑛−1

𝑖=0

 

(

(4) 
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The WMA model solves the problem by assigning linearly decreasing weights to the 

past returns over the last 𝑛 periods: 

While the EWMA model uses exponentially decreasing weights: 

Where 𝛾 is the parameter of the exponential weight decay. 

The EWMA model is the most popular model among the moving average models. It is 

also the recommended volatility model by the RiskMetrics methodology of J.PMorgan 

(1994), which suggest as recommended parameter values 𝛾 = 0,06 and 𝜇 = 0. 

Alternatively, the parameter 𝛾 (as well as the parameter 𝑛 in the SMA and WMA 

models) can be found with Maximum Likelihood Estimation (MLE) which will be described 

in the next section as the estimation method for the GARCH model. 

While the EWMA model tends to provide reasonable estimates of the underlying 

conditional variance, it does not include the important effect of mean-reversion, which plays 

an important role in the conditional variance dynamics. This issue will be solved by the more 

advanced class of ARCH and GARCH models. 

1.2.3. ARCH model 

The ARCH model, introduced by Engle (1982), proposes to model the conditional 

variance with a regression on the past squared residuals. The ARCH(q) model, utilizing the 

last q squared residuals, can be defined as follows: 

With 𝛼𝑖 denoting the parameters of the model which have to be non-negative, i.e. 𝛼𝑖 ≥

0 and 𝛼0 > 0.  

 𝜎̂𝑡
2 =

2

𝑛(𝑛 + 1)
∑(𝑛 − 𝑖)(𝑟𝑡−𝑖 − 𝜇)2 

𝑛−1

𝑖=0

= 
2

𝑛(𝑛 + 1)
∑(𝑛 − 𝑖)𝜀𝑡−𝑖

2  

𝑛−1

𝑖=0

 

(

(5) 

 𝜎̂𝑡
2 = 𝛾(𝑟𝑡 −  𝜇)2  + (1 − 𝛾)𝜎̂𝑡−1

2 = 𝛾 ∑(1 − 𝛾)𝑖−1𝜀𝑡−𝑖
2  

∞

𝑖=1

 

(

(6) 

 𝜎𝑡|𝑡−1
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛼2𝜀𝑡−2
2 + ⋯+ 𝛼𝑞𝜀𝑡−𝑞

2  =  𝛼0 + ∑𝛼𝑖𝜀𝑡−𝑖
2

𝑞

𝑖=1

 

(

(7) 
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As 𝐸(εt
2)  =  𝜎𝑡|𝑡−1

2 , the parameters of the model can be estimated with a simple 

Ordinary Least Squares (OLS) regression performed on the squared residuals: 

Or with the Maximum Likelihood Estimation (MLE) as will be case for the 

generalized model GARCH. 

1.2.4. GARCH model 

GARCH model, proposed by Bollerslev (1986), represents a generalization of the 

ARCH model, giving it the structure similar to the ARMA process, used commonly in 

econometrics, for the modelling of the conditional mean. 

The GARCH(p,q) model equation is defined as follows: 

Where 𝜀𝑡−𝑖
2  are the past squared residuals, while 𝜎𝑡−𝑖|t−i−1

2  are the past conditional 

variance estimates, with 𝛼0,  𝛼𝑖 and 𝛽𝑖 being the parameters, which should all be non-

negative. 

The GARCH(1,1) model, which is most commonly used in application, will then have 

the following equation: 

The parameter 𝜔 can further be expressed as 𝜔 = 𝛾𝜎𝐿𝑇
2 , with the parameters 𝛼 + 𝛽 +

𝛾 = 1. The conditional variance 𝜎𝑡|𝑡−1
2  is thus modelled as a weighted average between the 

long-term variance 𝜎𝐿𝑇
2 , the yesterday squared return 𝜀𝑡−1

2  and the yesterday conditional 

variance 𝜎𝑡−1|t−2
2 . 

The GARCH(1,1) can also be transformed into the ARCH(∞) model: 

 𝜀𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛼2𝜀𝑡−2
2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞

2  =  𝛼0 + ∑𝛼𝑖𝜀𝑡−𝑖
2

𝑞

𝑖=1

 

(

(8) 

 𝜎𝑡|𝑡−1
2 = 𝛼0 + ∑𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ ∑𝛽𝑖𝜎𝑡−𝑖|t−i−1
2

𝑝

𝑖=1

 

(

(9) 

 𝜎𝑡|𝑡−1
2 =  𝜔 +  𝛼𝜀𝑡−1

2 +  𝛽𝜎𝑡−1|t−2
2  

(

(10) 
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Or by setting 𝜔 = 0, 𝛼 = 𝛾 and 𝛽 = (1 − 𝛾) into the EWMA model (Andersen et al., 

2005). 

The estimation of the GARCH model parameters can be performed with the Maximum 

Likelihood Method (MLE) in which we set the parameters to the values that maximize the 

likelihood of observing the data. The Log-Likelihood function of the GARCH(1,1) model will 

look as follows: 

1.2.5. Asymmetric GARCH models 

ARCH and GARCH models implicitly assume that volatility reacts identically to 

positive and negative residuals of the asset returns. While this may in the long-run hold on the 

currency markets (Franses and van Dijk, 2000, p.18), it does not hold on the stock markets, 

where the volatility typically exhibits strongly negative correlation with market returns (the so 

called “Leverage effect”, first described by Black, 1976). Positive correlation between 

volatility and returns can, on the other hand, be observed on some of the commodity markets 

(Christie, 1982, Kristoufek, 2014). 

Multiple GARCH model extensions have been proposed in order the capture the 

correlation between returns and volatility. In the following description we will review the 

models AGARCH, GJR-GARCH, TGARCH, QGARCH and EGARCH. 

The AGARCH(1,1) (Asymmetric GARCH) model of Engle and Ng (1990) uses the 

following specification: 

 𝜎𝑡|𝑡−1
2 =  𝜔(1 − 𝛽)−1 +  𝛼 ∑𝛽𝑖−1

∞

𝑖=1

𝜀𝑡−1
2  

(

(11) 

 𝐿𝐿(𝜺,𝜔, 𝛼, 𝛽) = ∑ln [
1

𝜎𝑡√2𝜋
exp(−

𝜀𝑡
2

2𝜎𝑡
2)]

𝑇

𝑡=1

 

(

(12) 

 𝜎𝑡|𝑡−1
2 =  𝜔 +  𝛼(𝜀𝑡−1 − 𝛾)2 +  𝛽𝜎𝑡−1|t−2

2  

(

(13) 
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Positive value of parameter 𝛾 will thus shift the residuals 𝜀𝑡−1 towards negative 

values, causing negative returns to have a more pronounced impact on the conditional 

variance, than the positive returns. 

The GJR-GARCH(1,1) model (Glosen, Jagannathan and Runkle, 1993) attempts to 

capture the Leverage effect by directly introducing an indicator function for the negative 

returns: 

Where 𝐼(𝜀𝑡−1 < 0) is an indicator function that attains value 1 if 𝜀𝑡−1 < 0, and value 0 

otherwise. Parameter 𝛾 will then determine the additional impact of negative 𝜀𝑡−1 on the 

conditional variance in the following day 𝜎𝑡|𝑡−1
2 . 

Indicator function is also used in the TGARCH model of Zakoian (1994), which is, 

however, specified for the conditional standard deviation: 

Alternatively, the QGARCH(1,1) model of Sentana (1995) adds the residual 𝜀𝑡−1 

directly into the variance equation: 

Which unfortunately has the drawback that the predicted variance can be negative if 

the residual 𝜀𝑡−1 is negative and unexpectedly large.  

Finally, the logarithmic EGARCH(1,1) model of Nelson (1991) works with the log-

variance log(𝜎𝑡|𝑡−1
2 ) and uses the normalized residuals 𝑧𝑡 = 𝜎𝑡|t−1

−1 𝜀𝑡 to capture the leverage 

effect. The model equation looks as follows: 

 𝜎𝑡|𝑡−1
2 =  𝜔 +  𝛼𝜀𝑡−1

2 + 𝛾𝜀𝑡−1
2 𝐼(𝜀𝑡−1 < 0) +  𝛽𝜎𝑡−1|t−2

2  

(

(14) 

 𝜎𝑡|𝑡−1 =  𝜔 +  𝛼𝜀𝑡−1𝐼(𝜀𝑡−1 > 0) + 𝛾𝜀𝑡−1𝐼(𝜀𝑡−1 < 0) +  𝛽𝜎𝑡−1|𝑡−2 

(

(15) 

 𝜎𝑡|𝑡−1
2 =  𝜔 +  𝛼𝜀𝑡−1

2 + 𝛾𝜀𝑡−1 +  𝛽𝜎𝑡−1|t−2
2  

(

(16) 

 log(𝜎𝑡|𝑡−1
2 ) =  𝜔 + 𝛼(|𝑧𝑡−1| − 𝐸(|𝑧𝑡−1|)) + 𝛾𝑧𝑡−1 +  𝛽 log(𝜎𝑡−1|t−2

2 ) 

(

(17) 



Ing. Milan Fičura Dissertation thesis 26.8.2018 

22 

 

One advantage of the log-variance formulation is that the predicted variance 𝜎𝑡|𝑡−1
2  can 

never be negative, and there are thus no restrictions on the parameter values. A drawback of 

the model is that in order to perform multi-period forecasts, simulations need to be used, 

while for the models formulated directly for 𝜎𝑡|𝑡−1
2  it is possible to use recursion on the 

previous forecasts. 

1.2.6. Long-Range dependencies in GARCH models 

Another limitation of the GARCH(1,1) model is that it is formally a short-memory 

model, which means that its autocorrelation function decays exponentially with the increasing 

lags. This is not consistent with the observation that shocks into the variance process usually 

decay in a far slower, hyperbolic way (Ding, Granger and Engle, 1993). This may lead to 

decreased performance of the model, especially when long-horizon volatility forecasts are 

constructed (Andersen et al, 2005). 

To cope with this problem multiple GARCH model modifications have been proposed 

in the literature. These can generally be classified either as genuine long-memory models with 

hyperbolic decay, or as model that strive to approximate the long-range dependency in some 

other way. 

The FIGARCH(1,1) model (Fractionally Integrated GARCH) proposed by Bailie, 

Bollerslev and Mikkelsen (1996) is a genuine long-memory model. The model has the 

following structure: 

Where 𝐿 denotes the lag operator and 𝑑 is the parameter of the fractional integration. 

The expression (1 − 𝐿)𝑑 is then called the fractional filter and is defined by the following 

binomial expression: 

 For 𝑑 = 0 the FIGARCH(1,1) model becomes GARCH(1,1) model, while for 𝑑 = 1 

it becomes the IGARCH(1,1) model (integrated GARCH) in which the variance follows a 

non-stationary process with no mean-reversion. For 0 < 𝑑 < 1 is the model mean-reverting 

 𝜎𝑡|𝑡−1
2 =  𝜔 +  𝛽𝜎𝑡−1|t−2

2 + [1 − 𝛽𝐿 − (1 − 𝛼𝐿 − 𝛽𝐿)(1 − 𝐿)𝑑]𝜀𝑡−1
2  

(

(18) 

 (1 − 𝐿)𝑑 = 1 − 𝑑𝐿 +
𝑑(𝑑 − 1)

2!
𝐿2 −

𝑑(𝑑 − 1)(𝑑 − 2)

3!
𝐿3 + ⋯ 

(

(19) 
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with a hyperbolical decrease of the autocorrelation function, and it can further be shown that 

for 0 < 𝑑 < 0.5 it is mean-reverting as well as stationary, while for 0.5 < 𝑑 < 1 it is non-

stationary but still mean-reverting (Ishida and Watanabe, 2008). 

Another approach of how to tackle the long-range dependencies in the variance 

process is to approximate the long-memory with multiple short-memory processes. This is 

done in the CGARCH (Component GARCH) model of Engle and Lee (1999). The standard 

version of the model decomposes the conditional variance 𝜎𝑡|𝑡−1
2  into two components. The 

long-term component 𝜁𝑡|𝑡−1
2  follows a short-memory mean-reverting process around the long-

term unconditional variance: 

While the short-term component (𝜎𝑡|𝑡−1
2 − 𝜁𝑡

2) follows a mean-reverting process 

around the long-term component 𝜁𝑡
2: 

This enables the model to approximately capture the long-memory of 𝜎𝑡|𝑡−1
2 . 

Another way to tackle the long-range dependencies is to use sums of squared residuals 

computed over different time-horizons. This is done in the HARCH model (Heterogenous 

ARCH) proposed by Muller and Dacorogna (1997): 

The model is usually applied in a restricted version where only few horizons 𝑖 are 

chosen, with the common choice being of 𝑖 = {1,5,22}, corresponding to 1-day, 1-week (5 

days) and 1-month (22 days) horizons. The makes the HARCH an early predecessor of the 

HAR-RV model of realized variance (Corsi, 2008), which is currently the most popular model 

from the realized variance modelling framework. 

 𝜁𝑡
2 = 𝜔 + 𝜌𝜁𝑡−1

2 +  𝜑(𝜀𝑡−1
2 − 𝜎𝑡−1|t−2

2 ) 

(

(20) 

 𝜎𝑡|𝑡−1
2 =  𝜔 +  𝛽𝜎𝑡−1|t−2

2 + [1 − 𝛽𝐿 − (1 − 𝛼𝐿 − 𝛽𝐿)(1 − 𝐿)𝑑]𝜀𝑡−1
2  

(

(21) 

 
𝜎𝑡|𝑡−1

2 =  𝜔 + ∑ 𝛾𝑖

𝑛

𝑖=1

(∑𝜀𝑡−𝑗

𝑖

𝑗=1

)

2

 

(

(22) 
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Alternative GARCH model modifications intending to capture the long-memory of the 

volatility process include the FIEGARCH model of Bollerslev and Mikkelsen (1996) or the 

model in Ding and Granger (1996), using a superposition of an infinite number of ARCH 

processes. 

1.2.7. Fat tails of the return distribution 

Another important effect that may not be perfectly captured by the standard GARCH 

models are the fat tails of the return distribution. While the time-varying volatility itself 

induces fat tails into the unconditional return distribution, it is still insufficient to capture 

some of the rapid movements that occur in the asset prices. To cope with this problem an 

alternative distribution can be specified for the noise in the price process. Bollerslev (1987) 

proposes to the use the Student-t distribution, giving rise to the GARCH-t model, while 

Nelson (1991) proposes to use the Generalized Error Distribution (GED).  

1.2.8. Other GARCH modifications 

Large number of additional GARCH model modifications have been proposed in the 

literature. For further discussion and references see Andersen et al (2005). A comprehensive 

list of GARCH modifications can be found in Bollerslev (2008). Comparison of predictive 

power of most of the commonly used ARCH/GARCH models can be found in Hansen and 

Lunde (2005). 

1.3. Stochastic volatility models 

While the ARCH/GARCH models model the conditional variance as a deterministic 

function of past squared daily returns, the Stochastic Volatility (SV) models allow it to follow 

a separate stochastic process with its own random component (Andersen et al., 2005). This is 

theoretically convenient as it enables wide variety of possible model specifications. At the 

same time, it complicates the model estimation as the latent state time series of the stochastic 

variances need to be estimated together with model parameters. For a review of most 

important studies on stochastic volatility models and their estimation methods, see Shephard 

(2005).  

1.3.1. Log-SV model 

One of the first stochastic volatility models that is still widely used today is the log-SV 

model proposed by Taylor (1986). 
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Let us assume that the logarithmic returns of the asset follow the following discrete 

time stochastic process: 

Where 𝑟(𝑡) = 𝑝(𝑡) − 𝑝(𝑡 − 1) denotes the logarithmic return, with 𝑝(𝑡) being the 

logarithm of the asset price at time 𝑡, 𝜎(𝑡) is the conditional standard deviation for day 𝑡, 𝜇(𝑡) 

is the conditional mean and 𝜀(𝑡)~𝑁(0,1) is a Gaussian white noise. 

The log-SV model assumes that the logarithm of the variance ℎ(𝑡) = ln[𝜎2(𝑡)] 

follows an autoregressive AR(1) process defined as follows: 

Where 𝛼 = (1 − 𝛽)𝜃 is the constant of the model, with 𝜃 denoting the long-term log-

variance, 𝛽 is the autoregression parameter, 𝛾 is the volatility of the log-variance and 

𝜀𝑉(𝑡)~𝑁(0,1) is the Gaussian white noise variable governing the log-variance process. 

The leverage effect (correlation between returns and volatility) can easily be captured 

by the model by introducing correlation between 𝜀(𝑡) and 𝜀𝑉(𝑡), determined by an additional 

parameter 𝜌. 

The logarithmic form of the model is very convenient as it assures that the variance 

will never attain negative values, and there is thus no limitation on the parameter values, apart 

from the possible requirement for 𝛽 to be 𝛽 < 1 if we want the volatility to be stationary. 

As the model contains latent state time series it cannot be easily estimated with 

standard estimation methods such as Maximum Likelihood Estimation (MLE) or Generalized 

Method of Moments (GMM). The non-linearity in the relationship between the log-variance 

and the returns further prevents accurate estimation with the use of Kalman Filter. The model 

thus usually has to be estimated with computationally intensive simulation methods such as 

Efficient Method of Moments (EMM), Markov Chain Monte Carlo (MCMC) or Sequential 

Monte Carlo (SME). 

 𝑟(𝑡) = 𝜇(𝑡) + 𝜎(𝑡)𝜀(𝑡) 

(

(23) 

 ℎ(𝑡) = 𝛼 + 𝛽ℎ(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) 

(

(24) 
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1.3.2. Long memory stochastic volatility models 

The main drawback of the log-SV model is that its autocorrelation structure is 

relatively simple and that it cannot capture the long-memory of the stochastic variance 

process. Similarly to the ARCH/GARCH modelling framework, the problem can be solved 

either with a genuine long-memory model or with approximations. 

The incorporation of genuine long memory using fractionally integrated processes into 

the stochastic volatility model setting was first performed by Breidt, Crato and De Lima 

(1998) and Harvey (1998).  

In its most simple version, the LMSV (Long-Memory Stochastic-Volatility) model 

models the stochastic log-variance ℎ(𝑡) as a fractional white noise: 

 

In the more general version of the LMSV model, ℎ(𝑡) is modelled with an 

ARFIMA(p,d,q) process: 

Where 𝐿 denotes the lag operator, and 𝜙(𝐿) and 𝜃(𝐿) are the AR and MA operators 

defined as: 

Breidt, Crato and De Lima (1998) propose an estimation of the model based on 

maximization of the spectral approximation of the Gaussian likelihood. Alternatively, 

Chronopolous (2017) estimates the model with Bayesian Sequential Monte Carlo (Particle 

Filters), by using the Particle Learning approach developed in Liu and West (2001). 

 (1 − 𝐿)𝑑ℎ(𝑡) = 𝛾𝜀𝑉(𝑡) 

(

(25) 

 (1 − 𝐿)𝑑𝜙(𝐿)ℎ(𝑡) = 𝜃(𝐿)𝛾𝜀𝑉(𝑡) 

(

(26) 

 

𝜙(𝐿) = 1 − 𝜙1𝐿 − 𝜙2𝐿
2 − ⋯− 𝜙𝑝𝐿𝑝 

𝜓(𝐿) = 1 + 𝜓1𝐿 + 𝜓2𝐿
2 + ⋯+ 𝜓𝑞𝐿𝑞 

 

(

(27) 
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1.3.3. Multi-Component stochastic volatility models 

An alternative approach of how to approximate long-memory in the stochastic 

volatility model setting is by using models with multiple components. The model can be 

formulated as follows: 

Where 𝜀(𝑡)~𝑁(0,1) and 𝜂𝑖(𝑡)~𝑁(0,1) for all components 𝑖. 

We can see that the model models the log-variance as an additive superposition of 𝑘 

independent AR(1) processes, which are assumed to exhibit different levels of persistence 

(values of 𝛽), which allows the model to approximately capture the long-memory behaviour 

of the volatility process. 

1.3.4. Markov Switching Stochastic Volatility model 

The idea that long-memory of stochastic volatility may in fact be caused by regime 

switching was first proposed by Lamoureux and Lastrapes (1990). Subsequently, Hamilton 

and Susmel (1994) proposed the Markov-Switching ARCH (SWARCH) model in which the 

parameters of an ARCH model change regimes. A similar Markov-Switching ARCH model 

was also proposed by Cai (1994). 

The Markov-Switching Stochastic-Volatility model (MSSV) was developed by So, 

Lam and Li (1998) and the authors estimate it with an MCMC Gibbs Sampler. The model 

extends the standard log-SV model by allowing random shifts in the long-term log-variance 

parameter that are governed by a Markov process.  

The MSSV(K) model can be expressed as follows. 

Suppose that 𝑠(𝑡) is an unobservable discrete K-State Markov process, with domain 

{1,2, …𝐾} and transition probability matrix: 

 

𝑟(𝑡) = 𝜇(𝑡) + 𝜎(𝑡)𝜀(𝑡) 

 log[𝜎2(𝑡)] = 𝜃0 + ∑𝜃𝑖(𝑡)

𝑘

𝑖=1

 

𝜃𝑖(𝑡) = 𝛽𝜃𝑖(𝑡 − 1) + 𝛾𝑖𝜂𝑖(𝑡) 

(

(28) 

 𝑷 = (

𝑝1,1 ⋯ 𝑝1,𝐾

⋮ ⋱ ⋮
𝑝𝐾,1 ⋯ 𝑝𝐾,𝐾

) 

(

(29) 
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Where transition probabilities are given as 𝑝𝑖𝑗 = 𝑃𝑟[𝑠(𝑡) = 𝑗|𝑠(𝑡 − 1) = 𝑖], with 

∑ 𝑝𝑖𝑗
𝐾
𝑗=1 = 1 for all 𝑖 = 1,… , 𝐾. 

The log-variance equation is then given as follows: 

Where: 

Where 𝐼𝑗(𝑡) denotes an indicator variable that is equal to 1 when 𝑠(𝑡) is greater than or 

equal to 𝑗. 

The authors further specify the model so that all 𝛼𝑗 for 𝑗 = 2,…𝐾 are negative. The 

first regime does thus correspond to the highest log-variance level state, while the last regime 

corresponds to the lowest state. 

1.3.5. Markov Switching Multifractal 

An example of a pure-jump Markov-Switching model of stochastic volatility is the 

Markov-Switching-Multifractal (MSM) model, developed by Calvet and Fisher (2001). The 

model is able to capture long memory of the volatility process, as well as the fat tails of the 

short-horizon return distribution. And important advantage of the model is also that it has a 

tractable likelihood and it can thus be estimated with the Maximum Likelihood Method. 

The model solves the problem of the transition matrix estimation by parametrizing it 

with only 4 parameters. This enables the model to utilize large number of components (10 or 

more), enabling for large number of volatility latent states, which improves its precision. 

Originating from the multifractal Brownian motion process, the MSM model is also 

able to efficiently capture both, long-memory, as well as the fat tail of the short-horizon return 

distributions (commonly associated with jumps). 

The MSM model assumes the returns to follow: 

 ℎ(𝑡) = 𝛼𝑠(𝑡) + 𝛽ℎ(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) 

(

(30) 

 𝛼𝑠(𝑡) = 𝛼1 + ∑ 𝛼𝑗𝐼𝑗(𝑡)

𝐾

𝑗=2

 

(

(31) 

 𝑟(𝑡) = 𝜎(𝑡)𝜀(𝑡) (
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Where 𝜀(𝑡)~𝑁(0,1). 

And the volatility 𝜎(𝑡) is given as: 

Where the 𝑀𝑖(𝑡), for 𝑖 = 1,… , 𝑘, represent multipliers, which are for each time 𝑡 

drawn randomly from a distribution 𝑀, with probability 𝛾𝑖, given by: 

Where 𝛾1 ∈ (0,1) and 𝑏 ∈ (1,∞). The given parametrization was introduced in order 

to corresponds to the discretization of Poisson arrivals with exponentially increasing 

intensities. As can be seen from the equation, given the value of 𝑏 and any single 𝛾𝑥, all other 

𝛾𝑖 will be given. Due to numerical reasons Calvet and Fisher (2001) recommend to set as 

parameter the largest 𝛾𝑖, which is the 𝛾𝑘. 

The final part of the model is the distribution 𝑀, from which the arrivals are drawn. 

This can, in principle, be any distribution, as long as 𝑀 ≥ 0 and 𝐸(𝑀) = 1. Due to simplicity 

of estimation Calvet and Fisher (2001) propose the Binomial MSM model, in which 

distribution 𝑀 attains only two values, 𝑚0 and 𝑚1, parametrized so that 𝑚1 = 2 − 𝑚0. 

The Binomial MSM model thus has only 4 parameters: 𝑚0, 𝜎𝐿𝑇, 𝑏 and 𝛾𝑘, and one 

meta-parameter, 𝑘, determining the number of multipliers. 

A convenient property of the Binomial MSM model is, that it can be estimated with 

the Maximum Likelihood Method, by using Bayesian updating. 

Lets denote 𝑀(𝑡) to be the Markov state vector, attaining finite set of values 

𝑚1, … ,𝑚𝑑 ∈ 𝑅+
𝑘 , and dynamics given by the transition matrix 𝐴 = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑑

, with 

components 𝑎𝑖,𝑗 = 𝑃[𝑀(𝑡 + 1) = 𝑚𝑗|𝑀(𝑡) = 𝑚𝑖]. Conditional on the volatility state 𝑚𝑖, the 

return has the Gaussian density 𝑁[𝑟(𝑡); 0, 𝜎2(𝑚𝑖)], determined by the variance 𝜎2(𝑚𝑖), 

given as a function of 𝑚𝑖. 

(32) 

 
𝜎(𝑡) = 𝜎𝐿𝑇 (∏𝑀𝑖(𝑡)

𝑘

𝑖=1

)

1/2

 

(

(33) 

 
𝛾𝑖 = 1 − (1 − 𝛾1)

(𝑏𝑖−1) 

(

(34) 
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While we do not directly observe the Markov state vector 𝑀(𝑡), we can compute the 

conditional probability vector 𝛱(𝑡) = [𝛱1(𝑡),… , 𝛱𝑑(𝑡)] ∈ 𝑅+
𝑘   ,  with the conditional 

probabilities defined as 𝛱𝑗(𝑡) = 𝑃[𝑀(𝑡) = 𝑚𝑗|𝑟(1), … , 𝑟(𝑡)]. 

The values of the conditional probability vector 𝛱(𝑡) are computed recursively, via 

Bayesian updating, based on the previous value 𝛱(𝑡 − 1) and the return  𝑟(𝑡): 

Where 𝟏 = (1,… ,1) ∈ 𝑅𝑑 and 𝑥 ∗ 𝑦 denotes the Hadamard product, given as 

(𝑥1𝑦1, … , 𝑥𝑑𝑦𝑑), for any 𝑥, 𝑦 ∈ 𝑅𝑑. And: 

With the values of 𝛱𝑗(0) chosen as 𝛱𝑗(0) = ∏ 𝑃(𝑀 = 𝑚𝑗)𝑘
𝑙=1  for all 𝑗. 

The Log-Likelihood function is the equal to: 

where 𝑥 .  𝑦 denotes the inner product 𝑥1𝑦1 + ⋯+ 𝑥𝑑𝑦𝑑 for any 𝑥, 𝑦 ∈ 𝑅𝑑. 

The Binomial MSM performs well empirical tests, outperforming the GARCH(1,1), as 

well as the FIGARCH(1,1) model (Calvet and Fisher, 2001). 

The model can further be extended into an asymmetric version, which takes into 

account negative correlation between volatility and returns (Lux, 2008). The asymmetric 

MSM model can be estimated with Generalized Method of Moments (GMM). 

1.3.6. Stochastic-Volatility Jump-Diffusion models 

The stochastic volatility modelling framework further enables to decompose the 

variability of the price into its continuous component (stochastic volatility) and its 

discontinuous component (jumps). The models of this kind are called Stochastic-Volatility 

Jump-Diffusion (SVJD) models (first proposed in Bates, 1996). 

 𝛱(𝑡) =
𝜔[𝑟(𝑡)] ∗ [𝛱(𝑡 − 1)𝐴]

{𝜔[𝑟(𝑡)] ∗ [𝛱(𝑡 − 1)𝐴]}𝟏′
 

(

(35) 

 𝜔[𝑟(𝑡)] = {𝑁[𝑟(𝑡); 0, 𝜎2(𝑚1)],… , 𝑁[𝑟(𝑡); 0, 𝜎2(𝑚𝑑)]} 

(

(36) 

 ln𝐿[𝑟(𝑡), … 𝑟(𝑇);𝑚0, 𝜎𝐿𝑇 , 𝑏 , 𝛾𝑘] = ∑ln{𝜔[𝑟(𝑡)] . [𝛱(𝑡 − 1)𝐴] }

𝑇

𝑡=1

 

(

(37) 
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The most commonly used SVJD model combines the log-SV model of Taylor (1986) 

with Poisson jumps. The model has 2 equations. 

The return equation is: 

Where 𝑟(𝑡) is the daily logarithmic return, 𝜇 is the constant drift rate, 𝜎(𝑡) is the 

stochastic volatility, 𝜀(𝑡)~𝑁(0,1) is a standard normal white noise, 𝐽(𝑡)~𝑁(𝜇𝐽, 𝜎𝐽) is a 

variable determining the jump sizes and 𝑄(𝑡)~Bern[𝜆] is a Bernoulli distributed variable 

determining the times of jump occurrences that occur with intensity 𝜆. 

And the log-variance equation is the given by the log-SV model: 

Where ℎ(𝑡) = ln[𝜎2(𝑡)] is the logarithm of the conditional variance, long-term log-

variance 𝜃 is given by 𝛼 = (1 − 𝛽)𝜃, 𝛽 is the autoregression coefficient, 𝛾 is the volatility of 

the log-variance, and 𝜀𝑉(𝑡)~𝑁(0,1) is the white noise in the log-variance equation which can 

be correlated with 𝜀(𝑡) with correlation 𝜌. 

The model can be extended to account for jump clustering effects by allowing the 

jumps to be self-exciting (Fičura and Witzany, 2016). This can be achieved by letting the 

jumps to follow a Hawkes process with jump occurrences given by 𝑄(𝑡)~Bern[𝜆(𝑡)], and the 

time-varying jump intensity 𝜆(𝑡) calculated as follows: 

Where 𝜆(𝑡) is the jump intensity, long-term jump intensity 𝜃𝐽 can be calculated as 

αJ = (1 − βJ − 𝛾𝐽)𝜃𝐽, parameter 𝛽𝐽 gives the rate of exponential decay of the jump intensity 

to its long-term level, while 𝛾𝐽 is the self-exciting parameter telling us how much will the 

jump intensity increase in the day following a jump. 

 𝑟(𝑡) = 𝜇 + 𝜎(𝑡)𝜀(𝑡) + 𝐽(𝑡)𝑄(𝑡) 

(

(38) 

 ℎ(𝑡) = 𝛼 + 𝛽ℎ(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) 

(

(39) 

 𝜆(𝑡) = 𝛼𝐽 + 𝛽𝐽𝜆(𝑡 − 1) + 𝛾𝐽𝑄(𝑡 − 1) 

(

(40) 
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An additional extension of the model would be to add jumps into the log-variance 

equation as well (Eraker et al., 2003). The equation for the evolution of log-variances does 

then become: 

Where 𝐺(𝑡)~𝑁(𝜇𝐺 , 𝜎𝐺) determines the log-variance jump sizes and 𝑈(𝑡)~Bern[𝜆𝑉] 

the log-variance jump occurrences. Correlation can further be imposed between the jump and 

log-variance jump sizes, 𝐽(𝑡) and 𝐺(𝑡), with parameter 𝜌𝐽, as well as on the binary variables, 

𝑄(𝑡) and 𝑈(𝑡), determining the jump occurrences, 𝜌𝑄. 

SVJD models are most commonly estimated with EMM, MCMC or Particle Filters. 

The estimation of models with jumps in price via the EMM method was first proposed in 

Andersen, Benzoni and Lund (2002) and Chernov et al. (2003), and via particle filters in 

Golightly, 2009. Models with jumps in price and volatility as well were estimated with 

MCMC in Eraker, Johannes and Polson (2003) and Eraker (2004), and with Particle Filters in 

Fičura and Witzany (2018). Similarly, a model with self-exciting jumps, estimated with 

MCMC, is proposed in Fičura and Witzany (2016), while models with infinite activity self-

exciting jumps in price and volatility are proposed in Fulop, Li and Yu (2015) and estimated 

with Particle Filters. 

1.3.7. Continuous time stochastic volatility models 

Apart from volatility forecasting and Value at Risk estimation, stochastic volatility 

models have become an important tool used in the area of option pricing. For that purpose, 

they are usually formulated in continuous time, as the continuous time representation is 

convenient for the derivation of analytical solutions of the option prices. This allows the 

models to be estimated with calibration to the currently observed option prices, which should 

provide us with forward-looking parameter estimates, that can subsequently be used to value 

more exotic kinds of options on the same underlying asset. 

Let us assume that the logarithm of the stock price follows the following continuous 

time stochastic process: 

 ℎ𝑡 = 𝛼 + 𝛽ℎ𝑡−1 + 𝛾𝜀𝑉,𝑡 + 𝐺𝑡𝑈𝑡 

(

(41) 

 𝑑𝑝(𝑡) =  𝜇(𝑡)𝑑𝑡 +  𝜎(𝑡)𝑑𝑊(𝑡) (
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Where 𝑑𝑝(𝑡) denotes the differential of the logarithm of the stock price, 𝜇(𝑡) is the 

instantaneous drift rate, 𝑑𝑡 is the differential of time, 𝜎(𝑡) is the instantaneous volatility and 

𝑑𝑊(𝑡) is the differential of the Wiener process. 

The instantaneous volatility 𝜎(𝑡) can then be modelled with its own continuous-time 

stochastic process. A popularly used process for this kind is the Cox-Ingersoll-Ross (CIR) 

process, which used by the popular Heston model of option pricing (Heston, 1993). The CIR 

process looks as follows: 

As the Heston model provides us with semi-analytical solutions for the option price, 

conditional on the volatility following the CIR process, we can use calibration to set the 

parameters so that they price all options currently observed on the market correctly. The 

calibrated model can then be used to price other, more exotic options, that are not quoted on 

the market. 

Another continuous-time stochastic volatility model is the GARCH Diffusion process 

(Drost and Werker, 1996), which has the property of behaving as the stochastic version of the 

GARCH model when discretized. In the GARCH Diffusion model, volatility follows the 

following process: 

Another popular model is the Hull-White model (Hull and White, 1987), representing 

a continuous-time version of the Log-SV model: 

(42) 

 𝑑𝜎2(𝑡) = 𝛽(𝛼 − 𝜎2(𝑡))𝑑𝑡 + 𝜈𝜎(𝑡)𝑑𝑊𝜎(𝑡) 

(

(43) 

 𝑑𝜎2(𝑡) = 𝛽(𝛼 − 𝜎2(𝑡))𝑑𝑡 + 𝜈𝜎(𝑡)𝑑𝑊𝜎(𝑡) 

(

(44) 

 𝑑 log 𝜎2(𝑡) = 𝛽(𝛼 − log 𝜎2(𝑡))𝑑𝑡 + 𝜈𝑑𝑊𝜎(𝑡) 

(

(45) 



Ing. Milan Fičura Dissertation thesis 26.8.2018 

34 

 

Similarly to the discrete-time stochastic volatility models, their continuous-time 

counterparts can also easily be adjusted to include correlation between returns and volatility 

by setting the correlation between 𝑊(𝑡) and 𝑊𝜎(𝑡) as equal to 𝜌. 

Similarly to the SV models, discrete time SVJD models can also be formulated in the 

continuous time as well. The SVJD model with self-exciting jumps in prices, described in the 

previous chapter, is, for example, just a discretization of the continuous-time model in the 

following form (Fičura and Witzany, 2015): 

Where ℎ(𝑡) = ln[𝜎2(𝑡)], Pr[dq(t) = 1] = λ(t)dt, 𝑗(𝑡)~𝑁(𝜇𝐽, 𝜎𝐽), and the 𝑊(𝑡) and 

𝑊𝑉(𝑡) are two Wiener processes with correlation 𝜌. 

1.4. Realized volatility estimators 

With the increased quality of intraday financial data, a new approach of volatility 

estimation and modelling emerged, utilizing non-parametric estimators of volatility computed 

from high-frequency data. The first estimator of this kind is the Realized Variance introduced 

by Andersen and Bollerslev (1998), converging, with increasing frequency of its estimation, 

to the quadratic variation of the price process. With advances in the asymptotic theory of 

power variations, addition estimators were proposed, enabling the estimation of other 

properties of the price process. 

1.4.1. Quadratic variation and integrated variance 

Assume that the logarithm of the asset price follows the following generally defined 

stochastic-volatility jump-diffusion process: 

Where 𝑝(𝑡) is the logarithm of the asset price, 𝜇(𝑡) is the instantaneous drift rate, 𝜎(𝑡) 

is the instantaneous volatility, 𝑊(𝑡) is a Wiener process, 𝑗(𝑡) is a process determining the 

jump sizes, and 𝑞(𝑡) is a counting process determining the times of jump occurrences. 

 

𝑑𝑝(𝑡) =  𝜇𝑑𝑡 +  𝜎(𝑡)𝑑𝑊(𝑡) +  𝑗(𝑡)𝑑𝑞(𝑡) 

𝑑ℎ(𝑡) = 𝜅[𝜃 − ℎ(𝑡)]𝑑𝑡 + ξ𝑑𝑊𝑉(𝑡) 

𝑑𝜆(𝑡) = 𝜅𝐽[𝜃𝐽 − 𝜆(𝑡)]𝑑𝑡 + ξ𝐽𝑑𝑞(𝑡) 

(

(46) 

 𝑑𝑝(𝑡) =  𝜇(𝑡)𝑑𝑡 +  𝜎(𝑡)𝑑𝑊(𝑡) +  𝑗(𝑡)𝑑𝑞(𝑡) 

(

(47) 
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The total variability of the logarithmic price process over a period between 𝑡 − 1 and 𝑡 

can be expressed with its quadratic variation defined as follows: 

Where the first term on the right-hand side represents continuous component of price 

variability, called integrated variance, while the second term represents the discontinuous 

component of price variability, called jump variance. 

The equation can thus be rewritten as follows: 

Where 𝑄𝑉(𝑡) denotes the quadratic variation, 𝐼𝑉(𝑡) the integrated variance and 𝐽𝑉(𝑡) 

the jump variance. 

As all of the quantities, 𝑄𝑉(𝑡), 𝐼𝑉(𝑡) and 𝐽𝑉(𝑡), are unobservable on the market, they 

need to be estimated. This can be done in a parametric way, by the defining the underlying 

processes of 𝜎(𝑡), 𝑗(𝑡) and 𝑞(𝑡), and estimating their parameters, as well the latent state 

series of stochastic volatility and jumps with Bayesian methods. Another approach of how to 

do it is to utilize the asymptotic theory of power variations and estimate the demanded 

quantities non-parametrically in a model-free way from high-frequency data. 

1.4.2. Realized variance 

The first and still most commonly used estimator of quadratic variation is the realized 

variance, calculated, one a daily basis, as the some of squared intraday returns, computed on 

some sufficiently high frequency (5-minut or 15-minute are the most common ones).  

Specifically, denoting ∆ as some intraday time interval and 𝑟(𝑡, ∆) as the logarithmic 

return between 𝑡 − ∆ and 𝑡, we can define the realized variance as follows: 

And it holds that RV(t, ∆) → QV(t) as ∆ → 0. 

 𝑄𝑉(𝑡) = ∫ 𝜎2(𝑠)𝑑𝑠

𝑡

𝑡−1

+ ∑ 𝜅2

𝑡−1≤𝑠<𝑡

(𝑠), 

(

(48) 

 𝑄𝑉(𝑡) = 𝐼𝑉(𝑡) +  𝐽𝑉(𝑡) 

(

(49) 

 RV(t, ∆) =  ∑r2(t − 1 + j∆, ∆),

1/∆

j=1

 

(

(50) 
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The realized variance should theoretically converge to the underlying quadratic 

variation when  ∆ → 0, providing an unbiased and consistent estimate of it. In practical 

settings microstructure noise effects (discreetness of the price grid and the bid-ask bounce 

effect), present at the ultra-high frequencies, create correlation between the high-frequency 

returns, causing the estimator to be positively biased. The simplest way of how to solve the 

problem is by using slightly higher frequencies (such as 15-minute) on which only negligible 

autocorrelation is present. Another option is to use jump-robust realized variance estimators 

that will be described later. 

1.4.3. Realized bipower variation 

As already mentioned, the realized variance converges to the quadratic variation of the 

price process. In many applications it may, however, be useful to decompose the quadratic 

variation into the integrated variance and the jump variance. The main reason for this is that 

the jumps tend to often follow different dynamics than the continuous stochastic volatility and 

it may thus be useful to use a different model for their modelling. 

In order to perform the decomposition it is first necessary to estimate the integrated 

variance, which can be done with the realized bipower variation (defined by Barndorff-

Nielsen and Shephard, 2004): 

And it holds that BV(t, ∆) → IV(t) when ∆ → 0. 

By taking multiples of subsequent absolute returns, the bipover variation eliminates 

the effect of jumps on the quadratic variation as with decreasing ∆ their impact will converge 

towards zero. 

The contribution of jumps can then roughly be estimated as: 

And it holds that RJV(t, ∆) → JV(t) as ∆ → 0. 

 BV(t, ∆) =
π

2
 ∑|r(t − 1 + j∆, ∆)||r(t − 1 + (j − 1)∆, ∆)|,

1/∆

j=2

 

(

(51) 

 RJV(t, ∆) = RV(t, ∆) − BV(t, ∆), 

(

(52) 
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Furthermore, as the negative values of RJV(t, ∆) would lack any interpretation, the 

estimator is often adjusted as: 

1.4.4. Integrated quarticity 

As long as we are not able to sample the asset returns at an infinitely high frequency, 

the estimates of BV(t, ∆) and RJV(t, ∆) will inherently be plagued by some estimation noise. 

This will cause the values of RJV(t, ∆) to differ from zero in most of the days. In order to 

estimate the days on which jumps really occurred it is necessary to normalize the estimator, 

under the condition of no-jumps, and then take only its statistically significantly positive 

values. This is performed with the Z-Estimator developed by Barndorff-Nielsen and Shephard 

(2004) and Andersen, Bollerslev and Diebold (2007).  

Before we define the Z-Estimator, it is necessary to define the integrated quarticity: 

In the case of no jumps in the time series, the realized variance can be shown to follow 

the distribution RV(t, ∆)~𝑁[IV(t), 2∆IQ(𝑡)], and the integrated quarticity can be estimated 

with the realized quarticity: 

Where RQ(t, ∆) → IQ(𝑡) when ∆ → 0, as long as there are no jumps in the time series. 

In the presence of jumps, integrated quarticity can be consistently estimated with the 

realized tri-power quarticity: 

As it holds that TQ(t, ∆) → IQ(𝑡) when ∆ → 0. 

 RJV(t, ∆) = max[RV(t, ∆) − BV(t, ∆)], 

(

(53) 

 IQ(𝑡) = ∫ 𝜎4(𝑠)𝑑𝑠

𝑡

𝑡−1

 

(

(54) 

 RQ(t, ∆) =  ∑r4(t − 1 + j∆, ∆),

1/∆

j=1

 

(

(55) 

 TQ(t, ∆) =
π3/2

4∆
Γ (

7

6
)

−3

 ∑|r(t − 1 + j∆, ∆)|4/3|r(t − 1 + (j − 1)∆, ∆)|4/3|r(t − 1 + (j

1/∆

j=3

− 2)∆, ∆)|4/3  

(

(56) 
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1.4.5. Z-Estimator of jumps 

Using the RV(t, ∆), BV(t, ∆) and TQ(t, ∆) it is possible to define the Z-Estimator of 

jumps, by normalizing the differences between RV(t, ∆) and BV(t, ∆), to get a Z(t, ∆) variable, 

which should asymptotically follow the standard normal distribution as long as they are no 

jumps in the price process: 

The jumps in the time series can then be identified as corresponding to the days in 

which the values of 𝑍(t, ∆) exceed a sufficiently high quantile 𝛼 of the standard normal 

distribution. The jump variance can thus be estimated as: 

Where EJVα(t, ∆) is the estimator of the jump variance, 𝐼{. } is the indicator function 

and Φ(α)−1 is the quantile function of the standard normal distribution. The quantile α is then 

typically set to the values of 0.95, 0.99 or 0.999. 

In order to assure that the sum of the integrated variance estimate and the jump 

variance estimate equals the quadratic variance estimate, it is common to re-estimate the 

integrated variance as follows: 

1.4.6. Other jump estimators 

Several alternative jump estimators have been proposed, see for example Corsi, Pirino 

and Reno (2010), Lee and Mykland (2008), or a comparison in Dumitru and Urga (2012). 

1.4.7. Noise-robust realized estimators 

Due to the microstructure noise effects (bid-ask bounce, discreetness of the price grid), 

inducing an artificial positive autocorrelation of returns on the ultra-high frequencies 

(typically 5-minute or less), the realized variance computed from these returns often exhibit a 

significant positive bias (Andersen et al., 2005). Multiple noise-robust versions of the realized 

 𝑍(t, ∆) =
[𝑅𝑉(𝑡, ∆) − 𝐵V(t, ∆)]𝑅𝑉(𝑡, ∆)−1

√[(𝜋/2)2 + 𝜋 − 5]max{1, 𝑇𝑉(t, ∆)𝐵V(t, ∆)−2}∆
 

(

(57) 

 𝐸𝐽𝑉𝛼(t, ∆) = 𝐼{𝑍(t, ∆) > Φ(α)−1}[RV(t, ∆) − BV(t, ∆)] 

(

(58) 

 𝐸𝐼𝑉𝛼(t, ∆) = RV(t, ∆) − 𝐼{𝑍(t, ∆) > Φ(α)−1}[RV(t, ∆) − BV(t, ∆)] 

(

(59) 



Ing. Milan Fičura Dissertation thesis 26.8.2018 

39 

 

variance estimator have been proposed in the past, such as the autocorrelation-robust realized 

variance (Hansen and Lunde, 2004), the sub-sampling based realized variance estimator 

(Zhang, Mykland and Ait-Sahalia, 2005), the realized kernel estimator (Barndorff-Nielsen et 

al, 2008) the duration-based realized variance estimator (Andersen, Dobrev and Schaumbur, 

2009), or the small-sample robust estimator of Donovon et al. (2014). Nevertheless, in a 

large-scale empirical study Liu, Patton and Sheppard (2015) conclude that most of the 

alternative realized quarticity estimators do not perform significantly better than the 5-Minute 

realized variance. 

Among additional theoretically interesting estimators based on power-variations, we 

would further like to mention the multi-power estimators of Ysusi (2006) and Shi and Peng 

(2009), and the nearest-neighbour truncation estimators of Andersen, Dobrev and 

Schaumburg (2015). 

1.4.8. Realized semi-variance 

In order to capture asymmetries in the realized variance, Barndorff-Nielsen et al. 

(2010) propose realized semi-variance estimators which compute the realized variance 

alternatively either only from positive, or only from negative values. This can then be used in 

volatility models in order to better capture the asymmetric reactions of volatility on positive 

vs. negative returns in the past. 

Positive realized semi-variance can be defined as: 

While negative realized semi-variance is: 

Where 𝐼[. ] denotes the indicator function. 

1.5. Realized volatility models 

 Once realized variance (or an analogical estimator of the quadratic variation or the 

integrated variance) is computed, it can be viewed as a proxy for the underlying stochastic 

 𝑅𝑉+(t, ∆) =  ∑r2(t − 1 + j∆, ∆)𝐼[r(t − 1 + j∆, ∆) > 0],

1/∆

j=1

 

(

(60) 

 𝑅𝑉−(t, ∆) =  ∑r2(t − 1 + j∆, ∆)𝐼[r(t − 1 + j∆, ∆) < 0],

1/∆

j=1

 

(

(61) 
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variance of the underlying time series. The early approaches usually ignored the estimation 

noise and modelled directly the time series of the realized variance, by using time series 

models of the conditional mean. The ARIMA-RV and ARFIMA-RV models (Andersen et al., 

2003), as well as the HAR-RV model (Corsi, 2008), and their modifications, are the major 

models of this group. The application of these models showed that realized variance is a 

powerful tool for modelling of the stochastic volatility, with the realized variance based 

models typically outperforming the ARCH/GARCH models as well as the stochastic volatility 

models (Pong et al, 2004, Koopman et al. 2005, Deo et al., 2006).  

Subsequently, models that take into account the estimation noise of the realized 

variance started to be developed. Hansen and Lunde (2012) proposed the GARCH-RV model, 

modelling the conditional variance in a similar way to the standard GARCH model, but using 

the realized variance as an additional source of information. Similarly, papers of Takahashi et 

al. (2009), Dobrev and Szerszen (2010), Koopman and Scharth (2013), Maneesoonthorn 

(2016), or Fičura and Witzany (2017) propose to utilize the realized variance as an additional 

source of information in the estimation of stochastic volatility models. 

In the recent years, models have also been proposed that view the estimation noise of 

the realized variance as heteroskedastic, with variance given by the integrated quarticity. This 

is the case of the popular HARQ model proposed by Bollerslev et al. (2016), as well as the 

HARS model proposed by Bekierman and Manner (2018). 

1.5.1. ARIMA-RV and ARFIMA-RV 

The use of ARIMA/ARFIMA models for the modelling realized variance was first 

proposed by Andersen et al. (2003).  

The ARIMA methodology (Box and Jenkins, 1970) represents the standard approach 

used for the modelling of the conditional mean of time series with linear dependencies. The 

model combines AR (autoregression) terms and MA (moving average) terms to account for 

the relationships in the autocorrelation and the partial autocorrelation function of the 

stochastic process, while allowing for the underlying process to be stationary (integrated of 

order 𝑑 = 0) as well as non-stationary (integrated of order 𝑑 ≥ 1).  

The model can be further extended into the ARFIMA model (Granger and Joyeux, 

1981), by allowing the order of integration parameter 𝑑 to attain fractional values. This model 
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will then contain long-memory, with slow, hyperbolically decaying autocorrelation function, 

as is commonly observed for the realized variance time series. 

The ARIMA(p,d,q) as well as the ARFIMA(p,d,q) models can be expressed as: 

Where 𝜙(𝐿) and 𝜓(𝐿) represent the polynomial AR and MA operators. 

The AR operator 𝜙(𝐿) is defined as: 

The MA operator 𝜓(𝐿) is defined as: 

Where 𝐿 corresponds to the lag operator, 𝑑 to the (fractional) difference operator, 𝜇𝑅𝑉 

is the unconditional mean of the realized variance and 𝑧𝑡 ~ 𝑖. 𝑖. 𝑑., 𝐸(𝑧𝑡 ) = 0, 𝑉𝑎𝑟(𝑧𝑡 ) = 1 is 

the white noise variable, usually assumed to be Gaussian. 

The difference parameter 𝑑 plays a crucial role with respect to the memory of the 

modelled process. In the ARIMA model framework, the value of 𝑑 = 0 corresponds to a 

stationary, short-memory process, while a value of 𝑑 = 1 corresponds to a non-stationary 

process with infinite memory. 

In the ARFIMA modelling framework, the value of 𝑑 can attain fractional values. The 

model has a long memory if 𝑑 > 0. For 𝑑 ≥ 1 it is nonstationary, with infinite memory and 

without mean-reversion. For 1/2 ≤ 𝑑 < 1 it is non-stationary, with long memory, but with a 

mean-reversion. For 0 < 𝑑 < 1/2 it is stationary, with long memory and with mean 

reversion. For 𝑑 = 0 it is a short-memory process. And for −1 < 𝑑 < 0 it will have medium 

memory, while being stationary and mean-reverting. 

 𝜙(𝐿)(1 − 𝐿)𝑑(𝑅𝑉(𝑡, ∆)−𝜇𝑅𝑉) = 𝜓(𝐿)𝑧𝑡 

(

(62) 

 𝜙(𝐿) = 1 − 𝜙1𝐿 − 𝜙2𝐿
2 − ⋯− 𝜙𝑝𝐿𝑝 

(

(63) 

 𝜓(𝐿) = 1 + 𝜓1𝐿 + 𝜓2𝐿
2 + ⋯+ 𝜓𝑞𝐿𝑞 

(

(64) 
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When applied to realized variance forecasting, the parameter 𝑑 usually attains values 

around 0.4-0.5, corresponding to a stationary, mean-reverting process, with a very long 

memory. 

1.5.2. HAR-RV models 

HAR-RV (Heterogenous Autoregression) model of the realized variance (Corsi, 2008) 

utilizes realized variance aggregated over different horizons (daily, weekly and monthly) in 

order to approximate the long-memory of the volatility process. The simplicity of the model, 

its ability to be estimated with simple OLS regression, and its good predictive power 

(comparable to the ARFIMA-RV) model, have made the HAR-RV model into one of the 

most popular realized volatility models used today. 

HAR-RV model performs regression of the daily realized variance on the realized 

variance aggregated over the last 1-day, 1-week (5 days) and 1-month (22 days): 

Where 𝑅𝑉𝑑 denotes the daily realized variance, 𝑅𝑉𝑤 the weekly realized variance and 

𝑅𝑉𝑚 the monthly realized variance. 

The model can alternatively be used in a square root version or a logarithmic version. 

Their equations would look as follows: 

And 

1.5.3. Asymmetric HAR models 

Multiple extensions of the HAR model have been proposed in the literature in order to 

capture the correlation between volatility and returns. 

 𝑅𝑉𝑑(𝑡) = 𝛽0 + 𝛽𝑑𝑅𝑉𝑑(𝑡 − 1) + 𝛽𝑤𝑅𝑉𝑤(𝑡 − 1) + 𝛽𝑚𝑅𝑉𝑚(𝑡 − 1) + 𝜖(𝑡) 

(

(65) 

 𝑅𝑉𝑑
1/2(𝑡) = 𝛽0 + 𝛽𝑑𝑅𝑉𝑑

1/2(𝑡 − 1) + 𝛽𝑤𝑅𝑉𝑤
1/2(𝑡 − 1) + 𝛽𝑚𝑅𝑉𝑚

1/2(𝑡 − 1) + 𝜖(𝑡) 

(

(66) 

 
log[𝑅𝑉𝑑(𝑡)] = 𝛽0 + 𝛽𝑑 log[𝑅𝑉𝑑(𝑡 − 1)] + 𝛽𝑤 log[𝑅𝑉𝑤(𝑡 − 1)]

+ 𝛽𝑚 log[𝑅𝑉𝑚(𝑡 − 1)] + 𝜖(𝑡) 

(

(67) 
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A simple Asymmetric HAR (AHAR) model (Corsi and Reno, 2009) can be 

constructed as follows: 

Where 𝑅𝑉𝑑, 𝑅𝑉𝑤 and 𝑅𝑉𝑚 correspond to the daily, weekly and monthly realized 

variances, while 𝑅𝑒𝑡𝑑, 𝑅𝑒𝑡𝑤 and 𝑅𝑒𝑡𝑚 are the daily, weekly and monthly realized returns. 

Alternatively, Patton and Shephard (2015), utilize the semi-variance measures 

developed by Barndorff-Nielsen et al. (2010) to construct a semi-variance HAR model 

(SHAR). The model can be defined as follows: 

Where 𝑅𝑉𝑑
+, 𝑅𝑉𝑤

+ and 𝑅𝑉𝑚
+ correspond to the daily, weekly and monthly positive 

semi-variance, while 𝑅𝑉𝑑
−, 𝑅𝑉𝑤

− and 𝑅𝑉𝑚
− correspond to the daily, weekly and monthly 

negative semi-variance. 

1.5.4. HAR model with jumps 

As the jump component of the quadratic variation tends to have different dynamics 

than the continuous component, Andersen et al. (2007) proposed extensions of the HAR 

model that decompose the realized variance into its components and estimate the parameters 

for each of them separately. 

The HAR-J model uses the simple decomposition based on realized variance and bi-

power variation. Specifically, lets define the realized jump variance as follows: 

Where RV(t, ∆) is the realized variance and BV(t, ∆) the realized bi-power variation. 

The HAR-J model, used in Andersen et al. (2007), is then defined as: 

 
𝑅𝑉𝑑(𝑡) = 𝛽0 + 𝛽𝑑𝑅𝑉𝑑(𝑡 − 1) + 𝛽𝑤𝑅𝑉𝑤(𝑡 − 1) + 𝛽𝑚𝑅𝑉𝑚(𝑡 − 1) + 

𝛾𝑑𝑅𝑒𝑡𝑑(𝑡 − 1) + 𝛾𝑤𝑅𝑒𝑡𝑤(𝑡 − 1) + 𝛾𝑚𝑅𝑒𝑡𝑚(𝑡 − 1) + 𝜖(𝑡) 

(

(68) 

 
𝑅𝑉𝑑(𝑡) = 𝛽0 + 𝛽𝑑

+𝑅𝑉𝑑
+(𝑡 − 1) + 𝛽𝑤

+𝑅𝑉𝑤
+(𝑡 − 1) + 𝛽𝑚

+𝑅𝑉𝑚
+(𝑡 − 1) + 

𝛽𝑑
−𝑅𝑉𝑑

−(𝑡 − 1) + 𝛽𝑤
−𝑅𝑉𝑤

−(𝑡 − 1) + 𝛽𝑚
−𝑅𝑉𝑚

−(𝑡 − 1) + 𝜖(𝑡) 

(

(69) 

 RJV(t, ∆) = max[RV(t, ∆) − BV(t, ∆)], 

(

(70) 

 
𝑅𝑉𝑑(𝑡) = 𝛽0 + 𝛽𝑑𝑅𝑉𝑑(𝑡 − 1) + 𝛽𝑤𝑅𝑉𝑤(𝑡 − 1) + 𝛽𝑚𝑅𝑉𝑚(𝑡 − 1) + 

𝛽𝐽,𝑑𝑅𝐽𝑉𝑑(𝑡 − 1) + 𝜖(𝑡) 

(

(71) 
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Where 𝑅𝐽𝑉𝑑 corresponds to the jump component estimated over the last one day. 

The model can further be extended into a specification utilizing the jump component 

estimated over the last week and month as well. The equation will then look as follows: 

Where 𝑅𝐽𝑉𝑤(𝑡 − 1) = ∑ RJV(i, ∆)5
𝑖=1  and 𝑅𝐽𝑉𝑚(𝑡 − 1) = ∑ RJV(i, ∆)22

𝑖=1 . 

Similarly to the HAR model, the HAR-J model can also be specified in its logarithmic 

or a square root version. The equations are analogical to the HAR model case, with the only 

difference being that the 𝑅𝐽𝑉 terms need to be set as log (1 + 𝑅𝐽𝑉) instead of log (𝑅𝐽𝑉) to 

avoid computing logarithms from zero numbers. 

Additionally, Andersen et al. (2007) propose the HAR-JC model, utilizing the Z-

Estimator to decompose the realized variance into its continuous and discontinuous part. 

Lets define as 𝐸𝐽𝑉𝛼 the jump component of the realized variance and as 𝐸𝐼𝑉𝛼 the 

continuous component of the realized variance, both estimated by using the Z-Estimator on a 

probability level 𝛼. Skipping the 𝛼 in the notation, we can defined the HAR-JC model as: 

1.5.5. HAR-GARCH and ARFIMA-GARCH 

As the volatility of the stochastic variance, and subsequently the realized variance, is 

itself time-varying, models have been proposed that view the realized variance as 

heteroskedastic. The first of these models was HAR-GARCH model, proposed by Corsi et al. 

(2008). The combines the HAR model, modelling the conditional mean of the realized 

variance, with the GARCH model, modelling the conditional volatility of the realized 

variance. With a similar logic, an ARFIMA-GARCH model was proposed by Ishida and 

Watanabe (2008). 

1.5.6. HARQ and HARQ-F models 

A powerful extension of the HAR model is the HARQ model of Bollerslev, Patton and 

Quaedvlieg (2015), which utilizes the realized quarticity in order to make the slope 

 
𝑅𝑉𝑑(𝑡) = 𝛽0 + 𝛽𝑑𝑅𝑉𝑑(𝑡 − 1) + 𝛽𝑤𝑅𝑉𝑤(𝑡 − 1) + 𝛽𝑚𝑅𝑉𝑚(𝑡 − 1) + 

𝛽𝐽,𝑑𝑅𝐽𝑉𝑑(𝑡 − 1) + 𝛽𝐽,𝑤𝑅𝐽𝑉𝑤(𝑡 − 1) + 𝛽𝐽,𝑑𝑅𝐽𝑉𝑤(𝑡 − 1) + 𝜖(𝑡) 

(

(72) 

 
𝑅𝑉𝑑(𝑡) = 𝛽0 + 𝛽𝐶,𝑑𝐸𝐼𝑉𝑑(𝑡 − 1) + 𝛽𝐶,𝑤𝐸𝐼𝑉𝑤(𝑡 − 1) + 𝛽𝐶,𝑚𝐸𝐼𝑉𝑚(𝑡 − 1) + 

𝛽𝐽,𝑑𝐸𝐽𝑉𝑑(𝑡 − 1) + 𝛽𝐽,𝑤𝐸𝐽𝑉𝑤(𝑡 − 1) + 𝛽𝐽,𝑑𝐸𝐽𝑉𝑤(𝑡 − 1) + 𝜖(𝑡) 

(

(73) 
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parameters of the HAR model time-varying, depending on the noise of the realized variance 

estimator. The underlying idea is that while the noise in the realized variance is high, the 

slope parameter should be lower, while in the cases of low noise, it should be high in order to 

capture the realized volatility persistence.  

As the authors argue, the noise has the most adverse effects on the estimation of the 𝛽𝑑 

parameter of the HAR model. The thus propose to make only the 𝛽𝑑 parameter time-varying. 

The specification of the HARQ model does then look as follows: 

Where 𝑅𝑄𝑑
1/2(𝑡 − 1) denotes the square root of the yesterday realized quarticity. 

We can see that by multiplying the equation in front of 𝑅𝑉𝑑(𝑡 − 1) the model becomes 

equal to the standard HAR model, with an additional term, given by 𝛽𝑄,𝑑𝑅𝑄𝑑
1/2(𝑡 −

1)𝑅𝑉𝑑(𝑡 − 1). The can thus by estimated with simple OLS linear regression, which is an 

additional benefit of its construction. 

Time-variability of the parameters, depending on the realized quarticity, can of course 

be applied to the other regressors as well. Bollerslev, Patton and Quaedvlieg denote this 

specification as HARQ-Full (HARQ-F) model. Its equation would be as follows: 

Where 𝑅𝑄𝑑
1/2

, 𝑅𝑄𝑤
1/2

 and 𝑅𝑄𝑚
1/2

 denote the square roots of the realized quarticity, 

computed over the last 1-day, 1-week (5 days) and 1-month (22-days), respectively. 

In the empirical tests, performed by Bollerslev, Patton and Quaedvlieg (2015), the 

HARQ and HARQ-F models outperformed all of the other tested HAR specifications. At the 

same time there was no significant difference in performance between HARQ and HARQ-F. 

1.5.7. State Space HAR 

A more advanced approach of how to cope with the heteroskedasticity of the realized 

variance noise was proposed by Bekierman and Manner (2018), who propose to make the 

 
𝑅𝑉𝑑(𝑡) = 𝛽0 + [𝛽𝑑 + 𝛽𝑄,𝑑𝑅𝑄𝑑

1/2(𝑡 − 1)]𝑅𝑉𝑑(𝑡 − 1) + 𝛽𝑤𝑅𝑉𝑤(𝑡 − 1)

+ 𝛽𝑚𝑅𝑉𝑚(𝑡 − 1) + 𝜖(𝑡) 

(

(74) 

 

𝑅𝑉𝑑(𝑡) = 𝛽0 + [𝛽𝑑 + 𝛽𝑄,𝑑𝑅𝑄𝑑
1/2(𝑡 − 1)]𝑅𝑉𝑑(𝑡 − 1)

+ [𝛽𝑤 + 𝛽𝑄,𝑤𝑅𝑄𝑤
1/2(𝑡 − 1)]𝑅𝑉𝑤(𝑡 − 1)

+ [𝛽𝑚 + 𝛽𝑄,𝑚𝑅𝑄𝑚
1/2(𝑡 − 1)]𝑅𝑉𝑚(𝑡 − 1) + 𝜖(𝑡) 

(

(75) 
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autoregression parameter in the HAR model time-varying via a state-space model. They call 

their model HARS (or State Space HAR) and it can be written as follows: 

Where 𝜂(𝑡)~𝑁(0, 𝜎𝜂
2). 

The model thus contains a latent component. Nevertheless, as the relationships 

between the observable and the latent time series are linear, and the error components are 

Gaussian, the estimation can be performed with Maximum Likelihood, computed via the 

Kalman Filter (the model thus differs from the stochastic volatility models in which the 

underlying volatility itself is a latent variable, which results in non-linear relationships 

between the latent variable and the observable time series). 

Bekierman and Manner (2018) further propose several extensions of the model, 

utilizing the realized quarticity 𝑅𝑄(𝑡) as an additional factor in the estimation of 𝜆(𝑡), leading 

to a class of HARSQ models. The simplest way of how to achieve this would be to set: 

In the study performed by the authors, the state space HAR models outperformed the 

traditional HAR as well as the HARQ model of Bollerslev, Patton and Quaedvlieg (2015) on 

a dataset of 40 stocks. The results also indicate that estimating the model in its logarithmic 

version (i.e. with all predictors logarithmized) further increases its performance. 

1.6. Realized Variance in SV models 

The realized variance and other power-variation estimators can be incorporated into 

Stochastic Volatility models as well. The main benefit of this is that while these estimators 

provide relatively accurate estimates of the underlying volatility, they are still plagued by 

some estimation noise, which has an effect on the realized volatility model parameters and 

may negatively influence their performance. In the stochastic volatility model setting it is 

possible to address this noise, and as the modelled quantity is the unobservable stochastic 

variance, the parameter estimates should theoretically be unbiased by the estimation noise. 

 
𝑅𝑉𝑑(𝑡) = 𝛽0 + [𝛽𝑑 + 𝜆(𝑡)]𝑅𝑉𝑑(𝑡 − 1) + 𝛽𝑤𝑅𝑉𝑤(𝑡 − 1) + 𝛽𝑚𝑅𝑉𝑚(𝑡 − 1) + 𝜖(𝑡) 

𝜆(𝑡) = 𝜙𝜆(𝑡 − 1) + 𝜂(𝑡) 

(

(76) 

 𝜆(𝑡) = 𝜙𝜆(𝑡 − 1) + 𝛾𝑅𝑄1/2(𝑡) + 𝜂(𝑡) 

(

(77) 
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1.6.1. SV-RV 

The SV-RV model, proposed by Takahashi, Omori and Watanabe (2009) uses the 

realized variance estimator as additional source of information in the estimation of the Log-

SV model. They are thus using two observable time series for its estimation. The series of 

logarithmic returns 𝑟(𝑡) and the series of realized variances 𝑅𝑉(𝑡). The model can be written 

as follows: 

Where ℎ(𝑡) = log[𝜎2(𝑡)], 𝜀(𝑡)~𝑁(0,1), 𝜀𝑉(𝑡)~𝑁(0,1), and 𝜀𝑅𝑉(𝑡)~𝑁(0,1). The 

noise terms 𝜀(𝑡) and 𝜀𝑉(𝑡) can potentially be mutually correlated, while they are both 

assumed to be uncorrelated with 𝜀R𝑉(𝑡). 

We can further see that the model implicitly assumes that the logarithm of the realized 

variance provides an unbiased estimate of the log-variance ℎ(𝑡), with constant variance of the 

noise equal to 𝜎𝑅𝑉. This unbiasedness property is usually fulfilled only approximately, due to 

the microstructure noise effects which may cause the 𝑅𝑉(𝑡) to slightly overestimate the 

underlying quadratic variation. In the cases where this problem appears to be severe, an 

additional parameter 𝜇𝑅𝑉 can be included into the third equation of the model, in order to 

adjust for this bias. As for the second important assumption, the heteroskedasticity of the 

noise 𝜎𝑅𝑉𝜀R𝑉(𝑡), it can be alleviated by making the variance of the noise time-varying which 

will be examined later. 

1.6.2. SVJD-RV 

The SV-RV model can be extended to include jumps in the returns equation. The 

resulting SVJD-RV model, proposed by Fičura and Witzany (2015) and Fičura and Witzany 

(2017), looks as follows: 

The third equation does in this case stem from the definition of the integrated 

quarticity as the sum of the integrated variance and the jump variance, equal to the sum of the 

 

𝑟(𝑡) = 𝜇 + 𝜎(𝑡)𝜀(𝑡) 

ℎ(𝑡) = 𝛼 + 𝛽ℎ(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) 

log[𝑅𝑉(𝑡)] = ℎ(𝑡) + 𝜎𝑅𝑉𝜀R𝑉(𝑡) 

(

(78) 

 

𝑟(𝑡) = 𝜇 + 𝜎(𝑡)𝜀(𝑡) + 𝐽(𝑡)𝑄(𝑡) 

ℎ(𝑡) = 𝛼 + 𝛽ℎ(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) 

log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] = ℎ(𝑡) + 𝜎𝑅𝑉𝜀R𝑉(𝑡) 

(

(79) 
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squared jumps during the given day. As we want to use the 𝑅𝑉(𝑡) to estimate the ℎ(𝑡), it is 

necessary to adjust it for the impact of estimated jumps first, before is logaritmized and the 

noise term applied to it. 

1.6.3. SVJD-RV-Z 

Fičura and Witzany (2017) further propose the SVJD-RV-Z model, utilizing the 

realized variance as well as the Z-Estimator to improve the estimation of jumps in the 

stochastic volatility model setting. 

A problematic aspect of using the Z-Estimator is that it tends to identify large number 

of intraday jumps on almost every day. Most of these jumps are relatively small and do not 

have a significant impact on the distribution of return on the daily frequency. The idea of the 

SVJD-RV-Z model therefore is to make a distinction between small intra-day jumps and the 

large jumps that have an impact on the daily returns, and to utilize the fact that large jumps 

tend to influence the Z-Estimator more. 

The SVJD-RV-Z model used the same equations as the SVJD-RV model, with an 

additional fourth equation, providing a link between the value of the Z-Estimator and the 

identified jumps. 

Where 𝑍(𝑡) denotes the Z-Estimator and 𝑄(𝑡) the identified jump occurrences, while 

the 𝜇𝑍 correspond to the mean value of the Z-Estimator in the days of no-jumps or only 

intraday jumps, while the 𝜉𝑍 represents a shift in the mean of 𝑍(𝑡) in the days when the large 

jumps occur, 𝜎𝑍 is the volatility of 𝑍(𝑡) around the estimated mean and 𝜀𝑍(𝑡)~𝑁(0,1) is a 

Gaussian white noise variable. 

1.6.4. Other approaches 

Dobrev and Szerszen (2010) and Koopman and Scharth (2013) have further explored 

the utilization of realized variance estimators in stochastic volatility models, including multi-

component ones and the possibility to use multiple realized variance at once. 

Maneesoonthorn, Forbes and Martin (2017), on the other hand, provide an alternative 

extension to the SVJD model setting. 

 𝑍(𝑡) = 𝜇𝑍 + 𝜉𝑍𝑄(𝑡) + 𝜎𝑍𝜀𝑍(𝑡) 

(

(80) 
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1.7. Machine learning methods 

Multiple studies have tried to apply machine learning based methods to the problem of 

realized volatility forecasting, with generally conflicting results as to whether the machine 

learning methods are able to outperform traditional approaches (McAller and Medeiros, 2011, 

Vortelinos, 2015, Fičura, 2017). The main benefit of machine learning methods, such as 

neural networks, is that they are able to learn non-linear dependencies in the analysed time 

series, without the need to specify their exact functional form by the researcher (i.e. they are 

universal approximators). 

1.7.1. Echo State Neural Networks 

Echo State Neural Networks (ESN) represent simple but powerful recurrent neural 

networks, whose main advantage is that they can be trained quickly with penalized Ridge 

Regression (Jaeger and Haas, 2008), while most other types of recurrent neural networks have 

to be trained with Backpropagation Through Time algorithm, which is computationally much 

more demanding and tends to suffer from the vanishing gradient problem, preventing it to 

learn long-range dependencies. Echo State Neural Networks were thus able to significantly 

outperform many earlier recurrent neural networks, in task such as chaotic time series 

prediction, wind speed forecasting or financial time series prediction (Lukoševičius and 

Jaeger, 2009). Nowadays, more complex neural networks, such as LSTM (Long Short-Term 

Memory neural networks), managed to outperform ESN, especially on task where large 

datasets are available. Nevertheless, ESN still represent a powerful and easy to use approach, 

especially on small datasets with nonlinear dependencies. Echo State Neural Networks were 

first used for realized variance forecasting in Fičura (2017), where they achieved performance 

comparable to the AHAR model on 19 stock market index realized variance time series. 

The Echo State Neural Network model has the following three equations: 

Where 𝑋𝑡 denotes a m x 1 vector of predictors, 𝑦𝑡 is the target variable, 𝑅𝑒𝑧𝑡 is a n x 1 

vector representing an output of the hidden layer of the neural network which is in the ESN 

literature called reservoir, 𝛼 is a n x 1 vector of smoothing parameters (with the ∗ denoting a 

Hadamard product). 𝑊𝐼𝑁 is a n x m + 1 matrix of parameters of the input layer, 𝑊𝑅𝑒𝑧 is a 

 

𝑅𝑒𝑧𝑡
∗ = 𝑓(𝑊𝐼𝑁[1; 𝑋𝑡] + 𝑊𝑅𝑒𝑧𝑅𝑒𝑧𝑡−1) 

𝑅𝑒𝑧𝑡 = (1 − 𝛼) ∗ 𝑅𝑒𝑧𝑡−1 + 𝛼 ∗ 𝑅𝑒𝑧𝑡
∗ 

𝑦𝑡 = 𝑊𝑂𝑢𝑡[1; 𝑅𝑒𝑧𝑡] 

(

(81) 
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n x n matrix of parameters corresponding to the recurrent layer, and 𝑊𝑂𝑢𝑡 is a 1 x n + 1 

vector of parameters corresponding to the output layer. The function 𝑓(. ) is a sigmoid 

function (most commonly the logistic function or the hyperbolic tangent function), 

representing the activation function of the neural network, which is applied to each element of 

the hidden layer separately. 

Echo State Neural Networks differ from traditional recurrent neural networks (Elman, 

1990) in the fact that the 𝑊𝐼𝑁 and 𝑊𝑅𝑒𝑧 matrices are generated randomly (with only the 

scaling of 𝑊𝐼𝑁 and the spectral radius of 𝑊𝑅𝑒𝑧 possibly being optimized with meta-

optimization). The output vector 𝑊𝑂𝑢𝑡 is then the only part of the neural network being 

estimated, which can be done with penalized Ridge Regression (linear regression with the 

penalization on the 𝐿2 norm of the parameter vector, with the penalization parameter either 

optimized with cross-validation or set to a default value of 1 for normalized time series). For 

best practices regarding the implementation of ESN, see Lukoševičius (2012). 

Echo State Neural networks were first used for realized volatility forecasting in Fičura 

(2017). The model proposed by the author used 𝑦𝑡 = 𝑅𝑉𝑡 as the target variable, and either 

𝑋𝑡 = 𝑅𝑉𝑡−1 or 𝑋𝑡 = [𝑅𝑉𝑡−1, 𝑟𝑡−1] as the explanatory variables. In the current study, we will 

slightly modify the model proposed in Fičura (2017) by setting 𝑦𝑡 = 𝑅𝑉𝑡 − 𝑅𝑉𝑡−1 and 𝑋𝑡 =

𝑅𝑉𝑡−1 − 𝑅𝑉𝑡−2, predicting thus the differences of the realized variance instead of its level. 

The motivation for this change is the fact that ESN trained on the levels of the realized 

variance on a period not including the financial crisis tended to significantly underestimate 

the realized variance during the crisis. This is caused by the fact that the logistic activation 

function in the hidden layer is bounded, and the neural network is thus not able to extrapolate 

well towards values that lie outside of the range of values that it has seen during training. 

In addition the model using only 𝑅𝑉𝑡−1 as the explanatory variable, further models 

will be tested in the empirical part of this thesis, utilizing additional power variation 

estimators as predictors, such as the realized quarticity, the realized semi-variance, and the 

realized bi-power variation based estimates of jumps. 

An additional change will be that instead of setting 𝛼 as a scalar equal to 𝛼 = 1, we 

will set it as a vector of equally spaced values ranging from 0.05 to 1. Specifically, if 𝑛 is the 

number of elements (neurons) in the hidden layer, then 𝛼 = 0.05 + 0.95[
0

𝑛
,
1

𝑛
,
2

𝑛
, … ,

𝑛

𝑛
 ], and 

each neuron will thus use different level of smoothing. This should improve the performance 
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of the model to learn dependencies occurring at different frequencies (Lukoševičius, 2012), 

by enabling the neural network to pick the information from the neurons that use smoothing 

corresponding to the frequencies that are most informative with respect to the future realized 

variance. 

In addition to the simple version of the ESN model, containing only single predictor, 

equal to 𝑋𝑡 = 𝑅𝑉𝑡−1 − 𝑅𝑉𝑡−2, extended versions of the model will be tested, with 𝑋𝑡 

containing the lagged differences of the realized variance, bi-power variation based jump 

estimates, realized semi-variance and the realized quarticity (mimicking the variables used in 

different versions of the HAR model, but with one lag 1 value used as predictors, as the 

neural network should be able to learn the long-memory by itself, due to its recurrent 

structure). All models will additionally be estimated in a standard, logarithmic and a square-

root form (i.e. with transformed inputs and outputs), in the same way as it is commonly done 

in the HAR models. 

1.8. Option-based volatility models 

Alternative approach to forecast volatility of financial instruments is to utilize the 

information embedded in the option prices quoted on the market. Due to the non-linearity of 

the option payoff function, option prices strongly depend on the expected volatility of the 

underlying asset price until maturity. If we assume all other determinants of the option price 

(asset price, strike price, risk free interest rate and time until maturity) as given, it is possible 

to use the option prices to calculate the implied volatility, expected by the market participants 

until the maturity of the option. 

One drawback of this approach is that the option prices tend to include the volatility 

risk premium, which causes the implied volatility forecasts to systematically overestimate the 

future realized volatility. In spite of this bias, option based volatility forecasts possess the 

significant advantage with respect to the other models, in the fact that they are forward-

looking, while the traditional volatility models, such as GARCH or HAR are backwards-

looking. This causes the option based volatility models to often outperform the traditional 

approaches (Poon and Granger, 2003, Pong et al, 2004, Koopman et al., 2005). 

1.8.1. Black-Scholes implied volatility 

The simplest way of how to compute the implied volatility from option prices is to 

utilize the Black-Scholes option pricing model (Black and Scholes, 1973): 
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Where 

And: 

Where 𝐶(𝑆, 𝑡) denotes the European option price at time 𝑡, 𝑆 is the price of the 

underlying asset, 𝐾 is the strike price of the option, 𝜎 is the expected volatility until maturity 

of the option, 𝑇 − 𝑡 is the time until maturity, 𝑟 is the risk-free rate, 𝑞 is the asset yield, and 

𝑁(. ) is the standard normal cumulative distribution function. 

In order to calculate the implied volatility from the option price, all other inputs should 

be put into the formula (except for 𝜎) and it should solved for 𝜎 with numerical methods. 

The main drawback of the Black-Scholes implied volatility is that the Black-Scholes 

model assumes a simple Geometric Brownian Motion process, with constant volatility for the 

behavior of the asset price. This process is highly unrealistic and implies the future asset price 

to follow the lognormal distributed, while the real empirical distribution has usually far 

greater tails, and it may also be skewed with respect to the lognormal distribution in the cases 

when correlation between asset price and volatility is present. As a result of this, the B-S 

Implied volatility is typically depends on the strike price of the options from which it is 

computed (Jackwerth and Rubinstein, 1996), leading to the famous effect of volatility smile  

(options far from at-the-money have higher implied volatilities, to compensate for the excess 

kurtosis of the price process) on the forex markets, and the volatility skew on the stock 

markets (options with strike prices below the current stock price have the highest implied 

volatilities in order to compensate between the correlation between stock returns and 

volatility). Similarly, for assets with mean-reverting processes (such as interest rates), a 

volatility frown (i.e. inverted smile) can sometimes be observed, in order to compensate for 

 𝐶(𝑆, 𝑡) = 𝑆𝑒−𝑞(𝑇−𝑡)𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) 

(

(82) 

 
𝑑1 =

ln (
𝑆
𝐾) + (𝑟 − 𝑞)(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
+

𝜎√𝑇 − 𝑡

2
 

(

(83) 

 
𝑑2 =

ln (
𝑆
𝐾) + (𝑟 − 𝑞)(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
−

𝜎√𝑇 − 𝑡

2
= 𝑑1 − 𝜎√𝑇 − 𝑡 

(

(84) 
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the mean-reversion of the price process that violates the Geometric Brownian Motion 

assumption of the B-S model. 

1.8.2. Model-Free implied volatility 

Neuberger and Britten-Jones (2000) introduced an alternative approach of implied 

volatility computation called Model-Free volatility. The main advantages of the approach are 

that it is theoretically valid for wide variety of underlying asset price processes, including 

processes with jumps, which was proved by Jiang and Tian (2005). The approach also uses all 

options quoted on the market with given maturity, so it works with a broader set of 

information than the B-S implied volatility in which a single option has to be chose. 

The Model-Free volatility is defined as follows: 

Where 𝐶𝐹(𝑇, 𝐾) denotes the forward option price with maturity at 𝑇, so that 

𝐶𝐹(𝑇, 𝐾) = 𝐶(𝑇, 𝐾)/𝐵(𝑇, 𝑡), where 𝐵(𝑇, 𝑡) is the price of a bond at time 𝑡 that will pay 1 

USD at time 𝑇. 𝐹𝑡 denotes the forward price of the asset at time 𝑡, with maturity in 𝑇, and 𝐸0
𝐹 

denotes an expectation under the T-forward risk-neutral probability measure. 

In practical settings, the integral in the equation needs to be approximated with 

numerical integration over the options with maturity in 𝑇, over the whole range of available 

strike prices (as long as the quoted options are reasonably liquid). Call options as well as Put 

options can be used in the computation, with the praxis being to use a combination of all Call 

and Put options that are out-of-the money (as they tend to be more liquid than in-the-money 

options). 

1.8.3. Volatility risk premium 

Option based volatility forecasts typically achieve comparable or better predictive 

results than the of the econometric time series models (Poon and Granger, 2003, Pong et al, 

2004, Koopman et al., 2005). 

A problematic aspect of using option based volatility forecast is the existence of 

volatility risk premium, which cause the option implied volatility to significantly overestimate 

the future realized volatility (Bakshi and Kapadia, 2003, Eraker, 2009). The volatility risk 

premium is a premium return, charged by the option sellers, for the inconvenience of being 

 𝐸0
𝐹 [∫ (

𝑑𝐹𝑡

𝐹𝑡
)
2𝑇

0

] = 2∫
𝐶𝐹(𝑇, 𝐾) − max (0, 𝐹0 − 𝐾)

𝐾2

∞

0

𝑑𝐾 

(

(85) 
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short in volatility, which is highly negatively correlated with market returns, and also highly 

asymmetric, with the potential of increase being usually significantly higher than the potential 

of future decrease (Carr and Wu, 2007). 

The standard way of how to cope with the problem of volatility risk premium, when 

forecasting volatility, is to compute a regression between the realized volatility and the option 

implied volatility on historical data. The parameters of the regression can then be used to 

adjust the implied volatility forecasts and eliminate their bias (Muzzioli, 2008). 

The computed regression would be: 

Where RV(t, t + h) denotes the historically observed realized variance for the period 

from t to t + h, 𝜎𝐼𝑉
2 (𝑡, 𝑡 + ℎ) denotes the implied variance from the option prices at time 𝑡, for 

the horizon from 𝑡 to 𝑡 + ℎ, 𝜀(𝑡) is a white noise variable and 𝛼 and 𝛽 are parameters 

estimated with OLS linear regression. Once the parameters are estimated, they can 

subsequently be used to adjust the implied volatility forecasts into the future. Alternatively, 

the equation can be estimated for the implied standard deviation, or the implied log-variance. 

A drawback of the aforementioned approach is that it does not take into account the 

time-varying character of the volatility risk premium, which has been empirically observed in 

practice, see Carr a Wu (2008), Todorov (2009), Chen a Poon (2013) or Fičura (2014). 

  

 RV(t, t + h) = 𝛼 + 𝛽𝜎𝐼𝑉
2 (𝑡, 𝑡 + ℎ) + 𝜀(𝑡) 

(

(86) 
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2. SVJD models analysed in the thesis 

The main focus of the thesis is placed on SVJD models and their extensions utilizing 

high-frequency power-variation estimators as additional sources of information (i.e. the 

SVJD-RV-Z class of models), following the research in Fičura and Witzany (2015), Fičura 

and Witzany (2016) and Fičura and Witzany (2017). In the following sections, Bayesian 

methods used for SVJD model estimation are discussed, and the Sequential Gibbs Particle 

Filter algorithm (developed in Fičura and Witzany, 2018) is explained, as an efficient tool for 

parameter learning and latent state filtering in SVJD models. In the empirical part of the 

study, the predictive performance of the proposed SVJD models is compared with a series of 

benchmark models from the GARCH and HAR model frameworks, as well as with models 

based on Echo State Neural Networks, proposed for realized volatility forecasting in Fičura 

(2017). Due to the large number of possible SVJD model architectures and high 

computational demand for their estimation, we will focus on four SVJD model architectures 

that are described below. 

2.1. SVJD model with self-exciting jumps in prices 

The SVJD model with self-exciting jumps in prices (proposed in Fičura and Witzany, 

2016 and estimated with MCMC) has the following three equations: 

Where 𝑟(𝑡) is the daily logarithmic return, 𝜇 is the constant drift rate, 𝜎(𝑡) is the 

stochastic volatility, 𝜀(𝑡)~𝑁(0,1) is a standard normal white noise, 𝐽(𝑡)~𝑁(𝜇𝐽, 𝜎𝐽) is a 

variable determining the jump sizes and 𝑄(𝑡)~Bern[𝜆(𝑡)] is a variable determining the times 

of jump occurrences. ℎ(𝑡) = ln[𝜎2(𝑡)] is the logarithm of the conditional variance, long-term 

log-variance 𝜃 is given by 𝛼 = (1 − 𝛽)𝜃, 𝛽 is the autoregression coefficient, 𝛾 is the 

volatility of the log-variance, and 𝜀𝑉(𝑡)~𝑁(0,1) is the white noise in the log-variance 

equation, which can be correlated with 𝜀(𝑡) with correlation 𝜌. 𝜆(𝑡) is the jump intensity, 

long-term jump intensity 𝜃𝐽 is given by αJ = (1 − βJ − 𝛾𝐽)𝜃𝐽, parameter 𝛽𝐽 gives the rate of 

exponential decay of the jump intensity to its long-term level, and 𝛾𝐽 is the self-exciting 

parameter telling us how much will the jump intensity increase in the day following a jump. 

 

𝑟(𝑡) = 𝜇 + 𝜎(𝑡)𝜀(𝑡) + 𝐽(𝑡)𝑄(𝑡) 

ℎ(𝑡) = 𝛼 + 𝛽ℎ(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) 

𝜆(𝑡) = 𝛼𝐽 + 𝛽𝐽𝜆(𝑡 − 1) + 𝛾𝐽𝑄(𝑡 − 1) 

(

(87) 
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2.2. SVJD-RV-Z model with self-exciting jumps in prices 

The SVJD-RV-Z model (proposed in Fičura and Witzany 2015, and Fičura and 

Witzany, 2017) represents an extension of the aforementioned SVJD model with self-exciting 

jumps in prices, that uses the realized variance, 𝑅𝑉(𝑡),  and the Z-Estimator of jumps, 𝑍(𝑡),  

as additional sources of information. The model has the following 5 equations: 

Where 𝜀𝑅𝑉(𝑡)~𝑁(0,1) and 𝜀𝑍(𝑡)~𝑁(0,1). We can see that the realized variance 

adjusted for the influence of jumps, log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)], is assumed to provide unbiased 

estimates of the stochastic variance ℎ(𝑡), that are plagued by a noise with volatility 𝜎𝑅𝑉. If we 

wanted to include bias into the model, an additional parameter 𝜇𝑅𝑉 could be added to the 

right-hand side of the realized variance equation. The parameter 𝜇𝑍 represents the mean value 

of 𝑍(𝑡) in the days when no jumps or only small intraday jumps occur, while 𝜉𝑍 represents an 

increase of the mean in the case of a large jump, i.e. when 𝑄(𝑡) = 1. Finally, parameter 𝜎𝑍 

represents the volatility of the noise of the 𝑍(𝑡) estimator around its mean. 

2.3. SVJD-RV-Z model with self-exciting jumps in prices and volatility 

A further extension of the SVJD-RV-Z model presented above is to add self-exciting 

jumps in volatility into the model. The SVJD-RV-Z model with self-exciting jumps in prices 

and volatility has the following 6 equations: 

Where 𝐽𝑉(𝑡)~𝑁(𝜇𝐽𝑉 , 𝜎𝐽𝑉) determines the log-variance jump sizes and 

𝑄𝑉(𝑡)~Bern[𝜆𝑉(𝑡)] the log-variance jump occurrences. In the models that will be tested we 

 

𝑟(𝑡) = 𝜇 + 𝜎(𝑡)𝜀(𝑡) + 𝐽(𝑡)𝑄(𝑡) 

ℎ(𝑡) = 𝛼 + 𝛽ℎ(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) 

𝜆(𝑡) = 𝛼𝐽 + 𝛽𝐽𝜆(𝑡 − 1) + 𝛾𝐽𝑄(𝑡 − 1) 

log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] = ℎ(𝑡) + 𝜎𝑅𝑉𝜀R𝑉(𝑡) 

 𝑍(𝑡) = 𝜇𝑍 + 𝜉𝑍𝑄(𝑡) + 𝜎𝑍𝜀𝑍(𝑡) 

(

(88) 

 

𝑟(𝑡) = 𝜇 + 𝜎(𝑡)𝜀(𝑡) + 𝐽(𝑡)𝑄(𝑡) 

ℎ(𝑡) = 𝛼 + 𝛽ℎ(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) + 𝐽𝑉(𝑡)𝑄𝑉(𝑡) 

𝜆(𝑡) = 𝛼𝐽 + 𝛽𝐽𝜆(𝑡 − 1) + 𝛾𝐽𝑄(𝑡 − 1) 

𝜆𝑉(𝑡) = 𝛼𝐽𝑉 + 𝛽𝐽𝑉𝜆𝑉(𝑡 − 1) + 𝛾𝐽𝑉𝑄𝑉(𝑡 − 1) 

log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] = ℎ(𝑡) + 𝜎𝑅𝑉𝜀R𝑉(𝑡) 

 𝑍(𝑡) = 𝜇𝑍 + 𝜉𝑍𝑄(𝑡) + 𝜎𝑍𝜀𝑍(𝑡) 

(

(89) 
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will make an important simplifying assumption by assuming that the jumps in volatility and 

prices are mutually uncorrelated. The volatility jumps will again follow a discretized Hawkes 

process with intensity 𝜆𝑉(𝑡) and parameters 𝛼𝐽𝑉, 𝛽𝐽𝑉 and 𝛾𝐽𝑉. 

2.4. 2-Component SVJD-RV-Z model with self-exciting jumps in prices 

and volatility 

The most complex model analysed in this thesis will be the two-component SVJD-

RV-Z model with self-exciting jumps in returns and volatility, in which the log-variance ℎ(𝑡) 

is composed of a sum of two independent AR(1) processes with different levels of 

persistence. The model has the following 8 equations: 

Where ℎ𝑆𝑇(t) and ℎ𝐿𝑇(t) correspond to the two log-variance components, with the 

short-term component, ℎ𝑆𝑇(t), containing self-exciting volatility jumps 𝐽𝑉(𝑡) and 𝑄(𝑡), 

occurring with intensity 𝜆𝑉(𝑡). Parameters 𝛽 and 𝛾 represent the persistence and the volatility 

of the short-term log-variance component, while the parameters 𝜙0, 𝜙1 and 𝜙2 govern the 

autoregression behaviour of the long-term log-variance component. 

  

 

𝑟(𝑡) = 𝜇 + 𝜎(𝑡)𝜀(𝑡) + 𝐽(𝑡)𝑄(𝑡) 

𝜎(𝑡) = exp[ℎ𝑆𝑇(t) + ℎ𝐿𝑇(t)]
1
2 

ℎ𝑆𝑇(𝑡) = 𝛽ℎ𝑆𝑇(𝑡 − 1) + 𝛾𝜀𝑉(𝑡) + 𝐽𝑉(𝑡)𝑄𝑉(𝑡) 

ℎ𝐿𝑇(𝑡) = 𝜙0 + 𝜙1ℎ𝐿𝑇(𝑡 − 1) + 𝜙2𝜀𝑉𝐿(𝑡) 

𝜆(𝑡) = 𝛼𝐽 + 𝛽𝐽𝜆(𝑡 − 1) + 𝛾𝐽𝑄(𝑡 − 1) 

𝜆𝑉(𝑡) = 𝛼𝐽𝑉 + 𝛽𝐽𝑉𝜆𝑉(𝑡 − 1) + 𝛾𝐽𝑉𝑄𝑉(𝑡 − 1) 

log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] = ℎ(𝑡) + 𝜎𝑅𝑉𝜀R𝑉(𝑡) 

 𝑍(𝑡) = 𝜇𝑍 + 𝜉𝑍𝑄(𝑡) + 𝜎𝑍𝜀𝑍(𝑡) 

(

(90) 
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3. Bayesian estimation of SVJD models 

Bayesian estimation methods are especially suitable for the estimation of non-linear, 

non-Gaussian state-space models with latent state variables, such as the Stochastic-Volatility 

Jump-Diffusion models that will be used in the empirical part of this study. In the following 

section the Markov-Chain Monte-Carlo method and the Sequential Monte Carlo method 

(Particle Filters) will be explained and applied for SVJD model estimation. 

3.1. Markov-Chain Monte-Carlo 

The Markov-Chain Monte-Carlo (MCMC) method enables us to sample from the 

high-dimensional joint posterior density 𝑝(Θ|data), where Θ = (𝜃1, … , 𝜃𝑘) denotes the vector 

of all model parameters and latent states, by constructing a Markov Chain, converging to the 

density 𝑝(Θ|data), while using only the information about the conditional densities 

𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data). The idea of the method is then to construct a long-enough chain, so that 

its later iterations represent independent sample from the density 𝑝(Θ|data), from which we 

can then estimate the parameters of the model based on posterior sample means (or modes), 

and the standard errors of the estimate as posterior standard deviations. 

Multiple MCMC methods exist, differing for the cases when we are able to sample 

directly from the conditional densities 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data), and for the cases when even these 

densities are intractable and need to be approximated. 

3.1.1. Gibbs Sampler 

In the case when we can sample directly from the densities 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data), we 

can construct a Markov Chain, converging to the joint posterior 𝑝(Θ|data), by using the 

Gibbs Sampler algorithm.  

The Gibbs Sampler proceeds as follows: 

0. Assign vector of initial values to Θ0 = (𝜃1
0, … , 𝜃𝑘

0) and set 𝑗 = 0 

1. Set 𝑗 = 𝑗 + 1 

2. Sample 𝜃1
𝑗
~𝑝(𝜃1|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data) 

3. Sample 𝜃2
𝑗
~𝑝(𝜃2|𝜃1

𝑗
, 𝜃3

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data) 

… 

4. Sample 𝜃𝑘
𝑗
~𝑝(𝜃𝑘|𝜃1

𝑗
, 𝜃2

𝑗
, … , 𝜃𝑘−1

𝑗
, data) and return to step 1. 
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As the univariate conditional densities 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data) fully characterize the joint 

posterior density 𝑝(Θ|data), it can be proved, according to the Clifford-Hammersley theorem 

(Johannes and Polson, 2009), that the constructed Markov Chain converges to the joint 

posterior density 𝑝(Θ|data) as its equilibrium density. 

The conditional densities 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data) necessary for the Gibbs Sampler 

construction are typically derived by applying the Bayes theorem to the likelihood function 

and the prior density as follows: 

With 𝐿(. ) denoting the likelihood function, prior(. ) the Bayesian prior density of the 

given parameter and ∝ the proportional relationship. If no prior information is available, the 

uninformative prior densities, prior(𝜃𝑖) ∝ 1, can be used for the prior. 

In order to replace the proportional relationship in the equation with equality and to 

derive 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data), it is necessary to divide the right-hand side of the equation with 

the integral of the right-hand side over 𝜃1, corresponding to 𝑝(data|𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

). 

Unfortunately, the integration of the right-hand side over 𝜃1 may often be infeasible, 

in which case we are left only with the shape of the density 𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data), but do not 

know the normalizing constant, and thus cannot sample from the density directly. 

In these cases, alternative sampling schemes have to be used, such as the Accept-

Reject Gibbs Sampler or the Metropolis-Hastings algorithm. 

3.1.2. Metropolis-Hastings algorithm 

Metropolis-Hastings is a rejection sampling algorithm that can be used to sample from 

𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data) in the case when we know the shape of it, but cannot compute the 

normalizing constant. The algorithm works by sampling from a proposal density 

𝑞(𝜃1|𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

, data) instead and then accepting or rejecting the proposal based on a 

given probability 𝛼. 

Specifically, to utilize the Metropolis-Hastings algorithm, Step 2 in the Gibbs Sampler 

is replaced by the following two-step procedure: 

 
𝑝(𝜃1|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data) ∝ 𝐿(data|𝜃1, 𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
) ∗ prior(𝜃1|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
) 

(

(91) 
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A. Sample 𝜃1
𝑗
 from the proposal density 𝑞(𝜃1|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data) 

B. Sample 𝜃1
𝑗
 with probability 𝛼 = min (𝑅, 1), where 𝑅 denotes the so-called 

acceptance ratio: 

Which may in practice be evaluated by sampling 𝑢~𝑈(0,1) from the uniform 

distribution and then accepting the proposal 𝜃1
𝑗
 only if 𝑢 < 𝑅, while otherwise 

the value of the parameter 𝜃1
𝑗−1

 is kept instead. 

As in the case of the Gibbs Sampler algorithm, it can be shown that the so constructed 

Markov Chain converges to the joint posterior density 𝑝(Θ|data) as its equilibrium density 

(Johannes and Polson, 2009). 

3.1.3. Random-Walk Metropolis Hastings 

Multiple versions of the Metropolis-Hastings algorithm exist, differing in the way of 

how the proposal density 𝑞 is constructed. The simplest and most universal version is the 

Random-Walk Metropolis-Hastings algorithm, in which the proposal density follows a 

Random Walk through the parameter space. The proposal 𝑞 is thus defined as: 

With 𝑐 being the step-size meta-parameter which may significantly influence the 

computational efficiency of the algorithm and the practice is to set it so that approximately 

50% of the proposals get accepted and 50% rejected. 

A convenient property of the Random-Walk Metropolis-Hastings algorithm is that its 

proposal density is symmetric, so that the probability of moving from 𝜃1
𝑗−1

 to 𝜃1
𝑗
 is the same 

as the probability of sampling from 𝜃1
𝑗
 to 𝜃1

𝑗−1
. This causes the terms corresponding to 𝑞 in 

the acceptance ratio to cancel out, causing the acceptance ratio to reduce to the likelihood 

ratio: 

 𝑅 =
𝑝(𝜃1

𝑗
|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data)𝑞(𝜃1

𝑗−1
|𝜃1

𝑗
, 𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data)

𝑝(𝜃1
𝑗−1

|𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

, data)𝑞(𝜃1
𝑗
|𝜃1

𝑗−1
, 𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data)

 

(

(92) 

 𝜃1
𝑗
~𝜃1

𝑗−1
+ 𝑁(0, 𝑐) 

(

(93) 

 𝑅 =
𝐿(data|𝜃1

𝑗
, 𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
)

𝐿(data|𝜃1
𝑗−1

, 𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

)
 (
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As long as we are able to calculate the likelihood of the model for all 𝜃, we can then 

use the Random-Walk Metropolis-Hastings algorithm to sample from the joint posterior 

density of the parameters and the latent states. 

3.2. MCMC estimation of SVJD models 

In the MCMC estimation algorithm for the SVJD-RV-Z model with self-exciting price 

jumps we have to estimate 13 model parameters (𝜇, 𝜇𝐽, 𝜎𝐽, 𝛼, 𝛽, 𝛾, 𝛼𝐽, 𝛽𝐽, 𝛾𝐽, 𝜎𝑅𝑉, 𝜇𝑍, 𝜉𝑍, 𝜎𝑍) and 

3 vectors of latent state variables (𝑽, 𝑱, 𝑸). The algorithm was developed in Fičura and 

Witzany (2015) and is based on earlier results from Witzany (2013) and is based on the 

methodology developed in Jacquier et al. (2007) and Johannes and Polson (2009). The 

MCMC algorithms for SVJD and SVJD-RV proceed in the same fashion, with slight 

modifications and some of the steps missing. 

The algorithm for SVJD-RV-Z model proceeds as follows: 

1. Sample initial values of the model latent state variables 𝑽(0), 𝑱(0), 𝑸(0) and parameters 

𝜇(0), 𝜇𝐽
(0)

, 𝜎𝐽
(0)

, 𝛼(0), 𝛽(0), 𝛾(0), 𝛼𝐽
(0)

, 𝛽𝐽
(0)

, 𝛾𝐽
(0)

, 𝜎𝑅𝑉
(0)

, 𝜇𝑍
(0)

, 𝜉𝑍
(0)

, 𝜎𝑍
(0)

. 

2. For 𝑖 = 1, … , 𝑇 sample the jump sizes 𝐽𝑖
(𝑔)

∝ 𝜑(𝐽; 𝜇𝐽
(𝑔−1)

, 𝜎𝐽
(𝑔−1)

) if  𝑄𝑖
(𝑔)

= 0 using 

the Gibbs Sampler, or if 𝑄𝑖
(𝑔−1)

= 1, use the Random-Walk Metropolis-Hastings to 

sample from: 

 𝐽𝑖
(𝑔)

∝ 𝜑 (𝑟𝑖; 𝜇
(𝑔−1) + 𝐽,√𝑉𝑖

(𝑔−1)
)𝜑 (𝑙𝑜𝑔(𝑅𝑉𝑖 − 𝐽2); ℎ𝑖

(𝑔−1)
, 𝜎𝑅𝑉

(𝑔−1)
)𝜑 (𝐽; 𝜇𝐽

(𝑔−1)
, 𝜎𝐽

(𝑔−1)
) 

3. For 𝑖 = 1, … , 𝑇 sample the jump occurrences 𝑄𝑖
(𝑔)

∈ {0,1}, using the expression 

Pr[𝑄 = 1] = 𝑝1/(𝑝0 + 𝑝1), where: 

𝑝0 = 𝜑 (𝑟𝑖; 𝜇
(𝑔−1), √𝑉𝑖

(𝑔−1)
)𝜑 (log(𝑅𝑉𝑖); ℎ𝑖

(𝑔−1)
, 𝜎𝑅𝑉

(𝑔−1)
)𝜑 (𝑍𝑖; 𝜇𝑍

(𝑔−1)
, 𝜎𝑍

(𝑔−1)
) (1 − 𝜆𝑖

(𝑔−1)
) 

𝑝1 = 𝜑 (𝑟𝑖; 𝜇
(𝑔−1) + 𝐽𝑖

(𝑔)
, √𝑉𝑖

(𝑔−1)
)𝜑 (log (𝑅𝑉𝑖 − (𝐽𝑖

(𝑔)
)
2
) ; ℎ𝑖

(𝑔−1)
, 𝜎𝑅𝑉

(𝑔−1)
)𝜑 (𝑍𝑖; 𝜇𝑍

(𝑔−1)
+ 𝜉𝑍

(𝑔−1)
, 𝜎𝑍

(𝑔−1)
) 𝜆𝑖

(𝑔−1)
 

4. Sample new stochastic log-variances ℎ𝑖
(𝑔)

= log (𝑉𝑖
(𝑔)

) for 𝑖 = 1,… , 𝑇 using the 

Gibbs Sampler with accept-reject procedure developed by Kim, Shephard and Chib 

(1998), i.e. first calculate the series 𝑦𝑖 = 𝑟𝑖 − 𝜇(𝑔−1) − 𝐽𝑖
(𝑔)

𝑄𝑖
(𝑔)

 and then sample ℎ𝑖
(𝑔)

 

from the proposal distribution 𝜑(ℎ𝑖; 𝜇𝑖 , 𝜎), where: 

𝜇𝑖 = 𝜙𝑖 +
𝜎2

2
[𝑦𝑖

2 exp(−𝜙𝑖) − 1], 

𝜙𝑖 =
𝛾2log(𝑅𝑉𝑖 − 𝐽𝑖

2𝑄𝑖) + 𝜎𝑅𝑉
2 [𝛼(1 − 𝛽) + 𝛽(log𝑉𝑖+1 + log𝑉𝑖−1)]

𝛾2 + (1 + 𝛽2)𝜎𝑅𝑉
2 , 

(94) 
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𝜎 =
𝛾𝜎𝑅𝑉

√𝛾2 + (1 + 𝛽2)𝜎𝑅𝑉
2

 

The proposal is accepted with probability 𝑓∗ 𝑔∗⁄ , where: 

log(𝑓∗) = −
ℎ𝑖

2
−

𝑦𝑖
2

2
[exp (−ℎ𝑖)] 

log(𝑔∗) = −
ℎ𝑖

2
−

𝑦𝑖
2

2
[exp(−𝜙𝑖) (1 + 𝜙𝑖) − ℎ𝑖 exp(−𝜙𝑖)] 

If no accepted, then another proposal is drawn until acceptance occurs. 

5. Sample new stochastic log-variance autoregression coefficients 𝛼(𝑔), 𝛽(𝑔), 𝛾(𝑔), 

denoting ℎ𝑖 = log(𝑉𝑖
(𝑔)

) for 𝑖 = 1,… , 𝑇, using the Bayesian linear regression model 

(Lynch, 2007), i.e. define 𝜷̂ = (𝑿′𝑿)−1𝑿𝒚 and 𝒆̂ = 𝒚 − 𝑿𝜷̂, where 

𝑿 = (
1  …    1   
ℎ1 …ℎ𝑇−1

)
′

 and 𝒚 = (ℎ2 …ℎ𝑇)′, and sample: 

(𝛾(𝑔))
2

∝ 𝐼𝐺 (
𝑛 − 2

2
,
𝒆̂′𝒆̂

2
), 

(𝛼(𝑔), 𝛽(𝑔))
′
∝ 𝜑 [(𝛼, 𝛽)′; 𝜷̂, (𝛾(𝑔))

2
(𝑿′𝑿)−1] 

6. Sample 𝜇(𝑔) based on the normally distributed time series 𝑟𝑖 − 𝐽𝑖
(𝑔)

𝑄𝑖
(𝑔)

 with variances 

𝑉𝑖
(𝑔)

 as follows: 

𝑝(𝜇(𝑔)|𝒓, 𝑱(𝑔), 𝑸(𝑔), 𝑽(𝑔)) ∝ 𝜑 (𝜇;∑
𝑟𝑖 − 𝐽𝑖

(𝑔)
𝑄𝑖

(𝑔)

𝑉𝑖
(𝑔)

𝑇

𝑖=1

∑
1

𝑉𝑖
(𝑔)

𝑇

𝑖=1

⁄ ,∑
1

𝑉𝑖
(𝑔)

𝑇

𝑖=1

) 

7. Sample the Hawkes process parameters 𝜃𝐽, 𝛽𝐽, 𝛾𝐽, using the Random-Walk Metropolis-

Hastings algorithm with the proposal densities given as: 

𝜃𝐽
(𝑔)

= 𝜃𝐽
(𝑔−1)

+ 𝑁(0, 𝑐), 

𝛽𝐽
(𝑔)

= 𝛽𝐽
(𝑔−1)

+ 𝑁(0, 𝑐), 

𝛾𝐽
(𝑔)

= 𝛾𝐽
(𝑔−1)

+ 𝑁(0, 𝑐), 

and the likelihood function equal to 𝐿(𝑸(𝑔)|𝜃𝐽, 𝛽𝐽, 𝛾𝐽) = ∏ 𝜆𝑖
𝑄𝑖(1 − 𝜆𝑖)

1−𝑄𝑖𝑇
𝑖=1 . 

8. Sample 𝜇𝐽
(𝑔)

, 𝜎𝐽
(𝑔)

 based on the normally distributed time series 𝑱(𝑔) and uninformative 

priors 𝑝(𝜇) ∝ 1 and 𝑝(log𝜎2) ∝ 1,  equivalent to 𝑝(𝜎2) ∝ 1/𝜎2: 

𝑝(𝜇𝐽
(𝑔)

|𝑱(𝑔), 𝜎𝐽
(𝑔−1)

) ∝ 𝜑 (𝜇𝐽
(𝑔)

;
∑ 𝐽𝑖

(𝑔)𝑇
𝑖=1

𝑇
,
𝜎𝐽

(𝑔−1)

√𝑇
) 

𝑝 [(𝜎𝐽
(𝑔)

)
2

|𝑱(𝑔), 𝜇𝐽
(𝑔)

] ∝ 𝐼𝐺 [(𝜎𝐽
(𝑔)

)
2

;
𝑇

2
,
∑ (𝐽𝑖

(𝑔)
− 𝜇𝐽

(𝑔)
)
2

𝑇
𝑖=1

2
] 

9. Sample 𝜎𝑅𝑉
(𝑔)

 using the Inverse Gamma density: 

𝑝 [(𝜎𝑅𝑉
(𝑔)

)
2
|𝑹𝑽, 𝑱(𝑔), 𝑸(𝑔), 𝑽(𝑔)] ∝ 𝐼𝐺

[
 
 
 

(𝜎𝑅𝑉
(𝑔)

)
2
;
𝑇

2
,
∑ (log (𝑅𝑉𝑖 − (𝐽𝑖

(𝑔)
)
2
𝑄𝑖

(𝑔)
) − ℎ𝑖

(𝑔)
)
2

𝑇
𝑖=1

2

]
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10. Sample 𝜇𝑍
(𝑔)

, 𝜉𝑍
(𝑔)

, 𝜎𝑍
(𝑔)

 using the normally distributed series 𝑍𝑖 − 𝑄𝑖
(𝑔)

𝜉𝑍
(𝑔−1)

, with 

variance 𝜎𝑍
(𝑔−1)

 to sample 𝜇𝑍
(𝑔)

, series 𝑄𝑖
(𝑔)

(𝑍𝑖 − 𝜇𝑍
(𝑔)

), at points where 𝑄𝑖
(𝑔)

= 1, with 

variance 𝜎𝑍
(𝑔−1)

, to sample 𝜉𝑍
(𝑔)

, and the centralized time series 𝑍𝑖 − 𝜇𝑍
(𝑔)

− 𝑄𝑖
(𝑔)

𝜉𝑍
(𝑔)

 

to sample 𝜎𝑍
(𝑔)

 using the Inverse Gamma distribution. Specifically, the sampling 

densities will be: 

𝑝 [𝜇𝑍
(𝑔)

|𝒁, 𝑸(𝑔), 𝜉𝑍
(𝑔−1)

, 𝜎𝑍
(𝑔−1)

] ∝ 𝜑 (𝜇𝑍
(𝑔)

;
∑ (𝑍𝑖 − 𝑄𝑖

(𝑔)
𝜉𝑍

(𝑔−1)
)𝑇

𝑖=1

𝑇
,
𝜎𝑍

(𝑔−1)

√𝑇
) 

𝑝[𝜉𝑍
(𝑔)

|𝒁, 𝑸(𝑔), 𝜇𝑍
(𝑔)

, 𝜎𝑍
(𝑔−1)

] ∝ 𝜑

(

 𝜉𝑍
(𝑔)

;
∑ 𝑄𝑖

(𝑔)
(𝑍𝑖 − 𝜇𝑍

(𝑔)
)𝑇

𝑖=1

∑ 𝑄𝑖
(𝑔)𝑇

𝑖=1

,
𝜎𝑍

(𝑔−1)

√∑ 𝑄𝑖
(𝑔)𝑇

𝑖=1 )

  

𝑝 [(𝜎𝑍
(𝑔)

)
2

|𝒁, 𝑸(𝑔), 𝜇𝑍
(𝑔)

, 𝜉𝑍
(𝑔)

] ∝ 𝐼𝐺 [(𝜎𝑍
(𝑔)

)
2

;
𝑇

2
,
∑ (𝑍𝑖 − 𝜇𝑍

(𝑔)
− 𝑄𝑖

(𝑔)
𝜉𝑍

(𝑔)
)
2

𝑇
𝑖=1

2
] 

3.3. Particle Filters 

While the MCMC method represents a powerful tool for the estimation of the 

parameters and latent states of SVJD models, it is problematic to use it for predictions, and 

especially for back-testing. The problem stems from the fact that MCMC estimates the so 

called smoothing distribution of the latent states, 𝑝(𝑥𝑡|ℱ𝑇 , Θ), contitional on the whole 

information set ℱ𝑇 up to time 𝑇. The algorithm thus looks into the future when estimating the 

densities of individual latent states 𝑥𝑡 for 𝑡 < 𝑇, and in order to get the filtering densities   

𝑝(𝑥𝑡|ℱ𝑡, Θ), conditional only on the available information ℱ𝑡, we would need to re-run the 

MCMC for each time point in the time series.  As the re-running of the MCMC algorithm 

would be very time-consuming, the most commonly used approach is to combine MCMC 

with Particle Filters. 

Particle Filters (first proposed by Gordon et al., 1993) represent a method that 

sequentially estimates the filtering densities 𝑝(𝑥𝑡|ℱ𝑡, Θ), conditional on known parameters Θ 

and the information set ℱ𝑡 for each 𝑡. For this purpose, the distribution 𝑝(𝑥𝑡|ℱ𝑡, Θ) is 

represented with a weighted set of particles (i.e. discrete points), that are sequentially updated 

with Bayesian update equations as new information arrives (see Doucet and Johannses, 2009, 

or Speekenbrink, 2016). 

As the basic particle filters usually assume a known parameter vector Θ, the common 

approach in SVJD literature is to first use the MCMC algorithm to estimate the model 
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parameters and latent states over the in-sample period, while the Particle Filter is then used to 

compute the filtering distributions of the latent states 𝑝(𝑥𝑡|ℱ𝑡, Θ) for all 𝑡 over the out-sample 

period. These can subsequently be used to perform forecasts of 𝑝(𝑥𝑡+ℎ|ℱ𝑡, Θ), by sampling 

the latent states 𝑥𝑡 from 𝑝(𝑥𝑡|ℱ𝑡, Θ) and simulating their evolution into the future. 

In recent years, methods have been proposed that enable the Particle Filters to 

sequentially estimate both, the model parameters Θ, as well as the latent states 𝑥𝑡, for each 

time-point in the time series, conditional only on the available information ℱ𝑡. The methods 

of this kind have become known as particle learning. For major developments in the field, see 

Liu and West (2001), Gilks and Berzuini (2001), Storvik (2002), Fearnhead (2002), Carvalho 

et al. (2010), Fulop and Li (2013), Nemeth et al. (2013) and Fičura and Witzany (2018). 

For application of particle learning methods on SVJD models see Fulop and Li (2014), 

Chronoupolou (2018) and Fičura and Witzany (2018). 

In the following sections, the use of particle filters for latent state filtering and 

parameter learning will be explained, focused especially on the SIR Particle Filter of Gordon 

(1993), the Marginalized Re-Sample Move approach of Fulop and Li (2013), and the 

Sequential Gibbs Particle Filter of Fičura and Witzany (2018). The developed methods will 

subsequently be used for SVJD model estimation. 

3.3.1. Filtering vs. Smoothing problem 

Assume we have an observable time series 𝑦𝑡, for 𝑡 = 1,… , 𝑇, whose dynamics 

depends on an unobservable time series 𝑥𝑡, via set of equations with known parameters 𝜃. 

MCMC solves the smoothing problem of estimating the posterior densities 

𝑝(𝑥𝑡|𝑦1, … , 𝑦𝑇 , 𝜃) , for all 𝑡. Take note that the conditional distribution is expressed with 

respect to all 𝑦𝑡, up to the 𝑡 = 𝑇, and the model is thus looking into the future when 

estimating the densities of all 𝑥𝑡, except for the last 𝑥𝑇. 

Particle Filters, on the other hand, solve the filtering problem of estimating the 

posterior densities 𝑝(𝑥𝑡|𝑦1, … , 𝑦𝑡, 𝜃) for all 𝑡. We thus express the posterior density of each 

𝑥𝑡, conditional only on the observations 𝑦𝑡, available at the given time 𝑡. 

This then enables us to perform forecasts of 𝑝(𝑥𝑡+ℎ|𝑦1, … , 𝑦𝑡, 𝜃), by simulating the 

future evolution of 𝑥𝑡+1, … 𝑥𝑡+ℎ based on the inferred distribution of 𝑥𝑡 and the known 

parameters of the model 𝜃. 
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As a result, Particle Filters are far more convenient for out-of-sample volatility 

forecasting than the MCMC method, which would need to be re-estimated for each time 𝑡 in 

order to be able to generate out-of-sample forecasts of 𝑝(𝑥𝑡+ℎ|𝑦1, … , 𝑦𝑡, 𝜃) via simulations. 

3.3.2. General State-Space model 

A general state-space model contains the following two equations. 

Observation equation: 

And transition equation: 

Where 𝐻(. ) and 𝐹(. ) are arbitrary functions, 𝜃 are the parameters, and 𝑤𝑡 and 𝑣𝑡 are 

the noise terms, assumed to be mutually independent. 

The observations 𝑦𝑡 are assumed to be conditionally independent given the hidden 

states 𝑥𝑡, with the observation density 𝑝(𝑦𝑡|𝑥𝑡, 𝜃). The hidden state 𝑥𝑡 is commonly assumed 

to follow a Markov proces, with initial density 𝑝(𝑥0|𝜃) and a transition density 𝑝(𝑦𝑡|𝑥𝑡, 𝜃). 

The task of the state filtering and parameter learning is to find the joint posterior 

distribution of the latent states and the parameters conditional on the observations until 𝑡: 

Where 𝑝(𝑥𝑡|𝑦1:𝑡, 𝜃) solves the state filtering problem and 𝑝(𝜃|𝑦1:𝑡) the parameter 

learning problem. 

In the cases when the functions 𝐻(. ) and 𝐹(. ) are linear and the distributions of 𝑥0, 𝑤𝑡 

and 𝑣𝑡 are Gaussian, the problem can be solved analytically with a Kalman Filter (Kalman, 

1960). 

In the general, non-linear and non-Gaussian case, particle filters can be used, 

approximating the joint posterior density 𝑝(𝑥𝑡, 𝜃|𝑦1:𝑡) with a weighted set of particles. 

 𝑦𝑡 = 𝐻(𝑥𝑡, 𝑤𝑡, 𝜃) 

(

(95) 

 𝑥𝑡 = 𝐹(𝑥𝑡−1, 𝑣𝑡 , 𝜃) 

(

(96) 

 𝑝(𝑥𝑡, 𝜃|𝑦1:𝑡) = 𝑝(𝑥𝑡|𝑦1:𝑡, 𝜃)𝑝(𝜃|𝑦1:𝑡) 

(

(97) 
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3.3.3. SIR Particle Filter 

In the first step, we will assume that the parameters 𝜃 are known, with the goal being 

to solve the filtering problem of estimating 𝑝(𝑥𝑡|𝑦1:𝑡, 𝜃). This can be tackled with the 

Sequential Importance Re-Sampling (SIR) Particle Filter developed by Gordon et al. (1993). 

Given a set of 𝑀 particles {𝑥𝑡−1
(𝑖)

; 𝑖 = 1,2, … ,𝑀}, with weights 𝑤̃𝑡−1
(𝑖)

 representing the 

density 𝑝(𝑥𝑡−1|𝑦1:𝑡−1) at time 𝑡 − 1, we can use the recursion: 

To approximate 𝑝(𝑥𝑡|𝑦1:𝑡), we draw from a known proposal density g(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡) 

and assign importance weights to the sample as follows: 

For the case of a simple unadapted filter, the proposal density equals the transition 

density, i.e. 𝑔(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡) = 𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖  ), and the weight adjustment thus reduces to: 

The weights are then normalized according to: 

And the population is re-sampled, if 𝐸𝑆𝑆 = 1 ∑ (𝑤̃𝑡
(𝑖)

)
2

𝑀
𝑗=1⁄ < 𝐸𝑆𝑆𝑇ℎ𝑟, where 𝐸𝑆𝑆𝑇ℎ𝑟 

is the re-sampling treshold to prevent sample degeneration. If re-sampling is performed, all 

weights are subsequently set to 𝑤̃𝑡
(𝑖)

= 1/𝑀. 

We thus arrive at a sample of 𝑀 particles {𝑥𝑡
(𝑖)

; 𝑖 = 1,2, … ,𝑀}, with weights 𝑤̃𝑡
(𝑖)

, 

representing the density 𝑝(𝑥𝑡|𝑦1:𝑡) at time 𝑡, which can be used in the next iteration step. 

 𝑝(𝑥𝑡|𝑦1:𝑡) ∝ ∫𝑝(𝑦𝑡|𝑥𝑡) 𝑝(𝑥𝑡|𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1 

(

(98) 

 𝑤𝑡
(𝑖)

=
𝑝(𝑦𝑡|𝑥𝑡

𝑖)𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖  )

𝑔(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)
𝑤̃𝑡−1

(𝑖)
 

(

(99) 

 𝑤𝑡
(𝑖)

= 𝑝(𝑦𝑡|𝑥𝑡
𝑖)𝑤̃𝑡−1

(𝑖)
 

(

(100) 

 𝑤̃𝑡
(𝑖)

= 𝑤𝑡
(𝑖)

∑ 𝑤𝑡
(𝑖)

𝑀

𝑗=1
⁄  

(

(101) 
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The weighted sample can further be used to estimate the expectation of any function 

𝑓(𝑥𝑡), by applying the relationship: 

Additionally, likelihood of the observations conditional on the parameter vector 𝜃 can 

be estimated as: 

Where: 

According to Del Moral (2004), the estimate is unbiased, so that 𝐸[𝑝̂(𝑦1:𝑡|𝜃)] =

𝑝(𝑦1:𝑡|𝜃), which will be crucial in the parameter learning phase of estimating 𝑝(𝜃|𝑦1:𝑡) in the 

MSM approach of Fulop and Li (2013). 

3.3.4. Parameter estimation vs. Parameter learning 

Analogically to the smoothing vs. filtering problem, regarding the latent state 𝑥𝑡, we 

can define the parameter estimation vs. learning problem with regards to the estimation of the 

parameter vector 𝜃. The MCMC method performs parameter estimation of the joint posterior 

density 𝑝(𝒙, 𝜃|𝑦1, … , 𝑦𝑇), conditional on all observations 𝑦𝑡, … , 𝑦𝑇. The goal of the parameter 

learning problem, on the other hand, is to sequentially estimate 𝑝(𝑥𝑡, 𝜃|𝑦1, … , 𝑦𝑡) for all 𝑡. 

For discussion see Doucet and Johannses, 2009, or Speekenbrink, 2016. 

The parameter learning problem can, similarly to the latent state filtering, be tackled 

with particle filters (thus it is also known as particle learning, see Carvalho et al. 2010). The 

problem is that when the time-constant parameters are viewed in a same way as the latent 

states, their distribution will quickly degenerate to a situation where only one parameter 

combination has a non-zero weight, while all others are very close to zero. This degeneracy is 

far worse than in the case of the latent states, which change through the time, and thus even if 

the particle filter degenerates to a single particle with non-zero weight, the latent states in the 

 ∫ 𝑓(𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡)𝑑𝑥𝑡

∞

−∞

≈ ∑𝑓(𝑥𝑡
(𝑖)

)

𝑀

𝑖=1

𝑤̃𝑡
(𝑖)

 

(

(102) 

 𝑝̂(𝑦1:𝑡|𝜃) = ∏𝑝̂(𝑦𝑙|𝑦1:𝑙−1, 𝜃)𝑝̂(𝑦1|𝜃)

𝑡

𝑙=2

 

(

(103) 

 𝑝̂(𝑦𝑙|𝑦1:𝑙−1, 𝜃) = ∑𝑤𝑙
(𝑖)

𝑀

𝑖=1

 

(

(104) 
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next period (after particle re-sampling) will be sampled at different values (through the model 

transition equations) (see Doucet and Johannses, 2009, or Speekenbrink, 2016). 

To tackle the problem, early approaches proposed to perturb the parameter values 

corresponding to the particles with artificial noise (Gordon et al., 1993). While this may be 

efficient to prevent parameter degeneration, the artificial noise leads to overly diffuse 

parameter distributions. Liu and West (2001) therefore propose to use kernel density 

estimation of the parameter distribution, together with shrinkage to alleviate the problem. 

Alternatively, particle degeneracy can be tackled by adding an MCMC step to the particle 

filter (Gilks and Berzuini, 2001, Storvik 2002, Fearnhead 2002, Lopes et al., 2010). 

Unfortunately, as shown by Chopin et al. (2010), the parameter distribution will still 

degenerate, regardless of the previous proposed methods, if the time-series is sufficiently long 

and the latent state particles filter is not re-run on the whole history. 

As a result, Fulop and Li (2013) propose the Marginalized Re-Sample Move (MSM) 

approach, which is able to estimate the posterior parameter distributions consistently, but 

unfortunately contains a step during which the latent state particle filter needs to be re-run 

(often repeatedly) over the whole history of observations (i.e. the algorithm is not completely 

online). Especially for complex models with large number of parameters, the latent states 

particle filter also needs to be re-run multiple times during each parameter re-sampling step, 

which makes the algorithm very time consuming. As a result, Ficura and Witzany (2018) 

propose a new Sequential Gibbs Particle Filter, combining the results from Fulop and Li 

(2013) and Gilks and Berzuini (2001), which seems to work better for complex SVJD models 

and does not require the re-running of the latent states filter to approximate the parameter 

posterior distributions. The Marginalized Re-Sample Move (MSM) approach (Fulop and Li, 

2013), and the Sequential Gibbs Particle Filter (SGPF) (Fičura and Witzany, 2018), are 

explained in the following sections. As most of the steps are identical for the two methods, we 

start by explaining the MSM first, with the SGPF being presented subsequently as a 

replacement of the final, Move step, of the algorithm. 

3.3.5. Marginalized Re-Sample Move approach 

The goal of the Marginalized Re-Sample Move (MSM) approach (Fulop and Li, 2013) 

is to extend the particle filter to the parameter learning problem of estimating 𝑝(𝜃|𝑦1:𝑡). 

The logic of the approach is to first marginalize out the latent states from 𝑝(𝜃, 𝑥𝑡|𝑦1:𝑡), 

followed by the application of the resample-move algorithm of Gilks and Berzuini (2001) and 
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Chopin (2002), while using the results from Andrieu and Roberts (2009) and Andrieu et al. 

(2010), and using the relationship that: 

 We start by defining an auxiliary state space including all random quantities produced 

by the particle filter 𝑢𝑙 = {𝑥𝑙
(𝑖)

, 𝑎𝑙
(𝑖)

; 𝑖 = 1,… ,𝑀} for step 𝑙, where 𝑎𝑙
(𝑖)

 denotes the indices 

sampled during the re-sampling. 

At time 𝑡 the filter depends only on the population of the state particles from step 𝑡 −

1, so we can write: 

Where 𝜓(𝑢1:𝑡|𝑦1:𝑡, 𝜃) denotes the joint density of all random variabls produced by the 

particle filter up to the time 𝑡. 

Furthermore, the predictive likelihood can be written as  

We can then construct an auxiliary density: 

With the target density 𝑝(𝜃|𝑦1:𝑡) being the marginal of the auxiliary density that also 

has the same normalizing constant. Therefore, if we draw samples from the auxiliary density, 

we automatically obtain samples from the original target density 𝑝(𝜃|𝑦1:𝑡). 

Assume we have a set of weighted particles {(𝜃(𝑛), 𝑢𝑡−1
(𝑛)

, 𝑝̂(𝑦1:𝑡−1|𝜃)𝑛 ), 𝑠𝑡−1
(𝑛)

; 𝑛 =

1, … , 𝑁}, representing the target distribution 𝑝(𝜃, 𝑢1:𝑡−1|𝑦1:𝑡−1) at time 𝑡 − 1. Where 𝑠𝑡−1
(𝑛)

 

denotes the sample weights. 

 𝑝̂(𝜃|𝑦1:𝑡) ∝ ∏𝑝̂(𝑦𝑙|𝑦1:𝑙−1, 𝜃)𝑝̂(𝑦1|𝜃)

𝑡

𝑙=2

𝑝(𝜃) 

(

(105) 

 𝜓(𝑢1:𝑡|𝑦1:𝑡, 𝜃) = ∏𝜓(𝑢𝑙|𝑢𝑙−1, 𝑦𝑙, 𝜃)

𝑡

𝑙=2

𝜓(𝑢1|𝑦1, 𝜃) 

(

(106) 

 𝑝̂(𝑦𝑡|𝑦1:𝑡−1, 𝜃) ≡ 𝑝̂(𝑦𝑡|𝑢𝑡, 𝑢𝑡−1, 𝜃) 

(

(107) 

 𝑝̃(𝜃, 𝑢1:𝑡|𝑦1:𝑡) ∝ 𝑝(𝜃)∏𝑝̂(𝑦𝑙|𝑢𝑙 , 𝑢𝑙−1, 𝜃)𝜓(𝑢𝑙|𝑢𝑙−1, 𝑦𝑙 , 𝜃)𝑝̂(𝑦1|𝑢1, 𝜃)𝜓(𝑢1|𝑦1, 𝜃)

𝑡

𝑙=2

 

(

(108) 
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For each 𝑛, the relevant part of 𝑢𝑡−1
(𝑛)

 are the 𝑀 particles representing the hidden states 

{𝑥𝑡
(𝑖,𝑛)

; 𝑖 = 1,… ,𝑀}. In total we thus have to maintain 𝑀x𝑁 particles of the hidden states. 

To approximate the target density 𝑝(𝜃, 𝑢1:𝑡|𝑦1:𝑡) at time 𝑡, we can use a recursive 

relationship between the target distributions at time 𝑡 − 1 and time 𝑡: 

The Marginalized Re-Sample Move (MSM) algorithm will run as follows: 

1. Augmentation step: For each 𝜃(𝑛), run the SIR particle filtering algorithm on 

the new observation 𝑦𝑡. This is equivalent to sampling from 𝜓(𝑢𝑡|𝑢𝑡−1, 𝑦𝑡, 𝜃). 

2. Reweighting step: The incremental weights are equal to 𝑝̂(𝑦𝑡|𝑢𝑡, 𝑢𝑡−1, 𝜃), 

leading to new weights, given by: 

And the estimated likelihood of the fixed parameters is updated by: 

The weighted sample {(𝜃(𝑛), 𝑢𝑡
(𝑛)

, 𝑝̂(𝑦1:𝑡|𝜃)𝑛 ), 𝑠𝑡−1
(𝑛)

; 𝑛 = 1,… ,𝑁} is then 

distributed according to the target 𝑝(𝜃, 𝑢1:𝑡|𝑦1:𝑡). 

The normalized weights are then computed as 𝜋𝑡
(𝑛)

= 𝑠𝑡
(𝑛) ∑ 𝑠𝑡

(𝑘)𝑁
𝑘=1⁄  and the 

effective sample size as 𝐸𝑆𝑆𝑡 = 1 ∑ (𝜋𝑡
(𝑘)

)
2

𝑁
𝑘=1⁄ . 

The marginal likelihood of 𝑦𝑡 can be approximated as: 

 𝑝(𝜃, 𝑢1:𝑡|𝑦1:𝑡) ∝ 𝑝̂(𝑦𝑡|𝑢𝑡, 𝑢𝑡−1, 𝜃)𝜓(𝑢𝑡|𝑢𝑡−1, 𝑦𝑡 , 𝜃)𝑝̃(𝜃, 𝑢1:𝑡−1|𝑦1:𝑡−1) 

(

(109) 

 𝑠𝑡
(𝑛)

= 𝑠𝑡−1
(𝑛)

𝑝̂(𝑦𝑡|𝑢𝑡
(𝑛)

, 𝑢𝑡−1
(𝑛)

, 𝜃(𝑛)) 

(

(110) 

 𝑝̂(𝑦1:𝑡|𝜃)(𝑛) = 𝑝̂(𝑦1:𝑡−1|𝜃)(𝑛)𝑝̂(𝑦𝑡|𝑢𝑡
(𝑛)

, 𝑢𝑡−1
(𝑛)

, 𝜃(𝑛)) 

(

(111) 

 𝑝(𝑦𝑡|𝑦1:𝑡−1) ≈ ∑ 𝜋𝑡−1
(𝑘)

𝑝̂(𝑦𝑡|𝑢𝑡
(𝑘)

, 𝑢𝑡−1
(𝑘)

, 𝜃(𝑘))

𝑁

𝑘=1

 

(

(112) 
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3. Resample-Move step: In order to avoid degeneration of the parameter particle 

set, we perform the resample-move step if 𝐸𝑆𝑆𝑡< 𝐵1. During this step, the 

particles are: 

(1) Resampled proportional to 𝜋𝑡
(𝑛)

, to get an equally weighted sample 

(2) Moved through a Markov kernel with stationary distribution 

𝑝(𝜃, 𝑢1:𝑡|𝑦1:𝑡), while the number of unique particles is <𝐵2 

For the Move step, the marginal particle MCMC kernel with the following 

proposal can be used: 

Where ℎ𝑡(𝜃|𝜃′) is the proposal, adapted to the past of the algorithm, for 

example the multivariate normal distribution with mean and covariance fitted 

to the sample posterior covariance of 𝜃. 

The acceptance probability of the proposal (𝜃∗, 𝑢1:𝑡
∗ , 𝑝̂(𝑦1:𝑡|𝜃)∗) is then 

computed as: 

A joint sample from 𝑝(𝜃, 𝑥𝑡|𝑦1:𝑡) can be obtained from the algorithm by drawing one 

particle of the hidden states for each randomly drawn parameter particle 𝜃(𝑛) at any time 𝑡. 

Alternatively, the full particle population can be used to approximate any expectation 

𝐸[𝑓(𝜃, 𝑥𝑡)|𝑦1:𝑡] as: 

A sequential Bayes factor can also be constructed for sequential model comparison. 

For any two models 𝑀1 and 𝑀2, the Bayes factor at time 𝑡 can be computed with the 

following recursive formula: 

 ℎ(𝜃, 𝑢1:𝑡|𝜃′) = ℎ𝑡(𝜃|𝜃′)𝜓(𝑢1:𝑡|𝜃) 

(

(113) 

 𝑚𝑖𝑛 {1;
𝑝(𝜃∗)𝑝̂(𝑦1:𝑡|𝜃)∗ℎ𝑡(𝜃

(𝑛)|𝜃∗)

𝑝(𝜃(𝑛))𝑝̂(𝑦1:𝑡|𝜃)(𝑛)ℎ𝑡(𝜃∗|𝜃(𝑛))
} 

(

(114) 

 𝐸[𝑓(𝜃, 𝑥𝑡)|𝑦1:𝑡] ≈ ∑ ∑𝜋𝑡
(𝑛)

𝑤̃𝑡
(𝑖)

𝑓(𝜃(𝑛), 𝑥𝑡
(𝑖,𝑛)

)

𝑀

𝑖=1

𝑁

𝑛=1

 

(

(115) 

 
𝐵𝐹𝑡 ≡

𝑝(𝑦1:𝑡|𝑀1)

𝑝(𝑦1:𝑡|𝑀2)
=

𝑝(𝑦𝑡|𝑦1:𝑡−1, 𝑀1)

𝑝(𝑦𝑡|𝑦1:𝑡−1, 𝑀2)
𝐵𝐹𝑡−1 (
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3.3.6. Sequential Gibbs Particle Filter 

While the use of multivariate Gaussian distribution, fitted to the mean and covariance 

of 𝜃, as proposed by Fulop and Li (2013), provides a natural proposal distribution to sample 

the values of the parameters from, in the more complex SVJD models, with strong 

dependencies between the parameters, it can often happen that the vast majority of proposals 

end up being rejected. The result is, that the computationally highly demanding re-sampling 

of the parameter particles (which involves the re-running of the latent state particle filters in 

order to be able to compute the acceptance ratio), needs to be repeated many times, to achieve 

reasonable acceptance rates and to replenish the parameter particle set. 

In order avoid this problem, Ficura and Witzany (2018) propose to rather use Gibbs 

Sampler (or alternatively the Random-Walk Metropolis-Hastings, in the cases when Gibbs 

Sampler cannot be used), to re-sample the parameter particles. The difference in comparison 

to the Fulop and Li (2013) algorithm is only in the Move phase, which is performed with the 

Gibbs Sampler on a randomly selected particle path. This can be re-constructed, even in the 

presence of re-sampling of the latent states, as long as the particle values and the indices of 

the particles used in each re-sampling step are saved. Andrieu et al. (2010), who developed a 

related method called Particle MCMC, call it the ancestral lineage. The idea is to know for 

each particle 𝑗 at time 𝑠 = 1, … , 𝑡, the index 𝑎(𝑗, 𝑠) of the particle from time 𝑠 − 1 from 

which particle 𝑗 originated (i.e. the particle that was used in the transition density during the 

sampling of particle 𝑗 at time 𝑠), before re-sampling at was applied. 

3.3.7. SGPF sampling in a SVJD model with volatility jumps 

The SGPF algorithm of Fičura and Witzany (2018) proceeds in the same way as the 

MSM algorithm of Fulop and Li (2013), up until the Move step, which is in the case of the 

SGPF algorithm performed with the Gibbs sampler (or a Random-Walk Metropolis-Hastings 

for the parameters where the conditional density is intractable). Take note that in order for the 

algorithm to be consistent, the re-sampling of the latent state particles needs to be performed 

daily, i.e. the re-sampling threshold 𝐸𝑆𝑆𝑇ℎ𝑟 = 𝑀, where 𝑀 is the number of latent state 

particles used in the particle filter.  

In the case of a single component SVJD model with self-exciting jumps in returns and 

volatility, the SGPF sampling in the Move step proceeds as follows: 

(116) 
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1. For each parameter particle 𝑔 = 1,… ,𝑁 sample a single latent state particle 

from 𝑗 = 1,… ,𝑀 and reconstruct the indices of its ancestral lineage 𝑎(𝑗, 𝑠) for 

𝑠 = 1,… , 𝑡. To avoid overly complex index notation, we will assume in the 

rest of the algorithm that the hidden states denoted with index (𝑔) for 

parameter particle 𝑔, correspond to the ancestral lineage 𝑎(𝑗, 𝑠) of the sampled 

latent state particle 𝑗 for 𝑠 = 1,… , 𝑡. 

2. Sample new stochastic log-variance autoregression coefficients 𝛼(𝑔), 𝛽(𝑔), 𝛾(𝑔), 

by using the Bayesian linear regression model (Lynch, 2007), i.e. define as 

𝜷̂ = (𝑿′𝑿)−1𝑿𝒚 and 𝒆̂ = 𝒚 − 𝑿𝜷̂, where 

𝑿 = (
1  …    1   

ℎ1
(𝑔)

…ℎ𝑡−1
(𝑔) )

′

 and 𝒚 = (ℎ2
(𝑔)

…ℎ𝑡
(𝑔)

)
′

, and sample: 

(𝛾(𝑔))
2

∝ 𝐼𝐺 (
𝑛 − 2

2
,
𝒆̂′𝒆̂

2
), 

(𝛼(𝑔), 𝛽(𝑔))
′
∝ 𝜑 [(𝛼, 𝛽)′; 𝜷̂, (𝛾(𝑔))

2
(𝑿′𝑿)−1] 

3. Sample new drift parameter 𝜇(𝑔) based on the normally distributed time series 

𝑟𝑖 − 𝐽𝑖
(𝑔)

𝑄𝑖
(𝑔)

 with variances 𝑉𝑖
(𝑔)

 as follows: 

𝑝(𝜇(𝑔)|𝒓, 𝑱(𝑔), 𝑸(𝑔), 𝑽(𝑔)) ∝ 𝜑 (𝜇;∑
𝑟𝑖 − 𝐽𝑖

(𝑔)
𝑄𝑖

(𝑔)

𝑉𝑖
(𝑔)

𝑡

𝑖=1

∑
1

𝑉𝑖
(𝑔)

𝑡

𝑖=1

⁄ ,∑
1

𝑉𝑖
(𝑔)

𝑡

𝑖=1

) 

4. Sample 𝜎𝑅𝑉
(𝑔)

 using the Inverse Gamma density: 

𝑝 [(𝜎𝑅𝑉
(𝑔)

)
2
|𝑹𝑽, 𝑱(𝑔), 𝑸(𝑔), 𝑽(𝑔)] ∝ 𝐼𝐺 [(𝜎𝑅𝑉

(𝑔)
)
2
;
𝑡

2
,
∑ (log (𝑅𝑉𝑖 − (𝐽𝑖

(𝑔)
)
2
𝑄𝑖

(𝑔)
) − ℎ𝑖

(𝑔)
)

2
𝑡
𝑖=1

2
] 

5. Sample 𝜇𝑍
(𝑔)

, 𝜉𝑍
(𝑔)

, 𝜎𝑍
(𝑔)

 by using the densities: 

𝑝 [𝜇𝑍
(𝑔)

|𝒁,𝑸(𝑔), 𝜉𝑍
(𝑔)

, 𝜎𝑍
(𝑔)

] ∝ 𝜑 (𝜇𝑍
(𝑔)

;
∑ (𝑍𝑖 − 𝑄𝑖

(𝑔)
𝜉𝑍

(𝑔)
)𝑡

𝑖=1

𝑡
,
𝜎𝑍

(𝑔)

√𝑡
) 

𝑝 [𝜉𝑍
(𝑔)

|𝒁, 𝑸(𝑔), 𝜇𝑍
(𝑔)

, 𝜎𝑍
(𝑔)

] ∝ 𝜑

(

 𝜉𝑍
(𝑔)

;
∑ 𝑄𝑖

(𝑔)
(𝑍𝑖 − 𝜇𝑍

(𝑔)
)𝑡

𝑖=1

∑ 𝑄𝑖
(𝑔)𝑡

𝑖=1

,
𝜎𝑍

(𝑔)

√∑ 𝑄𝑖
(𝑔)𝑡

𝑖=1 )

  

𝑝 [(𝜎𝑍
(𝑔)

)
2
|𝒁, 𝑸(𝑔), 𝜇𝑍

(𝑔)
, 𝜉𝑍

(𝑔)
] ∝ 𝐼𝐺 [(𝜎𝑍

(𝑔)
)
2
;
𝑡

2
,
∑ (𝑍𝑖 − 𝜇𝑍

(𝑔)
− 𝑄𝑖

(𝑔)
𝜉𝑍

(𝑔)
)
2

𝑡
𝑖=1

2
] 

6. Sample 𝜇𝐽
(𝑔)

, 𝜎𝐽
(𝑔)

 based on the normally distributed time series 𝑱(𝑔): 

𝑝(𝜇𝐽
(𝑔)

|𝑱(𝑔), 𝜎𝐽
(𝑔−1)

) ∝ 𝜑 (𝜇𝐽
(𝑔)

;
∑ 𝐽𝑖

(𝑔)𝑡
𝑖=1

𝑡
,
𝜎𝐽

(𝑔)

√𝑡
) 

𝑝 [(𝜎𝐽
(𝑔)

)
2

|𝑱(𝑔), 𝜇𝐽
(𝑔)

] ∝ 𝐼𝐺 [(𝜎𝐽
(𝑔)

)
2

;
𝑡

2
,
∑ (𝐽𝑖

(𝑔)
− 𝜇𝐽

(𝑔)
)
2

𝑡
𝑖=1

2
] 
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Alternatively, if the number of estimated jumps in 𝑸(𝑔) is large enough (in our 

case we will use the condition that ∑ 𝑄𝑖
(𝑔)𝑡

𝑖=1 > 5), it is better to use densities: 

𝑝(𝜇𝐽
(𝑔)

|𝑱(𝑔), 𝑸(𝑔), 𝜎𝐽
(𝑔−1)

) ∝ 𝜑

(

 𝜇𝐽
(𝑔)

;
∑ 𝐽𝑖

(𝑔)
𝑄𝑖

(𝑔)𝑡
𝑖=1

∑ 𝑄𝑖
(𝑔)𝑡

𝑖=1

,
𝜎𝐽

(𝑔)

√∑ 𝑄𝑖
(𝑔)𝑡

𝑖=1 )

  

𝑝 [(𝜎𝐽
(𝑔)

)
2

|𝑱(𝑔), 𝑸(𝑔), 𝜇𝐽
(𝑔)

] ∝ 𝐼𝐺 [(𝜎𝐽
(𝑔)

)
2

;
∑ 𝑄𝑖

(𝑔)𝑡
𝑖=1

2
,
∑ (𝐽𝑖

(𝑔)
− 𝜇𝐽

(𝑔)
)
2

𝑄𝑖
(𝑔)𝑡

𝑖=1

2
] 

7. Sample 𝜇𝐽𝑉
(𝑔)

, 𝜎𝐽𝑉
(𝑔)

 based on the normally distributed time series 𝑱𝑉
(𝑔)

: 

𝑝(𝜇𝐽𝑉
(𝑔)

|𝑱𝑉
(𝑔)

, 𝜎𝐽𝑉
(𝑔−1)

) ∝ 𝜑 (𝜇𝐽𝑉
(𝑔)

;
∑ 𝐽𝑉,𝑖

(𝑔)𝑡
𝑖=1

𝑡
,
𝜎𝐽𝑉

(𝑔)

√𝑡
) 

𝑝 [(𝜎𝐽𝑉
(𝑔)

)
2

|𝑱𝑉
(𝑔)

, 𝜇𝐽𝑉
(𝑔)

] ∝ 𝐼𝐺 [(𝜎𝐽𝑉
(𝑔)

)
2

;
𝑡

2
,
∑ (𝐽𝑖

(𝑔)
− 𝜇𝐽

(𝑔)
)
2

𝑡
𝑖=1

2
] 

As in the case of price jumps, if ∑ 𝑄𝑉,𝑖
(𝑔)𝑡

𝑖=1 > 5, we will use the densities: 

𝑝 (𝜇𝐽𝑉
(𝑔)

|𝑱𝑉
(𝑔)

, 𝑸𝑉
(𝑔)

, 𝜎𝐽𝑉
(𝑔−1)

) ∝ 𝜑

(

 𝜇𝐽𝑉
(𝑔)

;
∑ 𝐽𝑉,𝑖

(𝑔)
𝑄𝑉,𝑖

(𝑔)𝑡
𝑖=1

∑ 𝑄𝑉,𝑖
(𝑔)𝑡

𝑖=1

,
𝜎𝐽𝑉

(𝑔)

√∑ 𝑄𝑉,𝑖
(𝑔)𝑡

𝑖=1 )

  

𝑝 [(𝜎𝐽𝑉
(𝑔)

)
2

|𝑱𝑉
(𝑔)

, 𝑸𝑉
(𝑔)

, 𝜇𝐽𝑉
(𝑔)

] ∝ 𝐼𝐺 [(𝜎𝐽𝑉
(𝑔)

)
2

;
∑ 𝑄𝑉,𝑖

(𝑔)𝑡
𝑖=1

2
,
∑ (𝐽𝑖

(𝑔)
− 𝜇𝐽

(𝑔)
)
2

𝑄𝑉,𝑖
(𝑔)𝑡

𝑖=1

2
] 

8. Sample the Hawkes process parameters 𝜃𝐽 , 𝛽𝐽, 𝛾𝐽 by using the Random-Walk 

Metropolis-Hastings algorithm, and the likelihood function 

𝐿(𝑸(𝑔)|𝜃𝐽, 𝛽𝐽, 𝛾𝐽) = ∏𝜆𝑖
𝑄𝑖(1 − 𝜆𝑖)

1−𝑄𝑖

𝑡

𝑖=1

 

In the applied algorithm we will use step sizes 𝑐𝜃𝐽
= 0.003, 𝑐𝛽𝐽

= 0.08 and 

𝑐𝛾𝐽
= 0.008 

9. Sample volatility jump Hawkes process parameters 𝜃𝐽𝑉 , 𝛽𝐽𝑉 , 𝛾𝐽𝑉 by using the 

Random-Walk Metropolis-Hastings algorithm, and the likelihood function 

𝐿(𝑸𝑉
(𝑔)

|𝜃𝐽𝑉 , 𝛽𝐽𝑉, 𝛾𝐽𝑉) = ∏𝜆𝑉,𝑖

𝑄𝑉,𝑖(1 − 𝜆𝑉,𝑖)
1−𝑄𝑉,𝑖

𝑡

𝑖=1

 

In the applied algorithm we will use step sizes 𝑐𝜃𝐽𝑉
= 0.003, 𝑐𝛽𝐽𝑉

= 0.08 and 

𝑐𝛾𝐽𝑉
= 0.008 
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In the case of the two-component SVJD model, the step 2 needs to be replaced with 

the following two steps: 

A. Sample new short-term log-variance component autoregression coefficients 

𝛽(𝑔), 𝛾(𝑔), by using the Bayesian linear regression model where 𝜷̂ = (𝑿′𝑿)−1𝑿𝒚, 

𝒆̂ = 𝒚 − 𝑿𝜷̂, and: 

𝑿 = (ℎ𝑆𝑇,1
(𝑔)

…ℎ𝑆𝑇,𝑡−1
(𝑔)

)
′

 and 𝒚 = (ℎ𝑆𝑇,2
(𝑔)

…ℎ𝑆𝑇,𝑡
(𝑔)

)
′

, and sample: 

(𝛾(𝑔))
2

∝ 𝐼𝐺 (
𝑛 − 1

2
,
𝒆̂′𝒆̂

2
), 

𝛽(𝑔) ∝ 𝜑 [𝛽; 𝜷̂, (𝛾(𝑔))
2
(𝑿′𝑿)−1] 

B. Sample new long-term log-variance component autoregression coefficients 

𝜙0
(𝑔)

, 𝜙1
(𝑔)

, 𝜙2
(𝑔)

 by using the Bayesian linear regression model where 

𝜷̂ = (𝑿′𝑿)−1𝑿𝒚, 𝒆̂ = 𝒚 − 𝑿𝜷̂, and 

𝑿 = (
1  …    1   

ℎ𝐿𝑇,1
(𝑔)

…ℎ𝐿𝑇,𝑡−1
(𝑔) )

′

 and 𝒚 = (ℎ𝐿𝑇,2
(𝑔)

…ℎ𝐿𝑇,𝑡
(𝑔)

)
′

, and sample: 

(𝜙2
(𝑔)

)
2

∝ 𝐼𝐺 (
𝑛 − 2

2
,
𝒆̂′𝒆̂

2
), 

(𝜙0
(𝑔)

, 𝜙1
(𝑔)

)
′

∝ 𝜑 [(𝜙0, 𝜙1)
′; 𝜷̂, (𝜙2

(𝑔)
)
2
(𝑿′𝑿)−1] 

When a correlation between volatility and returns is assumed, the value of the 

correlation parameter 𝜌 needs to be sampled as well. This can be done by saving the random 

terms in the price and log-variance processes. We can then proceed as follows: 

• Sample new correlation parameter 𝜌 by using the Bayesian linear regression 

model where 𝜷̂ = (𝑿′𝑿)−1𝑿𝒚, and 𝒆̂ = 𝒚 − 𝑿𝜷̂, and: 

𝑿 = (𝜀𝑉,1
(𝑔)

…𝜀𝑉,𝑡
(𝑔)

)
′

 and 𝒚 = (𝜀1
(𝑔)

…𝜀𝑡
(𝑔)

)
′

, and sample: 

(𝜎𝜀)
2 ∝ 𝐼𝐺 (

𝑛 − 1

2
,
𝒆̂′𝒆̂

2
), 

𝜌(𝑔) ∝ 𝜑[𝜌; 𝜷̂, (𝜎𝜀)
2(𝑿′𝑿)−1] 

Especially in more complex SVJD models, we have found that the use of priors may 

be necessary to improve the convergence of the algorithm to the global optimum and avoid 

convergence to inferior local optima. In our applications the priors will be put on all of the 

variance parameters in the models. In the two-component SVJD model with jumps in 

volatility and returns these will be the parameters 𝜙2, 𝛾, 𝜎𝑅𝑉, 𝛾𝐽 and 𝛾𝐽𝑉. 
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3.4. Particle filtering of the latent states in SVJD models 

We will now return to the issue of sampling the latent states and introduce the notion 

of adapted vs. un-adapted particle filters in the framework of SVJD models. 

3.4.1. Adapted vs. un-adapted filters 

The latent states in a particle filter need to be sampled from a proposal distribution 

𝑔(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡), with the weights of the particles subsequently re-weighted with: 

In the ideal case of a fully-adapted particle filter, the proposal distribution should be 

set equal to  𝑔(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡) = 𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡). Unfortunately, the true conditional distribution 

𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡) is often intractable and a different proposal distribution needs to be used. 

The simplest way is to construct the particle filter as un-adapted, in which case the 

proposal distribution is set equal to the transition distribution, 𝑔(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡) = 𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖  ), 

with the weight update reducing 𝑤𝑡
(𝑖)

= 𝑝(𝑦𝑡|𝑥𝑡
𝑖)𝑤̃𝑡−1

(𝑖)
. 

Unfortunately, this approach tends be very inefficient, especially when multiple latent 

states need to be samples (i.e. 𝑥𝑡
𝑖 is a vector), which often leads to a situation where majority 

of the particles get immediately rejected (i.e. their weight drops towards values close to zero) 

during the re-weighting step, when the information about the information 𝑦𝑡 is introduced. 

To improve the efficiency of the particle filter it is therefore advisable to adapt the 

proposal distribution 𝑔(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡) at least partially to the observation 𝑦𝑡. 

The methods of how to do it in the framework of the presented SVJD model will be 

discussed in the following sections. For additional discussion of this topic, see the Auxiliary 

Particle Filter of Pitt and Shephard (1999), and the Approximate Rao-Blackwellization 

method of Johansen et al. (2012). 

3.4.2. Un-adapted sampling for a SVJD model with price jumps 

Lets consider the SVJD model with self-exciting price jumps with the following 3 

equations: 

 𝑤𝑡
(𝑖)

=
𝑝(𝑦𝑡|𝑥𝑡

𝑖)𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖  )

𝑔(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)
𝑤̃𝑡−1

(𝑖)
 

(

(117) 
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And 𝜀𝑡~𝑁(0,1), 𝜀𝑉,𝑡~𝑁(0,1), ℎ𝑡 = log(𝑉𝑡), 𝑉𝑡 = 𝜎𝑡
2, 𝛼 = (1 − 𝛽)ℎ𝐿𝑇, 𝛼 =

(1 − 𝛽)ℎ𝐿𝑇, 𝑄𝑡~𝐵𝑒𝑟𝑛[𝜆𝑡], Pr[𝑄𝑡 = 1] = 𝜆𝑡, 𝐽𝑡~𝑁(𝜇𝐽, 𝜎𝐽). 

In the un-adapted version of the particle filter, we set the proposal density equal to the 

transition density: 

The proposal values of ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 and 𝑄𝑡
𝑖 can thus be sampled from the model equations as: 

And as the likelihood of the model is given by: 

The weight update would be: 

3.4.3. Adaptation to the SVJD model 

We can see that the particle filter proposed in the previous section does not utilize the 

information about the observation 𝑟𝑡 when sampling the proposal values of the latent states 

ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 and 𝑄𝑡
𝑖, although the information is already available at time 𝑡. 

The result of this is that the sampled values of the latent states may be inefficient and 

the majority of weights will drop to negligible values when the information about 𝑟𝑡 is 

introduced during the re-weighting. 

 

𝑟𝑡 = 𝜇 + 𝜎𝑡𝜀𝑡 + 𝐽𝑡𝑄𝑡 

ℎ𝑡 = 𝛼 + 𝛽ℎ𝑡−1 + 𝛾𝜀𝑉,𝑡 

𝜆𝑡 = 𝛼𝐽 + 𝛽𝐽𝜆𝑡−1 + 𝛾𝐽𝑄𝑡−1 

(

(118) 

 𝑝(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 ) 

(

(119) 

 

𝑝(ℎ𝑡
𝑖 |ℎ𝑡−1

𝑖  )~𝑁(𝛼 + 𝛽ℎ𝑡−1, 𝛾) 

 𝑝(𝐽𝑡
𝑖)~𝑁(𝜇𝐽, 𝜎𝐽) 

𝑝(𝑄𝑡
𝑖|𝜆𝑡

𝑖)~𝐵𝑒𝑟𝑛[𝜆𝑡
𝑖 ] 

(

(120) 

 𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖)~𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡

𝑖𝑄𝑡
𝑖, 𝜎𝑡

𝑖) 

(

(121) 

 𝑤𝑡
(𝑖)

=  𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖)𝑤̃𝑡−1

(𝑖)
 

(

(122) 
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Consider a situation when the jump intensity 𝜆𝑡
𝑖  is low, but a jump still occurred at 𝑡. 

As only very few particles will be sampled with 𝑄𝑡
𝑖 = 1, due to the low value of 𝜆𝑡

𝑖 , the vast 

majority of the particles will get rejected, when the information about the large jump-induced 

return 𝑟𝑡 is used in the re-weighting step. A very large number of particles will thus have to be 

used in order to get reasonably precise estimates of the other latent states 𝐽𝑡
𝑖 and ℎ𝑡

𝑖 . 

To cope with the problem, we can use a proposal density that already uses the 

information about 𝑟𝑡 for the sampling of the latent states: 

With the re-weighting step performed according to: 

Unfortunately, the fully adapted density 𝑝(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) is in this 

case intractable, due to the non-linearity of the relationship between ℎ𝑡
𝑖  and 𝑟𝑡. 

The approach that will be used is therefore to adapt the particle filter at least to the 

jump occurrences and the jump sizes, while sampling the ℎ𝑡
𝑖  from its transition density. 

3.4.4. Adaptation to price jump sizes and occurrences 

To adapt the particle filter to price jump sizes and occurrences, we rewrite the 

proposal density as: 

And then decompose the bi-variate density of 𝐽𝑡
𝑖 and 𝑄𝑡

𝑖 into: 

Which is equivalent to: 

 𝑔(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) 

(

(123) 

 𝑤𝑡
(𝑖)

=
𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖)𝑝(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 )

𝑔(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)

𝑤̃𝑡−1
(𝑖)

 

(

(124) 

 
𝑔(ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖|ℎ𝑡−1
𝑖 , 𝐽𝑡−1

𝑖 , 𝑄𝑡−1
𝑖 , 𝜆𝑡−1

𝑖 , 𝑟𝑡)

= 𝑝(𝐽𝑡
𝑖 , 𝑄𝑡

𝑖|ℎ𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)𝑝(ℎ𝑡

𝑖 |ℎ𝑡−1
𝑖 , 𝐽𝑡−1

𝑖 , 𝑄𝑡−1
𝑖 , 𝜆𝑡−1

𝑖 ) 

(

(125) 

 
𝑝(𝐽𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡

𝑖 , ℎ𝑡−1
𝑖 , 𝐽𝑡−1

𝑖 , 𝑄𝑡−1
𝑖 , 𝜆𝑡−1

𝑖 , 𝑟𝑡)

= 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖, ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)𝑝(𝑄𝑡

𝑖|ℎ𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) 

(

(126) 
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For 𝑄𝑡
𝑖 = 0 it then hold that: 

With 𝑝(𝐽𝑡
𝑖)~𝑁(𝜇𝐽, 𝜎𝐽). 

For 𝑄𝑡
𝑖 = 1, we can use the Bayes theorem to express 𝑝(𝐽𝑡

𝑖|ℎ𝑡
𝑖 , 𝑟𝑡, 𝑄𝑡

𝑖 = 1) as: 

Which is a multiple of two Gaussian densities: 

And the adapted density can be derived as: 

Where: 

The next task is to derive 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡). Using the Bayes theorem: 

 𝑝(𝐽𝑡
𝑖 , 𝑄𝑡

𝑖|ℎ𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) = 𝑝(𝐽𝑡

𝑖|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖, 𝑟𝑡)𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡) 

(

(127) 

 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖 = 0) = 𝑝(𝐽𝑡

𝑖) 

(

(128) 

 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖 = 1) ∝ 𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖)𝑝(𝐽𝑡
𝑖) 

(

(129) 

 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖 = 1) ∝ 𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡

𝑖 , 𝜎𝑡
𝑖)𝑁(𝐽𝑡

𝑖; 𝜇𝐽, 𝜎𝐽) 

(

(130) 

 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖 = 1)~𝑁(𝜇𝐽

∗, 𝜎𝐽
∗) 

(

(131) 

 𝜇𝐽
∗ =

(𝑟𝑡 − 𝜇)𝜎𝐽
2 + 𝜇𝐽𝑉𝑡

𝑖

𝜎𝐽
2 + 𝑉𝑡

𝑖
 

(

(132) 

 𝜎𝐽
∗ =

𝜎𝐽𝜎𝑡
𝑖

√𝜎𝐽
2 + 𝑉𝑡

𝑖

 
(

(133) 

 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡) ∝ 𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖)𝑝(𝑄𝑡

𝑖|𝜆𝑡
𝑖) 

(

(134) 
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The density 𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖) is the marginal of 𝑝(𝑟𝑡, 𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖) computed by integrating it 

over 𝐽𝑡. 

When 𝑄𝑡
𝑖 = 0, the 𝐽𝑡 and 𝑟𝑡 are independent, and thus: 

When 𝑄𝑡
𝑖 = 1, then we decompose the density 𝑝(𝑟𝑡, 𝐽𝑡|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖 = 1) into: 

Which is a multiple of two Gaussian densities: 

Or equivalently: 

The density 𝑟𝑡 − 𝜇 is a Compound Gaussian density, with mean distributed according 

to the Gaussian density 𝑁(𝐽𝑡; 𝜇𝐽, 𝜎𝐽). We can thus integrate over 𝐽𝑡 to get: 

Returning to the relationship 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡) ∝ 𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖)𝑝(𝑄𝑡

𝑖|𝜆𝑡
𝑖), we can see that 

we can easily compute the normalizing constant, as the 𝑄𝑡
𝑖 is only binary. 

Thus, we get for 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡): 

Where: 

 𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 0) = 𝑁(𝑟𝑡; 𝜇, 𝜎𝑡
𝑖) 

(

(135) 

 𝑝(𝑟𝑡, 𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 1) = 𝑝(𝑟𝑡|𝐽𝑡, ℎ𝑡
𝑖 , 𝑄𝑡

𝑖)𝑝(𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖) 

(

(136) 

 𝑝(𝑟𝑡, 𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 1) = 𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡 , 𝜎𝑡
𝑖)𝑁(𝐽𝑡; 𝜇𝐽, 𝜎𝐽) 

(

(137) 

 𝑝(𝑟𝑡, 𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 1) = 𝑁(𝑟𝑡 − 𝜇; 𝐽𝑡 , 𝜎𝑡
𝑖)𝑁(𝐽𝑡; 𝜇𝐽, 𝜎𝐽) 

(

(138) 

 𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 1) = 𝑁 (𝑟𝑡; 𝜇𝐽 + 𝜇,√𝜎𝐽
2 + 𝑉𝑡

𝑖) 

(

(139) 

 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡)~𝐵𝑒𝑟𝑛[𝜆𝑡

𝑖∗] 

(

(140) 
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In order to sample from the proposal density, we will thus first sample from the 

transition density 𝑝(ℎ𝑡
𝑖 |ℎ𝑡−1

𝑖 ) the log-variance, as: 

Then we sample from the adapted jump occurrence density 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡): 

And finally the adapted jump sizes from 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖, 𝑟𝑡), as already described. 

The importance weight update is then given by: 

3.4.5. Adaptation of price and volatility jumps 

The adaptation become slightly more complicated in the case when the model contains 

jumps in price, as well as in the volatility. The model equations would in that case be: 

As was the case for the log-variance itself, the distribution of the log-variance jump 

sizes unfortunately cannot be combined with the other distributions, so we cannot adapt the 

particle filter perfectly. Nevertheless, it turns out that the filter can at least be adapted to the 

price jump sizes, as well as the price jump and the volatility jump occurrences. 

The adapted sampling will proceed as follows. 

 𝜆𝑡
𝑖∗ =

𝑁 (𝑟𝑡; 𝜇𝐽 + 𝜇,√𝜎𝐽
2 + 𝑉𝑡

𝑖) 𝜆𝑡
𝑖

𝑁 (𝑟𝑡; 𝜇𝐽 + 𝜇,√𝜎𝐽
2 + 𝑉𝑡

𝑖) 𝜆𝑡
𝑖 + 𝑁(𝑟𝑡; 𝜇, 𝜎𝑡

𝑖)(1 − 𝜆𝑡
𝑖)

 

(

(141) 

 𝑝(ℎ𝑡
𝑖 |ℎ𝑡−1

𝑖  )~𝑁(𝛼 + 𝛽ℎ𝑡−1, 𝛾) 

(

(142) 

 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡)~𝐵𝑒𝑟𝑛[𝜆𝑡

𝑖∗] 

(

(143) 

 𝑤𝑡
(𝑖)

=
𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖)𝑝(𝐽𝑡
𝑖)(𝜆𝑡

𝑖)
𝑄𝑡

𝑖

(1 − 𝜆𝑡
𝑖)

1−𝑄𝑡
𝑖

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖)(𝜆𝑡

𝑖∗)
𝑄𝑡

𝑖

(1 − 𝜆𝑡
𝑖∗)

1−𝑄𝑡
𝑖 𝑤̃𝑡−1

(𝑖)
 

(

(144) 

 

𝑟𝑡 = 𝜇 + 𝜎𝑡𝜀𝑡 + 𝐽𝑡𝑄𝑡 

ℎ𝑡 = 𝛼 + 𝛽ℎ𝑡−1 + 𝛾𝜀𝑉,𝑡 + 𝐽𝑉,𝑡𝑄𝑉,𝑡 

𝜆𝑡 = 𝛼𝐽 + 𝛽𝐽𝜆𝑡−1 + 𝛾𝐽𝑄𝑡−1 

𝜆𝑉,𝑡 = 𝛼𝐽𝑉 + 𝛽𝐽𝑉𝜆𝑉,𝑡−1 + 𝛾𝐽𝑉𝑄𝑉,𝑡−1 

(

(145) 
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We first sample the diffusion log-variances and log-variance jump sizes: 

Where ℎ𝑡,𝐷𝑖𝑓𝑓
𝑖  denotes the diffusion log-variance, while the jump-diffusion log-

variance can be computed as ℎ𝑡,𝐽𝑢𝑚𝑝
𝑖 = ℎ𝑡,𝐷𝑖𝑓𝑓

𝑖 + 𝐽𝑉,𝑡
𝑖 . 

In the next step, we define the following likelihood densities, corresponding to all 

possible combinations of price and volatility jumps: 

Which can be calculated as follows: 

Where 𝑉𝑡,𝐷𝑖𝑓𝑓
𝑖 = exp (ℎ𝑡,𝐷𝑖𝑓𝑓

𝑖 ), 𝑉𝑡,𝐽𝑢𝑚𝑝
𝑖 = exp (ℎ𝑡,𝐽𝑢𝑚𝑝

𝑖 ), 𝜎𝑡,𝐷𝑖𝑓𝑓
𝑖 = 𝑉𝑡,𝐷𝑖𝑓𝑓

𝑖 1/2
 and 

𝜎𝑡,𝐽𝑢𝑚𝑝
𝑖 = 𝜎𝐽

2 + 𝑉𝑡,𝐽𝑢𝑚𝑝
𝑖 1/2

. 

The volatility jump occurrence 𝑄𝑉,𝑡
𝑖  can then be sampled from the adapted density: 

Where: 

 
𝑝(ℎ𝑡,𝐷𝑖𝑓𝑓

𝑖 |ℎ𝑡−1
𝑖  )~𝑁(𝛼 + 𝛽ℎ𝑡−1, 𝛾) 

 𝑝(𝐽𝑉,𝑡
𝑖 )~𝑁(𝜇𝐽𝑉, 𝜎𝐽𝑉) 

(

(146) 

 

𝑝0,0 = 𝑝(𝑟𝑡|ℎ𝑡,𝐷𝑖𝑓𝑓
𝑖 , 𝜆𝑡

𝑖 , 𝜆𝑉,𝑡
𝑖 , 𝑄𝑡

𝑖 = 0,𝑄𝑉,𝑡
𝑖 = 0) 

𝑝0,1 =  𝑝(𝑟𝑡|ℎ𝑡,𝐽𝑢𝑚𝑝
𝑖 , 𝜆𝑡

𝑖 , 𝜆𝑉,𝑡
𝑖 , 𝑄𝑡

𝑖 = 0,𝑄𝑉,𝑡
𝑖 = 1) 

𝑝1,0 =  𝑝(𝑟𝑡|ℎ𝑡,𝐷𝑖𝑓𝑓
𝑖 , 𝜆𝑡

𝑖 , 𝜆𝑉,𝑡
𝑖 , 𝑄𝑡

𝑖 = 1,𝑄𝑉,𝑡
𝑖 = 0) 

𝑝1,1 =  𝑝(𝑟𝑡|ℎ𝑡,𝐽𝑢𝑚𝑝
𝑖 , 𝜆𝑡

𝑖 , 𝜆𝑉,𝑡
𝑖 , 𝑄𝑡

𝑖 = 1, 𝑄𝑉,𝑡
𝑖 = 1) 

(

(147) 

 

𝑝0,0~𝑁(𝑟𝑡; 𝜇, 𝜎𝑡,𝐷𝑖𝑓𝑓
𝑖 )(1 − 𝜆𝑡

𝑖)(1 − 𝜆𝑉,𝑡
𝑖 ) 

 𝑝0,1~𝑁(𝑟𝑡; 𝜇, 𝜎𝑡,𝐽𝑢𝑚𝑝
𝑖 )(1 − 𝜆𝑡

𝑖)𝜆𝑉,𝑡
𝑖  

𝑝1,0~𝑁 (𝑟𝑡; 𝜇 + 𝜇𝐽, √𝜎𝐽
2 + 𝑉𝑡,𝐷𝑖𝑓𝑓

𝑖 ) 𝜆𝑡
𝑖(1 − 𝜆𝑉,𝑡

𝑖 ) 

 𝑝1,1~𝑁 (𝑟𝑡; 𝜇 + 𝜇𝐽, √𝜎𝐽
2 + 𝑉𝑡,𝐽𝑢𝑚𝑝

𝑖 )𝜆𝑡
𝑖𝜆𝑉,𝑡

𝑖  

(

(148) 

 𝑝(𝑄𝑉,𝑡
𝑖 |ℎ𝑡,𝐷𝑖𝑓𝑓

𝑖 , 𝐽𝑉,𝑡
𝑖 , 𝜆𝑡

𝑖 , 𝜆𝑉,𝑡
𝑖 , 𝑟𝑡)~𝐵𝑒𝑟𝑛[𝜆𝑉,𝑡

𝑖∗ ] 
(

(149) 

 𝜆𝐽,𝑡
𝑖∗ =

𝑝0,1 + 𝑝1,1

𝑝0,0 + 𝑝0,1 + 𝑝1,0 + 𝑝1,1
 

(

(150) 
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In the next step, we use the sampled ℎ𝑡,𝐷𝑖𝑓𝑓
𝑖 , 𝐽𝑉,𝑡

𝑖  and 𝑄𝑉,𝑡
𝑖  to computed the final log-

variances ℎ𝑡
𝑖 : 

We can then proceed in the same way as in the previous section and sample the price 

jump occurrences from 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡) and finally the price jump sizes from 𝑝(𝐽𝑡

𝑖|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖, 𝑟𝑡). 

The weight update will then be given as: 

3.4.6. Adaptation for SVJD-RV and SVJD-RV-Z models 

Realized variance can be added to the previously presented SVJD models (with price 

jumps and volatility jumps alike) by including an additional equation that links the estimated 

stochastic variances to the observed realized variances: 

Similarly, the Z-Estimator of jumps can be included via equation that links its values 

to the days in which price jumps were estimated by the SVJD model: 

With the likelihood of the model changing from 𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖) to 𝑝(𝑟𝑡, 𝑅𝑉𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖) 

in the case of the SVJD-RV model, and to 𝑝(𝑟𝑡, 𝑅𝑉𝑡, 𝑍𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖) in the case of the SVJD-

RV-Z model. 

Although contested by some authors (Koopman and Scharth, 2013), the common 

approach is to assume independence between the 𝑟𝑡 and 𝑅𝑉𝑡 noise, in which case, the 

likelihood for the SVJD-RV model is: 

 ℎ𝑡
𝑖 = ℎ𝑡,𝐷𝑖𝑓𝑓

𝑖 + 𝐽𝑉,𝑡
𝑖 𝑄𝑉,𝑡

𝑖  

(

(151) 

 𝑤𝑡
(𝑖)

=
𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖)𝑝(𝐽𝑡
𝑖)(𝜆𝑡

𝑖)
𝑄𝑡

𝑖

(1 − 𝜆𝑡
𝑖)

1−𝑄𝑡
𝑖

(𝜆𝑉,𝑡
𝑖 )

𝑄𝑉,𝑡
𝑖

(1 − 𝜆𝑉,𝑡
𝑖 )

1−𝑄𝑉,𝑡
𝑖

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖)(𝜆𝑡

𝑖∗)
𝑄𝑡

𝑖

(1 − 𝜆𝑡
𝑖∗)

1−𝑄𝑡
𝑖

(𝜆𝑉,𝑡
𝑖∗ )

𝑄𝑉,𝑡
𝑖

(1 − 𝜆𝑉,𝑡
𝑖∗ )

1−𝑄𝑉,𝑡
𝑖 𝑤̃𝑡−1

(𝑖)
 

(

(152) 

 log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] = ℎ(𝑡) + 𝜎𝑅𝑉𝜀R𝑉(𝑡) 

(

(153) 

 𝑍(𝑡) = 𝜇𝑍 + 𝜉𝑍𝑄(𝑡) + 𝜎𝑍𝜀𝑍(𝑡) 

(

(154) 
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And analogously for the SVJD-RV-Z model, as long as we assume 𝑟𝑡, 𝑅𝑉𝑡 and 𝑍𝑡 

independence, the likelihood is: 

The latent states can then theoretically be sampled from the proposal distributions 

adapted to the returns, which were derived in the previous sections, with only the likelihood 

in the final, weight-update step, changing either to 𝑝(𝑟𝑡, 𝑅𝑉𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖) or 

𝑝(𝑟𝑡, 𝑅𝑉𝑡, 𝑍𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖). 

Nevertheless, as the proposal distributions were adapted only to the returns, and not 

the 𝑅𝑉𝑡 and 𝑍𝑡, which are already observable at 𝑡, the can be viewed as sub-optimal, with 

large number of particles getting sampled at values inconsistent with the observed 𝑅𝑉𝑡 and 𝑍𝑡, 

causing them to get rejected during the re-weighting and re-sampling steps. 

A problem arising when adapting the proposal distribution to 𝑅𝑉𝑡 is that the 

relationship between 𝑅𝑉𝑡 and 𝐽𝑡
𝑖 is non-linear, giving rise to an intractable proposal 

distribution. We therefore decided to adapt the particle filter only with respect to the jump 

occurrences 𝑄𝑡
𝑖 and 𝑄𝑉,𝑡

𝑖 . 

In the first step, we will thus sample the ℎ𝑡,𝐷𝑖𝑓𝑓
𝑖 , 𝐽𝑉,𝑡

𝑖  and 𝐽𝑡
𝑖: 

We then calculate the adapted 𝑝0,0, 𝑝0,1, 𝑝1,0 and 𝑝1,1, defined analogously as in the 

previous section, but this time including also the information about 𝑅𝑉𝑡 and 𝑍𝑡, as being 

conditional on the sampled value of 𝐽𝑡
𝑖 (which was in the previous section marginalized out, 

which unfortunately cannot be done now, as long as we want to include 𝑅𝑉𝑡). 

For the SVJD-RV model, the densities will be calculated as 

 𝑝(𝑟𝑡, 𝑅𝑉𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖) = (𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖)(𝑅𝑉𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖) 

(

(155) 

 𝑝(𝑟𝑡, 𝑅𝑉𝑡, 𝑍𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖) = (𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖 , 𝑄𝑡

𝑖)(𝑅𝑉𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖)(𝑍𝑡|𝐽𝑡

𝑖, 𝑄𝑡
𝑖) 

(

(156) 

 

𝑝(ℎ𝑡,𝐷𝑖𝑓𝑓
𝑖 |ℎ𝑡−1

𝑖  )~𝑁(𝛼 + 𝛽ℎ𝑡−1, 𝛾) 

 𝑝(𝐽𝑉,𝑡
𝑖 )~𝑁(𝜇𝐽𝑉, 𝜎𝐽𝑉) 

 𝑝(𝐽𝑡
𝑖)~𝑁(𝜇𝐽, 𝜎𝐽) 

(

(157) 
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While for the SVJD-RV-Z model, the densities 𝑝0,0 and 𝑝0,1 will further need to be 

multiplied with 𝑁(𝑍𝑡; 𝜇𝑍, 𝜎𝑍), and the densities 𝑝1,0 and 𝑝1,1 with 𝑁(𝑍𝑡; 𝜇𝑍 + 𝜉𝑍, 𝜎𝑍) 

The volatility jumps 𝑄𝑉,𝑡
𝑖  can then be sampled from: 

Where: 

From the sampled 𝑄𝑉,𝑡
𝑖  we can then compute the log-variances ℎ𝑡

𝑖 = ℎ𝑡,𝐷𝑖𝑓𝑓
𝑖 + 𝐽𝑉,𝑡

𝑖 𝑄𝑉,𝑡
𝑖 , 

and use them to define the jump likelihood densities 𝑝1 and 𝑝0. These are for the SVJD-RV 

model equal to: 

While for the SVJD-RV-Z model 𝑝0 is further multiplied with 𝑁(𝑍𝑡; 𝜇𝑍, 𝜎𝑍) and 𝑝1 

with 𝑁(𝑍𝑡; 𝜇𝑍 + 𝜉𝑍, 𝜎𝑍). 

Price jump occurrences can then be sampled from: 

Where 

 

𝑝0,0~𝑁(𝑟𝑡; 𝜇, 𝜎𝑡,𝐷𝑖𝑓𝑓
𝑖 )𝑁(log(𝑅𝑉𝑡); 𝜇𝑅𝑉, 𝜎𝑅𝑉)(1 − 𝜆𝑡

𝑖)(1 − 𝜆𝑉,𝑡
𝑖 ) 

 𝑝0,1~𝑁(𝑟𝑡; 𝜇, 𝜎𝑡,𝐽𝑢𝑚𝑝
𝑖 )𝑁(log(𝑅𝑉𝑡); 𝜇𝑅𝑉, 𝜎𝑅𝑉)(1 − 𝜆𝑡

𝑖)𝜆𝑉,𝑡
𝑖  

𝑝1,0~𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡
𝑖 , 𝜎𝑡,𝐷𝑖𝑓𝑓

𝑖 ) (log (𝑅𝑉𝑡 − (𝐽𝑡
𝑖)

2
) ; 𝜇𝑅𝑉, 𝜎𝑅𝑉) 𝜆𝑡

𝑖(1 − 𝜆𝑉,𝑡
𝑖 ) 

 𝑝1,1~𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡
𝑖 , 𝜎𝑡,𝐽𝑢𝑚𝑝

𝑖 ) (log (𝑅𝑉𝑡 − (𝐽𝑡
𝑖)

2
) ; 𝜇𝑅𝑉, 𝜎𝑅𝑉) 𝜆𝑡

𝑖𝜆𝑉,𝑡
𝑖  

(

(158) 

 𝑝(𝑄𝑉,𝑡
𝑖 |ℎ𝑡,𝐷𝑖𝑓𝑓

𝑖 , 𝐽𝑉,𝑡
𝑖 , 𝜆𝑡

𝑖 , 𝜆𝑉,𝑡
𝑖 , 𝑟𝑡, 𝑅𝑉𝑡, 𝑍𝑡)~𝐵𝑒𝑟𝑛[𝜆𝑉,𝑡

𝑖∗ ] 
(

(159) 

 𝜆𝐽,𝑡
𝑖∗ =

𝑝0,1 + 𝑝1,1

𝑝0,0 + 𝑝0,1 + 𝑝1,0 + 𝑝1,1
 

(

(160) 

 
𝑝0~𝑁(𝑟𝑡; 𝜇, 𝜎𝑡

𝑖)𝑁(log(𝑅𝑉𝑡); 𝜇𝑅𝑉, 𝜎𝑅𝑉)(1 − 𝜆𝑡
𝑖) 

𝑝1~𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡
𝑖 , 𝜎𝑡

𝑖) (log (𝑅𝑉𝑡 − (𝐽𝑡
𝑖)

2
) ; 𝜇𝑅𝑉, 𝜎𝑅𝑉) 𝜆𝑡

𝑖  

(

(161) 

 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡)~𝐵𝑒𝑟𝑛[𝜆𝑡

𝑖∗] 

(

(162) 

 𝜆𝑡
𝑖∗ =

𝑝1

𝑝0 + 𝑝1
 (
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The weight update for is then equal to: 

With the difference between SVJD-RV and SVJD-RV-Z models being only in the 

values of 𝜆𝑡
𝑖∗ and 𝜆𝑉,𝑡

𝑖∗ , computed as described in the previous steps. 

3.4.7. Approximate adaptations 

As long as we have multiple observable time series in our model (in the SVJD-RV-Z 

model these would be: 𝑟𝑡, 𝑅𝑉𝑡 and 𝑍𝑡), there is a natural possibility of adapting the particle 

filter only to the ones of them where the proposal densities are tractable, while leaving the 

filter un-adapted with respect to the other ones. Lets take for example the adaptation of ℎ𝑡
𝑖  in 

the one-component SVJD-RV-Z models. The sampling of ℎ𝑡
𝑖  involves two major hurdles. The 

first one is that the distribution 𝑝(ℎ𝑡
𝑖 |𝑟𝑡) is intractable due to the non-linearity of the 

relationship between ℎ𝑡
𝑖  and 𝑟𝑡. The second hurdle is related to the distribution 𝑝(ℎ𝑡

𝑖 |𝑅𝑉𝑡). As 

the assumed relationship between ℎ𝑡
𝑖  and 𝑅𝑉𝑡 in the analysed model is given by log[𝑅𝑉𝑡 −

𝐽𝑡
2𝑄𝑡] = ℎ𝑡 + 𝜎𝑅𝑉𝜀R𝑉,𝑡, it is apparent that as long as we know the values of 𝐽𝑡

𝑖 and 𝑄𝑡
𝑖, we can 

easily express the density 𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡, 𝐽𝑡

𝑖, 𝑄𝑡
𝑖). Unfortunately, as long as we want to sample the 

values of 𝐽𝑡
𝑖 and 𝑄𝑡

𝑖 in an adapted way, we need to know the value of ℎ𝑡
𝑖  in advance. The 

values of 𝐽𝑡
𝑖 and 𝑄𝑡

𝑖 are thus unavailable during the sampling of ℎ𝑡
𝑖 , and the marginalized 

density 𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡) is intractable. A possible approximate solution of how to utilize the fact 

that at least in the no-jump case, ℎ𝑡
𝑖  can be accurately adapted to 𝑅𝑉𝑡, is discussed in the 

appendix. Based on similar logic, approximate proposal densities are then derived also for the 

size of price and volatility jumps, and for the two log-variance components of the two-

component SVJD-RV-Z model. 

  

(163) 

 𝑤𝑡
(𝑖)

=
𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖)(𝜆𝑡
𝑖)

𝑄𝑡
𝑖

(1 − 𝜆𝑡
𝑖)

1−𝑄𝑡
𝑖

(𝜆𝑉,𝑡
𝑖 )

𝑄𝑉,𝑡
𝑖

(1 − 𝜆𝑉,𝑡
𝑖 )

1−𝑄𝑉,𝑡
𝑖

(𝜆𝑡
𝑖∗)

𝑄𝑡
𝑖

(1 − 𝜆𝑡
𝑖∗)

1−𝑄𝑡
𝑖

(𝜆𝑉,𝑡
𝑖∗ )

𝑄𝑉,𝑡
𝑖

(1 − 𝜆𝑉,𝑡
𝑖∗ )

1−𝑄𝑉,𝑡
𝑖 𝑤̃𝑡−1

(𝑖)
 

(

(164) 
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4. Application of Particle Filters for SVJD model estimation 

In order to assess the ability of the proposed Particle Filtering methods (adapted SIR 

particle filters and the Sequential Gibbs Particle Filter) to filter the latent states and learn the 

model parameters of complex SVJD models, the following tests will be performed: 

1. Simulation tests of the un-adapted and adapted particle filters, performed with 

known model parameters, with the goal of evaluating the ability of the particle 

filters to filter the latent states of SVJD and SVJD-RV-Z models 

2. Simulation tests of the Sequential Gibbs Particle Filter (SGPF), performed to 

assess the ability of the method to learn SVJD model parameters and filter the 

latent states in the case when parameters are unknown in advance 

3. Tests of convergence of the SGPF particle filter parameter estimates, when applied 

to real-word data of the EUR/USD exchange rate, with the goal of evaluating 

whether multiple runs of the algorithm converge to the same values 

4.1. Simulation tests of adapted and un-adapted particle filters 

The first part of the simulation study focuses solely on the filtering performance of the 

adapted and un-adapted particle filters. The filters will thus be applied to simulated time 

series generated by SVJD models with known parameters. Three tests are performed: 

1. Filtering of the latent states of a SVJD model with self-exciting jumps in prices 

2. Filtering of the latent states of SVJD and SVJD-RV-Z models with self-exciting 

jumps in prices and volatility 

3. Filtering of the latent states of a 2-component SVJD-RV-Z model with self-

exciting jumps in prices and volatility 

4.1.1. Filtering of latent states in a SVJD model with self-exciting jumps 

Several adapted and un-adapted particle filters were applied for the filtering of the 

latent states of a SVJD model with self-exciting price jumps. The parameters of the SVJD 

model used in the simulations are 𝜇 =
0.05

252
, 𝜇𝐽 = −0.01, 𝜎𝐽 = 0.04, 𝑉𝐿𝑇 = 𝑒

𝛼

1−𝛽 = 0.012, 𝛽 =

0.98, 𝛾 = 0.2, 𝜆𝐿𝑇 =
𝛼𝐽

1−𝛽𝐽−𝛾𝐽
= 0.02, 𝛽𝐽 = 0.95, and 𝛾𝐽 = 0.04. The values were chosen so 

that they correspond to the parameters commonly observed on foreign exchange time series. 
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500 time series were simulated, each with 4000 observations, and a SIR particle filter 

with 100 particles and 50 particle re-sampling threshold was run on each of them. The filter 

was run in 4 different versions: non-adapted, jump-size adapted, jump-occurrence adapted, 

and fully jump adapted in order to assess whether the adapted filters provide better estimates 

of the latent states. 

Figure 1 and  Figure 2 show the simulated and the filtered latent state time series for 

one simulation run, for the un-adapted and the fully jump adapted particle filter. 

Figure 1 – Simulated vs. filtered time series for the un-adapted particle filter 
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Figure 2 - Simulated vs. filtered time series for the jump-adapted particle filter 

 

We can see that the un-adapted particle filter failed to accurately estimate most of the 

simulated jumps, resulting in a poor estimation of the underlying Hawkes process jump 

intensities, especially with regards to the jump clusters around the 2000th and the 3000th 

period. The adapted particle filter, on the other hand, managed to estimate the jumps much 

more efficiently (the Bayesian jump probabilities of occurrence are often close to one), and it 

also managed to capture the two main jump intensity clusters around the 2000th and the 3000th 

period.  

In the next step, the simulation experiment was repeated 500 times, in order to assess 

the performance differences between the filters more quantitatively. For each simulation, 4 

particle filters with different adaptation schemes were run, and the accuracy of their filtering 

estimates was assessed with the R-Squared (for the log-variance, variance and jump-intensity 

estimates) and the Accuracy Ratio (for jump occurrence estimates, where the target variable is 

only binary). 

Figure 3 shows the distributions of the R-Squared and the Accuracy Ratios for all of 

the tested particle filters over the 500 simulation runs. 
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Figure 3 – R-Squared and Accuracy Ratio distributions of the filtered estimates 

of the adapted and un-adapted particle filters over 500 simulations (SVJD model with 

self-exciting jumps in returns) 

 

It is apparent that the un-adapted particle filter achieved on average the worst 

performance, especially with regards to the jump occurrences and the jump intensities, on 

which its predictive power is close to zero. The best results were achieved by the fully jump 

adapted particle filter, followed by the filter adapted only to the jump occurrences, and then 

the filter adapted only to the jump sizes. The relatively small differences in performance 

between the fully-jump-adapted and the jump-occurrence adapted particle filter provide an 

important result, as for the more complex SVJD models, the exact adaptation of the jump 

sizes is often not possible, and we will thus have to use the jump-occurrence adapted filter in 

their case. The results of the simulation show that the drop of predictive power (compared to 

the theoretically ideal fully-jump adapted filter) should be relatively small. 

Table 1 further shows the average values of the R-Squared and the Accuracy Ratios 

achieved by the adapted and un-adapted filters over the 500 simulation runs. The results 

clearly show the superiority of the fully jump-adapted filter and the jump-occurrence adapted 

filter against the other ones. 
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Table 1 – Average R-Squared and Accuracy Ratios achieved by different particle 

filters in 500 simulations of the SJVD process with self-exciting price jump 

Particle Filter Un-Adapted filter Jump-size adapted Jump-occurr. adapted Fully jump-adapted 

log-variance R2 0.5587 0.6656 0.6939 0.7046 

variance R2 0.3847 0.5504 0.5801 0.5960 

jump intensity R2 0.0262 0.4177 0.5246 0.5644 

jump occurrence AR 0.2362 0.5928 0.7301 0.7471 

 

4.1.2. Filtering in SVJD and SVJD-RV-Z models with volatility jumps 

While the estimation of price jumps is itself a difficult task, the estimation of volatility 

jumps is even more problematic, as the volatility itself is unobservable. This turns out to be 

even more problematic in the case of Particle Filters, than what is the case for MCMC, as the 

particle filters work only with the information about the returns from 𝑡 = 1, … , 𝑡 when 

estimating the latent states at time 𝑡. The thus have only the information about the return at 

time 𝑡 in order to tell, whether a jump (in prices or volatility) occurred, which makes it very 

difficult to distinguish price and volatility jumps from each other. 

In the performed simulation test, we will work only with jump-occurrence adapted 

particle filters, and the goal will be to compare their filtering performance when applied to 

either the SVJD model with self-exciting jumps in returns and volatility, or a SVJD-RV-Z 

model with the same features. As the two models are set to be identical with respect to the 

assumed dynamics of the price process, they can be applied to the same simulated time series, 

with the only difference being that the SVJD-RV-Z model will use the realized variance and 

the Z-Estimator as additional sources of information, which should improve the ability of the 

particle filter to identify price and volatility jumps in the time series. 

The models and particle filters used for the comparison are: 

• SVJD model with latent states filtered with the jump-adapted particle filter 

• SVJD-RV-Z model with latent states filtered with the jump-adapted particle 

filter (described in section ???) 

• SVJD-RV-Z model with latent states filtered with the approximately fully 

adapted particle filter (described in the appendix ???) 

The time series were simulated according to the process defined in ????, with 

parameters (expressed in daily values): 𝜇 =
0.05

252
, 𝜇𝐽 = −0.01, 𝜎𝐽 = 0.04, 𝑉𝐿𝑇 = 𝑒

𝛼

1−𝛽 =
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0.012, 𝛽 = 0.98, 𝛾 = 0.2, 𝜆𝐿𝑇 =
𝛼𝐽

1−𝛽𝐽−𝛾𝐽
= 0.02, 𝛽𝐽 = 0.95, 𝛾𝐽 = 0.04, 𝜇𝐽𝑉 = 0.3, 𝜎𝐽 = 0.5, 

𝜆𝐿𝑇,𝑉 =
𝛼𝐽𝑉

1−𝛽𝐽𝑉−𝛾𝐽𝑉
= 0.02, 𝛽𝐽𝑉 = 0.95, 𝛾𝐽𝑉 = 0.04. The simulations were run on a 15-minute 

frequency (with appropriately adjusted parameters), so that we can ex-post calculate the time 

series of RV and Z to be used in the estimation. Values of 𝜎𝑅𝑉, 𝜇𝑍, 𝜉𝑍 and 𝜎𝑍 were then set to 

the empirically observed values in the simulation. 

Figure 4 and Figure 5 show the filtered latent states for one simulation run, estimated 

for the SVJD model and the SVJD-RV-Z model with the jump-adapted particle filter. 

Figure 4 – Simulated vs. filtered time series for the SVJD model with jumps in 

prices and volatility (filtered with the jump-adapted particle filter) 
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Figure 5 – Simulated vs. filtered time series for the SVJD-RV-Z model with 

jumps in prices and volatility (filtered with the jump-adapted particle filter) 

 

 

We can see that while both of the models seem to provide decent filtering results in the 

case of the stochastic volatility, the jump intensities and the price jumps, the SVJD model was 

not able to capture most of the volatility jumps, with none of the Bayesian probabilities of 

occurrence being higher than 0.5-0.6. The SVJD-RV-Z model, on the other hand, was able 

estimate at least some of the volatility jumps, and its performance with regards to the price 

jumps is almost perfect. This is caused by the fact that the Z-Estimator and the realized 

variance provide powerful information to the particle filter about what actually occurred when 

a large daily return is observed, and whether it was caused by a price jump (manifesting in a 

large value of the Z-Estimator), or a volatility jump (corresponding to an increase of the 

realized variance with no significant increase of the Z-Estimator). 
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As in the previous chapter, 500 simulations of the SVJD process were generated, and 

the three models/filters were applied to each of them. The values of the R-Squared (for the 

log-variance, variance, jump intensity and volatility jump intensity) and the Accuracy Ratios 

(for the return jump and volatility jump occurrences) were then computed for each simulation 

and each filter. Figure 6 shows the distribution of these performance metrics over the 500 

simulation runs, while Table 2 shows their averages. 

Figure 6 – R-Squared and Accuracy Ratio distributions of the filtered estimates 

of the adapted and un-adapted particle filters over 500 simulations (SVJD and SVJD-

RV-Z models with self-exciting jumps in volatility and returns) 

 

Table 2 – Average performance metrics achieved by different particle filters in 

500 simulation runs of the SJVD model with self-exciting jumps in volatility and returns 

  SVJD, jump-adapted SVJD-RV-Z, jump-adapted SVJD-RV-Z, approx.adapt. 

log-variance R2 0.7672 0.9821 0.9817 

variance R2 0.5490 0.9661 0.9660 

jump intensity R2 0.1395 0.8048 0.8063 

jump occurrence AR 0.6745 0.8014 0.7885 

vol.jump intensity R2 -0.1648 0.0584 0.0996 

vol.jump occurrence AR 0.1531 0.3529 0.3503 
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It is apparent from Figure 6 and Table 2 that the filtering estimates of the latent states 

in a SVJD-RV-Z model are significantly more accurate than in the SVJD model. This is to be 

expected as the high-frequency estimators provide powerful additional information about the 

underlying volatility and jumps that the standard SVJD model lacks. At the same time, it is 

necessary to mention that the performed simulation exercise is somewhat idealized, and in 

practical settings the power-variation estimators used in the SVJD-RV-Z model may be 

plagued by microstructure noise and other imperfections. The real differences in filtering 

accuracy therefore might be slightly lower. 

Another interesting result of the study is that the approximately fully adapted particle 

filter was not able to significantly outperform the simple jump-adapted particle filter for the 

SVJD-RV-Z model. This indicates that the approximations that we used to derive the 

approximately fully adapted proposal densities (i.e. ignoring some of the information during 

the derivation of the proposal densities, in order to make them tractable) were probably too 

strong, and the derived proposal densities are thus no better than the ones derived exactly for 

the jump-adapted particle filter. 

4.1.3. Filtering in a 2-Component SVJD-RV-Z model 

The most complex filtering task pursued in this thesis is the filtering of the latent states 

in a 2-component SVJD model with self-exciting jumps in returns and volatility. Due to the 

difficulty of the task, we will perform the simulation study only on the SVJD-RV-Z model, 

and compare the performance of the jump-adapted particle filter with the approximately fully 

adapted particle filter. 

Parameters used for the simulation are as follows: 𝜇 =
0.05

252
, 𝜇𝐽 = −0.01, 𝜎𝐽 = 0.04, 

𝑉𝐿𝑇 = 𝑒
𝜙0

1−𝜙1 = 0.012, 𝜙1 = 0.995, 𝜙2 = 0.1, 𝛽 = 0.95, 𝛾 = 0.2, 𝜆𝐿𝑇 =
𝛼𝐽

1−𝛽𝐽−𝛾𝐽
= 0.02, 

𝛽𝐽 = 0.95, 𝛾𝐽 = 0.04, 𝜇𝐽𝑉 = 0.3, 𝜎𝐽 = 0.5, 𝜆𝐿𝑇,𝑉 =
𝛼𝐽𝑉

1−𝛽𝐽𝑉−𝛾𝐽𝑉
= 0.02, 𝛽𝐽𝑉 = 0.95, 𝛾𝐽𝑉 =

0.04. As in the previous chapter, the time series were simulated on a 15-minute frequency 

(with adjusted parameters) and the values of 𝜎𝑅𝑉, 𝜇𝑍, 𝜉𝑍 and 𝜎𝑍 were then calculated based on 

the values observed ex-post for each simulation. 

Figure 7 shows the simulated and the filtered latent state time series for one simulation 

run for the case of the jump-adapted particle filter (we do not show the results for the 

approximately fully-adapted filter as they are visually indistinguishable). 
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Figure 7 – Simulated vs. filtered time series for the 2-Component SVJD-RV-Z 

model with jumps in prices and volatility (filtered with the jump-adapted particle filter) 

 

 

We can see from Figure 7 that the filter managed to relatively well disentangle the 

short-term and the long-term volatility component, although the estimates of the short-term 

component tend to sometimes differ from the real values. The filter also missed most of the 

volatility jumps, especially in the second half of the time series. 
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500 simulations from the model were generated and the two tested particle filters 

(jump-adapted and approximately fully adapted) were applied to each of them. The 

distribution of the values of the R-Squared and the Accuracy Ratios (for the price and 

volatility jump occurrences) can be seen in Figure 8, while Table 3 shows their averages. 

Figure 8 – R-Squared and Accuracy Ratio distributions of the filtered estimates 

of the adapted and un-adapted particle filters over 500 simulations 

 

Table 3 – Performance metrics achieved by particle filters in 500 simulation runs 

of the 2-Component SJVD model with self-exciting price and volatility jumps 

  SVJD-RV-Z, jump-adapted SVJD-RV-Z, approx.adapted 
log-variance R2 0.9816 0.9812 
variance R2 0.9624 0.9603 
jump intensity R2 0.8344 0.8361 
jump occurrence AR 0.8227 0.8065 
vol.jump intensity R2 -0.1511 -0.1300 
vol.jump occurrence AR 0.3061 0.2952 
long-term log-var R2 0.5310 0.5639 
short-term log-var R2 0.2646 0.3149 
 

 



Ing. Milan Fičura Dissertation thesis 26.8.2018 

98 

 

We can see that both tested particle filters exhibit significantly positive R-Squared 

with respect to the short-term and the long-term volatility component, indicating that they 

were able to disentangle the two components of the volatility process. Unfortunately, the R-

Squared of the volatility jump intensity estimates is in both cases negative, which sheds doubt 

on how accurately can the tested particle filters estimate volatility jumps in 2-component 

SVJD models. 

We can further see that there are no significant differences between the accuracy of the 

jump-adapted and the approximately fully adapted particle filter. The only meaningful 

differences in R-Squared values seem to occur with respect to the two volatility components, 

which the approximately fully adapted filter estimates slightly better. 

4.2. Simulation tests of the SGPF algorithm 

The filtering task in the previous section was greatly simplified compared to the real-

world problem, where the parameters of the underlying SVJD process are unknown and need 

to be estimated together with the latent states. In the empirical part of the study we will 

perform the estimation with the Sequential Gibbs Particle Filter (SGPF). In order to evaluate 

the performance of the SGPF algorithm with respect to parameter estimation and latent state 

filtering, we will apply to simulated time series. 

Due to the large number of charts and limited scope of this thesis, we will discuss the 

results only for the most challenging case of a 2-Component SVJD-RV-Z model with self-

exciting jumps in prices and volatility. 

4.2.1. Parameter learning in a 2-Component SVJD-RV-Z model 

Time series was simulated with the 2-Component SVJD-RV-Z model with self-

exciting jumps in prices and volatility, using the following parameters: 𝜇 =
0.05

252
, 𝜇𝐽 = −0.01, 

𝜎𝐽 = 0.04, 𝑉𝐿𝑇 = 𝑒
𝜙0

1−𝜙1 = 0.012, 𝜙1 = 0.995, 𝜙2 = 0.1, 𝛽 = 0.95, 𝛾 = 0.2, 𝜆𝐿𝑇 =

𝛼𝐽

1−𝛽𝐽−𝛾𝐽
= 0.02, 𝛽𝐽 = 0.95, 𝛾𝐽 = 0.04, 𝜇𝐽𝑉 = 0.3, 𝜎𝐽 = 0.5, 𝜆𝐿𝑇,𝑉 =

𝛼𝐽𝑉

1−𝛽𝐽𝑉−𝛾𝐽𝑉
= 0.02, 𝛽𝐽𝑉 =

0.95, 𝛾𝐽𝑉 = 0.04. 

The SGPF algorithm was then run on the simulated time series 5 times in a row, each 

time with 100 parameter particles (50-particle threshold for resampling), and with 100 latent 
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states particles (with daily re-sampling). The following (relatively wide) priors were used for 

some of the parameters to improve the convergence of the algorithm: 

Table 4 – Priors used for the inverse gamma distributions of the parameters for 

the 2-Component model used in the simulation test 

  a b 

sigmaJ 5 5*9*(0.01^2) 

gamma 10 10*(0.2^2) 

sigmaJV 5 5*9*(0.2^2) 

phi3 10 10*(0.1^2) 

sigmaRV 50 50*(0.6)^2 

 

The convergence of the SGPF algorithm parameter estimates through the 4 000 

periods of the time series is shown for the parameters related to the stochastic log-variance 

process on Figure 9. The blue line denotes the values used in the simulation. 

Figure 9 – Convergence of the volatility parameters of the 2-Component SVJD-

RV-Z model during 5 independent runs of the SGPF algorithm (simulated series)  
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We can see from Figure 9 that the parameters of the long-term log-variance 

component (𝑉𝐿𝑇 = 𝑒
𝜙0

1−𝜙1, 𝜙1 and 𝜙2), converged approximately to the values used in the 

simulation, although the final values of 𝜙2 are clearly slightly below simulation ones. 

The results are worse for the short-term component, as while the 𝛽  was converged 

very quickly, it converged to values that are above the ones used to simulate the time series, 

and also above 𝜙1, thus de-facto making the ℎ𝑆𝑇  into the long-term component. At the same 

time, 𝛾 converged unanimously towards lower values that the ones used in the simulation.  

It is worth noting that the convergence to the values used in the simulation cannot be 

expected to be perfect. While certain parameters were used to simulate the time series, the 

simulation is a realization of a random process and even the best possible estimate of the 

parameters will thus always be different from the real values. This is especially true for highly 

complex models in which different components can substitute for each other. 

Figure 10 – Convergence of the jump parameters of the 2-Component SVJD-RV-

Z model during 5 independent runs of the SGPF algorithm (simulated series) 
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From Figure 10 we can see that the convergence of the price-jump related parameters 

was relatively good, and all of the parameters converged either to the values used in the 

simulation or to values that are close to them (such as in the case of  𝜎𝐽, which is only slightly 

above the value of 0.04, which can be caused by the fact that the simulated jumps were just 

higher than expected). A positive result is that convergence occurred even in the case of the 

decay parameter 𝛽𝐽, which is notoriously difficult to estimate, due to its high negative 

correlation with 𝛾𝐽. This is apparent from some of the runs in which the values of 𝛾𝐽 initially 

moved towards overly high values, which subsequently caused the  𝛽𝐽 to converge upwards 

slower, than in the runs in which 𝛾𝐽 was initially estimated as low. 

Figure 11 – Convergence of the volatility jump parameters of the 2-Component 

SVJD-RV-Z model during 5 independent runs of the SGPF algorithm (simulated series) 

 

Figure 11 shows the convergence of the parameters related to the volatility jumps. 

While the estimation of volatility jump dynamics is especially challenging, we can see that 

most of the parameters still managed to converge towards the correct values, with the notable 
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exception of 𝛽𝐽𝑉. The lack of convergence in the case of 𝛽𝐽𝑉 can probably be explained by the 

fact that the simulated time series is too short and not enough volatility jump managed to 

occur in order for the self-exciting behaviour to be estimated properly. This is a common 

problem when estimating Hawkes process parameters, together with the fact that high 

correlation between 𝛽𝐽𝑉 and 𝛾𝐽 often leads the algorithm to converge towards local optima (as 

discussed in Fičura and Witzany, 2015).  

Figure 12 – Convergence of the remaining parameters of the 2-Component 

SVJD-RV-Z model during 5 independent runs of the SGPF algorithm (simulated series) 

 

Figure 12 shows the remaining parameters of the 2-Component SVJD-RV-Z model. 

We can see that most of these parameters converged quickly to the correct values, with the 

exception of 𝜎𝑅𝑉, 𝜉𝑍 and 𝜎𝑍, which converged to different values than the ones used in the 

simulation. In the case of 𝜎𝑅𝑉 this was probably caused by the high value of the prior which 

was put onto this parameter, in order to improve the convergence of some of the other 

parameters. The overestimation of 𝜉𝑍 could be caused by the inability of the algorithm to 

estimate some of the smaller jumps, due to the high diffusive volatility in the time series.  
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Table 5 – Final periods SGPF parameter estimates and Bayesian standard errors, 

compared with values used in the simulation of the 2-Component SVJD-RV-Z model 

Model SimValue Run1 Run2 Run3 Run4 Run5 

mju 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 

    4.30E-05 4.64E-05 5.95E-05 4.58E-05 4.50E-05 

mjuJ -0.01 -0.0106 -0.0113 -0.0121 -0.0125 -0.0107 

    0.0082 0.0063 0.0083 0.0072 0.0097 

sigmaJ 0.04 0.0517 0.0532 0.0538 0.0531 0.0544 

    0.0038 0.0056 0.0047 0.0055 0.0048 

ltv -9.2103 -9.6795 -8.4667 -8.6489 -7.8941 -9.0291 

    0.1485 0.6250 0.3400 0.4903 0.3554 

beta 0.9500 0.9946 0.9930 0.9930 0.9923 0.9946 

    0.0017 0.0030 0.0034 0.0035 0.0042 

gamma 0.2000 0.1024 0.1002 0.1052 0.1111 0.1064 

    0.0026 0.0038 0.0034 0.0057 0.0051 

lambdaLT 0.0200 0.0252 0.0146 0.0110 0.0141 0.0219 

    0.0054 0.0062 0.0030 0.0046 0.0039 

betaJ 0.9500 0.9788 0.9589 0.9571 0.9400 0.9515 

    0.0025 0.0054 0.0070 0.0098 0.0066 

gammaJ 0.0400 0.0177 0.0286 0.0258 0.0370 0.0369 

    0.0026 0.0056 0.0047 0.0078 0.0065 

mjuJV 0.3000 0.1649 0.1685 0.3291 0.1109 0.2317 

    0.0993 0.1392 0.2087 0.1069 0.1344 

sigmaJV 0.5000 0.4619 0.5496 0.6811 0.5712 0.5925 

    0.0514 0.0805 0.1038 0.0854 0.0972 

lambdaLTV 0.0200 0.0250 0.0108 0.0049 0.0141 0.0075 

    0.0065 0.0023 0.0018 0.0056 0.0024 

betaJV 0.9500 0.5075 0.5053 0.4514 0.4245 0.2989 

    0.2259 0.1152 0.1741 0.1894 0.1584 

gammaJV 0.0400 0.0272 0.0293 0.0234 0.0567 0.0344 

    0.0137 0.0145 0.0154 0.0246 0.0137 

phi1 0.9950 0.9714 0.9919 0.9837 0.9918 0.9849 

    0.0140 0.0058 0.0069 0.0040 0.0036 

phi2 0.1000 0.0682 0.0794 0.0800 0.0707 0.0833 

    0.0028 0.0047 0.0039 0.0050 0.0039 

sigmaRV 0.2266 0.4069 0.4071 0.4068 0.4066 0.4041 

    0.0053 0.0059 0.0039 0.0045 0.0052 

mjuZE 0.1492 0.1586 0.1536 0.1575 0.1575 0.1590 

    0.0130 0.0106 0.0143 0.0184 0.0120 

ksiZE 6.6790 8.9452 8.9298 8.9296 8.9458 8.9425 

    0.1625 0.1289 0.1387 0.1336 0.1302 

sigmaZE 1.1055 1.0144 1.0096 1.0130 1.0141 1.0148 

    0.0122 0.0105 0.0116 0.0147 0.0119 

CorrRH 0.0000 0.0513 0.0591 0.0727 0.0009 -0.0181 

    0.0440 0.0735 0.0642 0.0500 0.0395 
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4.3. Application of the SGPF algorithm on EUR/USD 

In the next step, we will apply the SGPF algorithm for parameter learning on the 

EUR/USD foreign exchange rate time series. Two tests will be performed. In the first test, the 

convergence of the SGPF algorithm is compared with the parameter estimates constructed 

with an MCMC algorithm, on a single-component SVJD-RV-Z model with self-exciting 

jumps in returns. In the second test, the SGPF algorithm is applied for the estimation of a 

SVJD-RV-Z model with self-exciting jumps in returns and volatility, in order to see, whether 

it tends to converge towards similar values when it is run multiple times in a row. 

4.3.1. MCMC vs. SGPF estimation of SVJD-RV-Z model on EUR/USD 

The parameter estimates from the SGPF algorithm will be compared with the MCMC 

estimates on the SVJD-RV-Z model with self-exciting jumps in prices that was analysed in 

Fičura and Witzany (2017). The application is performed on the EUR/USD time series in the 

period from 1.10.1999 to 15.06.2015. The realized variance and the Z-Estimator were 

computed from 15-minute returns, based on a dataset from ForexHistoryDatabase.com. 

The MCMC method was run for 20 000 iterations, with the first 5 000 discarded and 

the remaining 15 000 ones used for parameter and latent states estimation based on posterior 

means. The Gibbs Particle Filter was run with 100x100 particles (100 parameter particles, 

each with 100 latent state particles), daily re-sampling of the latent states, and a 50 particle re-

sampling threshold for the parameters. 

Contrary to the specification of the other SVJD-RV-Z models in this thesis, we will 

use 𝜇𝑅𝑉 as an additional parameter in this test, quantifying the potential bias of the 

logarithmic realized variance with respect to the logarithmic stochastic variance. It will be 

seen that the parameter is estimated as insignificantly different from zero, which is the reason 

why it is not used in the other SVJD-RV-Z models in this thesis. 

Figure 13 compares the filtered log-variances, variances, jump occurrences and 

absolute jump sizes, estimated with the SGPF particle filter and the MCMC algorithm for the 

SVJD-RV-Z model with self-exciting jumps in prices on EUR/USD. 
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Figure 13 – SJVD-RV-Z model filtered latent states from the Gibbs Particle 

Filter compared with the MCMC latent state estimates 

 

We can from Figure 13 that both methods estimated the jumps in the EUR/USD time 

series very similarly (jump probabilities of occurrence as well as the jump sizes). Regarding 

the log-variances and variances, it is apparent that the particle filter estimates are more noisy 

than the MCMC estimates, which can be attributed to the fact that the MCMC performs 

smoothing and uses thus all of the information from the time series, while the particle filter 

utilizes only the information set available at time 𝑡. As the MCMC algorithm sees also what 

happened after time 𝑡 (i.e. in the periods 𝑡 + 1, 𝑡 + 2, up to 𝑇), it does not tend to produce so 

many false spikes in volatility in the cases when the future volatility did not actually increase. 

Figure 14, Figure 15 and Figure 16 compare the parameter estimates of the MCMC 

method with the sequential estimates of the SGPF particle filter. Each plot shows the 

evolution of the Particle Filter estimates through the time (over the 4 063 days of the sample), 

together with the full sample MCMC parameter estimates, constructed based on the posterior 

means, together with their 95% Bayesian confidence intervals. In the ideal case, the SGPF 

parameter estimates at time 𝑇 = 4063, should have converged towards similar values as the 

MCMC full sample estimates. 
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Figure 14 – Convergence of SGPF parameter estimates for the SVJD-RV-Z 

model, compared with the MCMC estimates and their 95% confidence intervals (1) 

 

Figure 15 – Convergence of SGPF parameter estimates for the SVJD-RV-Z 

model, compared with the MCMC estimates and their 95% confidence intervals (2) 
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Figure 16 – Convergence of SGPF parameter estimates for the SVJD-RV-Z 

model, compared with the MCMC estimates and their 95% confidence intervals (3) 

 

We can see that the SGPF sequential parameter estimates converged accurately to the 

MCMC parameter estimates for most of the parameters of the SVJD-RV-Z model with self-

exciting jumps in returns.  

Summary of the parameter estimates can be seen in Table 6. We can see that for 

almost all of the parameters do the MCMC 95% confidence intervals and the SGPF 95% 

confidence intervals (at 𝑇 = 4063) intersect. 

 

  



Ing. Milan Fičura Dissertation thesis 26.8.2018 

108 

 

Table 6 – MCMC and SGPF final period parameter estimates for the SVJD-RV-

Z model with self-exciting price jumps on EUR/USD 

Model SGPF(5%) SGPF SGPF(95%) MCMC(5%) MCMC MCMC(95%) Intersect 

mju 0.0000 0.0001 0.0001 -0.0001 0.0000 0.0002 TRUE 

mjuJ -0.0012 -0.0004 0.0005 -0.0011 0.0004 0.0020 TRUE 

sigmaJ 0.0052 0.0057 0.0065 0.0078 0.0089 0.0103 FALSE 

ltv -10.9986 -10.8058 -10.6700 -10.5769 -10.3417 -10.0976 FALSE 

beta 0.9511 0.9629 0.9706 0.9764 0.9835 0.9901 FALSE 

gamma 0.0853 0.0987 0.1052 0.1024 0.1166 0.1312 TRUE 

lambdaLT 0.0298 0.0380 0.0428 0.0300 0.0396 0.0499 TRUE 

betaJ 0.6642 0.8542 0.9843 0.0304 0.6108 0.9751 TRUE 

gammaJ 0.0016 0.0132 0.0299 0.0005 0.0124 0.0368 TRUE 

mjuRV -0.0488 -0.0073 0.0825 -0.0151 0.0316 0.0790 TRUE 

sigmaRV 0.3387 0.3501 0.3608 0.3550 0.3677 0.3800 TRUE 

mjuZE 0.9218 0.9711 1.0029 0.9265 0.9726 1.0181 TRUE 

ksiZE 3.8835 4.0600 4.3277 3.4411 3.7405 4.0580 TRUE 

sigmaZE 1.2311 1.2616 1.3029 1.2528 1.2896 1.3268 TRUE 

 

4.3.2. 2-Component SVJD-RV-Z model parameter learning on EUR/USD 

In order to assess the convergence properties of the SGPF algorithm in the case of 

more complex SVJD models, we will run it 5 times for the 2-component SVJD model with 

self-exciting jumps in prices and volatility on the EUR/USD time series and observe whether 

different runs of the algorithm converge to the same values. The algorithm is again run with 

100 parameter particles, 50-particle threshold for parameter resampling, and 100 latent state 

particles (re-sampled daily). A jump-adapted filter is used for the filtering of the latent states. 

In order to improve the convergence of the algorithm, we have put priors on the values 

of some of the parameters. Table 7 shows the utilized priors, which were all put on the 

inverse-gamma distributions of the variability related parameters. 

Table 7 - Priors used for the inverse gamma distributions of the parameters for 

the 2-Component model used in convergence test on EUR/USD 

  a b 

sigmaJ 5 5*9*(0.01^2) 

gamma 10 10*(0.2^2) 

sigmaJV 5 5*9*(0.2^2) 

phi3 10 10*(0.1^2) 

sigmaRV 50 50*(0.6)^2 
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Figure 17 shows the convergence of the algorithm for the parameters related to the two 

components of the log-variance process. 

Figure 17 – Convergence of the volatility parameters of the 2-Component SVJD-

RV-Z model during 5 independent runs of the SGPF algorithm (EUR/USD)  

 

We can see from Figure 17 that the algorithm converged towards similar parameter 

values in all 5 runs of the algorithm. The value of 𝜙1 corresponds to a very high persistence 

of the long-term log-variance component, and it is also much higher than 𝛽, so the persistence 

relationship between the two components are in accordance with our expectations.  

Figure 18 shows the convergence results for the parameters related to the jumps in 

returns. 
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Figure 18 – Convergence of the jump parameters of the 2-Component SVJD-RV-

Z model during 5 independent runs of the SGPF algorithm (EUR/USD) 

 

We can see from Figure 18 that while for 𝜇𝐽, 𝜎𝐽, 𝜆𝐿𝑇 and 𝛾𝐽, the SGPF algorithm 

converged quickly towards similar values in all of the runs, for the Hawkes process intensity 

decay parameter 𝛽𝐽 it did not manage to converge towards similar values. This can be either 

due to low levels of jump intensity persistence in the analysed time series, or due the 

problems in convergence caused by a high correlation between 𝛾𝐽 and 𝛽𝐽. As will be shown 

later in Table 8, the values of 𝛾𝐽 are for most of the runs only 1-1.5 standard errors away from 

zero, indicating that the self-exciting effects for the EUR/USD may not be statistically 

significant. 

Figure 19 shows the convergence results for the volatility-jump related parameters. 
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Figure 19 – Convergence of the volatility jump parameters of the 2-Component 

SVJD-RV-Z model during 5 independent runs of the SGPF algorithm (EUR/USD) 

 

We can see from Figure 19, that while the 𝜇𝐽𝑉, 𝜎𝐽𝑉, 𝜆𝐿𝑇,𝑉 and 𝛾𝐽𝑉 managed to again 

converge towards similar values in all of the runs, the intensity decay parameter 𝛽𝐽𝑉 was 

again more problematic, with one of the runs ending at a far lower value than the others. This 

can again be caused by a relatively low statistical significance of the self-exciting behaviour 

of volatility jumps in EUR/USD. 

Figure 20 shows the convergence of the remaining parameters of the 2-Component 

SVJD-RV-Z model. We can see that for all of these parameters the SGPF algorithm quickly 

converged towards similar values in all of the runs. The spike observed in one of the runs on 

𝜎𝐽𝑉 corresponds to the crisis period and was probably caused by a drop in efficient number of 

particles due to extreme events on the market, which was, however, quickly reversed in 

subsequent re-sampling of the particles. 
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Figure 20 – Convergence of the remaining parameters of the 2-Component 

SVJD-RV-Z model during 5 independent runs of the SGPF algorithm (EUR/USD) 

 

Table 8 shows the parameter estimates from the SGPF particle in the final period (𝑇 =

4063), together with the Bayesian standard errors, constructed by re-sampling the parameter 

particles in the final period and computing the standard deviation of their values. 

Most parameters are in accordance with out expectation, with the exception of 𝛾𝐽 and 

𝛾𝐽𝑉, which are for most of the runs less than 2 standard deviations away from zero, indicating 

that the self-exciting behaviour of price and volatility jumps on the EUR/USD time series is 

only weak. 
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Table 8 – Final periods SGPF parameter estimates and Bayesian standard errors, 

compared with values used in the simulation of the 2-Component SVJD-RV-Z model 

Model Run1 Run2 Run3 Run4 Run5 

mju 0.0000 0.0001 0.0000 0.0000 0.0001 

  2.15E-05 1.68E-05 2.32E-05 2.71E-05 2.16E-05 

mjuJ -0.0003 0.0004 -0.0001 0.0001 -0.0001 

  0.0010 0.0011 0.0011 0.0010 0.0015 

sigmaJ 0.0097 0.0098 0.0100 0.0098 0.0097 

  0.0008 0.0010 0.0007 0.0007 0.0009 

ltv -10.0398 -10.0438 -10.1843 -10.3766 -9.9420 

  0.5654 0.5605 0.4817 0.3764 0.7709 

beta 0.3583 0.4776 0.3439 0.4491 0.5593 

  0.0594 0.0186 0.0461 0.0503 0.0344 

gamma 0.1312 0.1143 0.1261 0.1117 0.1121 

  0.0074 0.0039 0.0088 0.0049 0.0045 

lambdaLT 0.0238 0.0241 0.0208 0.0221 0.0235 

  0.0033 0.0039 0.0030 0.0034 0.0033 

betaJ 0.6360 0.7611 0.1356 0.5818 0.7439 

  0.2353 0.1597 0.1164 0.2909 0.1292 

gammaJ 0.0108 0.0144 0.0187 0.0067 0.0111 

  0.0105 0.0086 0.0122 0.0062 0.0062 

mjuJV 0.6309 0.7124 0.6538 0.6844 0.6062 

  0.1681 0.1207 0.1948 0.1298 0.1201 

sigmaJV 0.6848 0.6114 0.6431 0.6240 0.6351 

  0.0673 0.0730 0.1207 0.0748 0.0560 

lambdaLTV 0.0227 0.0254 0.0280 0.0277 0.0338 

  0.0048 0.0035 0.0047 0.0044 0.0047 

betaJV 0.7256 0.3726 0.4056 0.1829 0.4681 

  0.1798 0.2489 0.2124 0.1371 0.3231 

gammaJV 0.0133 0.0133 0.0209 0.0245 0.0128 

  0.0138 0.0125 0.0140 0.0247 0.0083 

phi1 0.9909 0.9909 0.9895 0.9878 0.9934 

  0.0037 0.0046 0.0043 0.0049 0.0044 

phi2 0.0806 0.0791 0.0896 0.0851 0.0753 

  0.0062 0.0032 0.0024 0.0065 0.0030 

sigmaRV 0.4345 0.4360 0.4318 0.4336 0.4325 

  0.0039 0.0048 0.0040 0.0057 0.0036 

mjuZE 1.0156 1.0116 1.0252 1.0117 1.0156 

  0.0283 0.0214 0.0201 0.0214 0.0215 

ksiZE 4.4919 4.5438 4.5501 4.5452 4.4862 

  0.2367 0.2201 0.2158 0.1402 0.1643 

sigmaZE 1.3120 1.3107 1.3201 1.3164 1.3169 

  0.0212 0.0200 0.0207 0.0196 0.0149 

CorrRH 0.0401 -0.0327 0.0015 -0.0195 -0.0174 

  0.0379 0.0323 0.0343 0.0527 0.0494 
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5. Empirical test of the predictive power of SVJD models 

In this final section we will apply the proposed SVJD and SVJD-RV-Z models, 

estimated with the SGPF particle filter, for the task of realized volatility forecasting, on the 

time series of 7 currency exchange rates and 10 ETF/ETN securities. The performance of the 

models will be compared with benchmark models from the GARCH and HAR model classes, 

as well as with Echo State Neural Network models. 

5.1. Applied benchmark models 

The models used as benchmark include three most commonly used ARCH/GARCH 

models, specifically the GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) model, and a 

wide variety of most commonly used HAR model specifications.  

The HAR model variants that were tested include the standard HAR model, HARQ 

model (using realized quarticity as an additional predictor), HARJ model (using the bi-power 

variation based estimator of jumps), AHAR model (using daily returns) and SHAR model 

(using the realized semi-variance). In preliminary tests, the HAR models were estimated in 

their simple form, with only the last 1-day values of the additional predictors, as well as in the 

full HAR specification, using the aggregated values over the last 1-Day, 1-Week (5 days) and 

1-Month (22 days) for all predictors. As the full HAR specifications achieved on average 

better results, they were chosen as the ones to be applied in the thesis.  

All of the HAR models were additionally estimated in their standard, logarithmic and 

square root form, as these do often perform better than standard HAR models (especially the 

logarithmic form). The logarithmic and square root forms of the HAR models will be denoted 

as logHAR and sqrtHAR in the tables (and analogically for the extended versions of the HAR 

model, i.e. for example logHARQ and sqrtHARQ for the HARQ model). 

In order to assure that the results of the benchmark models are comparable with the 

sequential estimates and predictions of the SVJD models, a walk-forward estimation with a 

22-day moving window is used. All models were initially estimated on the first 1 000 days of 

the time series (in-sample), and then re-estimated after each 22 days (on the full dataset 

available at that time-point). The performed estimates are thus always up to date and should 

be comparable with the way of how the SGPF algorithm works when estimating the SVJD 

models. 
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5.2. Applied Echo State Neural Network models 

Echo State Neural Network (ESN) model was chosen as an additional approach to be 

tested with the goal of validating its predictive performance reported in Fičura (2017). Unlike 

the version of the model applied in Fičura (2017), the networks were applied to differentiated 

time-series of the realized variance (and the other predictors). The reason for this modification 

is that when applied to the levels of the realized variance, the models tended to underestimate 

the volatility during the crisis, due to the poor ability of the neural networks to approximate 

beyond the value range that they have observed during training. 

 In addition to the standard ESN model, using only the past realized variance from day 

𝑡 − 1 as a predictor, versions of the model enhanced with additional high-frequency 

estimators were tested. The additional predictors are analogical to the predictors used in the 

different versions of the HAR model (i.e. HARQ, HARJ and SHAR), with the difference that 

in the ESN models, only the predictors from 𝑡 − 1 are used, as the ESN network should be 

able to learn the long-range dependencies by itself, due to its recurrent nature. The second 

difference with respect to the HAR models is that all predictors of the ESN models are 

differentiated (as well as the target variable). 

Specifically, we will test the ESNQ model, using in addition to the realized variance 

also the realized quarticity, the ESNJ model, using the bi-power variation based estimates of 

the jump variance, and the SESN model, using the realized semi-variance as an additional 

predictor. Further versions, with multiple additional predictors were tested as well, but they 

generally did not perform better than the versions mentioned above. An exception was the 

SESNQ model, utilizing the realized semi-variance and realized quarticity together. The 

model will thus be included in the final testing as well. 

Similarly as in the case of the HAR models, all ESN models were formulated in the 

standard, logarithmic and the square root form, in which all predictors, as well as the target 

variable, are subject to the given transformation. The resulting models are denoted as logESN 

and sqrtESN (and analogically for the extended versions). 

As in the case of the other models, the Echo State Neural Networks were estimated 

with a walk-forward estimation approach, with a moving window of 22 days, in order to 

assure that the results are comparable with the SGPF sequential estimates of the SVJD models 

where the parameter estimates get constantly updated. 
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Regarding the meta-parameters, the expertly chosen values, based on the 

recommendation in ESN literature were used (Lukoševičius, 2012). All ESN models were 

trained with 100 neurons in the recurrent layer (reservoir), 100% connectivity, logistic 

activation function, spectral radius equal to 1, input scaling equal to 1 (regarding to the 

normalized values of the predictors), and penalization of the ridge regression (used for 

training of the output layer) equal to 1. Additionally, to improve the long-memory properties 

of the neural networks, smoothing of the recurrent layer was performed with a vector α, 

containing 100 equally spaced values ranging from 0.05 to 1, each corresponding to one of 

the neurons (i.e. each neuron will use different level of smoothing). This is done in order to 

enhance the ability of the neural network to learn dependencies that occur at different 

frequencies, and to learn the ones that are most informative with regards to the future 

evolution of the realized variance. 

The training was performed in a standard way. In the first step, the explanatory 

variables were standardized by subtracting the mean and dividing them with the standard 

deviation. The weights of the input and recurrent weight matrix of the ESN network were then 

randomly generated from an uniform distribution scaled to the interval of [-1,1]. The recurrent 

matrix was then re-scaled to assure a spectral radius equal to 1, the values of the reservoir 

(recurrent layer) were computed for all historical periods, and the output weight vector was 

estimated with a penalized Ridge regression with penalization parameter equal to 1. 

To assure that the results are not depending on the specific initialization of the neural 

network, an envelope of 100 ESN networks was trained, and their predictions averaged. 

Preliminary tests showed that at this envelope size, the random component of the neural 

network training gets mostly averaged out and the variability of the final R-Squared values of 

the model predictions is smaller than 1%. This assures that the results are replicable (up to a 

1% margin of error). 
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5.3. Applied SVJD and SVJD-RV-Z models 

The four SVJD and SVJD-RV-Z models that were used in the simulation studies will 

also be used in the empirical test. They will be denoted as follows:  

• SVJD – SVJD model with self-exciting jumps in returns  

• SVJD-RV-Z – SVJD-RV-Z model with self-exciting jumps in returns 

• SVJJD-RV-Z – SVJD-RV-Z model with self-exciting jumps in returns and 

volatility  

• 2SVJJD-RV-Z – 2-Component SVJD-RV-Z model with self-exciting jumps in 

returns and volatility  

The estimation of model parameters and latent states was performed with the 

Sequential Gibbs Particle Filter (SGPD) with 100 parameter particles, 50-particle threshold 

for re-sampling, 100 latent state particles, and daily re-sampling of the latent states. In order 

to prevent convergence towards local optima, the following priors were used for the variance-

related parameters in all of the models. 

Table 9 – Inverse-gamma density priors used for the variability-related 

parameters of the SVJD models used in the empirical test 

  a b 

sigmaJ 5 5*9*(0.01^2) 

gamma 10 10*(0.2^2) 

sigmaJV 5 5*9*(0.2^2) 

phi3 10 10*(0.1^2) 

sigmaRV 50 50*(0.6)^2 

 

The priors are especially needed in the case of the 2-Component SVJD model as due 

to its complexity it sometimes tended to converge to inferior local optimums.  Overall, the 

setting of the priors corresponds to a situation as if we previously observed 10 jumps in prices 

with standard deviation 3%, 10 volatility jumps with standard deviation 60%, 20 day 

evolution of the stochastic log-variance in which the short-term component exhibited standard 

deviation of 20% and the long-term component 10%, and 100 days in which the logaritmized 

realized variance (adjusted for price jumps) exhibited 60% variability around the stochastic 

log-variance. As the lengths of the analysed time series are around 4 000 days, the role of the 

priors should have a negligible role on the final parameter estimates. 
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5.4. Forecasting currency exchange rate volatility 

In this section the predictive power of selected SVJD models is compared with a series 

of benchmark models (GARCH, HAR, HARQ, etc.) and with models based on Echo State 

Neural Networks, on a dataset of 7 major currency exchange rates. 

5.4.1. Currency dataset description 

The models are applied to foreign exchange rate time series of 7 major currency pairs 

(EUR/USD, GBP/USD, USD/CHF, USD/JPY, USD/CAD, AUD/USD and NZD/USD), over 

a period from 1.10.1999 to 15.06.2015 (4 063 observations). The first 1 000 observations are 

used as an in-sample period, while the remaining observations are used as out-sample period 

for model comparison. The high-frequency non-parametric estimators (realized variance, Z-

Estimator and realized quarticity) were computed from 15-minute data provided by 

ForexHistoryDatabase.com. 

Table 10 shows summary statistic of the daily currency exchange rate time series that 

were used in the empirical study. In addition to the moment statistics it also includes the 

estimated number of jumps with the Z-Estimator (Barndorff-Nielsen and Shephard 2004), on 

a 99.99% confidence level, constructed from 15-minute returns. 

Table 10 – Summary statistics about the foreign exchange rates dataset 

  Start date End date Days Mean Std Skewness Kurtosis Jumps 

EURUSD 1-Nov-99 15-Jun-15 4063 0.0000 0.0065 0.0444 4.4318 222 

GBPUSD 1-Nov-99 15-Jun-15 4063 0.0000 0.0057 -0.3406 5.6476 163 

USDCHF 1-Nov-99 15-Jun-15 4063 -0.0001 0.0076 -3.8224 115.5912 204 

USDJPY 1-Nov-99 15-Jun-15 4063 0.0000 0.0064 -0.0617 6.7908 219 

USDCAD 1-Nov-99 15-Jun-15 4063 0.0000 0.0058 0.2100 6.3418 126 

AUDUSD 1-Nov-99 15-Jun-15 4063 0.0000 0.0085 -0.5148 15.2365 167 

NZDUSD 1-Oct-99 15-Jun-15 4071 0.0001 0.0084 -0.3561 6.5063 161 

 

5.4.2. SVJD model parameter estimates 

The four SVJD models were estimated on each of the time series with the use of 

Sequential Gibbs Particle Filter (Fičura and Witzany, 2018) with 100x100 particles (100 

parameter particles, each with 100 latent state particles), with daily re-sampling of the latent 

state particles and a 50-particle threshold for re-sampling of the parameter particles. 

The final parameter estimates from the SGPF algorithm in the last period of the 

sample are shown in the tables below. Take note that some of the parameters were 
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transformed, specifically 𝜆𝐿𝑇 = αJ/(1 − βJ − 𝛾𝐽)  and 𝜆𝐿𝑇,𝑉 = α𝐽𝑉/(1 − β𝐽𝑉 − 𝛾𝐽𝑉), and 

further 𝑙𝑡𝑣 = 𝜙𝐿𝑇 = 𝛼/(1 − 𝛽) for one-component models, and 𝑙𝑡𝑣 = 𝜙𝐿𝑇 = 𝜙0/(1 − 𝜙1) 

for the two-component model. 

Table 11 shows the final period parameter estimates for the SVJD model. 

Table 11 – SVJD model parameter estimates and Bayesian standard errors from 

the SGPF algorithm on the exchange rate time series 

Model EURUSD GBPUSD USDCHF USDJPY USDCAD AUDUSD NZDUSD 

mju  0.0001 0.0001 0.0001 0.0001 -0.0001 0.0003 0.0005 

  4.26E-05 4.77E-05 3.29E-05 4.68E-05 5.43E-05 7.15E-05 9.73E-05 

mjuJ 0.0002 -0.0483 -0.0034 -0.0016 0.0089 -0.0244 -0.0104 

  0.0060 0.0019 0.0075 0.0017 0.0037 0.0179 0.0100 

sigmaJ 0.0166 0.0243 0.0379 0.0149 0.0338 0.0252 0.0229 

  0.0027 0.0029 0.0045 0.0011 0.0040 0.0049 0.0033 

ltv -10.2592 -10.1054 -10.0914 -10.5440 -10.5018 -9.8861 -9.8211 

  0.7482 2.4003 1.1843 0.3155 2.3668 1.6847 0.2108 

beta 0.9854 0.9887 0.9901 0.9903 0.9880 0.9830 0.9533 

  0.0072 0.0062 0.0044 0.0053 0.0065 0.0086 0.0152 

gamma 0.1197 0.1032 0.0807 0.0622 0.0882 0.1454 0.2249 

  0.0056 0.0103 0.0032 0.0023 0.0043 0.0061 0.0116 

lambdaLT 0.0074 0.0538 0.0080 0.0433 0.0014 0.0032 0.0047 

  0.0045 0.0076 0.0028 0.0055 0.0005 0.0024 0.0026 

betaJ 0.5150 0.9267 0.9073 0.2527 0.1966 0.3182 0.1885 

  0.2344 0.0000 0.0546 0.1292 0.1597 0.2072 0.1285 

gammaJ 0.0171 0.0833 0.0295 0.1097 0.0472 0.0557 0.1093 

  0.0199 0.0000 0.0098 0.0183 0.0390 0.0291 0.0239 

CorrRH 0.0116 -0.2481 -0.3134 0.2402 0.1417 -0.1832 -0.2104 

  0.0614 0.0956 0.0352 0.1067 0.1439 0.0847 0.0610 

 

We can see from Table 11 that the parameters are at the expected value in most of the 

cases. The log-variance process exhibits very strong persistence with the 𝛽 typically being 

around 0.98-0.99. The jump sizes, measured by 𝜎𝑗 are usually around 2%, while the long-term 

jump intensity is at levels below 1% for most of the time series with the exception of 

GBP/USD and USD/JPY, where it is substantially higher. The jumps were estimated as 

persistently self-exciting on GBP/USD and USD/CHF (high 𝛽𝑗 and significant 𝛾𝑗), while on 

the USD/JPY and NZD/USD the co-jumps effects can be observed (low 𝛽𝑗 with high and 

significant 𝛾𝑗). Correlation between volatility and returns 𝜌 was for most of the series close to 

zero, although on some of them still statistically significant. 
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Table 12 shows the final period parameter estimates for the SVJD-RV-Z model. 

Table 12 – SVJD-RV-Z model parameter estimates and Bayesian standard errors 

from the SGPF algorithm on the exchange rate time series 

Model EURUSD GBPUSD USDCHF USDJPY USDCAD AUDUSD NZDUSD 

mju 0.0001 0.0000 0.0000 0.0001 -0.0001 0.0002 0.0002 

  2.65E-05 1.83E-05 2.28E-05 2.13E-05 1.26E-05 2.12E-05 2.12E-05 

mjuJ 0.0003 -0.0002 0.0024 0.0000 0.0005 0.0020 -0.0004 

  0.0011 0.0012 0.0019 0.0012 0.0013 0.0018 0.0016 

sigmaJ 0.0101 0.0092 0.0151 0.0113 0.0097 0.0142 0.0133 

  0.0008 0.0009 0.0014 0.0009 0.0009 0.0012 0.0012 

ltv -10.2496 -10.3219 -10.1108 -9.9740 -10.0851 -9.2515 -9.4362 

  0.1937 0.4400 0.2231 0.4031 0.6150 1.1490 1.5014 

beta 0.9789 0.9894 0.9800 0.9821 0.9912 0.9928 0.9946 

  0.0072 0.0053 0.0057 0.0076 0.0038 0.0050 0.0033 

gamma 0.1224 0.0810 0.1093 0.1171 0.0738 0.0846 0.0635 

  0.0091 0.0046 0.0022 0.0108 0.0037 0.0036 0.0056 

lambdaLT 0.0223 0.0190 0.0174 0.0220 0.0166 0.0162 0.0211 

  0.0032 0.0035 0.0021 0.0029 0.0027 0.0040 0.0032 

betaJ 0.2529 0.7750 0.7203 0.2276 0.2830 0.9844 0.5983 

  0.2009 0.2155 0.1029 0.1640 0.1613 0.0573 0.1830 

gammaJ 0.0095 0.0210 0.0047 0.0185 0.0250 0.0105 0.0074 

  0.0085 0.0129 0.0053 0.0163 0.0143 0.0046 0.0065 

sigmaRV 0.4458 0.4264 0.4642 0.4818 0.4223 0.4461 0.4687 

  0.0056 0.0043 0.0050 0.0066 0.0052 0.0059 0.0062 

mjuZE 1.0208 0.8496 0.9638 1.0175 0.5898 0.8705 0.9197 

  0.0232 0.0214 0.0212 0.0217 0.0228 0.0226 0.0211 

ksiZE 4.4789 4.2166 4.8647 4.3043 4.7713 4.9951 4.5499 

  0.2101 0.2027 0.2246 0.1974 0.2300 0.1986 0.1907 

sigmaZE 1.3218 1.2808 1.3463 1.3442 1.3236 1.3309 1.2376 

  0.0185 0.0171 0.0177 0.0180 0.0167 0.0152 0.0161 

CorrRH -0.0464 -0.0690 -0.1681 -0.0982 0.0266 -0.2055 -0.1480 

  0.0505 0.0548 0.0299 0.0301 0.0275 0.0365 0.0388 

 

We can see from Table 12 that by introducing intraday data, the absolute jump sizes 

(𝜎𝑗) decreased to about 1%, which corresponds to the fact that the Z-Statistics enables us to 

estimate smaller jumps than in the case when only daily returns are used. The persistence of 

the log-variance remained at similar levels as in the SVJD model, while the long-term jump 

intensity (𝜆𝐿𝑇) mostly increased, corresponding to the fact that the model estimates larger 

number of small jumps. The jumps were estimated as persistently self-exciting (high 𝛽𝑗 and 

significant 𝛾𝑗) only for the AUD/USD, while for the other series is the 𝛾𝑗 insignificant. 
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Table 13 shows the parameter estimates for the SVJJD-RV-Z model. 

Table 13 – SVJJD-RV-Z model parameter estimates and Bayesian standard 

errors from the SGPF algorithm on the exchange rate time series 

Model EURUSD GBPUSD USDCHF USDJPY USDCAD AUDUSD NZDUSD 

mju 0.0000 0.0000 0.0000 0.0001 -0.0001 0.0002 0.0003 

  1.94E-05 1.63E-05 2.17E-05 1.87E-05 1.53E-05 2.81E-05 2.26E-05 

mjuJ -0.0001 0.0000 -0.0002 -0.0002 0.0001 0.0018 -0.0005 

  0.0011 0.0011 0.0018 0.0013 0.0011 0.0018 0.0014 

sigmaJ 0.0095 0.0092 0.0142 0.0105 0.0088 0.0138 0.0128 

  0.0007 0.0009 0.0027 0.0011 0.0007 0.0012 0.0009 

ltv -10.7570 -10.8689 -10.3811 -10.7193 -10.8599 -10.0404 -9.9632 

  0.2407 0.2067 0.0832 0.0890 0.3171 0.1272 0.1118 

beta 0.9787 0.9856 0.9450 0.9378 0.9892 0.9717 0.9750 

  0.0066 0.0030 0.0082 0.0090 0.0041 0.0061 0.0051 

gamma 0.0797 0.0309 0.1109 0.0775 0.0417 0.0884 0.0667 

  0.0043 0.0020 0.0030 0.0048 0.0028 0.0055 0.0060 

lambdaLT 0.0253 0.0187 0.0206 0.0186 0.0233 0.0167 0.0227 

  0.0032 0.0027 0.0020 0.0030 0.0061 0.0020 0.0026 

betaJ 0.3803 0.2493 0.1448 0.2492 0.9744 0.3517 0.2579 

  0.1606 0.1905 0.0885 0.1697 0.0221 0.1828 0.2346 

gammaJ 0.0104 0.0480 0.0771 0.0139 0.0119 0.0164 0.0097 

  0.0095 0.0281 0.0111 0.0121 0.0048 0.0127 0.0093 

mjuJV 0.4955 0.3324 0.6635 0.5525 0.5765 0.5527 0.2224 

  0.1409 0.1668 0.1283 0.0966 0.1548 0.1564 0.1001 

sigmaJV 0.7558 0.5998 0.8104 0.7711 0.7172 0.6939 0.5696 

  0.0840 0.0837 0.1055 0.0672 0.1250 0.0852 0.0633 

lambdaLTV 0.0273 0.0235 0.0235 0.0636 0.0124 0.0164 0.0441 

  0.0048 0.0083 0.0026 0.0101 0.0036 0.0060 0.0069 

betaJV 0.3271 0.4669 0.0929 0.2790 0.6084 0.3491 0.1972 

  0.2170 0.2795 0.0926 0.1683 0.2246 0.2065 0.1282 

gammaJV 0.0204 0.0220 0.0224 0.0283 0.0286 0.0213 0.0186 

  0.0140 0.0187 0.0104 0.0184 0.0230 0.0123 0.0119 

sigmaRV 0.4384 0.4235 0.4450 0.4561 0.4198 0.4268 0.4364 

  0.0053 0.0059 0.0059 0.0051 0.0056 0.0058 0.0060 

mjuZE 1.0075 0.8487 0.9625 1.0207 0.5730 0.8696 0.9174 

  0.0233 0.0209 0.0227 0.0224 0.0228 0.0193 0.0179 

ksiZE 4.4594 4.2969 4.9003 4.7043 4.5981 5.0914 4.4947 

  0.1804 0.1833 0.1676 0.2057 0.1934 0.1999 0.1570 

sigmaZE 1.3079 1.2842 1.3348 1.3383 1.3009 1.3321 1.2282 

  0.0186 0.0179 0.0168 0.0174 0.0187 0.0177 0.0148 

CorrRH 0.0538 -0.0111 -0.1582 -0.0765 0.0065 -0.1143 -0.0765 

  0.0514 0.0551 0.0296 0.0385 0.0372 0.0408 0.0351 
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Table 14 – 2SVJJD-RV-Z model parameter estimates and Bayesian standard 

errors from the SGPF algorithm on the exchange rate time series 

Model EURUSD GBPUSD USDCHF USDJPY USDCAD AUDUSD NZDUSD 

mju 0.0000 0.0001 0.0000 0.0002 -0.0001 0.0003 0.0003 

  2.82E-05 2.03E-05 2.45E-05 1.96E-05 1.68E-05 2.73E-05 2.88E-05 

mjuJ 0.0000 -0.0001 -0.0008 0.0004 0.0005 0.0014 -0.0003 

  0.0011 0.0011 0.0022 0.0017 0.0014 0.0018 0.0015 

sigmaJ 0.0099 0.0085 0.0175 0.0109 0.0093 0.0133 0.0129 

  0.0008 0.0007 0.0026 0.0010 0.0008 0.0014 0.0011 

ltv -10.1827 -10.4108 -10.4515 -10.4178 -11.1461 -10.1302 -9.6145 

  0.7084 0.6026 0.3686 0.5099 0.0140 0.0051 0.0139 

beta 0.6367 0.6550 0.6588 0.5370 0.9877 0.9706 0.9674 

  0.0352 0.0460 0.0566 0.0181 0.0054 0.0069 0.0077 

gamma 0.1150 0.1076 0.1249 0.1180 0.1054 0.1157 0.1213 

  0.0095 0.0044 0.0072 0.0056 0.0040 0.0051 0.0067 

lambdaLT 0.0229 0.0312 0.0187 0.0182 0.0177 0.0217 0.0219 

  0.0034 0.0070 0.0029 0.0031 0.0030 0.0082 0.0031 

betaJ 0.5459 0.9569 0.6319 0.4146 0.3324 0.9914 0.5500 

  0.1703 0.1218 0.2364 0.1652 0.2541 0.0013 0.1940 

gammaJ 0.0228 0.0107 0.0149 0.0233 0.0429 0.0065 0.0104 

  0.0154 0.0041 0.0092 0.0154 0.0211 0.0014 0.0095 

mjuJV 0.6972 0.4666 0.9210 0.7786 0.4982 0.6554 0.1838 

  0.1391 0.2038 0.1476 0.1266 0.1532 0.1716 0.1732 

sigmaJV 0.6459 0.6182 0.5995 0.6374 0.6542 0.6625 0.6421 

  0.1184 0.0866 0.0640 0.0718 0.0947 0.1044 0.0895 

lambdaLTV 0.0266 0.0145 0.0272 0.0640 0.0149 0.0146 0.0146 

  0.0059 0.0053 0.0077 0.0089 0.0050 0.0040 0.0075 

betaJV 0.2778 0.2746 0.5191 0.6051 0.3548 0.5548 0.3713 

  0.2618 0.1986 0.3018 0.1583 0.1931 0.2079 0.1847 

gammaJV 0.0241 0.0212 0.0127 0.0260 0.0210 0.0100 0.0442 

  0.0149 0.0141 0.0092 0.0176 0.0141 0.0084 0.0146 

phi1 0.9924 0.9898 0.9854 0.9850 0.1272 0.2717 0.4936 

  0.0042 0.0042 0.0049 0.0063 0.0538 0.0946 0.0968 

phi2 0.0738 0.0757 0.0788 0.0892 0.0809 0.0679 0.0721 

  0.0038 0.0045 0.0043 0.0045 0.0064 0.0030 0.0033 

sigmaRV 0.4301 0.4117 0.4361 0.4411 0.4093 0.4211 0.4311 

  0.0050 0.0043 0.0057 0.0047 0.0050 0.0054 0.0048 

mjuZE 1.0175 0.8397 0.9635 1.0260 0.5854 0.8633 0.9184 

  0.0206 0.0208 0.0225 0.0227 0.0216 0.0208 0.0217 

ksiZE 4.5410 4.0568 4.9947 4.7551 4.8102 5.0234 4.5826 

  0.1945 0.1585 0.2212 0.2390 0.1886 0.1834 0.2003 

sigmaZE 1.3178 1.2735 1.3364 1.3469 1.3184 1.3190 1.2347 

  0.0179 0.0154 0.0175 0.0195 0.0172 0.0168 0.0155 

CorrRH 0.0191 -0.0654 -0.1090 -0.0719 0.0421 -0.1572 -0.1212 

  0.0653 0.0487 0.0342 0.0331 0.0275 0.0369 0.0243 
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We can see from Table 13 that with the introduction of volatility jumps, the 

persistence of the log-variance slightly decreased when compared with the SVJD-RV-Z 

model. Persistent clustering of the price jumps (high 𝛽𝑗 and significant 𝛾𝑗) was in the SVJJD-

RV-Z model estimated only for the USD/CAD, while the USD/CHF exhibits co-jumps (low 

𝛽𝑗 and significant 𝛾𝑗). The volatility jumps were estimated to occur in 1-6% of the days 

(depending on the currency) and to be significantly upwards biased with 𝜇𝐽𝑉 ranging from 

0.33 to 0.66. Significant volatility jump clustering is observed only on the USD/CHF, in the 

form of volatility co-jumps (low 𝛽𝑗𝑉 and significant 𝛾𝑗𝑉) 

Table 14 shows the results for the 2SVJJD-RV-Z model. It is apparent that while the 

persistence of the two log-variance components was estimated in accordance with our 

expectations (𝜙1 > 𝛽) on EUR/USD, GBP/USD, USD/CHF and USD/JPY, on the reminding 

time series (USD/CAD, AUD/USD and NZD/USD) it was estimated inversely. Persistent 

returns-jump clustering was estimated for GBP/USD and AUD/USD, and returns co-jumps 

for USD/CAD. Significant co-jumps in volatility were further estimated for the NZD/USD. 

5.4.3. Exchange rate volatility forecasting results 

Realized variance for each of the 7 currency time series was forecasted in the 1-day, 5-

day and the 22-day horizon and the historical accuracy of the forecasts was assessed with the 

R-Squared criterion. The multi-period forecasts were performed with direct projection for the 

HAR and ESN models (as in Bollerslev et al, 2015), in which the model is re-estimated with 

the multi-period realized variance as the target. For the logarithmic and square root 

transformations of the models, forecasts were appropriately transformed in order to get 

forecasts of the realized variance. For the SVJD model, forecasts were constructed by 

randomly sampling the parameter and latent state particles from the Particle Filter, 

constructing 10 000 simulations of the latent states into the future (for the respective horizon), 

computing the quadratic variation for each simulation and then their average. 

Table 15 shows the R-Squared values for all of the models and currency time series 

for the 1-day forecast horizon. The last two columns show the average R-Squared and the 

average rank of the model over all of the forecasted series. The colouring indicates the size of 

the R-Squared (green is better, red is worse) which is applied separately for each column and 

corresponds to the relative performance of the model when compared to other models. 
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Table 15 – R-Squared of the 1-Day realized variance forecasts (currencies) 

Type Model EURUSD GBPUSD USDCHF USDJPY USDCAD AUDUSD NZDUSD AvgR2 AvgRank 

GARCH 

GARCH 0.0574 0.4140 -0.0296 0.2221 0.5020 0.4515 0.3280 0.2779 31.79 

EGARCH 0.3635 0.2569 -0.0024 0.0096 0.4200 0.2910 0.1408 0.2114 34.14 

GJRGARCH 0.0574 0.4140 -0.0296 0.2221 0.4862 0.5480 0.3280 0.2894 31.36 

HAR 

HAR 0.5135 0.6704 -0.0242 0.3397 0.5811 0.6057 0.6285 0.4735 14.57 

LogHAR 0.4838 0.5356 0.0162 0.2650 0.4504 0.4923 0.5429 0.3980 26.43 

SqrtHAR 0.5146 0.6344 0.0071 0.3224 0.5571 0.5822 0.6086 0.4609 19.29 

HARQ 0.5305 0.4730 -0.0007 0.2620 0.5297 0.3898 0.4360 0.3743 26.29 

LogHARQ 0.5091 0.5550 0.0166 0.2891 0.4705 0.5305 0.5838 0.4221 23.29 

SqrtHARQ 0.5204 0.4800 -0.0064 0.3203 0.5346 0.3593 0.4372 0.3779 25.14 

HARJ 0.5406 0.6692 -0.0039 0.3409 0.5805 0.6306 0.6457 0.4862 8.29 

logHARJ 0.4881 0.4825 0.0092 0.2643 0.4533 0.4895 0.5168 0.3862 27.29 

sqrtHARJ 0.5243 0.6338 0.0099 0.3256 0.5534 0.5934 0.6248 0.4665 16.14 

AHAR 0.5128 0.6713 -0.0243 0.3482 0.5815 0.6081 0.6310 0.4755 13.71 

logAHAR 0.4807 0.5430 0.0154 0.2770 0.4469 0.5231 0.5495 0.4051 25.71 

sqrtAHAR 0.5125 0.6369 0.0074 0.3318 0.5563 0.5915 0.6122 0.4641 18.14 

SHAR 0.5164 0.6719 -0.0164 0.3501 0.5811 0.6181 0.6284 0.4785 12.57 

logSHAR 0.4844 0.5372 0.0158 0.2728 0.4508 0.4924 0.5431 0.3995 25.71 

sqrtSHAR 0.5158 0.6361 0.0068 0.3362 0.5570 0.5908 0.6091 0.4645 17.86 

ESN 

ESN 0.5397 0.6602 -0.7465 0.2049 0.5033 0.5907 0.6328 0.3407 21.14 

LogESN 0.5318 0.6811 0.0077 0.3267 0.5815 0.6104 0.6218 0.4802 11.57 

SqrtESN 0.5437 0.6857 -0.5316 0.2962 0.5480 0.6394 0.6469 0.4040 10.71 

ESNQ 0.5242 0.6563 -0.7588 0.2055 0.4974 0.5778 0.6450 0.3353 23.14 

LogESNQ 0.5424 0.6841 0.0074 0.3283 0.5813 0.6305 0.6403 0.4877 7.71 

SqrtESNQ 0.5484 0.6828 -0.6616 0.2781 0.5409 0.6239 0.6652 0.3825 12.86 

ESNJ 0.5167 0.6575 -0.7607 0.2140 0.4980 0.5778 0.6266 0.3328 25.14 

LogESNJ 0.5298 0.6618 -0.3723 0.2422 0.5557 0.6158 0.6210 0.4077 19.14 

SqrtESNJ 0.5412 0.6880 -0.5611 0.3001 0.5531 0.6179 0.6548 0.3991 12.29 

SESN 0.5172 0.6593 -0.7510 0.1994 0.4963 0.5750 0.6229 0.3313 25.71 

LogSESN 0.5343 0.6822 0.0074 0.3388 0.5739 0.6234 0.6235 0.4833 10.29 

SqrtSESN 0.5384 0.6866 -0.5521 0.3093 0.5388 0.6251 0.6446 0.3987 12.71 

SESNQ 0.5339 0.6536 -0.7585 0.1790 0.4901 0.5796 0.6438 0.3316 23.29 

LogSESNQ 0.5428 0.6856 0.0057 0.3379 0.5748 0.6360 0.6426 0.4893 7.29 

SqrtSNESNQ 0.5490 0.6842 -0.6553 0.2776 0.5327 0.6241 0.6652 0.3825 12.57 

SVJD 

SVJD 0.4632 0.6015 0.0073 0.1965 0.5245 0.4532 0.4063 0.3789 28.71 

SVJD-RV-Z 0.5181 0.6019 0.0105 0.2753 0.5319 0.4603 0.4497 0.4068 23.00 

SVJJD-RV-Z 0.5255 0.6885 0.0177 0.3344 0.5723 0.6303 0.6417 0.4872 7.29 

2SVJJD-RV-Z 0.5322 0.6562 0.0115 0.3339 0.5790 0.6209 0.6405 0.4820 10.71 
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We can see from Table 15 that the best average R-Squared was achieved by the 

logarithmic form of the SESNQ model (Echo State Neural network, using the realized 

variance, realized quarticity and realized semi-variance as the predictors). Only slightly lower 

is the average R-Squared of the SVJJD-RV-Z model. These two models do also have jointly 

the best average rank (7.29). 

The SVJJD-RV-Z model significantly outperformed the version of the model without 

volatility jumps (SVJD-RV-Z), and it slightly outperformed even the more complex 2SVJJD-

RV-Z model. 

Among the ESN models, the LogSESNQ model was followed by the LogSESN, 

LogESNQ and the standard LogESN. Generally, the logarithmic specifications performed the 

best, followed by the square root specifications which were almost as good on all of the time 

series except for the USDCHF on which they performed poorly. 

The best HAR model was HARJ, which extends the basic HAR model by including 

the bi-power variation based jump variance estimates as an additional predictor. HARJ 

performed the best among the HAR models based on both, the average R-Squared as well as 

the average rank criterions, and its performance is comparable to the best ESN and SVJD 

models. Other well-performing HAR models were SHAR, AHAR and the standard HAR. 

Surprisingly the untransformed and the square root HAR specifications outperformed the 

logarithmic ones, which is unexpected as usually the logarithmic forms of the HAR models 

perform best. 

The GARCH models performed worst, underperforming even the standard SVJD 

model with no intraday data. 

All of the models achieved very low R-Squared on the USDCHF, which can be 

attributed to the enormous jumps that occurred at the start and the end of the Swiss central 

bank monetary interventions. 

The performance of the models in the 5-Day forecast horizon is shown in Table 16. 

We can see that the 2SVJJD-RV-Z model was in this case the best one among the 

SVJD models, but it still got slightly outperformed by some of the HAR models, with the 

HARJ model performing best. Among other well-performing HAR models is again the 

AHAR, SHAR, and the standard HAR. 
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The ESN models achieved average performance on most of the time series, with the 

exception of USDCHF on which their performance was very poor, which has had a 

significant impact on the average R-Squared and average rank statistics. The best performing 

ESN model was again the logarithmic form of SESNQ. 

Table 16 – R-Squared of the 5-Day realized variance forecasts (currencies) 

Type Model EURUSD GBPUSD USDCHF USDJPY USDCAD AUDUSD NZDUSD AvgR2 AvgRank 

GARCH 

GARCH 0.0089 0.4413 -0.1503 0.3001 0.6303 0.4944 0.3395 0.2949 31.07 

EGARCH 0.4887 0.2722 -0.0056 -0.0332 0.5196 0.2722 0.1618 0.2394 33.71 

GJRGARCH 0.0089 0.4413 -0.1503 0.3001 0.6089 0.5706 0.3395 0.3027 29.36 

HAR 

HAR 0.6539 0.7391 -0.0835 0.4001 0.7167 0.5998 0.6321 0.5226 9.57 

LogHAR 0.6430 0.5785 0.0343 0.3270 0.5431 0.4882 0.5430 0.4510 25.43 

SqrtHAR 0.6671 0.6959 -0.0036 0.3851 0.6839 0.5806 0.6132 0.5174 14.00 

HARQ 0.6730 0.6076 -0.0035 0.3844 0.6940 0.4369 0.4843 0.4681 18.43 

LogHARQ 0.6613 0.5876 0.0358 0.3557 0.5550 0.5151 0.5618 0.4675 20.43 

SqrtHARQ 0.6753 0.6084 0.0239 0.3564 0.6750 0.4013 0.4884 0.4612 19.71 

HARJ 0.6727 0.7390 -0.0268 0.4106 0.7116 0.6108 0.6397 0.5368 6.00 

logHARJ 0.6471 0.5558 0.0336 0.3201 0.5386 0.4623 0.5156 0.4390 26.57 

sqrtHARJ 0.6741 0.6958 0.0050 0.3905 0.6782 0.5875 0.6186 0.5214 12.29 

AHAR 0.6546 0.7403 -0.0835 0.4053 0.7159 0.6016 0.6349 0.5242 8.43 

logAHAR 0.6435 0.5843 0.0343 0.3339 0.5431 0.5010 0.5517 0.4560 24.43 

sqrtAHAR 0.6676 0.6984 -0.0029 0.3910 0.6834 0.5864 0.6182 0.5203 11.86 

SHAR 0.6619 0.7410 -0.0638 0.4132 0.7133 0.6086 0.6326 0.5295 6.86 

logSHAR 0.6440 0.5800 0.0339 0.3344 0.5432 0.4876 0.5430 0.4523 24.71 

sqrtSHAR 0.6698 0.6975 -0.0020 0.3960 0.6829 0.5858 0.6139 0.5206 12.29 

ESN 

ESN 0.6543 0.7287 -0.7471 0.2479 0.6610 0.5307 0.5970 0.3818 25.29 

LogESN 0.6443 0.7411 -0.4460 0.3136 0.6832 0.5790 0.6155 0.4472 17.14 

SqrtESN 0.6661 0.7373 -0.6371 0.3042 0.6766 0.5747 0.6225 0.4206 18.14 

ESNQ 0.6565 0.7274 -0.7457 0.2472 0.6631 0.5268 0.5952 0.3815 25.00 

LogESNQ 0.6473 0.7437 -0.4971 0.3086 0.6812 0.5961 0.6264 0.4437 15.29 

SqrtESNQ 0.6667 0.7379 -0.6355 0.3155 0.6731 0.5686 0.6200 0.4209 18.29 

ESNJ 0.6461 0.7282 -0.7496 0.2275 0.6601 0.5260 0.5923 0.3758 28.00 

LogESNJ 0.6553 0.7138 -0.3100 0.3264 0.6798 0.5363 0.5740 0.4537 20.00 

SqrtESNJ 0.6678 0.7375 -0.6306 0.2945 0.6789 0.5684 0.6198 0.4195 17.86 

SESN 0.6474 0.7282 -0.7455 0.2546 0.6617 0.5310 0.5949 0.3817 25.57 

LogSESN 0.6503 0.7391 -0.4681 0.3150 0.6802 0.5978 0.6229 0.4482 15.71 

SqrtSESN 0.6680 0.7372 -0.6177 0.3174 0.6733 0.5738 0.6261 0.4254 16.71 

SESNQ 0.6493 0.7277 -0.7463 0.2531 0.6620 0.5264 0.5914 0.3805 26.57 

LogSESNQ 0.6524 0.7406 -0.5050 0.3129 0.6805 0.6025 0.6277 0.4445 14.57 

SqrtSNESNQ 0.6675 0.7372 -0.6307 0.3242 0.6739 0.5681 0.6181 0.4226 18.43 

SVJD 

SVJD 0.5786 0.6976 0.0258 0.2910 0.6622 0.4592 0.4051 0.4456 27.14 

SVJD-RV-Z 0.6569 0.6757 0.0333 0.3760 0.6742 0.5102 0.5187 0.4921 19.71 

SVJJD-RV-Z 0.6335 0.7702 0.0330 0.3294 0.6755 0.6093 0.6443 0.5279 11.14 

2SVJJD-RV-Z 0.6610 0.7402 0.0282 0.4194 0.6854 0.5840 0.6442 0.5375 7.29 
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The results for the 22-Day forecast horizon are in Table 17. 

Table 17 – R-Squared of the 22-Day realized variance forecasts (currencies) 

Type Model EURUSD GBPUSD USDCHF USDJPY USDCAD AUDUSD NZDUSD AvgR2 AvgRank 

GARCH 

GARCH -0.0094 0.2964 -0.2550 0.2805 0.5605 0.4053 0.2186 0.2139 30.36 

EGARCH 0.4893 0.1765 -0.0142 -0.0769 0.4343 0.1397 0.1447 0.1848 33.57 

GJRGARCH -0.0094 0.2964 -0.2550 0.2805 0.5407 0.4133 0.2186 0.2122 30.21 

HAR 

HAR 0.6584 0.6821 -0.0987 0.4146 0.7059 0.5056 0.5695 0.4911 10.86 

LogHAR 0.6540 0.4719 0.0725 0.3114 0.4683 0.4327 0.4853 0.4137 24.57 

SqrtHAR 0.6781 0.6137 0.0008 0.3850 0.6499 0.5022 0.5502 0.4829 15.00 

HARQ 0.6740 0.5508 -0.0677 0.4051 0.6826 0.4215 0.4505 0.4453 18.71 

LogHARQ 0.6636 0.4805 0.0730 0.3371 0.4641 0.4517 0.4966 0.4238 21.14 

SqrtHARQ 0.6836 0.5078 0.0353 0.3624 0.6607 0.3894 0.4658 0.4436 20.71 

HARJ 0.6722 0.6823 -0.0974 0.4235 0.7030 0.5089 0.5710 0.4948 9.43 

logHARJ 0.6541 0.4407 0.0736 0.3095 0.4789 0.4112 0.4636 0.4045 25.86 

sqrtHARJ 0.6832 0.6136 0.0098 0.3916 0.6423 0.5056 0.5526 0.4855 13.86 

AHAR 0.6592 0.6826 -0.0990 0.4139 0.7036 0.5066 0.5689 0.4908 10.86 

logAHAR 0.6548 0.4735 0.0722 0.3106 0.4655 0.4371 0.4881 0.4145 24.00 

sqrtAHAR 0.6790 0.6146 -0.0001 0.3841 0.6468 0.5048 0.5515 0.4830 14.71 

SHAR 0.6682 0.6836 -0.1005 0.4176 0.6978 0.5085 0.5680 0.4919 10.57 

logSHAR 0.6557 0.4728 0.0725 0.3128 0.4673 0.4312 0.4845 0.4138 24.14 

sqrtSHAR 0.6819 0.6149 0.0022 0.3866 0.6461 0.5033 0.5496 0.4835 14.43 

ESN 

ESN 0.6975 0.6969 -0.6306 0.3515 0.6836 0.3356 0.4865 0.3744 21.00 

LogESN 0.6900 0.7097 -0.5653 0.3496 0.6688 0.3390 0.4727 0.3806 21.14 

SqrtESN 0.7018 0.7042 -0.5906 0.3702 0.6812 0.3532 0.4975 0.3882 16.43 

ESNQ 0.6976 0.6944 -0.6326 0.3452 0.6821 0.3389 0.4898 0.3736 22.00 

LogESNQ 0.6923 0.7094 -0.5759 0.3529 0.6714 0.3307 0.4779 0.3798 21.00 

SqrtESNQ 0.7016 0.7100 -0.5999 0.3708 0.6896 0.3631 0.5174 0.3932 14.00 

ESNJ 0.6946 0.6946 -0.6289 0.3453 0.6830 0.3424 0.4839 0.3736 22.00 

LogESNJ 0.6973 0.7175 -0.5554 0.3768 0.6926 0.4459 0.5359 0.4158 10.14 

SqrtESNJ 0.7019 0.6989 -0.5904 0.3684 0.6912 0.3825 0.4953 0.3925 14.86 

SESN 0.6972 0.6974 -0.6275 0.3537 0.6759 0.3421 0.4933 0.3760 20.00 

LogSESN 0.6889 0.7065 -0.5456 0.3493 0.6618 0.3445 0.4811 0.3838 20.86 

SqrtSESN 0.7018 0.7045 -0.5814 0.3725 0.6762 0.3658 0.5140 0.3934 15.29 

SESNQ 0.6979 0.6963 -0.6313 0.3516 0.6777 0.3427 0.4910 0.3751 20.14 

LogSESNQ 0.6925 0.7058 -0.5673 0.3522 0.6650 0.3390 0.4846 0.3817 20.43 

SqrtSNESNQ 0.7056 0.7078 -0.5966 0.3705 0.6854 0.3750 0.5213 0.3956 13.71 

SVJD 

SVJD 0.5555 0.6624 0.0728 0.3377 0.5871 0.2190 0.2921 0.3895 26.71 

SVJD-RV-Z 0.5937 0.5799 0.0791 0.3783 0.6147 0.4441 0.4881 0.4540 18.86 

SVJJD-RV-Z 0.5962 0.7242 0.0712 0.3376 0.6877 0.3872 0.5253 0.4756 15.57 

2SVJJD-RV-Z 0.6544 0.7052 0.0521 0.4713 0.6224 0.3531 0.5303 0.4841 15.86 

 

 We can see from Table 17 that the best model on the 22-Day forecast horizon was 

again the HARJ model, followed by SHAR, AHAR and standard HAR. 
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The ESN models achieved bad average R-Squared statistics due to their low 

performance on USDCHF. Nevertheless, the models performed quite well on the other series, 

with the LogESNJ being the second best model (after HARJ) according to the average rank 

criterion. The ESN models also clearly outperformed the HAR models on the EUR/USD and 

the GBP/USD pair. 

The SVJD models achieved slightly above-average performance based on the average 

rank, while their average R-Squared is relatively close to the best of the HAR models. The 

best SVJD models were again the SVJJD-RV-Z and the 2SVJJD-RV-Z, which shows that the 

including of volatility jumps plays an important role in volatility forecasting. 

5.5. Forecasting ETF/ETN volatility 

In the second empirical study, the proposed models (ARCH/GARCH, HAR, ESN and 

SVJD based) were applied to 10 most commonly traded Exchange Traded Funds (ETF) and 

Exchange Traded Notes (ETN).  

5.5.1. ETF/ETN dataset description 

The ETF/ETN for the study were selected based on average volume on 1th June 2018, 

as reported by etfdb.com. The time series vary in their length. In spite of this, the first 1 000 

days will be used for the in-sample and the rest of the dataset as out-sample. The high-

frequency data used for power-variation estimator calculation were provided by Kibot.com. 

The 15-minute frequency was used for the calculation of all of the estimators. 

Table 18 shows information about the selected ETF/ETN. 

Table 18 – ETF and ETN used in the empirical study 

  Name Issuer Type Class Assets 

EEM iShares MSCI Emerging Markets ETF iShares ETF Large-Cap Equity Emerging Market Equities 

EFA iShares MSCI EAFE ETF iShares ETF Large-Cap Equity Foreign Developed Market Equities 

FXI iShares China Large-Cap ETF iShares ETF Large-Cap Equity China Equities 

GDX VanEck Vectors Gold Miners ETF VanEck ETF Multi-Cap Equity Gold Miner Equities 

IWM iShares Russell 2000 ETF iShares ETF Small-Cap Equity US Equities 

QQQ Invesco QQQ Invesco UIT Large-Cap Equity US Technology Equities 

SPY SPDR S&P 500 ETF State Street SPDR UIT Large-Cap Equity US Equities 

USO United States Oil Fund USCF Pool Commodity Futures Light Sweet Crude Oil 

VXX iPath S&P 500 VIX Short-Term Futures ETN Barclays Capital ETN Volatility US Volatility (VIX) 

XLF Financial Select Sector SPDR Fund State Street SPDR ETF Large-Cap Equity US Financial Equities 

Source: Constructed based on information from etfdb.com 
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We can see that the dataset includes large-cap and small-cap equities, from domestic 

(US) as well as foreign markets, and from different sectors (technology, gold mining, 

finance). Additionally, commodity based (USO) and volatility based (VXX) ETFs are also 

included. The results will thus enable us to evaluate the model performance with respect to 

different asset classes. 

Table 19 shows the summary statistics of the ETFs and ETNs included in the dataset, 

as well the numbers of jumps, estimated with the Z-Estimator on the 99.99% level. 

Table 19 – Summary statistics about the analyzed ETF and ETN 

  Start date End date Days Mean Std Skewness Kurtosis Jumps 

EEM 23-Apr-03 1-Jun-18 3795 0.0004 0.0191 0.3360 24.5088 673 

EFA 27-Aug-01 1-Jun-18 4215 0.0002 0.0143 -0.1706 16.7685 732 

FXI 8-Oct-04 1-Jun-18 3436 0.0004 0.0220 0.4389 16.3244 747 

GDX 22-May-06 1-Jun-18 3029 -0.0001 0.0270 -0.0342 7.4723 160 

IWM 2-Jun-00 1-Jun-18 4526 0.0003 0.0155 -0.0584 10.1336 253 

QQQ 10-Mar-99 1-Jun-18 4839 0.0003 0.0188 0.0638 11.5924 356 

SPY 2-Jan-98 1-Jun-18 5137 0.0003 0.0130 0.1469 16.4962 525 

USO 10-Apr-06 1-Jun-18 3058 -0.0005 0.0216 -0.2311 5.5322 234 

VXX 30-Jan-09 1-Jun-18 2351 -0.0034 0.0413 1.6027 19.4639 184 

XLF 22-Dec-98 1-Jun-18 4891 0.0002 0.0202 0.3923 23.9160 289 

Source: Computed based on data from Kibot.com 

5.5.2. SVJD model parameter estimates 

The four tested SVJD models were estimated on the ETF/ETN time series with the 

Sequential Gibbs Particle Filter with 100x100 particles, daily re-sampling of the latent state 

particles and a 50 particle threshold for re-sampling of the parameter particles. 

The final period parameter estimates from the particle filter can be seen in the tables 

below. Take note that some of the parameters were transformed, specifically 𝜆𝐿𝑇 =

αJ/(1 − βJ − 𝛾𝐽)  and 𝜆𝐿𝑇,𝑉 = α𝐽𝑉/(1 − β𝐽𝑉 − 𝛾𝐽𝑉), and further 𝑙𝑡𝑣 = 𝜙𝐿𝑇 = 𝛼/(1 − 𝛽) for 

one-component models, and 𝑙𝑡𝑣 = 𝜙𝐿𝑇 = 𝜙0/(1 − 𝜙1) for the two-component model. 

Table 20 shows the parameter estimates and the Bayesian standard errors from the 

SGPF algorithm for the SVJD model on the ETF/ETN time series. 
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Table 20 – SVJD model parameter estimates and Bayesian standard errors from 

the SGPF algorithm on the ETF/ETN time series 

Model EEM EFA FXI GDX IWM QQQ SPY USO VXX XLF 

mju 0.0012 0.0008 0.0007 -0.0002 0.0010 0.0010 0.0008 0.0006 -0.0075 0.0009 

  1.74E-04 8.85E-05 1.39E-04 2.26E-04 1.66E-04 8.85E-05 6.78E-05 2.53E-04 4.37E-04 1.13E-04 

mjuJ -0.0279 -0.0170 -0.0137 -0.0295 -0.0188 -0.0086 -0.0076 -0.0166 0.0898 0.0035 

  0.0251 0.0115 0.0272 0.0403 0.0158 0.0141 0.0083 0.0230 0.0371 0.0280 

sigmaJ 0.0592 0.0503 0.0642 0.0806 0.0479 0.0533 0.0361 0.0600 0.1192 0.0848 

  0.0106 0.0070 0.0115 0.0116 0.0071 0.0085 0.0044 0.0086 0.0166 0.0106 

ltv -8.1649 -8.9520 -8.3518 -7.1184 -8.4320 -7.3679 -8.8122 -7.8036 -6.7582 -8.5909 

  0.7431 0.5316 1.0517 2.5315 1.2665 1.3975 1.4810 1.0941 0.2007 0.4040 

beta 0.9838 0.9807 0.9839 0.9944 0.9751 0.9928 0.9843 0.9823 0.9235 0.9760 

  0.0084 0.0072 0.0073 0.0043 0.0121 0.0035 0.0068 0.0086 0.0169 0.0071 

gamma 0.1518 0.1878 0.1685 0.1129 0.1599 0.1509 0.1933 0.1246 0.3601 0.2002 

  0.0151 0.0163 0.0123 0.0092 0.0125 0.0142 0.0097 0.0113 0.0275 0.0106 

lambdaLT 0.0036 0.0070 0.0052 0.0035 0.0037 0.0066 0.0093 0.0068 0.0081 0.0030 

  0.0022 0.0028 0.0037 0.0026 0.0015 0.0023 0.0028 0.0037 0.0028 0.0013 

betaJ 0.2950 0.3888 0.3107 0.4004 0.5985 0.6681 0.2225 0.5747 0.5802 0.8487 

  0.1688 0.1965 0.1915 0.1900 0.2027 0.1510 0.1461 0.1800 0.1007 0.1141 

gammaJ 0.0698 0.0902 0.0606 0.0460 0.0534 0.0480 0.1776 0.0791 0.0959 0.0189 

  0.0320 0.0365 0.0207 0.0366 0.0218 0.0184 0.0317 0.0201 0.0300 0.0125 

CorrRH -0.3808 -0.2905 -0.0067 -0.0770 -0.3643 -0.2852 -0.2640 -0.4231 0.3193 -0.3578 

  0.1171 0.0524 0.0688 0.0871 0.0969 0.0504 0.0535 0.1380 0.0447 0.0604 

 

We can see from Table 21 that similarly to the exchange rate time series, the log-

variance was estimated as very persistent, with 𝛽 typically around 0.98. The jump sizes 

exhibit far greater volatility than for the currencies (𝜎𝐽 around 5%-8%), and have for most of 

the time series negative mean value (𝜇𝐽), with the exception of VXX, which is a VIX ETN for 

which significantly positive jump sizes are observed. The long-term jump intensity for most 

of the time series is very low (𝜆𝐿𝑇 < 1%) and the jumps do not exhibit long-term clustering 

(𝛽𝐽 is much smaller than one), although on most of the time series we can observe statistically 

significant co-jump effects (𝛾𝐽 is significant), which seem to be especially pronounced on 

SPY. In accordance with the expectation for stock-based ETFs/ETNs, the correlation between 

volatility and returns (𝜌) is negative for all of the time series with the exception of VXX, on 

which a positive correlation is to be expected. 

Table 21 shows the parameter estimates and standard errors for the SVJD-RV-Z model 

on the ETF/ETN time series. 
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Table 21 – SVJD-RV-Z model parameter estimates and Bayesian standard errors 

from the SGPF algorithm on the ETF/ETN time series 

Model EEM EFA FXI GDX IWM QQQ SPY USO VXX XLF 

mju 0.0013 0.0010 0.0012 0.0001 0.0009 0.0011 0.0009 0.0004 -0.0072 0.0006 

  8.57E-05 5.42E-05 1.15E-04 2.41E-04 7.42E-05 5.57E-05 3.47E-05 1.61E-04 3.22E-04 5.16E-05 

mjuJ -0.0004 -0.0013 0.0032 0.0022 0.0026 0.0062 0.0030 -0.0004 -0.0022 0.0049 

  0.0047 0.0101 0.0061 0.0058 0.0040 0.0049 0.0028 0.0134 0.0134 0.0081 

sigmaJ 0.0368 0.0449 0.0417 0.0472 0.0306 0.0362 0.0219 0.0513 0.0925 0.0510 

  0.0040 0.0062 0.0045 0.0046 0.0029 0.0030 0.0017 0.0064 0.0105 0.0053 

ltv -7.3439 -9.1184 -7.8466 -6.5331 -8.4526 -7.5363 -9.0017 -7.5400 -6.7218 -8.5499 

  0.7440 0.1942 0.3896 1.8190 0.2777 0.6768 0.1900 0.7413 0.1228 0.4601 

beta 0.9894 0.9572 0.9777 0.9896 0.9798 0.9907 0.9746 0.9833 0.9144 0.9877 

  0.0047 0.0105 0.0059 0.0074 0.0052 0.0038 0.0056 0.0091 0.0145 0.0041 

gamma 0.0993 0.2767 0.1560 0.0976 0.1358 0.1398 0.1831 0.1221 0.2346 0.1797 

  0.0052 0.0261 0.0221 0.0064 0.0066 0.0049 0.0081 0.0268 0.0091 0.0084 

lambdaLT 0.0215 0.0058 0.0193 0.0217 0.0157 0.0170 0.0209 0.0082 0.0319 0.0110 

  0.0052 0.0018 0.0039 0.0048 0.0032 0.0025 0.0022 0.0028 0.0043 0.0035 

betaJ 0.6180 0.2531 0.2973 0.5446 0.2564 0.4794 0.3604 0.6663 0.8658 0.2455 

  0.1384 0.1797 0.1379 0.1818 0.1322 0.1358 0.1626 0.2012 0.0425 0.1435 

gammaJ 0.1046 0.1006 0.0635 0.0426 0.0800 0.0871 0.0553 0.0399 0.0526 0.1269 

  0.0272 0.0263 0.0229 0.0290 0.0165 0.0151 0.0202 0.0207 0.0097 0.0241 

sigmaRV 0.7800 0.7099 0.8055 0.6253 0.6133 0.5920 0.5796 0.5971 0.6423 0.6161 

  0.0164 0.0114 0.0251 0.0087 0.0074 0.0068 0.0073 0.0254 0.0096 0.0069 

mjuZE 1.9081 1.9166 2.0775 1.0965 1.2015 1.2304 1.4450 1.4264 1.2163 1.2194 

  0.0330 0.0278 0.0368 0.0268 0.0202 0.0228 0.0216 0.0274 0.0337 0.0205 

ksiZE 3.4643 3.7684 3.9397 4.0953 4.1896 4.5866 4.4357 4.7535 4.6205 3.9162 

  0.3447 0.4390 0.2862 0.1960 0.2253 0.2231 0.1773 0.3528 0.2879 0.2664 

sigmaZE 1.7118 1.7167 1.8277 1.2950 1.3340 1.4225 1.4850 1.4303 1.4376 1.3529 

  0.0239 0.0175 0.0263 0.0216 0.0156 0.0164 0.0181 0.0212 0.0275 0.0165 

CorrRH -0.6990 -0.3534 -0.4755 -0.3747 -0.4842 -0.5525 -0.5232 -0.4132 0.6285 -0.2334 

  0.0698 0.0508 0.1086 0.1285 0.0497 0.0405 0.0366 0.0949 0.0609 0.0378 

 

We can see from Table 21 that by introducing intraday estimators into the model, the 

size of the jumps (𝜎𝐽) decreased to about 2%, while the long-term jump intensity (𝜆𝐿𝑇) 

increased to 1-3%. Strong co-jumps effects (significant 𝛾𝐽) are observed on most of the time 

series, while the VXX exhibits even some moderately persistent jump-clusters (𝛽𝐽 = 0.87). 

The absolute correlation between volatility and returns (𝜌) did increase for of the time series 

(when compared to the SVJD model), towards levels of about -0.5 for the stock ETF/ETN, 

and 0.6 for the VXX. 

Table 22 shows the parameter estimates for the SVJJD-RV-Z model. 
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Table 22 – SVJJD-RV-Z model parameter estimates and Bayesian standard 

errors from the SGPF algorithm on the ETF/ETN time series 

Model EEM EFA FXI GDX IWM QQQ SPY USO VXX XLF 

mju 0.0013 0.0009 0.0010 0.0004 0.0009 0.0009 0.0008 0.0004 -0.0070 0.0004 

  8.80E-05 5.13E-05 1.07E-04 1.36E-04 1.09E-04 4.01E-05 3.58E-05 1.18E-04 3.45E-04 4.62E-05 

mjuJ -0.0015 -0.0064 0.0073 0.0030 0.0024 0.0021 0.0025 0.0016 -0.0037 0.0020 

  0.0038 0.0153 0.0163 0.0065 0.0039 0.0046 0.0030 0.0117 0.0146 0.0050 

sigmaJ 0.0326 0.0488 0.0519 0.0468 0.0296 0.0332 0.0224 0.0539 0.0914 0.0347 

  0.0034 0.0073 0.0076 0.0044 0.0033 0.0027 0.0023 0.0069 0.0102 0.0039 

ltv -4.9905 -10.1616 -9.0898 -7.6460 -9.0928 -7.6393 -9.2693 -7.4244 -6.8827 -10.2529 

  1.0643 0.2994 0.0617 0.2589 0.1022 0.7862 0.1486 0.6880 0.0925 0.4943 

beta 0.9678 0.9417 0.8237 0.9822 0.9412 0.9926 0.9572 0.9840 0.9030 0.9798 

  0.0076 0.0091 0.0121 0.0074 0.0123 0.0027 0.0051 0.0064 0.0189 0.0044 

gamma 0.0946 0.2265 0.1426 0.0918 0.1317 0.0633 0.1279 0.1110 0.2045 0.0734 

  0.0078 0.0139 0.0068 0.0041 0.0195 0.0047 0.0071 0.0062 0.0138 0.0025 

lambdaLT 0.0221 0.0042 0.0058 0.0230 0.0134 0.0149 0.0153 0.0070 0.0160 0.0124 

  0.0050 0.0016 0.0026 0.0034 0.0030 0.0028 0.0026 0.0021 0.0035 0.0030 

betaJ 0.8880 0.5557 0.2776 0.5059 0.3141 0.3720 0.2526 0.7510 0.6561 0.3039 

  0.0718 0.2059 0.1480 0.1320 0.1611 0.2164 0.1461 0.1855 0.1327 0.1712 

gammaJ 0.0483 0.0681 0.0775 0.0629 0.0580 0.0461 0.0718 0.0149 0.0750 0.0610 

  0.0182 0.0280 0.0263 0.0201 0.0324 0.0222 0.0404 0.0216 0.0242 0.0192 

mjuJV -0.8485 1.0730 1.0693 0.4996 1.5968 0.1302 0.1792 -0.0254 0.9770 0.7795 

  0.0518 0.0551 0.0548 0.2499 0.1178 0.0842 0.1283 0.1322 0.1667 0.2103 

sigmaJV 0.2647 0.3284 0.3465 0.3304 0.3496 0.8027 0.8070 0.2902 0.3252 0.8581 

  0.0230 0.0534 0.0370 0.0531 0.0639 0.0646 0.0756 0.0368 0.0543 0.1763 

lambdaLTV 0.1188 0.0593 0.0799 0.0119 0.0185 0.0614 0.0570 0.0609 0.0146 0.0509 

  0.0096 0.0110 0.0153 0.0057 0.0028 0.0076 0.0102 0.0087 0.0050 0.0065 

betaJV 0.6637 0.3375 0.9746 0.5569 0.5570 0.3370 0.6683 0.3591 0.3050 0.2683 

  0.2187 0.2180 0.0015 0.1466 0.2932 0.1954 0.2400 0.1738 0.1473 0.1727 

gammaJV 0.0043 0.0102 0.0220 0.0125 0.0123 0.0171 0.0158 0.0505 0.0202 0.0187 

  0.0052 0.0082 0.0016 0.0105 0.0091 0.0110 0.0138 0.0194 0.0143 0.0102 

sigmaRV 0.6881 0.6913 0.7832 0.6210 0.5882 0.5740 0.5674 0.5902 0.6414 0.6079 

  0.0098 0.0108 0.0129 0.0103 0.0092 0.0078 0.0076 0.0068 0.0104 0.0139 

mjuZE 1.8862 1.9222 2.1324 1.0973 1.2072 1.2349 1.4577 1.4375 1.2469 1.2096 

  0.0323 0.0262 0.0336 0.0231 0.0199 0.0249 0.0211 0.0301 0.0311 0.0227 

ksiZE 3.8359 4.2136 4.4856 4.0484 4.5980 4.7994 4.8688 4.9249 5.3080 4.1538 

  0.2513 0.5894 0.5046 0.1896 0.2615 0.2396 0.2100 0.4451 0.3095 0.2308 

sigmaZE 1.6869 1.7269 1.8786 1.2920 1.3366 1.4275 1.4995 1.4319 1.4574 1.3371 

  0.0238 0.0207 0.0254 0.0195 0.0160 0.0174 0.0154 0.0197 0.0222 0.0187 

CorrRH -0.7733 -0.3166 -0.3030 -0.5707 -0.4476 -0.3815 -0.5046 -0.4417 0.5992 -0.1131 

  0.0726 0.0364 0.0949 0.0622 0.0490 0.0349 0.0331 0.0657 0.0378 0.0451 
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Table 23 – 2SVJJD-RV-Z model parameter estimates and Bayesian standard 

errors from the SGPF algorithm on the ETF/ETN time series 

Model EEM EFA FXI GDX IWM QQQ SPY USO VXX XLF 

mju 0.0014 0.0009 0.0008 0.0001 0.0009 0.0011 0.0008 0.0007 -0.0064 0.0006 

  6.83E-05 4.49E-05 9.35E-05 1.30E-04 6.50E-05 5.25E-05 3.89E-05 1.24E-04 2.10E-04 4.78E-05 

mjuJ -0.0062 -0.0015 0.0016 0.0006 0.0016 0.0019 0.0028 0.0024 -0.0047 0.0041 

  0.0081 0.0102 0.0144 0.0059 0.0058 0.0042 0.0028 0.0123 0.0176 0.0076 

sigmaJ 0.0403 0.0448 0.0522 0.0455 0.0311 0.0326 0.0233 0.0515 0.0894 0.0473 

  0.0059 0.0067 0.0105 0.0043 0.0036 0.0028 0.0020 0.0062 0.0100 0.0094 

ltv -10.3855 -8.4020 -9.3009 -7.4888 -7.6328 -8.6302 -8.5384 -8.5792 -6.9574 -9.5875 

  0.0710 0.0125 0.7401 0.1006 0.0153 3.6194 0.0061 0.7436 5.8169 0.0198 

beta 0.9946 0.9820 0.8944 0.9706 0.9939 0.9978 0.9674 0.9732 0.9986 0.9212 

  0.0018 0.0070 0.0179 0.0101 0.0039 0.0022 0.0060 0.0118 0.0010 0.0115 

gamma 0.0973 0.2238 0.2613 0.1606 0.1547 0.0911 0.1497 0.1264 0.1199 0.1634 

  0.0040 0.0077 0.0121 0.0086 0.0071 0.0066 0.0047 0.0075 0.0052 0.0106 

lambdaLT 0.0101 0.0239 0.0078 0.0242 0.0103 0.0159 0.0146 0.0080 0.0158 0.0109 

  0.0039 0.0071 0.0045 0.0058 0.0026 0.0024 0.0024 0.0022 0.0036 0.0044 

betaJ 0.6372 0.9783 0.7005 0.8635 0.3274 0.4696 0.4141 0.5665 0.5885 0.1538 

  0.1461 0.0004 0.1880 0.1966 0.1780 0.1987 0.2169 0.3682 0.1695 0.1113 

gammaJ 0.0863 0.0209 0.0407 0.0137 0.0905 0.0607 0.0351 0.0201 0.0319 0.1456 

  0.0268 0.0008 0.0223 0.0100 0.0331 0.0265 0.0135 0.0156 0.0159 0.0238 

mjuJV 1.3315 0.2011 1.1801 0.2147 0.6784 0.3884 -0.1401 0.1386 0.6714 0.4768 

  0.1121 0.1291 0.1680 0.2156 0.2167 0.1626 0.0435 0.1012 0.1730 0.0588 

sigmaJV 0.3060 0.8158 0.3791 0.3281 0.7807 0.6625 0.3567 0.3056 0.4399 0.2931 

  0.0445 0.1097 0.0427 0.0617 0.2047 0.1077 0.0366 0.0491 0.1344 0.0508 

lambdaLTV 0.0239 0.0505 0.0765 0.0314 0.0275 0.0463 0.0912 0.0572 0.0496 0.0624 

  0.0038 0.0057 0.0062 0.0095 0.0057 0.0111 0.0076 0.0085 0.0088 0.0156 

betaJV 0.6489 0.1983 0.2126 0.4265 0.5295 0.2472 0.2161 0.3839 0.2610 0.9260 

  0.1803 0.1311 0.1551 0.1557 0.2463 0.1464 0.1526 0.2639 0.2157 0.0054 

gammaJV 0.0121 0.0104 0.0091 0.0354 0.0131 0.0189 0.0302 0.0207 0.0352 0.0583 

  0.0092 0.0082 0.0108 0.0170 0.0102 0.0167 0.0151 0.0156 0.0254 0.0067 

phi1 0.6107 0.5581 0.9863 0.8028 0.2054 0.9985 0.5776 0.9862 0.9991 0.4405 

  0.0857 0.0423 0.0087 0.0745 0.1074 0.0022 0.0270 0.0116 0.0021 0.0668 

phi2 0.1088 0.1065 0.0831 0.0999 0.0892 0.0886 0.0980 0.0969 0.1128 0.0763 

  0.0110 0.0035 0.0073 0.0041 0.0073 0.0099 0.0033 0.0076 0.0085 0.0051 

sigmaRV 0.7367 0.6956 0.7039 0.5983 0.5808 0.5700 0.5768 0.5799 0.6458 0.6058 

  0.0116 0.0097 0.0119 0.0087 0.0080 0.0071 0.0072 0.0077 0.0121 0.0069 

mjuZE 1.9375 1.9178 2.1273 1.0874 1.2194 1.2276 1.4611 1.4338 1.2512 1.2204 

  0.0329 0.0272 0.0339 0.0306 0.0194 0.0243 0.0251 0.0236 0.0346 0.0222 

ksiZE 4.5078 3.9850 4.5869 4.1097 4.8427 4.7545 4.7284 4.8436 5.2725 4.1471 

  0.3767 0.4125 0.5183 0.2013 0.2998 0.2006 0.2298 0.3809 0.2959 0.3154 

sigmaZE 1.7344 1.7119 1.8763 1.2861 1.3490 1.4188 1.5041 1.4261 1.4603 1.3515 

  0.0248 0.0179 0.0293 0.0253 0.0158 0.0164 0.0162 0.0203 0.0249 0.0194 

CorrRH -0.7810 -0.2604 -0.1028 -0.1953 -0.3319 -0.6168 -0.5456 -0.5559 0.7738 -0.2349 

  0.0421 0.0337 0.0491 0.0516 0.0410 0.0726 0.0414 0.0887 0.0428 0.0437 
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We can see from Table 22 that the price jumps in the SVJJD-RV-Z model are on 

average larger than in the SVJD-RV-Z model, with the 𝜎𝐽 being around 5% for most of the 

stock ETF/ETN and 9% for VXX. Jumps in returns also seem to occur quite often, with 𝜆𝐿𝑇 

being around 1-2% for most of the time series. Persistent clustering of the jumps in returns is 

observed on EEM (𝛽𝐽 = 0.89), while most of the other ETF/ETN exhibit co-jumps 

(significant 𝛾𝐽). Volatility jumps occur mostly upwards (positive 𝜇𝐽𝑉) and the occur in about 

1-8% of the days (𝜆𝐿𝑇,𝑉), depending on the respective time series. The volatility jumps exhibit 

highly persistent and significant clustering on FXI (𝛽𝐽𝑉 = 0.97 with 𝛾𝐽 = 0.022), and 

statistically significant co-jump effects (significant 𝛾𝐽 with low 𝛽𝐽𝑉) on USO. 

Table 23 shows the parameter estimates for the 2SVJJD-RV-Z model. We can see that 

similarly to the currency time series, the value of 𝜙1 is not always higher than 𝛽, indicating 

that the SGPF algorithm estimated the persistence of the two components oppositely than 

what we expected. This is not particularly problematic per-se, and it instead indicates that the 

volatility jumps and correlation between volatility and jumps that we assumed for the short-

term log-variance component do rather occur in the long-term component. The results further 

show that EFA exhibits highly persistent price-jump clustering (𝛽𝐽 = 0.98 with 𝛾𝐽 = 0.02), 

while the XLF exhibits persistent volatility-jump clustering (𝛽𝐽𝑉 = 0.93 with 𝛾𝐽𝑉 = 0.06). 

Several other series were estimated to contain statistically significant co-jumps in volatility, 

including the SPY. 

5.5.3. ETF/ETN volatility forecasting results 

Realized variance for each of the ETF/ETN time series was forecasted in the 1-day, 5-

day and the 22-day horizon and the historical accuracy of the forecasts was assessed with the 

R-Squared criterion. The multi-period forecasts were performed with direct projection for the 

HAR and ESN models (as in Bollerslev et al, 2015), in which the model is re-estimated with 

the multi-period realized variance as the target. For the logarithmic and square root 

transformations of the model the forecasts were then transformed back into realized variance 

forecasts for the computation of the R-Squared values. For the SVJD model the forecasts 

were constructed by randomly sampling parameter and latent state particles from the Particle 

Filter, constructing 10 000 simulations of the evolution of the latent states into the future (for 

the respective horizons), computing the quadratic variation for each simulation and then the 

average of all simulations. 
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Table 24 shows the R-Squared values for all of the models and ETF/ETN time series 

for the 1-day forecast horizon. In the last two columns is the average R-Squared and the 

average rank of the model over all of the forecasted series. The colouring indicates the size of 

the R-Squared (green is higher and red lower) and is applied separately for each ETF/ETN. 

Table 24 – R-Squared of the 1-Day realized variance forecasts (ETF/ETN) 

Type Model EEM EFA FXI GDX IWM QQQ SPY USO VXX XLF AvgR2 AvgRank 

GARCH 

GARCH 0.3770 0.2031 0.3790 0.2318 0.2010 0.2711 0.2163 0.3407 0.1982 0.3534 0.2771 22.40 

EGARCH 0.2011 0.1581 0.3982 0.1978 0.1612 0.4282 0.2440 0.3557 0.2534 0.2343 0.2632 23.30 

GJRGARCH 0.4027 0.2176 0.4028 0.2176 0.2448 0.2676 0.2767 0.3656 0.1865 0.3548 0.2937 17.70 

HAR 

HAR 0.4008 0.1837 0.3896 0.2090 0.2965 0.1691 0.2359 0.3268 0.2465 0.3194 0.2777 21.80 

LogHAR 0.1647 0.1439 0.3496 0.2390 0.2264 0.4392 0.1984 0.3730 0.1440 0.2964 0.2575 26.40 

SqrtHAR 0.3648 0.1916 0.4003 0.2514 0.2855 0.4198 0.2429 0.3604 0.2192 0.3443 0.3080 18.20 

HARQ 0.1000 0.1767 0.3695 0.1005 0.1149 0.4603 0.2410 0.3501 0.1635 0.3432 0.2420 25.20 

LogHARQ 0.2132 0.1614 0.3469 0.2550 0.2393 0.4620 0.2432 0.3824 0.1460 0.3406 0.2790 19.90 

SqrtHARQ 0.0744 0.1051 0.3221 0.2440 0.1081 0.4862 0.1043 0.3733 0.1921 0.3628 0.2372 25.00 

HARJ 0.3988 0.1467 0.3854 0.0711 0.3320 0.1873 0.2832 0.3181 0.2971 0.4353 0.2855 18.70 

logHARJ 0.1557 0.1357 0.3641 0.2398 0.1569 0.4537 0.1729 0.3595 0.1601 0.3080 0.2507 26.80 

sqrtHARJ 0.3879 0.1572 0.4021 0.2457 0.3187 0.4430 0.2758 0.3550 0.2786 0.4504 0.3314 13.90 

AHAR 0.4062 0.1963 0.4128 0.0821 0.2960 0.2591 0.2694 0.3474 0.2732 0.2709 0.2813 19.30 

logAHAR 0.4416 0.2051 0.3980 0.2449 0.3436 0.5174 0.4468 0.3885 0.3340 0.4509 0.3771 5.90 

sqrtAHAR 0.4046 0.2086 0.4362 0.2551 0.3064 0.4912 0.3153 0.3806 0.2719 0.3975 0.3467 7.40 

SHAR 0.4452 0.1596 0.2837 0.1229 0.2971 0.3191 0.2339 0.3417 0.2732 0.3482 0.2825 21.40 

logSHAR 0.1760 0.1376 0.3501 0.2459 0.2356 0.4552 0.2175 0.3732 0.1770 0.3154 0.2683 23.80 

sqrtSHAR 0.4080 0.1722 0.4063 0.2526 0.2983 0.4566 0.2546 0.3699 0.2549 0.3320 0.3205 14.60 

ESN 

ESN 0.1989 -0.0185 0.3102 0.2062 0.2132 0.3911 -0.0085 0.3392 0.0878 0.3732 0.2093 30.00 

LogESN 0.4353 0.2011 0.3616 0.2472 0.2920 0.4710 0.2892 0.3788 0.1400 0.4565 0.3273 14.00 

SqrtESN 0.3631 0.1262 0.3483 0.2619 0.2949 0.4897 0.2225 0.3799 0.1482 0.4184 0.3053 17.50 

ESNQ 0.2269 -0.2447 0.3150 0.2023 0.1953 0.3856 0.0031 0.3363 0.0815 0.3294 0.1831 31.80 

LogESNQ 0.4334 0.2039 0.3769 0.2527 0.3043 0.4808 0.3183 0.3790 0.1511 0.4715 0.3372 10.20 

SqrtESNQ 0.3364 0.0932 0.3625 0.2643 0.3014 0.4890 0.1977 0.3788 0.0989 0.3573 0.2880 19.50 

ESNJ 0.1694 -0.0950 0.2418 0.1625 0.1107 0.3573 0.0331 0.3011 0.1280 0.3327 0.1742 33.60 

LogESNJ 0.4763 0.1924 0.3077 0.2506 0.2471 0.4702 0.2470 0.3760 0.1775 0.4231 0.3168 15.90 

SqrtESNJ 0.3322 0.0483 0.3444 0.2535 0.2677 0.4910 0.2877 0.3739 0.2298 0.4127 0.3041 17.30 

SESN 0.1805 -0.0463 0.1788 0.1989 0.1887 0.4263 -0.0327 0.3308 0.1301 0.3556 0.1911 31.30 

LogSESN 0.4549 0.2010 0.3882 0.2468 0.2994 0.4915 0.3090 0.3777 0.1492 0.4718 0.3389 10.50 

SqrtSESN 0.3623 0.1214 0.3531 0.2605 0.3025 0.5255 0.2228 0.3743 0.2125 0.4362 0.3171 15.10 

SESNQ 0.2188 -0.0349 0.2700 0.1974 0.2069 0.4196 0.0025 0.3309 0.0905 0.3826 0.2084 30.40 

LogSESNQ 0.4443 0.2027 0.3958 0.2535 0.3076 0.4958 0.3240 0.3767 0.1609 0.4837 0.3445 8.10 

SqrtSNESNQ 0.3485 0.1046 0.3316 0.2668 0.3097 0.5173 0.2049 0.3679 0.1457 0.4417 0.3039 17.80 

SVJD 

SVJD 0.4041 0.2316 0.3743 0.2305 0.2019 0.4255 0.2211 0.3704 0.1295 0.4020 0.2991 20.20 

SVJD-RV-Z 0.4430 0.2015 0.4322 0.2650 0.1954 0.4719 0.2316 0.3952 0.1029 0.4639 0.3203 12.90 

SVJJD-RV-Z 0.4155 0.2110 0.3632 0.2751 0.2690 0.4920 0.2535 0.4130 0.2318 0.4734 0.3398 9.00 

2SVJJD-RV-Z 0.4257 0.2244 0.4055 0.2841 0.2947 0.5165 0.2555 0.4217 0.2477 0.4720 0.3548 6.20 
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We can see from Table 24 that the best average R-Squared and the best average rank 

were achieved by the logarithmic version of the AHAR model (logAHAR), which managed to 

slightly outperform even the SVJD models. 

SVJD models were the second best (after the logAHAR). The best performing SVJD 

model was 2SVJJD-RV-Z, followed by the SVJJD-RV-Z and then the SVJD-RV-Z. The 

performance of the standard SVJD model was slightly better than of the GARCH model. 

Among the HAR models, the sqrtAHAR models was the second best after logAHAR. 

The HARJ model, which was the best on the currency time series, achieved only mediocre 

results on the ETF/ETN time series. Overall, the good performance of AHAR model 

specification is to be expected on the ETF/ETN time series, due to the strong correlation 

between volatility and returns. 

The best out of the ESN models was the LogSESNQ model, which achieved 

comparable results to the best of the HAR models and SVJD models. The LogSESNQ model 

was also the best ESN model on the currency time series, which indicates its robustness. 

Similarly as in the case of currencies, the ESN models using the logarithmic transformation 

performed best, followed by the square root transformation. In addition to the LogSESNQ 

model, the LogESNQ and LogSESN models performed also very well. 

Among the GARCH models, the GJR-GARCH was the best, managing to outperform 

even some of the HAR models.  

The results for the 1-Week (5-Day) horizon are shown in Table 25. We can see that 

the SVJD models outperformed all of the other models on 5-day horizon, achieving the 

highest R-Squared (SVJD-RV-Z) as well as the lowest average rank (2SVJJD-RV-Z).  

The best HAR models were the logarithmic and square root versions of the AHAR 

model (the same  as on the 1-Day horizon), followed by the sqrtHARJ model and the 

sqrtSHAR model.  

ESN models, such as the LogSESNQ achieved only mediocre performance on the 5-

day forecast horizon, mainly due to their bad results on VXX. 

 



Ing. Milan Fičura Dissertation thesis 26.8.2018 

137 

 

Table 25 – R-Squared of the 5-Day realized variance forecasts (ETF/ETN) 

Type Model EEM EFA FXI GDX IWM QQQ SPY USO VXX XLF AvgR2 AvgRank 

GARCH 

GARCH 0.5599 0.4098 0.5826 0.3751 0.3247 0.2596 0.3942 0.4580 -0.0087 0.3708 0.3726 19.60 

EGARCH 0.2126 0.2929 0.6181 0.2967 0.2342 0.5118 0.3503 0.5060 0.1019 0.1939 0.3318 21.10 

GJRGARCH 0.5466 0.4271 0.6128 0.3166 0.3734 0.2245 0.4694 0.4991 -0.2165 0.3734 0.3627 18.50 

HAR 

HAR 0.5650 0.3059 0.6005 0.3393 0.4221 0.0448 0.3575 0.4493 0.0705 0.2595 0.3414 20.60 

LogHAR 0.2491 0.2811 0.5336 0.4142 0.3495 0.5378 0.3147 0.5317 0.0871 0.4134 0.3712 19.80 

SqrtHAR 0.5205 0.3141 0.6034 0.3968 0.4163 0.4714 0.3714 0.5047 0.0796 0.3922 0.4070 17.00 

HARQ 0.0840 0.3544 0.4567 0.1422 0.0546 0.4675 0.3453 0.4718 0.0661 0.5652 0.3008 25.60 

LogHARQ 0.2883 0.3112 0.5152 0.4312 0.3591 0.5807 0.3445 0.5430 0.0840 0.4699 0.3927 17.30 

SqrtHARQ 0.1632 0.2285 0.3604 0.3502 0.1371 0.5793 0.2186 0.5127 0.0708 0.4900 0.3111 23.30 

HARJ 0.5763 0.2968 0.6326 0.0149 0.4730 0.0361 0.3864 0.4461 0.0678 0.6203 0.3550 16.90 

logHARJ 0.3107 0.3102 0.5643 0.4233 0.3104 0.5663 0.2959 0.5169 0.0788 0.4466 0.3823 18.40 

sqrtHARJ 0.5460 0.2517 0.6151 0.3469 0.4657 0.4833 0.3964 0.5019 0.0861 0.6257 0.4319 12.50 

AHAR 0.5541 0.3480 0.6249 0.2311 0.4135 0.0826 0.3949 0.5033 0.1093 0.4294 0.3691 16.10 

logAHAR 0.4350 0.3359 0.5544 0.4183 0.4193 0.5831 0.4705 0.5645 0.1135 0.5579 0.4452 9.70 

sqrtAHAR 0.5390 0.3666 0.6310 0.3952 0.4236 0.5032 0.4370 0.5480 0.1021 0.5235 0.4469 9.50 

SHAR 0.5820 0.3225 0.5738 0.2498 0.4262 0.1820 0.3602 0.4904 0.0563 0.3548 0.3598 19.20 

logSHAR 0.2534 0.2787 0.5379 0.4189 0.3567 0.5509 0.3342 0.5214 0.0926 0.4350 0.3780 18.60 

sqrtSHAR 0.5490 0.3199 0.6080 0.3997 0.4294 0.5021 0.3851 0.5225 0.0772 0.4227 0.4216 13.10 

ESN 

ESN 0.5317 0.0680 0.5449 0.1838 0.3084 0.4014 0.2001 0.4796 -0.2709 0.4703 0.2917 29.10 

LogESN 0.5795 0.2616 0.5196 0.2996 0.4169 0.4961 0.3547 0.4653 -0.1718 0.6002 0.3822 21.10 

SqrtESN 0.5711 0.2108 0.5509 0.3100 0.3820 0.5011 0.3020 0.4906 -0.1903 0.5024 0.3631 22.00 

ESNQ 0.5301 0.0888 0.5533 0.1831 0.3084 0.3926 0.2040 0.4767 -0.3085 0.4490 0.2877 29.70 

LogESNQ 0.5901 0.2543 0.5465 0.3166 0.4249 0.5046 0.3746 0.4673 -0.1731 0.6104 0.3916 17.60 

SqrtESNQ 0.5484 0.2125 0.5546 0.3112 0.3690 0.5140 0.2872 0.4923 -0.1327 0.4487 0.3605 22.20 

ESNJ 0.5297 0.0652 0.5395 0.1193 0.3115 0.3374 0.2072 0.4751 -0.2920 0.4583 0.2751 30.60 

LogESNJ 0.5073 0.2343 0.5252 0.2994 0.4070 0.5373 0.3454 0.4842 0.0581 0.5775 0.3976 21.00 

SqrtESNJ 0.5700 0.1927 0.5483 0.2952 0.3859 0.5016 0.3108 0.4838 -0.1333 0.5213 0.3676 22.30 

SESN 0.5336 0.0474 0.5494 0.1379 0.3154 0.3456 0.2063 0.4784 -0.2836 0.4760 0.2806 29.00 

LogSESN 0.5882 0.2674 0.5177 0.3028 0.4200 0.5153 0.3594 0.4577 -0.1563 0.6188 0.3891 19.40 

SqrtSESN 0.5732 0.1640 0.5789 0.3084 0.3926 0.5258 0.3171 0.4902 -0.1523 0.5374 0.3735 19.30 

SESNQ 0.5327 0.0640 0.5534 0.1401 0.3134 0.3524 0.2085 0.4781 -0.2940 0.4531 0.2802 29.10 

LogSESNQ 0.6004 0.2678 0.5346 0.3205 0.4281 0.5163 0.3731 0.4589 -0.1548 0.6223 0.3967 16.20 

SqrtSNESNQ 0.5606 0.1896 0.5654 0.3125 0.3738 0.5350 0.3002 0.4934 -0.1316 0.5002 0.3699 19.90 

SVJD 

SVJD 0.5989 0.4645 0.5334 0.3671 0.3240 0.5493 0.3737 0.5122 0.1013 0.5444 0.4369 12.60 

SVJD-RV-Z 0.6194 0.3536 0.6353 0.4467 0.2816 0.5919 0.3431 0.5592 0.0904 0.6409 0.4562 8.30 

SVJJD-RV-Z 0.5899 0.3622 0.4588 0.4459 0.3819 0.5888 0.3754 0.5681 0.1205 0.5974 0.4489 9.30 

2SVJJD-RV-Z 0.5957 0.4151 0.5583 0.4481 0.4455 0.6005 0.3807 0.5552 -0.1616 0.6153 0.4453 7.50 

 

The results for the 1-Month (22-Days) horizon are shown in Table 26. 
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Table 26 – R-Squared of the 22-Day realized variance forecasts (ETF/ETN) 

Type Model EEM EFA FXI GDX IWM QQQ SPY USO VXX XLF AvgR2 AvgRank 

GARCH 

GARCH 0.4174 0.4825 0.4569 0.3534 0.2784 -0.5112 0.3466 0.4069 -0.1898 0.1671 0.2208 19.90 

EGARCH 0.0703 0.2711 0.6411 0.2996 0.1658 0.1658 0.2311 0.5090 0.0048 0.0641 0.2423 22.80 

GJRGARCH 0.3321 0.4932 0.5093 0.2595 0.2870 -0.5650 0.3972 0.4816 -0.5154 0.1687 0.1848 21.30 

HAR 

HAR 0.4349 0.3857 0.6044 0.1842 0.3737 -1.1510 0.2754 0.4201 -0.0485 0.1726 0.1652 18.40 

LogHAR 0.0955 0.2906 0.5849 0.4063 0.2991 0.3830 0.2509 0.4807 -0.0163 0.3413 0.3116 19.00 

SqrtHAR 0.3316 0.3914 0.6155 0.3512 0.3619 0.1068 0.2992 0.4457 -0.0354 0.3155 0.3183 17.00 

HARQ 0.0207 0.1555 0.2910 0.0221 0.0495 0.0412 0.2552 0.3119 -0.0133 0.4385 0.1572 29.30 

LogHARQ 0.1122 0.3158 0.5463 0.4604 0.2966 0.4281 0.2591 0.4925 -0.0197 0.3890 0.3280 16.60 

SqrtHARQ 0.0198 0.1631 0.3077 0.2496 0.0728 0.4445 0.1698 0.4235 -0.0092 0.4140 0.2255 24.90 

HARJ 0.5101 0.4273 0.6086 -0.6422 0.4327 -1.2086 0.3039 0.4189 -0.0713 0.5934 0.1373 14.80 

logHARJ 0.1148 0.3475 0.5430 0.4219 0.2820 0.4595 0.2335 0.4737 -0.0263 0.3813 0.3231 18.00 

sqrtHARJ 0.3886 0.4153 0.6115 0.1634 0.4294 0.0490 0.3203 0.4576 -0.0504 0.5349 0.3320 15.20 

AHAR 0.4178 0.3850 0.5896 -1.0197 0.3447 -1.2039 0.2709 0.5175 -0.0129 0.3967 0.0686 16.60 

logAHAR 0.1424 0.3712 0.4849 0.4029 0.3107 0.3723 0.3212 0.5399 -0.0025 0.4797 0.3423 14.80 

sqrtAHAR 0.3328 0.4248 0.5827 0.2557 0.3410 0.0541 0.3147 0.5285 -0.0193 0.4848 0.3300 15.20 

SHAR 0.4609 0.3917 0.5067 -0.2844 0.3761 -0.8151 0.2687 0.5421 -0.0515 0.2537 0.1649 18.00 

logSHAR 0.1023 0.2857 0.5875 0.4044 0.3033 0.3832 0.2571 0.4356 -0.0152 0.3629 0.3107 18.70 

sqrtSHAR 0.3487 0.3931 0.6055 0.2722 0.3690 0.1532 0.2952 0.5017 -0.0452 0.3607 0.3254 16.20 

ESN 

ESN 0.4102 0.3177 0.5266 0.3573 0.2365 0.3502 0.1562 0.3715 -0.4690 0.6193 0.2877 23.00 

LogESN 0.3935 0.3423 0.3944 0.3939 0.2706 0.3807 0.1406 0.3494 -0.6399 0.6198 0.2645 24.30 

SqrtESN 0.4560 0.3730 0.5607 0.4181 0.2987 0.3973 0.2262 0.3761 -0.4312 0.6000 0.3275 16.00 

ESNQ 0.4094 0.3207 0.5170 0.3553 0.2357 0.3511 0.1483 0.3587 -0.4858 0.6155 0.2826 24.40 

LogESNQ 0.3943 0.3506 0.3845 0.4034 0.2821 0.3879 0.1668 0.3390 -0.6266 0.6295 0.2712 21.70 

SqrtESNQ 0.4516 0.3747 0.5795 0.4239 0.3080 0.4150 0.2389 0.3780 -0.3940 0.5959 0.3372 14.20 

ESNJ 0.4116 0.3210 0.5293 0.3111 0.2367 0.2818 0.1550 0.3587 -0.4636 0.6131 0.2755 24.00 

LogESNJ 0.4856 0.3790 0.6295 0.4000 0.3812 0.4078 0.2805 0.3572 -0.4282 0.6122 0.3505 12.10 

SqrtESNJ 0.4601 0.3643 0.5968 0.4243 0.2985 0.3862 0.2403 0.3650 -0.4282 0.6038 0.3311 15.20 

SESN 0.4010 0.3211 0.5265 0.3383 0.2359 0.2968 0.1568 0.3768 -0.4655 0.6059 0.2794 23.90 

LogSESN 0.4007 0.3459 0.3631 0.3950 0.2742 0.3857 0.1408 0.3452 -0.6548 0.6328 0.2629 23.80 

SqrtSESN 0.4420 0.3610 0.5742 0.4159 0.2918 0.3902 0.2409 0.3799 -0.4396 0.5983 0.3255 16.60 

SESNQ 0.4117 0.3250 0.5173 0.3354 0.2375 0.3025 0.1561 0.3663 -0.4613 0.6117 0.2802 23.30 

LogSESNQ 0.4058 0.3475 0.3582 0.4028 0.2839 0.3897 0.1648 0.3367 -0.6412 0.6373 0.2685 22.10 

SqrtSNESNQ 0.4508 0.3771 0.5763 0.4173 0.2996 0.4041 0.2533 0.3772 -0.3882 0.5973 0.3365 14.50 

SVJD 

SVJD 0.3463 0.4841 0.2052 0.3241 0.2920 0.3790 0.2849 0.4695 0.0084 0.4269 0.3220 17.40 

SVJD-RV-Z 0.0000 0.3862 0.3468 0.4862 0.4776 0.2172 0.4791 -0.0270 0.0000 0.0180 0.2384 18.80 

SVJJD-RV-Z 0.3816 0.4083 0.3668 0.4603 0.2690 0.3940 0.3005 0.4983 0.0181 0.3681 0.3465 14.40 

2SVJJD-RV-Z 0.1296 0.5182 -0.3609 0.4504 0.4010 0.3722 0.3119 0.4742 -3.2983 0.5789 -0.0423 16.60 

 

We can see that the SVJJD-RV-Z model was the second best, while the other SVJD 

models performed rather poorly on the 22-day forecast horizon, especially the 2SVJJD-RV-Z 

model, due to its poor performance on the VXX and the FXI time series. 
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The best results on the 22-Day horizon were achieved by the LogESNJ model, in spite 

of its highly negative R-Squared on VXX. The performance of all models on VXX was rather 

poor on the 22-Day horizon, which can be attributed to the fact that VXX is a volatility ETN 

that simulates a position in the futures on the volatility index VIX. The volatility of VXX is 

thus de-facto the volatility of the volatility of S&P500, which is very challenging to predict, 

especially in the longer forecast horizons. 

Among other notable models is the SqrtESNQ model and the log and sqrt 

transformations of the AHAR model, which was also performing well on the shorter horizons, 

making it probably the best HAR model for the ETF/ETN time series. Other successful HAR 

model specifications were the square root forms of the HARJ and the SHAR model. 
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6. Conclusion 

The thesis reviews the most commonly used volatility forecasting frameworks, with 

the main focus placed on Stochastic-Volatility Jump-Diffusion (SVJD) models, on the ways 

of how information from intraday data can be integrated into these models, and on Bayesian 

methods used for SVJD model estimation. 

Among the main contributions of the thesis is the development of SVJD-RV-Z class of 

models that use the realized variance, computed from intraday returns, as an additional source 

of information in the estimation of  the stochastic variance, and the Z-Estimator of jumps as 

an additional source of information for the estimation of price jumps. A further contribution is 

the development of adapted particle filters for more efficient filtering of the latent states (i.e. 

volatility and jumps) in SVJD models, and the Sequential-Gibbs Particle Filter (SGPF) 

algorithm, which can be used for the sequential estimation of SVJD model parameters. An 

additional contribution, not related to SVJD models, is the application of Echo State Neural 

networks (ESN) for realized volatility forecasting. 

In the empirical part of the thesis four complex SVJD and SVJD-RV-Z models are 

applied to the time series of 7 currency exchange rates and 10 ETF/ETN securities with the 

goal of forecasting the future realized variance in the 1-Day, 1-Week and 1-Month horizon. 

The models are sequentially estimated with the SGPF algorithm and include many complex 

features such as self-exciting jumps in prices and volatility as well as multiple volatility 

components. The predictive power of the SVJD models is compared with three 

ARCH/GARCH models (GARCH, EGARCH and GJR-GARCH), 15 HAR models (HAR, 

AHAR, HARJ, SHAR and HARQ, and their square-root and logarithmic modifications), and 

15 ESN models (with predictors analogical to the HAR models).  

The results of the empirical study show that SVJD-RV-Z models with self-exciting 

jumps in prices and volatility provide volatility forecasts that are for most of the analysed 

time series comparable or better than the best benchmark models. Among the ESN models, 

the best performance was achieved on the shorter forecast horizons by the LogSESNQ model 

(ESN with realized variance, realized quarticity and realized semi-variance as predictors), 

while on the longer horizons the LogESNJ model proved superior (ESN with realized 

variance and bi-power variation based jump variance estimates as predictors). Among the 

HAR models, the HARJ model performed best on the currency exchange rate time series, 

while the logAHAR was the best on ETF/ETN time series. 
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In his future research, the author plans to focus more on the optimal SVJD model 

architecture. Specifically, the long-range dependencies in the volatility process may instead of 

the two-component approach be also modelled with a genuine LMSV model, with the 

Markov-Switching based approaches or with the Markov-Switching-Multifractal approach.  

An additional extension would be to include more elaborate modelling of the 

interdependencies between the volatility components, returns and jumps. Both components of 

the two-component SVJD model can be assumed to be correlated with the returns. Similarly, 

the price and volatility jump occurrences and sizes can be made to be correlated, and the self-

exciting jump intensities can be made to be cross-exciting. Copulas may further be used to 

capture the complex interdependencies between different components of the model. 

As a third possible extension, the noise distribution in the return, volatility and jump 

processes can be assumed to follow a different distribution than the normal one. 

Regarding the use of power-variation estimators in SVJD models, a natural next step 

would be to view the noise of the realized variance as heteroskedastic and utilize the realized 

quarticity for its estimation. Similarly, the realized semi-variance may be used to better 

capture the asymmetries of the volatility process, and the incorporation of the Z-Statistics into 

SVJD models may also be improved by more accurately modelling the dependency between 

the sizes of the Z-Statistics and the jump sizes. Finally, as an additional source of information, 

option-based volatility forecasts can be integrated into the SVJD model setting, with the 

possibility of modelling the volatility-risk premium as a stochastic latent state process. 

Regarding the particle filter based estimation, an improvement of convergence may be 

achieved by approximating the intractable densities in a way similar to what was used in 

Jacquier et al. (1994) or Kim, Shephard and Chib (1998) in the MCMC estimation 

framework, while the volatility jump sizes may be approximately adapted to the returns in a 

way outlined in Fičura and Witzany (2018). Alternatively, approaches using the Auxiliary 

Particle Filter (Pitt and Shephard, 199), or the Approximate Rao-Blackwelization (Johansen, 

2012) may be used to improve the sampling in models with intractable proposal densities. 
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7. Appendix – Approximate adaptations 

In the following sections, we will derive approximate proposal densities for some of 

the latent states of the SVJD-RV-Z model, where the fully-adapted densities are intractable, 

but we can still at least partially utilize the information about the observed 𝑟(𝑡), 𝑅𝑉(𝑡), 𝑍(𝑡) 

and also 𝐵𝑉(𝑡). Take note that even if the sampling proceeds from an approximate density 

that differs from the ideal fully adapted density, the particle filtering is still asymptotically 

unbiased, due to the re-weighting and the re-sampling step, which guarantee that the final 

sample will be from the true posterior density. 

7.1. SVJD-RV-Z model with price jumps – Sampling of 𝒉𝒕
𝒊  

The sampling of ℎ𝑡
𝑖  involves two major hurdles. The first one is that the distribution 

𝑝(ℎ𝑡
𝑖 |𝑟𝑡) is intractable due to the non-linearity of the relationship between ℎ𝑡

𝑖  and 𝑟𝑡. The 

second hurdle is related to the distribution 𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡). As the assumed relationship between 

ℎ𝑡
𝑖  and 𝑅𝑉𝑡 in the analysed models is given by log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] = ℎ(𝑡) + 𝜎𝑅𝑉𝜀R𝑉(𝑡), 

it is apparent that as long as we know the values of 𝐽𝑡
𝑖 and 𝑄𝑡

𝑖, we can easily express the 

density 𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡, 𝐽𝑡

𝑖, 𝑄𝑡
𝑖). Unfortunately, as long as we want to sample the values of 𝐽𝑡

𝑖 and 𝑄𝑡
𝑖 

in an adapted way, we need to know the value of ℎ𝑡
𝑖  before. The values of 𝐽𝑡

𝑖 and 𝑄𝑡
𝑖 are thus 

unavailable during the sampling of ℎ𝑡
𝑖 , and the marginalized density 𝑝(ℎ𝑡

𝑖 |𝑅𝑉𝑡) is 

unfortunately intractable. 

In order to sample the values of ℎ𝑡
𝑖  from a density that is at least approximately 

adapted to the observed values of 𝑅𝑉𝑡, we will utilize an adaptation scheme in which ℎ𝑡
𝑖  will 

be sampled from a mix of two Gaussian densities. The proposal distribution can be derived as 

follows: 

1. Calculate provisional probabilities of jump occurrence 𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖). These can be 

calculated from the likelihood densities with respect to the 𝑍𝑡
𝑖, given as: 

𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 0)~𝑁(𝑍𝑡; 𝜇𝑍, 𝜎𝑍)(1 − 𝜆𝑡
𝑖) 

𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 1)~𝑁(𝑍𝑡; 𝜇𝑍 + 𝜉𝑍, 𝜎𝑍)𝜆𝑡
𝑖  

The provisional jump probability 𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖) can thus be computed as: 

𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖) =
𝑝(𝑍𝑡

𝑖|𝑄𝑡
𝑖 = 1)

𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 0) + 𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 1)
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The probability of no jump is then equal to 𝑝(𝑄𝑡
𝑖 = 0|𝑍𝑡

𝑖) = 1 − 𝑝(𝑄𝑡
𝑖 =

1|𝑍𝑡
𝑖). 

We will further denote 𝑝0
∗ = 𝑝(𝑄𝑡

𝑖 = 0|𝑍𝑡
𝑖) and 𝑝1

∗ = 𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖) 

2. In the no-jump case of 𝑄𝑡
𝑖 = 0, we could derive the proposal density for ℎ𝑡

𝑖 , adapted to 

𝑅𝑉𝑡, based on: 

𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑡
𝑖 = 0) ∝ 𝑁(ℎ𝑡

𝑖 ; 𝛼 + 𝛽ℎ𝑡−1
𝑖 , 𝛾)𝑁(log (𝑅𝑉𝑡); ℎ𝑡

𝑖 , 𝜎𝑅𝑉) 

The two Gaussian densities can then be combined to get: 

𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑡
𝑖 = 0) = 𝑁 (ℎ𝑡

𝑖 ;
log(𝑅𝑉𝑡)𝛾

2 + (𝛼 + 𝛽ℎ𝑡−1
𝑖 )𝜎𝑅𝑉

2

𝜎𝑅𝑉
2 + 𝛾2

,
𝜎𝑅𝑉𝛾

√𝜎𝑅𝑉
2 + 𝛾2

) 

In the case of 𝑄𝑡
𝑖 = 1, we will have to use the approximation that: 

log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] ≅ log[𝐵𝑉(𝑡)] 

and thus 

log[𝐵𝑉(𝑡)] ≅ ℎ(𝑡) + 𝜎𝑅𝑉𝜀R𝑉(𝑡) 

Analogically to the previous case, it will approximately hold that: 

𝑝(ℎ𝑡
𝑖 |𝐵𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑡
𝑖 = 1) ∝ 𝑁(ℎ𝑡

𝑖 ; 𝛼 + 𝛽ℎ𝑡−1
𝑖 , 𝛾)𝑁(log (𝐵𝑉𝑡); ℎ𝑡

𝑖 , 𝜎𝑅𝑉) 

Which can be transformed to get: 

𝑝(ℎ𝑡
𝑖 |𝐵𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑡
𝑖 = 1) = 𝑁 (ℎ𝑡

𝑖 ;
log (𝐵𝑉𝑡)𝛾

2 + (𝛼 + 𝛽ℎ𝑡−1
𝑖 )𝜎𝑅𝑉

2

𝜎𝑅𝑉
2 + 𝛾2

,
𝜎𝑅𝑉𝛾

√𝜎𝑅𝑉
2 + 𝛾2

) 

3. The value of ℎ𝑡
𝑖  will then be sampled from the following Gassian mixture density: 

𝑔(ℎ𝑡
𝑖 |𝑅𝑉𝑡, 𝐵𝑉𝑡, ℎ𝑡−1

𝑖 ) = 𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑡
𝑖 = 0)𝑝0

∗ + 𝑝(ℎ𝑡
𝑖 |𝐵𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑡
𝑖 = 1)𝑝1

∗ 

4. The weights during the weight update will then have to be multiplied (in addition to 

the other terms) with the ratio: 

𝑝(ℎ𝑡
𝑖 |ℎ𝑡−1

𝑖 )

𝑔(ℎ𝑡
𝑖 |𝑅𝑉𝑡, 𝐵𝑉𝑡, ℎ𝑡−1

𝑖 )
 

In order to account for the differences between the transition distribution and 

the proposal distribution. 

7.2. SVJD-RV-Z with price and volatility jumps – Sampling 𝑱𝑽𝒕
𝒊  and 𝒉𝒕

𝒊  

The approximate adaptation will be performed as follows: 

1. Calculate provisional probabilities of price jump occurrence 𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖). These can 

be calculated from the likelihood densities with respect to the 𝑍𝑡
𝑖, given as: 

𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 0)~𝑁(𝑍𝑡; 𝜇𝑍, 𝜎𝑍)(1 − 𝜆𝑡
𝑖) 

𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 1)~𝑁(𝑍𝑡; 𝜇𝑍 + 𝜉𝑍, 𝜎𝑍)𝜆𝑡
𝑖  
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The provisional jump probability 𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖) can thus be computed as: 

𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖) =
𝑝(𝑍𝑡

𝑖|𝑄𝑡
𝑖 = 1)

𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 0) + 𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 1)
 

The probability of no jump is then equal to 𝑝(𝑄𝑡
𝑖 = 0|𝑍𝑡

𝑖) = 1 − 𝑝(𝑄𝑡
𝑖 =

1|𝑍𝑡
𝑖). 

We will further denote 𝑝0
∗ = 𝑝(𝑄𝑡

𝑖 = 0|𝑍𝑡
𝑖) and 𝑝1

∗ = 𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖) 

2. Calculate provisional probabilities of volatility jump occurrence 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖).  

For the 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 0) case we can compute the probability from the 

likelihoods: 

𝑝(𝑅𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 0,𝑄𝑡
𝑖 = 0) = 𝑁 (log(𝑅𝑉𝑡); 𝛼 + 𝛽ℎ𝑡−1

𝑖 ; √𝜎𝑅𝑉
2 + 𝛾2) (1 − 𝜆𝑉,𝑡

𝑖 ) 

𝑝(𝑅𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0) = 𝑁 (log(𝑅𝑉𝑡); 𝛼 + 𝛽ℎ𝑡−1

𝑖 + 𝜇𝐽𝑉; √𝜎𝑅𝑉
2 + 𝛾2 + 𝜎𝐽𝑉

2 ) 𝜆𝑉,𝑡
𝑖  

Probability of a volatility jump is then given by: 

𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 0) =

𝑝(𝑅𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0)

𝑝(𝑅𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0) + 𝑝(𝑅𝑉𝑡

𝑖|𝑄𝑉𝑡
𝑖 = 1, 𝑄𝑡

𝑖 = 0)
 

We will further denote 𝑝0,𝑉,1
∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝑅𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 0) and 𝑝0,𝑉,0
∗ = 1 − 𝑝𝑉,1

∗  

For the 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 1) case we will utilize the approximation that  

log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] ≅ log[𝐵𝑉(𝑡)] and can compute the probability from the 

likelihoods: 

𝑝(𝐵𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 0,𝑄𝑡
𝑖 = 1) = 𝑁 (log (𝐵𝑉𝑡); 𝛼 + 𝛽ℎ𝑡−1

𝑖 ; √𝜎𝑅𝑉
2 + 𝛾2) (1 − 𝜆𝑉,𝑡

𝑖 ) 

𝑝(𝐵𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1) = 𝑁 (log(𝐵𝑉𝑡); 𝛼 + 𝛽ℎ𝑡−1

𝑖 + 𝜇𝐽𝑉; √𝜎𝑅𝑉
2 + 𝛾2 + 𝜎𝐽𝑉

2 ) 𝜆𝑉,𝑡
𝑖  

Probability of a volatility jump is then given by: 

𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 1) =

𝑝(𝐵𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1)

𝑝(𝐵𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1) + 𝑝(𝐵𝑉𝑡

𝑖|𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1)
 

We will further denote  𝑝1,𝑉,1
∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝐵𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 0) and 𝑝1,𝑉,0
∗ = 1 −

𝑝1,𝑉,1
∗ . 

3. In order to sample the volatility jump sizes 𝐽𝑉𝑡
𝑖 conditional on 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0, we 

need to use the following relationship: 

𝑝(𝐽𝑉𝑡
𝑖|𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑉𝑡
𝑖 = 1, 𝑄𝑡

𝑖 = 0)

∝ 𝑁(𝐽𝑉𝑡
𝑖; 𝜇𝐽𝑉 , 𝜎𝐽𝑉)𝑁(ℎ𝑡

𝑖 ; 𝛼 + 𝛽ℎ𝑡−1
𝑖 + 𝐽𝑉𝑡

𝑖, 𝛾)𝑁(log (𝐵𝑉𝑡); ℎ𝑡
𝑖 , 𝜎𝑅𝑉) 

As all of the densities are Gaussian, they can be combined to get: 
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𝑝(𝐽𝑉𝑡
𝑖|𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0)

= 𝑁

(

 𝐽𝑉𝑡
𝑖;

(log (𝑅𝑉𝑡) − 𝛼 − 𝛽ℎ𝑡−1
𝑖 )𝜎𝐽𝑉

2 + 𝜇𝐽𝑉(𝜎𝑅𝑉
2 + 𝛾2)

𝜎𝑅𝑉
2 + 𝛾2 + 𝜎𝐽𝑉

2 ,
𝜎𝐽𝑉√𝜎𝑅𝑉

2 + 𝛾2

√𝜎𝑅𝑉
2 + 𝛾2 + 𝜎𝐽𝑉

2

)

  

Similarly, we can get the density for the 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1 case as: 

𝑝(𝐽𝑉𝑡
𝑖|𝐵𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1)

= 𝑁

(

 𝐽𝑉𝑡
𝑖;

(log (𝐵𝑉𝑡) − 𝛼 − 𝛽ℎ𝑡−1
𝑖 )𝜎𝐽𝑉

2 + 𝜇𝐽𝑉(𝜎𝑅𝑉
2 + 𝛾2)

𝜎𝑅𝑉
2 + 𝛾2 + 𝜎𝐽𝑉

2 ,
𝜎𝐽𝑉√𝜎𝑅𝑉

2 + 𝛾2

√𝜎𝑅𝑉
2 + 𝛾2 + 𝜎𝐽𝑉

2

)

  

4. Volatility jump sizes 𝐽𝑉𝑡
𝑖 will then be sampled from the following Gaussian mixture: 

𝑔(𝐽𝑉𝑡
𝑖|𝑅𝑉𝑡, 𝐵𝑉𝑡, ℎ𝑡−1

𝑖 ) = 

(𝑝0
∗𝑝0,𝑉,0

∗ + 𝑝1
∗𝑝1,𝑉,0

∗ )𝑁(𝐽𝑉𝑡
𝑖; 𝜇𝐽𝑉, 𝜎𝐽𝑉) + 

𝑝0
∗𝑝0,𝑉,1

∗ 𝑝(𝐽𝑉𝑡
𝑖|𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0) + 

𝑝1
∗𝑝1,𝑉,1

∗ 𝑝(𝐽𝑉𝑡
𝑖|𝐵𝑉𝑡, ℎ𝑡−1

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1) 

5. Before we proceed to sample ℎ𝑡
𝑖 , it is necessary to re-calculate the provisional 

volatility jump occurrence probabilities 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝐽𝑉𝑡
𝑖, 𝑄𝑡

𝑖), so that they 

correspond to the sampled values of  𝐽𝑉𝑡
𝑖. 

For the 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 0) case we can compute the probability 

from the likelihoods: 

𝑝(𝑅𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 0,𝑄𝑡

𝑖 = 0) = 𝑁 (log(𝑅𝑉𝑡); 𝛼 + 𝛽ℎ𝑡−1
𝑖 ; √𝜎𝑅𝑉

2 + 𝛾2) (1 − 𝜆𝑉,𝑡
𝑖 ) 

𝑝(𝑅𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖, 𝑄𝑉𝑡
𝑖 = 1, 𝑄𝑡

𝑖 = 0) = 𝑁 (log(𝑅𝑉𝑡); 𝛼 + 𝛽ℎ𝑡−1
𝑖 + 𝐽𝑉𝑡

𝑖; √𝜎𝑅𝑉
2 + 𝛾2)𝜆𝑉,𝑡

𝑖  

Probability of a volatility jump is then given by: 

𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 0)

=
𝑝(𝑅𝑉𝑡

𝑖|𝐽𝑉𝑡
𝑖, 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0)

𝑝(𝑅𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖, 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0) + 𝑝(𝑅𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0)
 

We will further denote 𝑝0,𝑉,1
∗∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝑅𝑉𝑡
𝑖, 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 0) and 𝑝0,𝑉,0

∗∗ = 1 −

𝑝𝑉,1
∗∗  

Analogously for 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖 , 𝐽𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 1), we use the likelihoods: 

𝑝(𝐵𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 0,𝑄𝑡

𝑖 = 1) = 𝑁 (log (𝐵𝑉𝑡); 𝛼 + 𝛽ℎ𝑡−1
𝑖 ; √𝜎𝑅𝑉

2 + 𝛾2) (1 − 𝜆𝑉,𝑡
𝑖 ) 
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𝑝(𝐵𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖, 𝑄𝑉𝑡
𝑖 = 1, 𝑄𝑡

𝑖 = 1) = 𝑁 (log(𝐵𝑉𝑡); 𝛼 + 𝛽ℎ𝑡−1
𝑖 + 𝐽𝑉𝑡

𝑖; √𝜎𝑅𝑉
2 + 𝛾2)𝜆𝑉,𝑡

𝑖  

Probability of a volatility jump is then given by: 

𝑝(𝑄𝑉𝑡
𝑖 = 1|𝐽𝑉𝑡

𝑖, 𝑅𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 0)

=
𝑝(𝐵𝑉𝑡

𝑖|𝐽𝑉𝑡
𝑖, 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1)

𝑝(𝐵𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1) + 𝑝(𝐵𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1)
 

We will further denote  𝑝1,𝑉,1
∗∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝐽𝑉𝑡
𝑖, 𝐵𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 0) and 𝑝1,𝑉,0

∗∗ =

1 − 𝑝1,𝑉,1
∗∗ . 

6. In order to sample the diffusive part of the stochastic variances ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 = ℎ𝑡

𝑖 − 𝐽𝑉𝑡
𝑖𝑄𝑉𝑡

𝑖 

conditional on 𝑅𝑉𝑡 and 𝐽𝑉𝑡
𝑖, we need to derive the conditional densities for all possible 

combinations of the values of 𝑄𝑉𝑡
𝑖 and 𝑄𝑡

𝑖. These can be derived from the 

relationships: 

𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 0)

∝ 𝑁(ℎ𝑡
𝑖 ; 𝛼 + 𝛽ℎ𝑡−1

𝑖 + 𝐽𝑉𝑡
𝑖𝑄𝑉𝑡

𝑖 , 𝛾)𝑁(log (𝑅𝑉𝑡); ℎ𝑡
𝑖 , 𝜎𝑅𝑉) 

And 

𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 1)

∝ 𝑁(ℎ𝑡
𝑖 ; 𝛼 + 𝛽ℎ𝑡−1

𝑖 + 𝐽𝑉𝑡
𝑖𝑄𝑉𝑡

𝑖, 𝛾)𝑁(log (𝐵𝑉𝑡); ℎ𝑡
𝑖 , 𝜎𝑅𝑉) 

The resulting densities are: 

𝑝(ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 0,𝑄𝑉𝑡
𝑖 = 0) = 𝑁(𝑚0,𝑉,0

∗ , 𝑠∗) 

𝑝(ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 0,𝑄𝑉𝑡
𝑖 = 1) = 𝑁(𝑚0,𝑉,1

∗ , 𝑠∗) 

𝑝(ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 1,𝑄𝑉𝑡
𝑖 = 0) = 𝑁(𝑚1,𝑉,0

∗ , 𝑠∗) 

𝑝(ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 1,𝑄𝑉𝑡
𝑖 = 1) = 𝑁(𝑚1,𝑉,1

∗ , 𝑠∗) 

Where 

𝑚0,𝑉,0
∗ =

log (𝑅𝑉𝑡)𝛾
2 + (𝛼 + 𝛽ℎ𝑡−1

𝑖 )𝜎𝑅𝑉
2

𝜎𝑅𝑉
2 + 𝛾2

 

𝑚0,𝑉,1
∗ =

(log (𝑅𝑉𝑡) − 𝐽𝑉𝑡
𝑖)𝛾2 + (𝛼 + 𝛽ℎ𝑡−1

𝑖 )𝜎𝑅𝑉
2

𝜎𝑅𝑉
2 + 𝛾2

 

𝑚1,𝑉,0
∗ =

log (𝐵𝑉𝑡)𝛾
2 + (𝛼 + 𝛽ℎ𝑡−1

𝑖 )𝜎𝑅𝑉
2

𝜎𝑅𝑉
2 + 𝛾2

 

𝑚1,𝑉,1
∗ =

(log (𝐵𝑉𝑡) − 𝐽𝑉𝑡
𝑖)𝛾2 + (𝛼 + 𝛽ℎ𝑡−1

𝑖 )𝜎𝑅𝑉
2

𝜎𝑅𝑉
2 + 𝛾2

 

And 

𝑠∗ =
𝜎𝑅𝑉𝛾

√𝜎𝑅𝑉
2 + 𝛾2
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7. The value of ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖  will then be sampled from the following Gaussian mixture 

density: 

𝑔(ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝐽𝑉𝑡
𝑖) = 

𝑝0
∗𝑝0,𝑉,0

∗∗ 𝑁(𝑚0,𝑉,0
∗ , 𝑠∗) + 𝑝0

∗𝑝0,𝑉,1
∗∗ 𝑁(𝑚0,𝑉,1

∗ , 𝑠∗) + 

𝑝1
∗𝑝1,𝑉,0

∗∗ 𝑁(𝑚1,𝑉,0
∗ , 𝑠∗) + 𝑝1

∗𝑝1,𝑉,1
∗∗ 𝑁(𝑚1,𝑉,1

∗ , 𝑠∗) 

8. In order to account for the utilized proposal densities for the sampling of  𝐽𝑉𝑡
𝑖 and ℎ𝑡

𝑖 , 

the weight update ratio will have to be multiplied with the following ratio: 

𝑝(ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 |ℎ𝑡−1

𝑖 )𝑁(𝐽𝑉𝑡
𝑖; 𝜇𝐽𝑉 , 𝜎𝐽𝑉)

𝑔(ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑡−1

𝑖 , 𝐽𝑉𝑡
𝑖)𝑔(𝐽𝑉𝑡

𝑖|𝑅𝑉𝑡, 𝐵𝑉𝑡, ℎ𝑡−1
𝑖 )

 

7.3. 2-Component SVJD-RV-Z with price and volatility jumps – 

Sampling of 𝑱𝑽𝒕
𝒊 , 𝒉𝑺𝑻,𝒕

𝒊  and 𝒉𝑳𝑻,𝒕 

The approximate adaptation in the case of a two-component SVJD model with price 

and volatility jumps will be performed as follows:  

1. Calculate provisional probabilities of price jump occurrence 𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖). These can 

be calculated from the likelihood densities with respect to the 𝑍𝑡
𝑖, given as: 

𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 0)~𝑁(𝑍𝑡; 𝜇𝑍, 𝜎𝑍)(1 − 𝜆𝑡
𝑖) 

𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 1)~𝑁(𝑍𝑡; 𝜇𝑍 + 𝜉𝑍, 𝜎𝑍)𝜆𝑡
𝑖  

The provisional jump probability 𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖) can thus be computed as: 

𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖) =
𝑝(𝑍𝑡

𝑖|𝑄𝑡
𝑖 = 1)

𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 0) + 𝑝(𝑍𝑡
𝑖|𝑄𝑡

𝑖 = 1)
 

The probability of no jump is then equal to 𝑝(𝑄𝑡
𝑖 = 0|𝑍𝑡

𝑖) = 1 − 𝑝(𝑄𝑡
𝑖 =

1|𝑍𝑡
𝑖). 

We will further denote 𝑝0
∗ = 𝑝(𝑄𝑡

𝑖 = 0|𝑍𝑡
𝑖) and 𝑝1

∗ = 𝑝(𝑄𝑡
𝑖 = 1|𝑍𝑡

𝑖) 

2. Calculate provisional probabilities of volatility jump occurrence 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖).  

For the 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 0) case we can compute the probability from the 

likelihoods: 

𝑝(𝑅𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 0,𝑄𝑡
𝑖 = 0) = 

𝑁 (log(𝑅𝑉𝑡); 𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖 ; √𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2) (1 − 𝜆𝑉,𝑡
𝑖 ) 

𝑝(𝑅𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0) = 

𝑁 (log (𝑅𝑉𝑡); 𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖 + 𝜇𝐽𝑉; √𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2 + 𝜎𝐽𝑉
2 ) 𝜆𝑉,𝑡

𝑖  

Probability of a volatility jump is then given by: 
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𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 0) =

𝑝(𝑅𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0)

𝑝(𝑅𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0) + 𝑝(𝑅𝑉𝑡

𝑖|𝑄𝑉𝑡
𝑖 = 1, 𝑄𝑡

𝑖 = 0)
 

We will further denote 𝑝0,𝑉,1
∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝑅𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 0) and 𝑝0,𝑉,0
∗ = 1 − 𝑝𝑉,1

∗  

For the 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 1) case we will utilize approximation that  

log[𝑅𝑉(𝑡) − 𝐽2(𝑡)𝑄(𝑡)] ≅ log[𝐵𝑉(𝑡)] and can compute the probability from the 

likelihoods: 

𝑝(𝐵𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 0,𝑄𝑡
𝑖 = 1) = 

𝑁 (log (𝐵𝑉𝑡); 𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖 ; √𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2) (1 − 𝜆𝑉,𝑡
𝑖 ) 

𝑝(𝐵𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1) = 

𝑁 (log(𝐵𝑉𝑡); 𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖 + 𝜇𝐽𝑉; √𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2 + 𝜎𝐽𝑉
2 ) 𝜆𝑉,𝑡

𝑖  

Probability of a volatility jump is then given by: 

𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 1) =

𝑝(𝐵𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1)

𝑝(𝐵𝑉𝑡
𝑖|𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1) + 𝑝(𝐵𝑉𝑡

𝑖|𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1)
 

We will further denote  𝑝1,𝑉,1
∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝐵𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 0) and 𝑝1,𝑉,0
∗ = 1 −

𝑝1,𝑉,1
∗ . 

3. In order to sample the volatility jump sizes 𝐽𝑉𝑡
𝑖 conditional on 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0, we 

need to use the following relationship: 

𝑝(𝐽𝑉𝑡
𝑖|𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝑄𝑉𝑡

𝑖 = 1, 𝑄𝑡
𝑖 = 0)

∝ 𝑁(𝐽𝑉𝑡
𝑖; 𝜇𝐽𝑉, 𝜎𝐽𝑉)𝑁(ℎ𝑡

𝑖 ; ℎ𝐿𝑇,𝑡
𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖 + 𝐽𝑉𝑡
𝑖, 𝛾)𝑁(ℎ𝐿𝑇,𝑡

𝑖 ; 𝜙0

+ 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 , 𝜙2)𝑁(log (𝐵𝑉𝑡); ℎ𝑡

𝑖 , 𝜎𝑅𝑉) 

As all of the densities are Gaussian, they can be combined to get: 

𝑝(𝐽𝑉𝑡
𝑖|𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0)

= 𝑁

(

 𝐽𝑉𝑡
𝑖;

(log (𝑅𝑉𝑡) − 𝜙0 − 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 − 𝛽ℎ𝑡−1

𝑖 )𝜎𝐽𝑉
2 + 𝜇𝐽𝑉(𝜎𝑅𝑉

2 + 𝜙2
2 + 𝛾2)

𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2 + 𝜎𝐽𝑉
2 ,

𝜎𝐽𝑉√𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2

√𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2 + 𝜎𝐽𝑉
2

)

  

Similarly, we can get the density for the 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1 case as: 

𝑝(𝐽𝑉𝑡
𝑖|𝐵𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1)

= 𝑁

(

 𝐽𝑉𝑡
𝑖;

(log (𝐵𝑉𝑡) − 𝜙0 − 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 − 𝛽ℎ𝑡−1

𝑖 )𝜎𝐽𝑉
2 + 𝜇𝐽𝑉(𝜎𝑅𝑉

2 + 𝜙2
2 + 𝛾2)

𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2 + 𝜎𝐽𝑉
2 ,

𝜎𝐽𝑉√𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2

√𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2 + 𝜎𝐽𝑉
2

)

  

4. Volatility jump sizes 𝐽𝑉𝑡
𝑖 can then be sampled from the following Gaussian mixture: 
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𝑔(𝐽𝑉𝑡
𝑖|𝑅𝑉𝑡, 𝐵𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 ) = 

(𝑝0
∗𝑝0,𝑉,0

∗ + 𝑝1
∗𝑝1,𝑉,0

∗ )𝑁(𝐽𝑉𝑡
𝑖; 𝜇𝐽𝑉, 𝜎𝐽𝑉) + 

𝑝0
∗𝑝0,𝑉,1

∗ 𝑝(𝐽𝑉𝑡
𝑖|𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0) + 

𝑝1
∗𝑝1,𝑉,1

∗ 𝑝(𝐽𝑉𝑡
𝑖|𝐵𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1) 

5. Before we proceed to sample ℎ𝐿𝑇,𝑡
𝑖 , it is necessary to re-calculate the provisional 

volatility jump occurrence probabilities 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝐽𝑉𝑡
𝑖, 𝑄𝑡

𝑖), so that they 

correspond to the sampled values of  𝐽𝑉𝑡
𝑖. 

For the 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 0) case we can compute the probability 

from the likelihoods: 

𝑝(𝑅𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖, 𝑄𝑉𝑡
𝑖 = 0,𝑄𝑡

𝑖 = 0)

= 𝑁 (log(𝑅𝑉𝑡); 𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖 ; √𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2) (1

− 𝜆𝑉,𝑡
𝑖 ) 

𝑝(𝑅𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0)

= 𝑁 (log(𝑅𝑉𝑡); 𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖

+ 𝐽𝑉𝑡
𝑖; √𝜎𝑅𝑉

2 + 𝜙2
2 + 𝛾2) 𝜆𝑉,𝑡

𝑖  

Probability of a volatility jump is then given by: 

𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖, 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 0)

=
𝑝(𝑅𝑉𝑡

𝑖|𝐽𝑉𝑡
𝑖, 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0)

𝑝(𝑅𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖, 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0) + 𝑝(𝑅𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0)
 

We will further denote 𝑝0,𝑉,1
∗∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝑅𝑉𝑡
𝑖, 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 0) and 𝑝0,𝑉,0

∗∗ = 1 −

𝑝𝑉,1
∗∗  

Analogously for 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡

𝑖 , 𝐽𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 1), we use the likelihoods: 

𝑝(𝐵𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖, 𝑄𝑉𝑡
𝑖 = 0,𝑄𝑡

𝑖 = 1)

= 𝑁 (log (𝐵𝑉𝑡); 𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖 ; √𝜎𝑅𝑉
2 + 𝜙2

2 + 𝛾2) (1

− 𝜆𝑉,𝑡
𝑖 ) 
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𝑝(𝐵𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1)

= 𝑁 (log(𝐵𝑉𝑡); 𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖

+ 𝐽𝑉𝑡
𝑖; √𝜎𝑅𝑉

2 + 𝜙2
2 + 𝛾2)𝜆𝑉,𝑡

𝑖  

Probability of a volatility jump is then given by: 

𝑝(𝑄𝑉𝑡
𝑖 = 1|𝐽𝑉𝑡

𝑖, 𝑅𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 0)

=
𝑝(𝐵𝑉𝑡

𝑖|𝐽𝑉𝑡
𝑖, 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1)

𝑝(𝐵𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1) + 𝑝(𝐵𝑉𝑡
𝑖|𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1)
 

We will further denote  𝑝1,𝑉,1
∗∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝐽𝑉𝑡
𝑖, 𝐵𝑉𝑡

𝑖, 𝑄𝑡
𝑖 = 0) and 𝑝1,𝑉,0

∗∗ =

1 − 𝑝1,𝑉,1
∗∗ . 

6. In order to sample the long-term log-variance component ℎ𝐿𝑇,𝑡
𝑖 , conditional  on 𝑅𝑉𝑡 

and 𝐽𝑉𝑡
𝑖, we need to derive the conditional densities for all possible combinations of 

the values of 𝑄𝑉𝑡
𝑖 and 𝑄𝑡

𝑖. These can be derived from the relationships: 

𝑝(ℎ𝐿𝑇,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 0)

∝ 𝑁(ℎ𝑡
𝑖 ; ℎ𝐿𝑇,𝑡

𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 + 𝐽𝑉𝑡

𝑖𝑄𝑉𝑡
𝑖, 𝛾)𝑁(ℎ𝐿𝑇,𝑡

𝑖 ; 𝜙0

+ 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 , 𝜙2)𝑁(log (𝑅𝑉𝑡); ℎ𝑡

𝑖 , 𝜎𝑅𝑉) 

And 

𝑝(ℎ𝐿𝑇,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 0)

∝ 𝑁(ℎ𝑡
𝑖 ; ℎ𝐿𝑇,𝑡

𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 + 𝐽𝑉𝑡

𝑖𝑄𝑉𝑡
𝑖, 𝛾)𝑁(ℎ𝐿𝑇,𝑡

𝑖 ; 𝜙0

+ 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 , 𝜙2)𝑁(log (𝐵𝑉𝑡); ℎ𝑡

𝑖 , 𝜎𝑅𝑉) 

The resulting densities are: 

𝑝(ℎ𝐿𝑇,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 0, 𝑄𝑉𝑡

𝑖 = 0) = 𝑁(𝑚0,𝑉,0
∗ , 𝑠∗) 

𝑝(ℎ𝐿𝑇,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 0, 𝑄𝑉𝑡

𝑖 = 1) = 𝑁(𝑚0,𝑉,1
∗ , 𝑠∗) 

𝑝(ℎ𝐿𝑇,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 1,𝑄𝑉𝑡

𝑖 = 0) = 𝑁(𝑚1,𝑉,0
∗ , 𝑠∗) 

𝑝(ℎ𝐿𝑇,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 1,𝑄𝑉𝑡

𝑖 = 1) = 𝑁(𝑚1,𝑉,1
∗ , 𝑠∗) 

Where 

𝑚0,𝑉,0
∗ =

(log (𝑅𝑉𝑡) − 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 )𝜙2

2 + (𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 )(𝜎𝑅𝑉

2 + 𝛾2)

𝜎𝑅𝑉
2 + 𝛾2 + 𝜙2

2  

𝑚0,𝑉,1
∗ =

(log (𝑅𝑉𝑡) − 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 − 𝐽𝑉𝑡

𝑖)𝜙2
2 + (𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1

𝑖 )(𝜎𝑅𝑉
2 + 𝛾2)

𝜎𝑅𝑉
2 + 𝛾2 + 𝜙2

2  

𝑚1,𝑉,0
∗ =

(log (𝐵𝑉𝑡) − 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 )𝜙2

2 + (𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1
𝑖 )(𝜎𝑅𝑉

2 + 𝛾2)

𝜎𝑅𝑉
2 + 𝛾2 + 𝜙2

2  
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𝑚1,𝑉,1
∗ =

(log (𝐵𝑉𝑡) − 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 − 𝐽𝑉𝑡

𝑖)𝜙2
2 + (𝜙0 + 𝜙1ℎ𝐿𝑇,𝑡−1

𝑖 )(𝜎𝑅𝑉
2 + 𝛾2)

𝜎𝑅𝑉
2 + 𝛾2 + 𝜙2

2  

And 

𝑠∗ =
𝜙2√𝜎𝑅𝑉

2 + 𝛾2

√𝜎𝑅𝑉
2 + 𝛾2 + 𝜙2

2
 

7. The value of ℎ𝐿𝑇,𝑡
𝑖  can then be sampled from the following Gaussian mixture density: 

𝑔(ℎ𝐿𝑇,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝐽𝑉𝑡

𝑖) = 

𝑝0
∗𝑝0,𝑉,0

∗∗ 𝑁(𝑚0,𝑉,0
∗ , 𝑠∗) + 𝑝0

∗𝑝0,𝑉,1
∗∗ 𝑁(𝑚0,𝑉,1

∗ , 𝑠∗) + 

𝑝1
∗𝑝1,𝑉,0

∗∗ 𝑁(𝑚1,𝑉,0
∗ , 𝑠∗) + 𝑝1

∗𝑝1,𝑉,1
∗∗ 𝑁(𝑚1,𝑉,1

∗ , 𝑠∗) 

8. Before we proceed to sample ℎ𝑆𝑇,𝑡
𝑖 , it is necessary to re-calculate the provisional 

volatility jump occurrence probabilities 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖), so that they 

correspond to the sampled values of  𝐽𝑉𝑡
𝑖 and ℎ𝐿𝑇,𝑡

𝑖 . 

For the 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 0) case we can compute the 

probability from the likelihoods: 

𝑝(𝑅𝑉𝑡|ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 0,𝑄𝑡

𝑖 = 0)

= 𝑁 (log(𝑅𝑉𝑡); ℎ𝐿𝑇,𝑡
𝑖 + 𝛽ℎ𝑡−1

𝑖 ; √𝜎𝑅𝑉
2 + 𝛾2) (1 − 𝜆𝑉,𝑡

𝑖 ) 

𝑝(𝑅𝑉𝑡|ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0)

= 𝑁 (log(𝑅𝑉𝑡); ℎ𝐿𝑇,𝑡
𝑖 + 𝛽ℎ𝑡−1

𝑖 + 𝐽𝑉𝑡
𝑖; √𝜎𝑅𝑉

2 + 𝛾2) 𝜆𝑉,𝑡
𝑖  

Probability of a volatility jump is then given by: 

𝑝(𝑄𝑉𝑡
𝑖 = 1|𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 0)

=
𝑝(𝑅𝑉𝑡|ℎ𝐿𝑇,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 0)

𝑝(𝑅𝑉𝑡|ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖, 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0) + 𝑝(𝑅𝑉𝑡|ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 0)
 

We will further denote 𝑝0,𝑉,1
∗∗∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 0) and 

𝑝0,𝑉,0
∗∗∗ = 1 − 𝑝𝑉,1

∗∗∗ 

Analogously for 𝑝(𝑄𝑉𝑡
𝑖 = 1|𝐵𝑉𝑡, ℎ𝐿𝑇,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 1), we use the likelihoods: 

𝑝(𝐵𝑉𝑡|ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 0,𝑄𝑡

𝑖 = 1)

= 𝑁 (log (𝐵𝑉𝑡); ℎ𝐿𝑇,𝑡
𝑖 + 𝛽ℎ𝑡−1

𝑖 ; √𝜎𝑅𝑉
2 + 𝛾2) (1 − 𝜆𝑉,𝑡

𝑖 ) 

𝑝(𝐵𝑉𝑡|ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1)

= 𝑁 (log(𝐵𝑉𝑡); ℎ𝐿𝑇,𝑡
𝑖 + 𝛽ℎ𝑡−1

𝑖 + 𝐽𝑉𝑡
𝑖; √𝜎𝑅𝑉

2 + 𝛾2) 𝜆𝑉,𝑡
𝑖  
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Probability of a volatility jump is then given by: 

𝑝(𝑄𝑉𝑡
𝑖 = 1|𝐵𝑉𝑡, ℎ𝐿𝑇,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 0)

=
𝑝(𝐵𝑉𝑡|ℎ𝐿𝑇,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑉𝑡

𝑖 = 1,𝑄𝑡
𝑖 = 1)

𝑝(𝐵𝑉𝑡|ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1,𝑄𝑡

𝑖 = 1) + 𝑝(𝐵𝑉𝑡|ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖 = 1, 𝑄𝑡

𝑖 = 1)
 

We will further denote  𝑝1,𝑉,1
∗∗∗ = 𝑝(𝑄𝑉𝑡

𝑖 = 1|𝐵𝑉𝑡, ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 0) and 

𝑝1,𝑉,0
∗∗∗ = 1 − 𝑝1,𝑉,1

∗∗∗ . 

9. In order to sample the diffusive part of the short-term stochastic variances ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖 =

ℎ𝑆𝑇,𝑡
𝑖 − 𝐽𝑉𝑡

𝑖𝑄𝑉𝑡
𝑖 conditional on 𝑅𝑉𝑡, 𝐽𝑉𝑡

𝑖 and ℎ𝐿𝑇,𝑡
𝑖 , we need to derive the conditional 

densities for all possible combinations of the values of 𝑄𝑉𝑡
𝑖 and 𝑄𝑡

𝑖. These can be 

derived from the relationships: 

𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑆𝑇,𝑡−1

𝑖 , ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 0)

∝ 𝑁(ℎ𝑡
𝑖 ; ℎ𝐿𝑇,𝑡

𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 + 𝐽𝑉𝑡

𝑖𝑄𝑉𝑡
𝑖, 𝛾)𝑁(log (𝑅𝑉𝑡); ℎ𝑡

𝑖 , 𝜎𝑅𝑉) 

And 

𝑝(ℎ𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑆𝑇,𝑡−1

𝑖 , ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 1)

∝ 𝑁(ℎ𝑡
𝑖 ; ℎ𝐿𝑇,𝑡

𝑖 + 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 + 𝐽𝑉𝑡

𝑖𝑄𝑉𝑡
𝑖, 𝛾)𝑁(log (𝐵𝑉𝑡); ℎ𝑡

𝑖 , 𝜎𝑅𝑉) 

The resulting densities are: 

𝑝(ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑆𝑇,𝑡−1

𝑖 , ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 0, 𝑄𝑉𝑡

𝑖 = 0) = 𝑁(𝑚0,𝑉,0
∗∗ , 𝑠∗∗) 

𝑝(ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑆𝑇,𝑡−1

𝑖 , ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 0, 𝑄𝑉𝑡

𝑖 = 1) = 𝑁(𝑚0,𝑉,1
∗∗ , 𝑠∗∗) 

𝑝(ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑆𝑇,𝑡−1

𝑖 , ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 1,𝑄𝑉𝑡

𝑖 = 0) = 𝑁(𝑚1,𝑉,0
∗∗ , 𝑠∗∗) 

𝑝(ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑆𝑇,𝑡−1

𝑖 , ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 1,𝑄𝑉𝑡

𝑖 = 1) = 𝑁(𝑚1,𝑉,1
∗∗ , 𝑠∗∗) 

Where 

𝑚0,𝑉,0
∗∗ =

(log (𝑅𝑉𝑡) − ℎ𝐿𝑇,𝑡
𝑖 )𝛾2 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖 𝜎𝑅𝑉
2

𝜎𝑅𝑉
2 + 𝛾2

 

𝑚0,𝑉,1
∗∗ =

(log (𝑅𝑉𝑡) − ℎ𝐿𝑇,𝑡
𝑖 − 𝐽𝑉𝑡

𝑖)𝛾2 + 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 𝜎𝑅𝑉

2

𝜎𝑅𝑉
2 + 𝛾2

 

𝑚1,𝑉,0
∗∗ =

(log (𝐵𝑉𝑡) − ℎ𝐿𝑇,𝑡
𝑖 )𝛾2 + 𝛽ℎ𝑆𝑇,𝑡−1

𝑖 𝜎𝑅𝑉
2

𝜎𝑅𝑉
2 + 𝛾2

 

𝑚1,𝑉,1
∗∗ =

(log (𝐵𝑉𝑡) − ℎ𝐿𝑇,𝑡
𝑖 − 𝐽𝑉𝑡

𝑖)𝛾2 + 𝛽ℎ𝑆𝑇,𝑡−1
𝑖 𝜎𝑅𝑉

2

𝜎𝑅𝑉
2 + 𝛾2

 

And 

𝑠∗∗ =
𝜎𝑅𝑉𝛾

√𝜎𝑅𝑉
2 + 𝛾2

 

10. The value of ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖  will then be sampled from the following Gaussian mixture 

density: 
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𝑔(ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑆𝑇,𝑡−1

𝑖 , ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖) = 

𝑝0
∗𝑝0,𝑉,0

∗∗∗ 𝑁(𝑚0,𝑉,0
∗∗ , 𝑠∗∗) + 𝑝0

∗𝑝0,𝑉,1
∗∗∗ 𝑁(𝑚0,𝑉,1

∗∗ , 𝑠∗∗) + 

𝑝1
∗𝑝1,𝑉,0

∗∗∗ 𝑁(𝑚1,𝑉,0
∗∗ , 𝑠∗∗) + 𝑝1

∗𝑝1,𝑉,1
∗∗∗ 𝑁(𝑚1,𝑉,1

∗∗ , 𝑠∗∗) 

11. In order to account for the utilized proposal densities for the sampling of  𝐽𝑉𝑡
𝑖, ℎ𝐿𝑇,𝑡

𝑖  

and ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖 , the weight update ratio will have to be multiplied with the following 

ratio: 

𝑝(ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖 |ℎ𝑆𝑇,𝑡−1

𝑖 )𝑝(ℎ𝐿𝑇,𝑡
𝑖 |ℎ𝐿𝑇,𝑡−1

𝑖 )𝑁(𝐽𝑉𝑡
𝑖; 𝜇𝐽𝑉, 𝜎𝐽𝑉)

𝑔(ℎ𝑆𝑇,𝐷𝑖𝑓𝑓,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝑆𝑇,𝑡−1

𝑖 , ℎ𝐿𝑇,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖)𝑔(ℎ𝐿𝑇,𝑡
𝑖 |𝑅𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 , 𝐽𝑉𝑡

𝑖)𝑔(𝐽𝑉𝑡
𝑖|𝑅𝑉𝑡, 𝐵𝑉𝑡, ℎ𝐿𝑇,𝑡−1

𝑖 , ℎ𝑆𝑇,𝑡−1
𝑖 )

 

7.4. SVJD-RV-Z with price and volatility jumps – Sampling of 𝑱𝒕
𝒊  

The sampling of 𝐽𝑡
𝑖 should be performed after we have already sampled the ℎ𝐷𝑖𝑓𝑓,𝑡

𝑖  and 

𝐽𝑉𝑡
𝑖. The non-linearity in the relationship between 𝑅𝑉𝑡 and 𝐽𝑡

𝑖 unfortunately makes the fully 

adapted distribution intractable. Nevertheless, we can at least use the available information 

about 𝑟𝑡 and 𝑍𝑡 in order to derive an approximately adapted distribution of 𝐽𝑡
𝑖. The adaptation 

proceeds as follows: 

1. Let us define 𝑉𝐷𝑖𝑓𝑓,𝑡
𝑖 = exp (ℎ𝐷𝑖𝑓𝑓,𝑡

𝑖 ) and 𝑉𝐽𝑢𝑚𝑝,𝑡
𝑖 = exp (ℎ𝐷𝑖𝑓𝑓,𝑡

𝑖 + 𝐽𝑉𝑡
𝑖). We can then 

calculate the provisional probabilities of price and volatility jumps, conditional on 𝑟𝑡 

and 𝑍𝑡, by using the likelihoods 𝑙𝑥,𝑦
∗ = 𝑝(𝑟𝑡, 𝑍𝑡|𝑉𝐷𝑖𝑓𝑓,𝑡

𝑖 , 𝑄𝑡
𝑖 = 𝑥, 𝑄𝑉𝑡

𝑖 = 𝑦), defined as 

follows: 

𝑙0,0
∗ = 𝑁 (𝑟𝑡; 𝜇, √𝑉𝐷𝑖𝑓𝑓,𝑡

𝑖 )𝑁(𝑍𝑡; 𝜇𝑍, 𝜎𝑍)(1 − 𝜆𝑡
𝑖)(1 − 𝜆𝑉,𝑡

𝑖 ) 

𝑙0,1
∗ = 𝑁 (𝑟𝑡; 𝜇, √𝑉𝐽𝑢𝑚𝑝,𝑡

𝑖 )𝑁(𝑍𝑡; 𝜇𝑍, 𝜎𝑍)(1 − 𝜆𝑡
𝑖)𝜆𝑉,𝑡

𝑖  

𝑙1,0
∗ = 𝑁 (𝑟𝑡; 𝜇 + 𝜇𝐽, √𝑉𝐷𝑖𝑓𝑓,𝑡

𝑖 + 𝜎𝑗
2) 𝑁(𝑍𝑡; 𝜇𝑍 + 𝜉𝑍, 𝜎𝑍)𝜆𝑡

𝑖 (1 − 𝜆𝑉,𝑡
𝑖 ) 

𝑙1,1
∗ = 𝑁 (𝑟𝑡; 𝜇 + 𝜇𝐽, √𝑉𝐽𝑢𝑚𝑝,𝑡

𝑖 + 𝜎𝑗
2)𝑁(𝑍𝑡; 𝜇𝑍 + 𝜉𝑍, 𝜎𝑍)𝜆𝑡

𝑖𝜆𝑉,𝑡
𝑖  

The provisional probabilities 𝑝𝑥,𝑦
∗ = 𝑝(𝑄𝑡

𝑖 = 𝑥, 𝑄𝑉𝑡
𝑖 = 𝑦|𝑟𝑡, 𝑍𝑡, ℎ𝐷𝑖𝑓𝑓,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖) are 

then given as: 

𝑝0,0
∗ = 𝑙0,0

∗ /(𝑙0,0
∗ + 𝑙0,1

∗ + 𝑙1,0
∗ + 𝑙1,1

∗ ) 

𝑝0,1
∗ = 𝑙0,1

∗ /(𝑙0,0
∗ + 𝑙0,1

∗ + 𝑙1,0
∗ + 𝑙1,1

∗ ) 

𝑝1,0
∗ = 𝑙1,0

∗ /(𝑙0,0
∗ + 𝑙0,1

∗ + 𝑙1,0
∗ + 𝑙1,1

∗ ) 

𝑝1,1
∗ = 𝑙1,1

∗ /(𝑙0,0
∗ + 𝑙0,1

∗ + 𝑙1,0
∗ + 𝑙1,1

∗ ) 
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2. We can then compute conditional densities for 𝐽𝑡
𝑖 for the two cases when 𝑄𝑡

𝑖 = 1. 

These will be: 

𝑝(𝐽𝑡
𝑖|𝑟𝑡, 𝑍𝑡 , ℎ𝐷𝑖𝑓𝑓,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖 , 𝑄𝑡

𝑖 = 1, 𝑄𝑉𝑡
𝑖 = 0)

= 𝑁

(

 𝐽𝑡
𝑖;

(𝑟𝑡 − 𝜇)𝜎𝑗
2 + 𝜇𝐽𝑉𝐷𝑖𝑓𝑓,𝑡

𝑖

𝑉𝐷𝑖𝑓𝑓,𝑡
𝑖 + 𝜎𝑗

2
,

𝜎𝑗√𝑉𝐷𝑖𝑓𝑓,𝑡
𝑖

√𝜎𝑗
2 + 𝑉𝐷𝑖𝑓𝑓,𝑡

𝑖

)

  

𝑝(𝐽𝑡
𝑖|𝑟𝑡, 𝑍𝑡, ℎ𝐷𝑖𝑓𝑓,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖, 𝑄𝑡

𝑖 = 1,𝑄𝑉𝑡
𝑖 = 1)

= 𝑁

(

 𝐽𝑡
𝑖;

(𝑟𝑡 − 𝜇)𝜎𝑗
2 + 𝜇𝐽𝑉𝐽𝑢𝑚𝑝,𝑡

𝑖

𝑉𝐽𝑢𝑚𝑝,𝑡
𝑖 + 𝜎𝑗

2
,

𝜎𝑗√𝑉𝐽𝑢𝑚𝑝,𝑡
𝑖

√𝜎𝑗
2 + 𝑉𝐽𝑢𝑚𝑝,𝑡

𝑖

)

  

3. The values of 𝐽𝑡
𝑖 can then be sampled from the following Gaussian mixture proposal 

density: 

𝑔(𝐽𝑡
𝑖|𝑟𝑡, 𝑍𝑡, ℎ𝐷𝑖𝑓𝑓,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖) = (𝑝0,0

∗ + 𝑝0,1
∗ )𝑁(𝐽𝑡

𝑖; 𝜇𝐽, 𝜎𝑗) + 

𝑝1,0
∗  𝑝(𝐽𝑡

𝑖|𝑟𝑡, 𝑍𝑡, ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 1,𝑄𝑉𝑡

𝑖 = 0) + 

𝑝1,1
∗ 𝑝(𝐽𝑡

𝑖|𝑟𝑡, 𝑍𝑡, ℎ𝐷𝑖𝑓𝑓,𝑡
𝑖 , 𝐽𝑉𝑡

𝑖 , 𝑄𝑡
𝑖 = 1,𝑄𝑉𝑡

𝑖 = 1) 

4. During the weight update step, the weight update ratio will then have to be multiplied 

with: 

𝑁(𝐽𝑡
𝑖; 𝜇𝐽, 𝜎𝑗)

𝑔(𝐽𝑡
𝑖|𝑟𝑡, 𝑍𝑡 , ℎ𝐷𝑖𝑓𝑓,𝑡

𝑖 , 𝐽𝑉𝑡
𝑖)
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