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- Preface -

In my Ph.D. thesis, I study statistical and econometric methods analyzing financial high-frequency data
from both theoretical and empirical point of view. The main contributions of the thesis are the following.

• A new framework for modeling zero values of trade durations caused by split transactions is pre-
sented. It is based on the generalized autoregressive score model with zero-inflated discrete dis-
tributions. The main advantage of this approach is its ability to determine the ratio of zero values
caused by split transactions and zero values caused by simultaneous but independent transactions.

• New estimators of the Ornstein–Uhlenbeck process contaminated by the market microstructure
noise are proposed. For equidistant data, method of moments, maximum likelihood method and
reparametrization toARMA(1,1) process are utilized. The proposedmaximum likelihood estimator
can also be used in the case of irregularly spaced tick data.

Besides these two main results, the thesis contains further minor contributions.

• The extensive theoretical and empirical literature dealing with financial high-frequency data is
reviewed. The main focus is on the duration analysis and the volatility analysis. Tools for financial
high-frequency data analysis in statistical software R are also reviewed.

• The issue of rounding is briefly visited in the context of financial data. It is shown that the rounding
error is a significant part of themarket microstructure noise. This finding is based on asymptotically
uniform distribution of the rounding error.

• For the estimation of quadratic variation, an interval approach motivated by the bid-ask spread
and discretness of prices is presented. It is proven, however, that the quadratic variation is not
identifiable under this interval setting.

• Various non-parametric estimators of quadratic variation robust to the market microstructure noise
are compared in a simulation study. Forecasting models for estimated quadratic variation are also
compared in an empirical study.

• An intraday pairs trading strategy utilizing ultra-high-frequency data is presented. It is based on
the Ornstein–Uhlenbeck process and the mean-variance optimization. The empirical study shows
that this strategy is highly profitable for the right choice of mean and variance constraints.

The thesis is based on the two following articles. The article of Blasques, Holý and Tomanová (2018)
contributes to duration analysis by modeling durations in a discrete GAS framework allowing for ex-
cessive zero durations corresponding to split transactions. This paper is used in Chapter 3. The article
of Holý and Tomanová (2018) extends parametric analysis of financial high-frequency data by estimat-
ing Ornstein–Uhlenbeck process contaminated by the market microstructure noise with an application to
intraday pairs trading strategy. This paper is used in Chapter 5.
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The thesis is also based on the following conference proceedings. The conference proceedings of Holý
(2016) investigate the impact of the market microstructure noise on the quadratic variance. This paper is
used in Section 4.2.1. The conference proceedings of Holý (2017a) review the literature about the mar-
ket microstructure noise. This paper is used throughout Chapter 1. The conference proceedings of Holý
(2017b) propose a method for estimating quadratic variation by least squares. After the publication of
this paper, however, I found that the least squares estimator has already been proposed by Nolte and Voev
(2012). This paper is used in Section 4.2.5. The conference proceedings of Holý (2017c) compare fore-
casting accuracy of various quadratic variation models. This paper is used in sections 4.3 and 4.4.2. The
conference proceedings of Holý (2017e) formulate various quadratic variation estimators as a quadratic
form. This paper is used in Section 4.2. The conference proceedings of Holý (2018a) review the literature
about the impact of high-frequency data. This paper is used throughout Chapter 1. The conference pro-
ceedings of Holý (2018b) investigate properties of the rounding error in high-frequency data. This paper
is used in Section 2.2.4. The conference proceedings of Holý (2018c) reviews functions in R related to
high-frequency data analysis. This paper is used in Appendix C. The conference proceedings of Holý and
Černý (2017) compare various quadratic variation estimators in a simulation study. This paper is used
in sections 4.2 and 4.4.1. The conference proceedings of Holý and Sokol (2018) deal with the quadratic
variation under interval uncertainty. This paper is used in sections 2.2.5 and 4.1.2. Some passages are
rewritten from the above mentioned papers while others are kept in their original form. The notation and
applications are unified while the introductions are omitted.
The work on the thesis was supported by the Internal Grant Agency of the University of Economics,
Prague Project No. F4/63/2016 (Analysis of Financial High-Frequency Data: Estimates in the Presence of
Market Microstructure Noise), F4/58/2017 (Modern Methods of Uncertainty in Statistical and Optimiza-
tion Models), F4/93/2017 (Transfer of Information on Financial Markets During Turbulences: Asymmet-
ric Dependency Measures), F4/21/2018 (Analysis of High-Frequency Data and Data Stream) and by the
Czech Science Foundation Project No. P402/12/G097 (DYME – Dynamic Models in Economics).
I wish to thank Michal Černý for his guidance, Petra Tomanová for collaboration on the key papers about
zero trade durations and the Ornstein–Uhlenbeck process, Ondřej Sokol for discussions about all the
ideas related to the interval analysis, Francisco Blasques for the insight into the asymptotic theory of
GAS models, Tomáš Cipra for useful comments, Alena Holá for proofreading and Kateřina Koudelková
for her support.
I declare that this thesis and the work presented in it are my own except for the shared authorship of the
indicated parts. The literature and supporting materials are mentioned in the bibliography.

January 9, 2019, Prague Vladimír Holý
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- Introduction -

The analysis of intraday stock prices, foreign exchange rates and commodity prices is an important aspect
of quantitative finance. In this work, high-frequency data analysis is approached from both theoretical
and empirical perspective. The thesis is organized as follows.
Chapter 1 reviews the extensive high-frequency data literature. First, the specifics of high-frequency
data are discussed. Next, a vast number of analytical methods dealing with these specifics is presented.
Finally, the impact of these methods in answering financial questions is assessed.
Chapter 2 establishes basic concepts on which the rest of the thesis is based. Practical issues of data
cleaning, transformation and aggregation are presented. Theoretical models for times of observations,
price process and market microstructure are formulated as well.
Chapter 3 analyzes durations between successive transactions. Traditional autoregressive conditional
duration models based on continuous distributions are reviewed. A discrete model based on the zero-
inflated negative binomial distribution with the general autoregressive score specification is proposed.
Asymptotic properties of the maximum likelihood estimator are discussed. It is shown in an empirical
study that the proposed model performs superior to the traditional continuous models as it is able to
capture excessive zero values in duration data caused by split transactions.
Chapter 4 analyzes non-parametric volatility of the price process. Quadratic variation is defined and its
properties analyzed in the stochastic calculus framework and interval framework as well. Several non-
parametric estimators of quadratic variation commonly used in the literature are presented. Models for
forecasting quadratic variation are also presented. All methods are compared in an empirical study of
daily volatility.
Chapter 5 analyzes the price process using parametric methods. It is assumed that the prices follow the
Ornstein–Uhlenbeck process. Several estimators of the Ornstein–Uhlenbeck process robust to the market
microstructure noise for both equidistant and irregularly spaced data are proposed. The benefits of the
proposed noise-robust estimators over traditional biased estimators are illustrated in an empirical study
of the pairs trading strategy.
The thesis is supplemented by the following appendices. Appendix A describes the stock market and data
used in the empirical analysis. Appendix B presents interesting statistics about the high-frequency data
literature. Appendix C reviews capabilities of statistical computing software R in financial high-frequency
data analysis. Appendix D reminds some lesser-known special functions in mathematics.
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- Chapter 1 -

High-Frequency Data

In finance, Engle (2000) coined the term ultra-high-frequency data referring to irregularly spaced time
series recorded at the highest possible frequency corresponding to each transaction or change in bid/ask
offer. Financial high-frequency time series include stock prices, foreign exchange rates and commodity
prices. The availability of these high-frequency data allows econometricians to construct more precise
models while facing some new challenges.
Over the past 20 years, many scientific articles have been devoted to study financial high-frequency data
and have proposed methods to utilize them correctly. This growing interest in financial high-frequency
data is illustrated in Figure 1.1 using data from Scopus (Elsevier, 2019). For a better insight into the
so-called high-frequency literature, see Appendix B. Contrary to the rising attention from the scientific
community, there are still several myths surrounding high-frequency data within the financial industry.
Among these myths are the following 1.

• "High-frequency data are just a lot of low-frequency data."This is simply not true as high-frequency
data have distinct properties due to market microstructure specifics such as irregularly spaced ob-
servations, price discreteness and bid-ask spread.

• "High-frequency data can be analyzed by econometric methods designed for low-frequency data."
As high-frequency data possess several market microstructure specifics, it follows that econometric
and statistical analysis of financial high-frequency data requires special methods dealing with such
specifics. For example, random times between observations are modeled in duration analysis while
price discretness and bid-ask spread are captured by the market microstructure noise in volatility
analysis.

• "High-frequency data are useful just for high-frequency trading." High-frequency trading naturally
demands high-frequency data. Financial decisions and operations on lower frequencies, however,
do benefit from high-frequency information as well. For example, portfolio optimization carried
out on a daily basis can utilize more precise estimation of daily volatility based on intraday price
movements.

The goal of this chapter is to refute these myths, present the key ideas in financial high-frequency data
analysis and review related literature. For a comprehensive overview of high-frequency methods, we
refer to the book of Hautsch (2011) focusing on analysis of durations and liquidity as well as the book of
Aït-Sahalia and Jacod (2014) focusing on analysis of volatility, higher moments and jumps.

1Similar myths were discussed by Stephanie Toper during the 7th Annual Stevens Conference on High Frequency Finance
and Analytics, Hoboken, November 3–5, 2016.
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1.1 Specifics of High-Frequency Data

We review specifics of high-frequency data from both practical and theoretical point of view. Let us
illustrate differences between low-frequency and high-frequency data. Daily closing prices in Figure 1.2
can be treated within the traditional time series framework with discrete times and continuous values.
Intraday tick prices (also known as ultra-high-frequency data) illustrated in Figure 1.3 and Figure 1.4,
however, require a special treatment. As they come in a huge quantity and are irregularly spaced, it is
natural to model prices by a process with continuous time or to model prices and times of observations
simultaneously. Other specifics of high-frequency prices which need to be addressed in mathematical
models include discretness of price values and bid-ask spread.

1.1.1 Data Considerations

An unpleasant specific of financial high-frequency data is a huge amount of recording errors. The reason
for this is the velocity and volume at which high-frequency data are recorded as argued by Falkenberry
(2002). The remedy is a careful data cleaning procedure. Such procedures are described by Brownlees
and Gallo (2006) in the context of duration modeling and by Barndorff-Nielsen et al. (2009) in the context
of volatility estimation. We discuss data cleaning procedures in more detail in Section 2.1.1.
A particular question is what to do with observations with the same timestamp. Most of the literature
resort to merging transactions occuring at the same time into a single value. However, this leads to
a significant data loss. Recently, some papers advocate keeping multiple observations with the same
timestamp in the dataset. For example, Liu et al. (2018c) examine their effect on integrated variance
estimation while Blasques, Holý and Tomanová (2018) suggest to model them using the zero-inflated
conditional autoregressive duration (ZIACD) model. We thoroughly explore this issue in Chapter 3.
Another issue regarding data is the sampling of the price process. Hansen and Lunde (2006) identify
three commonly used sampling schemes – tick time sampling, calendar time sampling and business time
sampling. Aït-Sahalia andMykland (2003), Oomen (2005, 2006) and Fukasawa (2010a,b) investigate the
effects of sampling schemes on estimation of integrated variance. Dong and Tse (2017a) utilize business
time sampling to test the semimartingale hypothesis of the log-price process. We present various sampling
schemes in Section 2.1.3.
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Figure 1.3: Intraday prices of the MCD stock during trading hours on February 22, 2018.
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Figure 1.4: Tick prices of the MCD stock during the first minute at 10 a.m. on February 22, 2018.
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1.1.2 Market Microstructure

Themarket microstructure theory studies trading process and formation of prices and volumes. The term
market microstructurewas coined byGarman (1976). For a survey of this topic, seeMadhavan (2000) and
Biais et al. (2005). We focus on implications of the market microstructure theory on the characteristics of
the price process. Delbaen and Schachermayer (1994) show that under the assumption of no arbitrage, the
efficient price process must follow a semimartingale. This efficient price is, however, unobservable due
to various frictions in the trading process such as discretness of price values and bid-ask spread. Much of
the high-frequency literature is devoted to uncover properties of the efficient price, especially its variance.
The efficient price is further discussed in Section 2.2.2.
The most common approach is to model the observed price as the sum of the efficient price and the so-
called market microstructure noise capturing all trading frictions and informational effects. For more
details about this additive model, see e.g. Aït-Sahalia and Jacod (2014). The market microstructure noise
has a significant influence on volatility estimation. Usually, the impact of the noise is assessed by the
volatility signature plot of Andersen et al. (2000). Rosenbaum (2011) introduced the microstructure
noise index allowing for more comprehensive assessment. Formal tests for the presence of the market
microstructure noise were proposed by Awartani et al. (2009) and Aït-Sahalia and Xiu (2016). Statistical
properties of the market microstructure noise were analyzed by Bandi and Russell (2006), Hansen and
Lunde (2006), Aït-Sahalia andYu (2009), Ubukata andOya (2009), Diebold and Strasser (2013), Mancini
(2013), Jacod et al. (2017), Taylor (2016) and Dong and Tse (2017b). Diebold and Strasser (2013) ana-
lyzed the impact of behavior of economic agents on cross-dependency of the market microstructure noise.
Hendershott and Menkveld (2014) studied deviations from the efficient price caused by price pressures.
Tsai and Lyuu (2017) estimated the efficient price contaminated by the noise using a robust Kalman filter.
The market microstructure noise is further discussed in Section 2.2.3.
Discretness of price values is closely related to the issue of rounding. Jacod (1996), Delattre and Ja-
cod (1997), Rosenbaum (2009) and Li and Mykland (2015) analyze effects of rounding on continuous
stochastic processes, especially on estimation of their volatility. The rounding model is briefly visited in
Section 2.2.4.
Another approach capturing market microstructure specifics is the uncertainty zonesmodel of Robert and
Rosenbaum (2011, 2012).

1.2 Analysis of High-Frequency Data

The high-frequency literature offers many methods for analysis of the price process. Most notably, du-
ration analysis deals with modeling times between financial events such as transactions while volatility
analysis deals with estimating and forecasting quadratic variation and integrated variance.
We illustrate the benefits of the proper use of high-frequency data in the following experiment. We
consider three approaches in volatility estimation based on the used frequency and method.

• Use low frequency and ignore the market microstructure noise. This is the simplest approach with-
out any major consequences as the market microstructure noise is quite negligible at lower fre-
quencies. However, these estimates are not very precise as most of the information contained in
the price process is discarded.

• Use high frequency and ignore the market microstructure noise. When we use the same methods
for high-frequency data as for lower frequencies, we begin to face some issues caused by the market
microstructure noise. These estimates are significantly biased because we estimate volatility of the
noise rather than the price.
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Figure 1.5: Illustrative box plot of volatility estimates by parametric methods.

• Use high frequency and take the market microstructure noise into account. The best option is to use
the highest frequency possible and methods capable of separating the price and the noise. These
estimates are unbiased and more accurate than the ones using lower frequencies.

To confirm these propositions, we simulate the Ornstein–Uhlenbeck process and then estimate its volatil-
ity by parametric methods. We compare the maximum likelihood estimator (MLE) using 5-minute data
and 20-second data with the noise-robust specification of the maximum likelihood estimator (MLE-NR)
of Holý and Tomanová (2018) using 20-second data. Both of these maximum likelihood methods are
described in Section 5.1.2. Figure 1.5 shows that the use of higher frequencies and noise-robust methods
gives the most accurate estimates. A very similar result can be obtained for non-parametric estimation of
integrated variance.
In the rest of this section, we review various methods used in duration and volatility analysis as well as
other high-frequency topics.

1.2.1 Duration Analysis

Duration analysis focuses on times between some financial events. There are three commonly analyzed
events that can be utilized for various purposes. Durations between successive transactions are known as
trade durations and can be used as a proxy for trading intensity. Durations until the price changes by a
given value are known as price durations and can be used as a proxy for volatility. Finally, durations until
the trading volume reaches a given amount are known as volume durations and can be used as a proxy for
liquidity. Engle and Russell (1998) noticed a clustering pattern in durations and proposed to model them
by the autoregressive conditional duration (ACD) model. For the literature review of duration analysis,
see Pacurar (2008), Bauwens and Hautsch (2009) and Saranjeet and Ramanathan (2019).
Many extensions of the original ACD model have been proposed in the literature. Bauwens and Giot
(2000) introduced the logarithmic ACD model utilizing the logarithmic transformation and exogenous
variables. Logarithmic model with a slightly different dynamic was considered by Lunde (1999). Other
proposedmodels include the fractionally integrated ACDmodel of Jasiak (1998), threshold ACDmodel of
Zhang et al. (2001), Box-Cox ACD model of Hautsch (2001, 2003), asymmetric ACD model of Bauwens
and Giot (2003), additive and multiplicative ACD model of Hautsch (2011), directional ACD model of
Jeyasreedharan et al. (2014) and zero-inflated ACDmodel of Blasques, Holý and Tomanová (2018). Time-
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varying and non-stationary ACD models were studied by Bortoluzzo et al. (2010) and Mishra and Ra-
manathan (2017). Joint models for durations and prices were proposed by Engle (2000), Grammig and
Wellner (2002), Russell and Engle (2005) and Herrera and Schipp (2013). Duration models are described
in more detail in Chapter 3.
A different approach for financial events also exists. Russell (1999) modeled transaction arrivals in terms
of intensities rather than durations. The main motivation behind this is multivariate analysis. Unlike
durations, intensities are defined in continuous time and are therefore suitable for multivariate general-
ization. Russell (1999) proposed the autoregressive conditional intensity (ACI) model based on similar
autoregressive structure as the ACD model. For the literature review of various intensity models, see
Bauwens and Hautsch (2009).

1.2.2 Volatility Analysis

Volatility is the key object in financial analysis. For the literature review of high-frequency volatility
analysis, see Barndorff-Nielsen and Shephard (2007) and McAleer and Medeiros (2008a). Typically,
volatility over a given time frame is measured by the quadratic variation or integrated variance. A
natural estimator of quadratic variation is the realized variance. It is simple and consistent estimator
in the absence of the market microstructure noise. When the noise is present, however, it is biased and
inconsistent. Properties of the realized variancewere studied byAndersen et al. (2001), Barndorff-Nielsen
and Shephard (2002a,b, 2004), Bandi and Russell (2005), Gonçalves and Meddahi (2009) and Fukasawa
(2010a,b). It is possible to reduce the bias induced by the market microstructure noise by sampling at
lower frequency for the cost of data loss. The optimal sampling frequency was studied by Aït-Sahalia
et al. (2005), Zhang et al. (2005), Bandi and Russell (2006, 2008) and De Pooter et al. (2008).
There are many alternative estimators of quadratic variation and integrated variance. The first non-
parametric estimator dealing with the market microstructure noise was the bias-corrected estimator of
Zhou (1996). It was further studied byHansen and Lunde (2006). Aït-Sahalia et al. (2005) took a paramet-
ric approach assuming the Wiener process and proposed the maximum likelihood estimator. Xiu (2010)
and Aït-Sahalia et al. (2010) further studied this estimator in the context of quasi-maximum likelihood.
Parametric approach was also adopted by Holý and Tomanová (2018) for the Ornstein–Uhlenbeck pro-
cess. The first consistent noise-robust non-parametric estimator was the two-scale estimator of Zhang
et al. (2005). It was later extended by Zhang (2006) to the multi-scale estimator and was further studied
by Aït-Sahalia et al. (2011). Barndorff-Nielsen et al. (2008) proposed the realized kernel estimator. It was
further studied and extended by Barndorff-Nielsen et al. (2009), Bandi and Russell (2011), Barndorff-
Nielsen et al. (2011) and Ikeda (2015). Jacod et al. (2009) proposed the pre-averaging estimator. It was
further studied and extended by Christensen et al. (2010), Hautsch and Podolskij (2013), Jacod and Myk-
land (2015) and Liu et al. (2017). Other estimators include the Fourier series estimator of Malliavin and
Mancino (2002), wavelet estimator of Høg and Lunde (2003), Hayashi–Yoshida covariance estimator
of Hayashi and Yoshida (2005), alternation estimator of Large (2011), discrete sine transform estimator
of Curci and Corsi (2012), least squares estimator of Nolte and Voev (2012), uncertainty zones esti-
mator of Robert and Rosenbaum (2012), maximum overlap discrete wavelet estimator of Baruník and
Vácha (2015) and state space estimator of Nagakura and Watanabe (2015). Sun (2006) and Andersen
et al. (2011) established the class of quadratic form estimators to which many of these estimators belong.
Some of the estimators were compared by Brownlees and Gallo (2010), Gatheral and Oomen (2010),
Sanfelici and Uboldi (2014) and Liu et al. (2015). The estimators of quadratic variation and integrated
variance are described in more detail in Section 4.2.
Another topic is volatility modeling and forecasting. Several models were specifically designed to uti-
lize high-frequency volatility. Ghysels et al. (2004, 2006) proposed the mixed-frequency data sampling
(MIDAS) model considering higher frequencies in explanatory variables. It was further studied and ex-
tended by Ghysels et al. (2007), Andreou et al. (2010), Marcellino and Schumacher (2010), Ghysels and
Sinko (2011) and Foroni et al. (2015). Corsi (2009) proposed the heterogeneous autoregressive (HAR)
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model utilizing realized measures over different time horizons. It was further studied and extended by
McAleer and Medeiros (2008b), Busch et al. (2011), Patton and Sheppard (2015) and Čech and Baruník
(2017). Shephard and Sheppard (2010) proposed the HEAVY model relating realized measure to returns.
It was further studied and extended by Noureldin et al. (2012). Hansen et al. (2012) proposed the realized
GARCH model augmenting the regular GARCH model by a realized measure. It was further studied and
extended by Watanabe (2012), Hansen et al. (2014), Baruník et al. (2016), Huang et al. (2016) and Jiang
et al. (2018). Other studies dealing with volatility forecasting and comparing volatility models include
Andersen et al. (2003), Koopman et al. (2005), Aït-Sahalia andMancini (2008), Chiriac and Voev (2008),
Andersen et al. (2011), Çelik and Ergin (2014) and Taylor (2017). Volatility models are described in more
detail in Section 4.3.
Volatility at a given time point is known as the spot volatility or instantaneous volatility. It was estimated
by Fan and Wang (2008), Lahalle et al. (2008), Ngo and Ogawa (2009), Kristensen (2010), Ogawa and
Sanfelici (2011), Alvarez et al. (2012), Bos et al. (2012), Dahlhaus and Neddermeyer (2014), Zu and
Boswijk (2014), Mancini et al. (2015), Bandi and Renò (2018), Liu et al. (2018a) and Liu et al. (2018b).

1.2.3 Higher Moments Analysis

Integrated power variation is a generalization of integrated variance allowing for arbitrary integrated
powers of volatility. A special case is the fourth power known as the integrated quarticity. The integrated
power variation can be estimated by the realized multipower variation, which contains the realized vari-
ance, bi-power variation and realized quarticity as special cases. It was studied by Barndorff-Nielsen
(2004) and Andersen et al. (2012). It is, however, sensitive to the market microstructure noise. For this
reason, Podolskij and Vetter (2009) proposed the modulated multipower variation which is robust to the
market microstructure noise. Jacod and Rosenbaum (2013) further generalized integrated variance and
estimated arbitrary functional of volatility in the absence of the noise. Mancino and Sanfelici (2012)
focused on the spot volatility and estimated its fourth power known as the spot quarticity. They utilized
Fourier analysis and considered the market microstructure noise.

1.2.4 Jump Analysis

The price process often contains jumps or can even be solely formed by jumps. Huang and Tauchen
(2005), Barndorff-Nielsen and Shephard (2006), Jiang and Oomen (2008) and Christensen et al. (2014)
tested whether jumps are present in the price process. Xue et al. (2014) detected jumps using wavelets.
Aït-Sahalia and Jacod (2009) proposed the jump activity index measuring the degree of the activity of
jumps in the price process. It was further studied by Jing et al. (2012b) and Kong (2012). Aït-Sahalia
and Jacod (2010) and Jing et al. (2012a) also tested whether the price process can be modeled purely by
the jump process. Pure jump processes were further studied and utilized by Oomen (2005, 2006), Large
(2011) and Li et al. (2017).

1.2.5 Liquidity Analysis

We also address liquidity and its measurement. A natural way to measure liquidity is the bid-ask spread.
Goyenko et al. (2009) advocated the use of modified bid-ask spreads – the effective spread and realized
spread. Liquidity can also be measured using the ACD model for volume durations. This was adopted
by Hautsch (2001) and Hautsch (2003). Similarly, Russell (1999) utilized the ACI model based on vol-
ume intensity to determine liquidity. Engle and Lange (2001) propose to estimate the so-called VNET
measuring volume over a price duration. Another approach lies in modeling depth of the order book as
followed by Hautsch and Huang (2012) and Härdle et al. (2012).
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1.3 Impact of High-Frequency Data

The ultimate goal of any financial analysis is to generate profit or prevent loss. Incorporating high-
frequency data into financial analysis helps to achieve such goals. We focus on four crucial aspects of
quantitative finance – derivative valuation, risk management, portfolio optimization and trading strate-
gies. We review the literature examining the economic value of high-frequency data.

1.3.1 Derivative Valuation

The first application of high-frequency data analysis we review is derivative valuation. Bollerslev and
Zhang (2003) improved the multi-factor asset pricing model by incorporating high-frequency informa-
tion. Their empirical study shows that high-frequency-based factor loadings yield better returns than
the conventional monthly rolling regression-based estimates. Bandi and Russell (2008) and Bandi et al.
(2008a) focused on finite sample performance of several quadratic variation estimators with application
to option pricing. Another comparison of quadratic variance estimators in the context of option pricing
was performed by Sanfelici and Uboldi (2014). Corsi et al. (2013) proposed an option pricing model with
HAR forecasts of quadratic variation. In an empirical analysis of S&P 500 index options, they show that
their model outperforms competing time-varying and stochastic volatility option pricing models. Stentoft
(2008) incorporated realized variance into option pricing model and concluded that the proposed model
explains some of the mispricings found when using traditional option pricing models based on daily data.
Christoffersen et al. (2014) developed a class of option pricing models utilizing daily returns and real-
ized variance. Their analysis of S&P 500 index showed that realized variance reduces the pricing errors
of the benchmark model significantly across moneyness, maturity, and volatility levels. Kenmoe and
Sanfelici (2014) utilized high-frequency spot volatility in derivative pricing model and compared sev-
eral spot volatility estimators. Empirical results showed that using intraday data rather than daily data
provides smaller pricing errors. Audrino and Fengler (2015) compared observed realized variance with
realized variances implied by the Black-Scholes model, the Heston model and the Bates model. They
found that there are significant deviations between the two approaches. Singh and Vipul (2015) tested
the performance of Black-Scholes model with the two-scaled realized volatility. Even with the use of
high-frequency information, they found that this model is inadequate due to a negative pricing bias. Jeon
et al. (2016) evaluated the option market using GARCH-M model and its high-frequency extension in
the Bayesian framework. In an empirical study, they found that their model explains a behavior of option
prices close to the expiry. Li et al. (2017) focused on the analysis of the VIX index. They captured VIX
dynamics as a pure jump semimartingale with infinite jump activity and infinite variation.

1.3.2 Risk Management

High-frequency data can be utilized in evaluating systematic risk. Popular risk measures are the value-
at-risk and expected shortfall also known as conditional value-at-risk. One of the earliest uses of high-
frequency data in value-at-risk forecasting was in article of Beltratti andMorana (1999). Giot and Laurent
(2004) compared the realized variance ARFIMAX model with the daily ARCH model for daily value-
at-risk forecasts. They conclude that there is no significant improvement when using realized variance.
Kruse (2006) incorporated the realized variance in value-at-risk estimation by extreme value theory and
filtered historical simulation. They found that the best performing forecastingmodels are hybrid specifica-
tions based on realized variance and the filtered historical simulation. Value-at-risk estimates by extreme
value theory and filtered historical simulation with realized variance were also analyzed by Louzis et al.
(2011). Clements et al. (2008) compared several models for volatility and quantile forecasts using high-
frequency data and found that the HAR model with empirical distribution provides the most accurate
forecasts. McMillan et al. (2008) analyzed intraday periodicity, the presence of short horizon as well as
long horizon dependencies and daily realizedmeasures in the context of value-at-risk forecasting. Brown-
lees and Gallo (2010) compared different volatility measures in the context of value-at-risk forecasting.
They found that the realized kernel estimator is superior to the realized variance, bi-power variation,
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two-scale realized variance and realized range in terms of value-at-risk predictive ability. Realized range
was also used by Shao et al. (2009) in value-at-risk forecasting. Herrera and Schipp (2013) estimated
value-at-risk by extreme value theory in combination with autoregressive conditional duration model.
Huang and Lee (2013) incorporated high-frequency information in value-at-risk forecasting models by
combining forecasts based on different intraday intervals and by combining high-frequency information
into a single model. Žikeš and Baruník (2015) modeled value-at-risk by quantile regression with HAR
specification of several quadratic variation estimators.
Value-at-risk can also be modeled at intraday level. Several intraday high-frequency risk measures based
on quantiles were proposed by Giot (2005), Giot and Grammig (2006), Dionne et al. (2009), So and Xu
(2013) and Banulescu et al. (2016).
Although the value-at-risk is dominant in the high-frequency literature, several articles deal with the
expected shortfall as well. Guo and Zhang (2008) estimated the expected shortfall using weighted realized
variances. Watanabe (2012) utilized realized GARCH model in forecasting value-at-risk and expected
shortfall. Bee et al. (2016) used realized extreme value theory for value-at-risk and expected shortfall
forecasts.

1.3.3 Portfolio Optimization
An important area of quantitative finance is portfolio optimization. In this application, high-frequency
data can be utilized for more precise estimation and prediction of daily volatility. Fleming et al. (2003)
measured the economic value of high-frequency data in the context of investment decisions. Their results
indicate that a risk-averse investor would be willing to pay substantial fees to capture the observed gains
in portfolio performance. Bandi et al. (2008b) evaluated the economic benefits of integrated variance
estimates in dynamic portfolio choice when the prices are contaminated by the market microstructure
noise. De Pooter et al. (2008) found that when forming the mean-variance efficient stock portfolios with
daily rebalancing, the optimal sampling frequency for realized variance in the presence of the market
microstructure noise ranges between 30 and 65 minutes. Liu (2009) examined the frequency of portfolio
rebalancing at which the use of intraday high-frequency data is beneficial. They found that for monthly
rebalancing, the use of daily data is sufficient. However, for daily rebalancing, the use of high-frequency
data brings substantial improvements. Hautsch et al. (2015) analyzed high-dimensional portfolio alloca-
tions. They found that the predictions based on high-frequency data yield a significantly lower portfolio
volatility than methods employing daily returns.

1.3.4 Trading Strategies
There are many trading strategies whether they are labeled as high-frequency trading or operate in longer
time horizons. Description of all these strategies is beyond the scope of this thesis and we refer to the
book of Aldridge (2013).
We focus only on one particular strategy called the pairs trading. It is based on taking advantage of
two prices exhibiting strong similarity in the long run that are temporarily out of equilibrium. Liu et al.
(2017) introduced the doubly mean-reverting processes for capturing the high-frequency price differences
and described related intraday trading strategy. Intraday data for the pairs trading were also utilized
by Dunis and Lequeux (2000), Bowen et al. (2010), Peters et al. (2011) and Miao (2014). Holý and
Tomanová (2018) modeled the price differences as the Ornstein–Uhlenbeck process and estimated its
parameters using ultra-high-frequency data contaminated by the market microstructure noise. They found
that ignoring the noise leads to much higher estimates of volatility and speed of reversion parameters
resulting in suboptimal decision-making. Using the proposed noise-robust estimator brings a significant
additional profit over the strategy based on traditional estimators. We show this application in Chapter 5.
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- Chapter 2 -

Practical and Theoretical Framework

High-frequency data have several features requiring a special treatment from both practical and theoretical
perspective. Before an econometric analysis, high-frequency data should be subject to data preprocess-
ing including data cleaning, data transformation and data aggregation. In the actual analysis, all used
statistical methods should account for the specifics inherent to high-frequency data and persistent after
the preprocessing procedures. The most distinctive features of high-frequency data are the following.

• As data are collected at high velocities and large volumes, many errors occur during the collection.
Such errors include prices recorded as zeros, misplaced decimal points, missing observations and
observations outside the trading hours. Careful data cleaning in the preprocessing step is always
necessary when working with high-frequency data. Data cleaning procedures are discussed for
example by Falkenberry (2002), Brownlees and Gallo (2006) and Barndorff-Nielsen et al. (2009).

• Data observed at the highest possible frequency are denoted as ultra-high-frequency data by Engle
(2000). Such data are irregularly spaced, i.e. the spacing of observation times is not constant. As
many statistical methods are based on regularly spaced data, irregularly spaced time series can
simply be aggregated to equidistant time series. However, this can induce a loss of information
or even a bias. Some methods, on the other hand, can be directly utilized for irregularly spaced
data (e.g. realized variance) or be modified for such case (e.g. maximum likelihood estimation).
Duration analysis pioneered by Engle and Russell (1998) aims to model random times between
observations by autoregressive processes.

• Trades happen on either bid or ask side. Whether analyzing transaction data, quote data or both, this
needs to be taken into account. For transaction data, the bid-ask bounce effect caused by transaction
price oscillating between bid and ask prices occurs. It significantly distorts volatility and is treated
by modeling the price process contaminated by the so-called market microstructure noise. For
quote data, bid and ask prices can be transformed to mid prices as their mean. However, mid prices
also exhibit the presence of the market microstructure noise.

• Data are always discrete as they are recorded with a given precision. In some cases, the representa-
tion error can be negligible, while in other cases, it can cause a bias or even inconsistent estimates.
One approach is to consider a model for continuous values that are observed with some sort of
rounding error. For example, the model with market microstructure noise can be utilized. The
other approach is to directly model values in a discrete framework. Examples of discrete mod-
els include Russell and Engle (2005), Koopman et al. (2015) and Blasques, Holý and Tomanová
(2018).

Figure 2.1 illustrates some contradictions between the observed price process and the theoretical price
process. One of the tasks of the analyst is to find a balance between characteristics of the original data
and assumptions of the considered theory.
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Figure 2.1: Simulated example of the theoretical efficient price and the observed bid and ask prices.

2.1 Preprocessing Procedures

In this section, we discuss some important procedures in the preprocessing of financial high-frequency
data. First, we describe necessary steps in the data cleaning procedure for both transaction and quote
data. Second, we briefly address the logarithmic returns and mid price interpolation. Third, we present
various sampling schemes for temporal data aggregation.

2.1.1 Data Cleaning

In the thesis, we analyze prices of stocks traded on the NYSE and NASDAQ exchanges obtained from the
Daily TAQdatabase of NewYork Stock Exchange (2019) (or simplyNYSETAQdatabase). Data cleaning
of NYSE TAQ database is performed for example by Brownlees and Gallo (2006) and Barndorff-Nielsen
et al. (2009). We describe the standard data cleaning procedure of Barndorff-Nielsen et al. (2009) with
some slight modifications.
The cleaning steps can be categorized into three classes. First, irrelevant entries are removed. Second,
simultaneous entries are merged. Third, erroneous entries are removed. For the pairs trading strategy
in Chapter 5 and the volatility analysis in Chapter 4, we apply steps from all three classes relevant to
transaction data. For the duration analysis in Chapter 3, we omit merging simultaneous entries as the
goal is to model zero durations between observations.

Irrelevant Entries

Retain entries originating from a single exchange. Delete other entries. This step corresponds to P3 rule
of the cleaning procedure of Barndorff-Nielsen et al. (2009). Brownlees and Gallo (2006) stated that they
prefer not to discard transaction prices that did not occur on the single exchange. However, in some cases
this is not advisable as discussed e.g. by Dufour and Engle (2000). In duration analysis, this cleaning
step is often used to reduce the impact of time-delays in the trade updates reporting (exchanges can have
different latencies).
Delete all trades and quotes with a timestamp outside the window when the exchange is open. The normal
trading hours of the NYSE and NASDAQ exchanges are from 9:30 a.m. to 4:00 p.m. in the eastern time
zone. This step corresponds to P1 rule of the cleaning procedure of Barndorff-Nielsen et al. (2009).
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Delete entries with corrected trades. For the NYSE TAQ database, corrected trades are denoted by the
correction indicator ’CORR’ other than 0. This step removes trades that were corrected, changed, or
signified as cancel or error and corresponds to T1 rule of the cleaning procedure of Barndorff-Nielsen
et al. (2009).
Delete entries with abnormal trades. For the NYSE TAQ database, abnormal trades are denoted by the
sale condition ’COND’ having a letter code, except for ’E’, ’F’ and ’I’. This step rules out data points that
the NYSE TAQ database is flagging up as a problem and corresponds to T2 rule of the cleaning procedure
of Barndorff-Nielsen et al. (2009).
Delete entries which are identified as preferred or warrants. For the NYSE TAQ database, all trades with
the non-empty SUFFIX indicator should be deleted.

Simultaneous Entries

Merge entries with the same timestamp. Merging itself can be done using the mean (Aït-Sahalia et al.,
2010), the median (Barndorff-Nielsen et al., 2009), the mean weighted by the volume (Christensen et al.,
2010), a single random price (Jing et al., 2017) or the last recorded price (Jing et al., 2017). For transac-
tion data using median, this step corresponds to T3 rule of the cleaning procedure of Barndorff-Nielsen
et al. (2009). For quote data using median, this step corresponds to Q1 rule of Barndorff-Nielsen et al.
(2009). Merging simultaneous entries is quite controversial as it leads to the largest deletion of data and
a significant information loss. In volatility analysis, Barndorff-Nielsen et al. (2009) argue that this rule
seems inevitable. However, Liu et al. (2018c) estimate integrated variance by the pre-averaging estimator
using data with multiple observations at the same time. In duration analysis, simultaneous transactions
are also merged in the majority of the literature. The exception is Blasques, Holý and Tomanová (2018)
who do not discard zero durations and directly include them in the zero-inflated autoregressive conditional
duration model.

Erroneous Entries

Delete entries with the price equal to zero. This step removes obvious errors in the dataset and corresponds
to P2 rule of the cleaning procedure of Barndorff-Nielsen et al. (2009).
Delete entries for which the spread is negative. This step corresponds to Q2 rule of the cleaning procedure
of Barndorff-Nielsen et al. (2009).
Delete entries for which the spread is more that 50 times the median spread on that day. This step
corresponds to Q3 rule of the cleaning procedure of Barndorff-Nielsen et al. (2009).
Delete entries for which the price deviated by more than 10 mean absolute deviations from a rolling cen-
tred median of 50 observations. The observation under consideration is excluded in the rolling centered
median. The mid price (the mean of the bid and ask prices) can be utilized for the quote data. This step is
closely related to the procedure of Brownlees and Gallo (2006) which advocates removing outliers. For
quote data, this step corresponds to Q4 rule of the cleaning procedure of Barndorff-Nielsen et al. (2009).
Delete entries with prices above the ask price plus the bid-ask spread. Delete entries with prices below
the bid price minus the bid-ask spread. This step corresponds to T4 rule of the cleaning procedure of
Barndorff-Nielsen et al. (2009).

2.1.2 Data Transformation

The goal of this section is to transform observed data into a single price process suitable for further
analysis. We establish concepts of the logarithmic price process, logarithmic returns process and mid
price process.
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Returns and Logarithmic Scale

Let us consider the price process X̃i observed at times i = 0,… , n. This process can represent transaction
prices, bid prices, ask prices, or any other kind of prices. In any case, the object of interest of the financial
analysis is often the returns process rather than the price process itself. The raw returns process is defined
as

Ỹi =
X̃i − X̃i−1

X̃i−1
, i = 1,… , n. (2.1)

An advantage of the returns process is that it is normalized in the sense that a performance of different
assets can be measured by a comparable metric.
Next, we discuss the logarithmic transformation. The logarithmic price process is defined as

Xi = log X̃i, i = 0,… , n. (2.2)
The logarithmic returns process is defined as

Yi = log
(

X̃i

X̃i−1

)

= log X̃i − log X̃i−1 = Xi −Xi−1, i = 1,… , n. (2.3)

The logarithmic returns are widely used in finance as they have many desirable properties. First, when the
raw return Ỹi is small, the logarithmic return Yi is approximately the same as the raw return Ỹi. Specifically,
we have

Yi = log
(

1 + Ỹi
)

= Ỹi + O
(

Ỹ 2i
)

, for |Ỹi| < 1, i = 1,… , n. (2.4)
This follows from the sum of infinite series

∞
∑

k=1

(−1)k−1

k
Ỹ ki = log

(

1 + Ỹi
) for |Ỹi| < 1, i = 1,… , n. (2.5)

Second, the logarithmic returns are additive in time. Specifically, the logarithmic return over period
t + s is the sum of the logaritmic return over period t and the logaritmic return over period s. Third,
the logarithmic returns are more numerically stable. Specifically, the logarithmic transformation reduces
a large range of values to a more manageable range. A disadvantage of logarithmic returns lies in the
aggregation of assets in a portfolio. Specifically, the raw return of the portfolio is the weighted average
of raw returns of the assets in the portfolio. For logarithmic returns, such simple relation does not hold.
In the rest of the thesis, we assume that all prices are logarithmic prices.

Mid Price Interpolation

Let us consider the case of quote data. Specifically, we observe the bid price XB
i and ask price XA

i at
times i = 0,… , n. Naturally, we have XB

i ≤ XA
i for all i = 0,… , n. The efficient price of a financial

asset can be approximated by the mid priceXM
i interpolated from the bid priceXB

i and ask priceXA
i as

XM
i = 1

2
(

XA
i +X

B
i
)

, i = 0,… , n. (2.6)

An example of mid price interpolation is shown in Figure 2.2. Themid prices were used in high-frequency
data analysis for example by Hansen and Lunde (2006).

2.1.3 Data Aggregation

Let us consider that we observe ultra-high-frequency data at times T0 ≤ T1 ≤ ⋯ ≤ Tn. Without loss of
generality, we assume the times of observations fill the interval [0, 1], i.e. 0 = T0 ≤ T1 ≤ … ≤ Tn = 1.
We present three alternative sampling schemes. Various sampling schemes are studied for example by
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Figure 2.2: Simulated example of the mid price interpolated from the observed bid and ask prices.

Aït-Sahalia and Mykland (2003), Oomen (2005, 2006), Hansen and Lunde (2006), Fukasawa (2010a,b)
and Dong and Tse (2017a).
As price values are only available for times Ti, i = 0,… , n, we must interpolate price value for some
other time S ≠ Ti, i = 0,… , n. This is usually done by the last tick method, which simply takes the last
observed value, i.e. the value at time max{i ∶ Ti < S}.

Tick Time Sampling

The tick time sampling is based on regularly spaced number of ticks. For an initial tick ℎ and sampling
frequency s, the tick time sampling is a set of times given by

TTSℎ,s =
{

Sj = Tℎ+js ∶ j = 0,… ,
⌊n − ℎ

s

⌋}

. (2.7)
The tick time sampling with ℎ = 0 and s = 1 reduces to the original sampling of ultra-high-frequency
data. This sampling is used for example for volatility signature plots and the sparse realized variance
defined in Section 4.2.1.

Calendar Time Sampling

The calendar time sampling is based on regularly spaced calendar time. For the number of observations
m, the calendar time sampling is a set of times given by

CTSm =
{

Sj = jm−1 ∶ j = 0,…m
}

. (2.8)

Business Time Sampling

For the number of observations m and the price process Pt, t ≥ 0, the business time sampling is a set of
times given by

BTSm =
{

0 = S0 < S1 <⋯ < Sm = 1 ∶ var
[

PS1 − PS0
]

=⋯ = var
[

PSm − PSm−1
]}

. (2.9)
Unlike the tick times and the calendar times, the business timesSj are latent as we do not observe variance
of returns. An advantage of the business time sampling is that it yields independent and identically
distributed normal returns for a semimartingale price process (see Dong and Tse, 2017a). The returns
under business time sampling are also known as devolatilized returns.
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2.2 Theoretical Models
In this section, we discuss foundations of theoretical models considered in the financial high-frequency
data analysis. First, we consider deterministic and stochastic settings for times of observations. Second,
we assume the price process to follow semimartingale. Third, we describe the widely use additive model
in which the price process is contaminated by the market miscrostructure noise. Fourth, we address the
issue of rounding. Fifth, we introduce the model based on interval uncertainty to deal with the bid-ask
spread and rounding.

2.2.1 Times of Observations
Let us denote the times of observations as T0 ≤ T1 ≤ ⋯ ≤ Tn. Without loss of generality, we assume
the times of observations lie in the interval [0, 1], i.e. 0 ≤ T0 ≤ T1 ≤ ⋯ ≤ Tn ≤ 1. Durations between
successive observations are then given by Di = Ti − Ti−1, i = 1,… n. We assume three settings for the
times of observations.
In the first setting, observations are equally spaced. Durations are then constant, i.e. Di = Δ = n−1. In
this case, the times of observations are of course deterministic. This is the most elementary assumption
in time series analysis. However, it is not very suitable for financial ultra-high-frequency data as calendar
time sampling is necessary for this assumption to hold as discussed in Section 2.1.3. We utilize this
setting in parts of Chapter 5.
In the second setting, observations are irregularly spaced and their times are deterministic. We further
assume that the times of observations are a stricty increasing sequence, i.e. 0 ≤ T0 < T1 < ⋯ < Tn ≤ 1.
We utilize this setting in Chapter 4 and parts of Chapter 5.
In the third setting, observations are irregularly spaced and their times are random variables. The times of
observations then form a point process on the interval [0, 1]. We further assume that times Ti, i = 0,… , n
are independent from the price process Xi, i = 0,… , n. We utilize this setting in Chapter 3.

2.2.2 Efficient Price Process
A lot of the high-frequency literature is centered around the concept of the efficient price (see e.g. Aït-
Sahalia and Jacod, 2014). The efficient price is the latent price of a financial asset with continuous time.
However, this is an idealization as prices are observed at discrete transaction times and nothing between
transactions actually exists. The efficient price is therefore a theoretical concept of a scaling limit with
frequency of observations shrinking to zero. Nevertheless, it is the key subject of financial high-frequency
analysis.
Under the assumption of no arbitrage, the efficient price process must follow a semimartingale (see Del-
baen and Schachermayer, 1994). Let us denote Pt, t ≥ 0 as the logarithmic efficient price. Càdlàg
function1 is a function defined on the real numbers that is right-continuous everywhere and has left limits
everywhere. A martingale is a stochastic process for which the conditional expectation of the next value
is equal to the present value. A semimartingale is defined as the sum of a local martingale and an adapted
càdlàg finite-variation process. This decomposition, however, is not unique. A semimartingale can be
expressed as

Pt = P0 + ∫

t

0
Dz dz + ∫

t

0
Vz dWz +

∑

k∶Sk≤t
Jk, (2.10)

where Dz is a finite variation càdlàg drift process, Vz is an adapted càdlàg volatility process, Wz is a
standard Wiener process and Jk are non-zero random variables with random times 0 ≤ S1 < ⋯ < Sm ≤
1. Note that semimartingales are a very general class of processes as Dz and Vz are both time-varying.
Semimartingales form the largest class of processes for which the Itô integral can be defined. Examples

1From the French "continue à droite, limite à gauche".
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of semimartingales include the Wiener process, Itô processes and Lévy processes. A special class of
semimartingales are continuous Itô semimartingales given by

Pt = P0 + ∫

t

0
Dz dz + ∫

t

0
Vz dWz, (2.11)

where Dz is a finite variation càdlàg drift process, Vz is an adapted càdlàg volatility process andWz is a
standard Wiener process.

Literature about Stochastic Calculus

More about semimartingales and related topics can be found in the stochastic calculus literature. For the
theory from the financial perspective, see e.g. Steele (2001), Sondermann (2006), Shreve (2004a,b) or
Aït-Sahalia and Jacod (2014). For the general theory, see e.g. Chung and Williams (1990), Karatzas and
Shreve (1991), Protter (2004) or Klebaner (2005).

2.2.3 Market Microstructure Noise Model

Not surprisingly, there are significant discrepancies between the theoretical efficient price process and the
observed price process. Let us assume the latent efficient price process Pt with continuous time t ≥ 0.
Let us consider that we observe price process Xi at discrete times Ti, i = 0,… , n. The unobserved price
process Pt and the observed price process Xi are then related as

Xi = PTi + Ei, Ei ∼ (0, !2), i = 0,… , n, (2.12)
where Ei is the market microstructure noise capturing all the discrepancies. We further denote

Yi = Xi −Xi−1, Ri = PTi − PTi−1 , Fi = Ei − Ei−1, i = 1,… , n. (2.13)
This model is known as the additive noise model and it is the most popular model used in the high-
frequency literature analyzing volatility of the price process (see e.g. Aït-Sahalia and Jacod, 2014). The
noise is a random variable with zero expected value and constant variance !2. Generally, it can be depen-
dent in time and dependent on the efficient price. Indeed, Hansen and Lunde (2006) show in an empirical
study of DJIA stocks that the market microstructure noise is auto-correlated and cross-correlated. The
noise is caused by the following microstructure effects.

• Discretness of price values. The efficient price process has continuous values. The observed prices,
however, have discrete values. For example, the stocks traded on the NYSE and NASDAQ ex-
changes are recorded with precision of 2 decimal points (i.e. one cent). This mismatch can be
modeled using the rounding error. We further discuss the rounding issue in Section 2.2.4.

• Sampling issues. Times of price changes are recorded using discrete values. Additionally, if one
of the sampling schemes presented in Section 2.1.3 is adopted, times of observations are modified
as well. Any of these sampling alterations contribute to the market microstructure noise.

• Bid-ask spread. In transaction data, the bid-ask bounce effect occurs. It is caused by transaction
price oscillating between bid and ask prices. This behaviour can be modeled as an error and a
part of the market microstructure noise. In quote data, another error occurs as the mid price is
interpolated from the bid and ask prices.

• Informational effects. In reality, the efficient price process may temporarily deviate from the semi-
martingale assumption due to various informational effects. Such effects include asymmetric infor-
mation, partially incorporated information, strategic behavior, trades on different markets, gradual
response to a block trade, inventory control effect, difference in trade sizes and price pressure effect.
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Source Data
Frictions in Trading Process
- Discretness of Price Values All Data
- Sampling Issues All Data
- Bid-Ask Bounce Transaction Data
- Mid Price Interpolation Quote Data
Informational Effects
- Asymmetric Information All Data
- Partially Incorporated Information All Data
- Strategic Behavior All Data
- Trades on Different Markets All Data
- Gradual Response to a Block Trade All Data
- Inventory Control Effect All Data
- Difference in Trade Sizes All Data
- Price Pressure Effect All Data
Recording Errors
- Prices Recorded as Zeros Low Quality Data
- Misplaced Decimal Points Low Quality Data
- Prices with Wrong Time of Observation Low Quality Data
- Missing Observations Low Quality Data

Table 2.1: Overview of causes of the market microstructure noise.

• Recording errors. Various recording errors can also be included in the market microstructure noise.
However, the treatment of recording errors should be the subject of data cleaning procedure as
discussed in Section 2.1.1.

Aït-Sahalia et al. (2011) divide the causes of the noise into three classes: frictions in trading process,
informational effects and recording errors. An overview of sources of the market microstructure noise is
shown in Table 2.1.
The additive model can also be extended by letting the variance of the market microstructure noise be
dependent on the number of observations n (see e.g. Aït-Sahalia and Jacod, 2014). However, in the thesis,
we focus only on the case of the constant variance.

2.2.4 Pure Rounding Model

This section follows Holý (2018b) with different notation and application. In the pure rounding model, it
is assumed that the observed price processXi is created by rounding down the efficient price process PTito d decimal places, i.e.

Xi = ⌊PTi⌋
[d], i = 0, 1,… , n. (2.14)

In this model, the rounding is the only source of uncertainty. The rounding can be alternatively defined
as rounding up Xi = ⌈PTi⌉

[d] or rounding to the nearest possible increment Xi = ⌊PTi⌉
[d]. However,

theoretical as well as empirical results would be almost the same and therefore we focus only on rounding
down. The observed process can be decomposed into the sum of the efficient price process and the
rounding error as

Xi = PTi + Ei, Ei = ⌊PTi⌋
[d] − PTi . (2.15)

This notation corresponds to the additive noise model. Furthermore, we denote the d-th decimal digit of
PTi as P [d]Ti

. In this setting, the rounding error Ei has the following properties.
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1. The distribution of the rounding error Ei is a deterministic transformation of distribution of the
efficient price process PTi .

2. The rounding error Ei is dependent on the efficient price process PTi .
3. Generally, the rounding error Ei is dependent in time due to time-dependency of the efficient price

process PTi .

Issues related to the rounding errror in financial stochastic processes were studied by Jacod (1996), De-
lattre and Jacod (1997), Rosenbaum (2009) and Li and Mykland (2015).

Asymptotic Properties of the Rounding Error

The properties of the rounding error are very difficult to work with. However, its asymptotic properties
are more pleasant.

1. The rounding error Ei is asymptotically uniformly distributed. Specifically, the d-th decimal digit
P [d]Ti

has discrete uniform distribution for d →∞ and the rounding errorEi has continuous uniform
distribution for d →∞. The asymptotic variance of the rounding error is then

var
[

10dEi
]

= 1
12

for d → ∞. (2.16)

2. The rounding error Ei is asymptotically uncorrelated with the efficient price process PTi , i.e.

cor
[

Ei, PTi
]

= 0 for d →∞. (2.17)

3. The rounding error Ei is asymptotically uncorrelated in time, i.e.
cor

[

Ei, Ej
]

= 0, for i ≠ j and d →∞. (2.18)

Kosulajeff (1937) showed that the rounding error of a random variable with absolutely continuous distri-
bution function F (x) tends to the continuous uniform distribution. Tukey (1938) showed that the neces-
sary and sufficient condition for the rounding error to have asymptotically continuous uniform distribution
is that the Fourier transform of the distribution function F̂ (�) tends to zero as |�| →∞.
As an illustration, we offer another proof. In the following proposition, we show that the distribution of
the d-th decimal digit of a continuous variable Pt tends to the discrete uniform distribution as d →∞.
Proposition 2.1. Let FPt(x) be the distribution function of a continuous variable Pt and fPt(x) its density
function. Let P [d]t denote the d-th decimal digit of Pt. For all " > 0, there exists c ∈ ℕ such that for all
d ∈ ℕ, d ≥ c, the distribution of P [d]t is given by

P
[

P [n]t = a
]

∈
(

10−1 − ", 10−1 + "
)

, a = 0, 1,… , 9. (2.19)

Proof. The distribution of the d-th digit follows

P
[

P [d]t = a
]

=
∞
∑

b=−∞
P
[

(10b + a)10−d ≤ PTi < (10b + a + 1)10
−d
]

=
∞
∑

b=−∞
FPt

(

(10b + a + 1)10−d
)

−
∞
∑

b=−∞
FPt

(

(10b + a)10−d
)

(2.20)
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for a = 0, 1,… , 9. From the existence of the right derivative of FPt(x) in every point x we have

lim
d1→∞

FPt
(

x + 10−d1
)

− FPt (x) − 10
−d1fPt (x)

10−d1
= 0. (2.21)

For a countable set of xb, b = −∞,… ,∞ we have
∞
∑

b=−∞
lim
d1→∞

FPt
(

xb + 10−d1
)

− FPt
(

xb
)

− 10−d1fPt
(

xb
)

10−d1
= 0. (2.22)

We change the order of limit and sum to get

lim
d1→∞

10d1
∞
∑

b=−∞

(

FPt
(

xb + 10−d1
)

− FPt
(

xb
)

− 10−d1fPt
(

xj
)

)

= 0. (2.23)

We define the set of xb as xb = limd0→∞(10b + a)10
−d0 . For all "1 > 0, there exists �1 > 0 such that for

all d1 satisfying 10−d1 ≤ �1, we have

10d1
|

|

|

|

|

∞
∑

b=−∞
FPt

(

xb + 10−d1
)

−
∞
∑

d=−∞
FPt

(

xb
)

−
∞
∑

b=−∞
10−d1fPt

(

xb
)

|

|

|

|

|

< "1, a = 0, 1,… , 9. (2.24)

Next, we take a subset of xb given by xb = (10b + a)10−d1 . For this subset we have weaker inequality

10d1
|

|

|

|

|

∞
∑

b=−∞
FPt

(

(10b + a + 1)10−d1
)

−
∞
∑

b=−∞
FPt

(

(10b + a)10−d1
)

−
∞
∑

b=−∞
10−d1fPt

(

(10b + a)10−d1
)

|

|

|

|

|

< "1, a = 0, 1,… , 9.
(2.25)

It can be rewritten as

10d1
|

|

|

|

|

P
[

P [d]t = a
]

− 10−1
∞
∑

b=−∞
10−d1+1fPt

(

(10b + a)10−d1
)

|

|

|

|

|

< "1, a = 0, 1,… , 9. (2.26)

This inequality can be further modified to weaker inequality
|

|

|

|

|

P
[

P [d]t = a
]

− 10−1
∞
∑

b=−∞
10−d1+1fPt

(

(10b + a)10−d1
)

|

|

|

|

|

< "1, i = 0, 1,… , 9. (2.27)

Next, let us analyze the second summand in the absolute value. Its limit is the Riemann integral of density
function, which equals to 1, i.e.

lim
d2→∞

∞
∑

b=−∞
10−d2+1fPt

(

(10b + a)10−d2
)

= ∫

∞

−∞
fPt (x) dx = 1, a = 0, 1,… , 9. (2.28)

For all "2 > 0, there exists �2 > 0 such that for all d2, 10−d2 ≤ �2, we have
|

|

|

|

|

∞
∑

b=−∞
10−d2+1fPt

(

(10b + a)10−d2
)

− 1
|

|

|

|

|

< "2, a = 0, 1,… , 9. (2.29)

Finally, we can put together results (2.27) and (2.29). For all ", we select "1 and "2 such that "1+10−1"2 ≤
". For "1, there exists �1 and for "2 there exists �2 as above. We select c such that 10−c ≤ �1 and 10−c ≤ �2.
For all d ≥ c we have

|

|

|

|

P
[

P [d]t = a
]

− 10−1
|

|

|

|

< ", a = 0, 1,… , 9. (2.30)
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Rounding Error in Stock Prices

The question is whether the rounding error present in financial data can be treated according to its asymp-
totic properties. We analyze the prices of 30 stocks forming Dow Jones Industrial Average (DJIA) index
from January to May, 2018. Prices of these stocks have precision of 2 decimal places. If the rounding
error is uniformly distributed, its variance is 8.333 ⋅ 10−6 according to (2.16). The knowledge of the vari-
ance of the rounding error can be quite useful in quadratic variance estimation and market microstructure
noise investigation.
Table 2.2 shows the variances of the error caused by rounding to zero decimals and one decimal. On av-
erage, the observed variance is 8.556 ⋅10−2 for zero decimals and 8.512 ⋅10−4 for one decimal. According
to the asymptotic theory, it should be 8.333 ⋅ 10−2 and 8.333 ⋅ 10−4 respectively. We also estimate time-
dependence and cross-dependence of the rounding error. The correlation between successive rounding
errors is quite strong for the rounding to zero decimals and for one decimal as well suggesting autocor-
relation structure. On the contrary, the correlation between rounding errors and observed prices is quite
weak.
Figure 2.3 and Figure 2.4 show distribution of the first and second decimal of the CSCO and XOM
stock respectively. The first decimal does not quite resemble the uniform distribution. However, there
is no evident systematic behaviour common for all stocks. The second decimal is closer to the uniform
distribution except for the 0 and 5 digits which are more frequent. Other stocks also exhibit this behavior.
This phenomenon is known as the price clustering and is observed across different markets (see e.g.
Chung et al., 2004; Ahn et al., 2005; Chung et al., 2005; Ohta, 2006; Aşçıoğlu et al., 2007; Brown and
Mitchell, 2008; Ikenberry andWeston, 2008; Davis et al., 2014; Blau and Griffith, 2016; Box and Griffith,
2016; Hu et al., 2017; Mishra and Tripathy, 2018). In NYSE and NASDAQ exchanges, price clustering
is caused by a portion of traders buying and selling in multiples of dimes (10 cents – the second digit is
0) or nickels (5 cents – the second digit is 0 or 5).
In general, the results are similar to the empirical study of Holý (2018b), which analyzes foreign exchange
pairs with precision up to 5 decimals with conclusion that the distribution of the error caused by rounding
to three or more decimals is close enough to the uniform distribution from the variance estimation per-
spective. Our analysis of stock prices shows that although the distribution of the first and second decimal
is not exactly uniform and there is significant autocorrelation structure, it is reasonable to approximate
the variance of the rounding error using the uniform distribution.

2.2.5 Interval Model

This section follows Holý and Sokol (2018). Both transaction and quote data can be modeled by the
interval model. For the transaction data, we observe the price of the transaction Xi. We assume the
observed price has precision of d digits due to rounding down. The efficient price PTi is then assumed to
lie in the interval

PTi ∈ [PTi , PTi], PTi = Xi, PTi = Xi + 10−d . (2.31)
This model can be straightforwardly modified for rounding up or rounding to the nearest possible incre-
ment. Similarly to Section 2.2.4, the only source of uncertainty is the rounding. As this model does not
deal with the bid-ask bounce effect, it is more suitable to utilize quote data rather than transaction data in
the interval model.
For the quote data, we observe the bid priceXB

i (the price for which the trader can sell the financial asset)
and the ask priceXA

i (the price for which the trader can buy the financial asset). We haveXB
i ≤ XA

i . We
assume both bid and ask prices have precision of d digits due to rounding down. The efficient price PTiis then assumed to lie in the interval

PTi ∈ [PTi , PTi], PTi = X
B
i , PTi = X

A
i + 10

−d . (2.32)
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Figure 2.3: Histograms of decimal digits of the CSCO stock.
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Figure 2.4: Histograms of decimal digits of the XOM stock.
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Zero Decimals One Decimal
Stock Variance Auto Cross Variance Auto Cross
AAPL 9.043 ⋅ 10−2 0.971 -0.013 8.822 ⋅ 10−4 0.780 0.020
AXP 8.243 ⋅ 10−2 0.934 0.004 8.512 ⋅ 10−4 0.561 -0.005
BA 8.906 ⋅ 10−2 0.816 0.000 9.079 ⋅ 10−4 0.426 -0.003
CAT 8.512 ⋅ 10−2 0.895 0.007 8.615 ⋅ 10−4 0.427 0.001
CSCO 8.172 ⋅ 10−2 0.991 -0.020 8.437 ⋅ 10−4 0.922 0.006
CVX 8.243 ⋅ 10−2 0.936 -0.003 8.440 ⋅ 10−4 0.564 0.003
DIS 8.895 ⋅ 10−2 0.953 -0.004 8.541 ⋅ 10−4 0.652 -0.002
DWDP 8.581 ⋅ 10−2 0.957 -0.007 8.518 ⋅ 10−4 0.678 0.005
GE 8.780 ⋅ 10−2 0.991 -0.038 8.325 ⋅ 10−4 0.932 0.011
GS 8.733 ⋅ 10−2 0.857 0.001 8.701 ⋅ 10−4 0.425 0.008
HD 8.671 ⋅ 10−2 0.904 -0.004 8.532 ⋅ 10−4 0.458 0.007
IBM 8.189 ⋅ 10−2 0.931 -0.037 8.516 ⋅ 10−4 0.526 0.007
INTC 8.186 ⋅ 10−2 0.988 -0.005 8.521 ⋅ 10−4 0.894 0.004
JNJ 8.730 ⋅ 10−2 0.940 -0.007 8.458 ⋅ 10−4 0.572 -0.007
JPM 8.542 ⋅ 10−2 0.959 0.026 8.449 ⋅ 10−4 0.682 0.005
KO 8.888 ⋅ 10−2 0.981 0.037 8.361 ⋅ 10−4 0.844 -0.004
MCD 8.772 ⋅ 10−2 0.915 0.016 8.508 ⋅ 10−4 0.469 -0.008
MMM 8.285 ⋅ 10−2 0.866 -0.005 8.547 ⋅ 10−4 0.375 0.004
MRK 8.065 ⋅ 10−2 0.974 0.008 8.426 ⋅ 10−4 0.786 -0.006
MSFT 8.856 ⋅ 10−2 0.982 0.035 8.546 ⋅ 10−4 0.855 0.008
NKE 8.395 ⋅ 10−2 0.963 -0.004 8.476 ⋅ 10−4 0.711 0.000
PFE 8.425 ⋅ 10−2 0.985 0.042 8.339 ⋅ 10−4 0.865 0.009
PG 8.615 ⋅ 10−2 0.970 -0.012 8.405 ⋅ 10−4 0.757 -0.003
TRV 8.411 ⋅ 10−2 0.895 -0.006 8.448 ⋅ 10−4 0.435 0.005
UNH 8.708 ⋅ 10−2 0.868 -0.015 8.550 ⋅ 10−4 0.403 0.003
UTX 8.600 ⋅ 10−2 0.919 -0.017 8.479 ⋅ 10−4 0.517 0.005
V 8.746 ⋅ 10−2 0.943 0.019 8.514 ⋅ 10−4 0.604 0.004
VZ 8.306 ⋅ 10−2 0.976 -0.064 8.516 ⋅ 10−4 0.805 0.001
WMT 8.554 ⋅ 10−2 0.960 0.033 8.468 ⋅ 10−4 0.678 -0.003
XOM 8.629 ⋅ 10−2 0.972 0.046 8.322 ⋅ 10−4 0.769 0.016

Table 2.2: Variances of rounding errors, correlations of successive rounding errors (Auto) and correla-
tions of rounding errors with observed prices (Cross) of the 30 DJIA stocks.
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Figure 2.5: Simulated example of the upper and lower bounds in the interval model.

Again, this can be modified for different rounding processes. The interval model for quote data captures
both bid-ask spread and discreteness of the prices by interval uncertainty.
Figure 2.5 shows an example of the interval model. Note that we consider the asymptotic case of the
infinite number of observations in Figure 2.5. This is a significant difference compared to Figure 2.1 with
a finite number of observations for the bid and ask prices.

Literature about Interval Uncertainty

The problem, in which the exact values are not observable but the bounds are, is studied in the theory of
partial identification (see e.g. Manski, 2003). As only lower and upper bounds of the price process are
available, the goal is to compute lower and upper bounds of certain statistics. However, even some of the
basic statistics are not easy to estimate in this setting. The statistics studied in the literature include sample
variance (Černý and Sokol, 2015; Ferson et al., 2005; Sokol and Rada, 2016), t-ratio (Černý and Hladík,
2014), entropy (Kreinovich, 1996; Xiang et al., 2007) and higher moments (Kreinovich and Longpre,
2004). An overview of interval uncertainty methods can be found in Ferson et al. (2007) and Nguyen
et al. (2012). As we show in the Section 4.1.2 based on Holý and Sokol (2018), the quadratic variation
under interval uncertainty is not identifiable and only the information about large jumps in the process
can be uncovered.
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- Chapter 3 -

Trade Durations

This section follows Blasques, Holý and Tomanová (2018) with some extensions. An important aspect
of financial high-frequency data analysis is modeling of durations between events. Among these events
belong recording of transactions (denoted as trade durations), price changing by a given level (denoted
as price durations) and volumes reaching a given level (denoted as volume durations). We focus on trade
durations in this chapter.
Financial durations exhibit strong serial correlation, i.e. long durations are usually followed by long du-
rations and short durations are followed by short durations. To capture this time dependence, Engle and
Russell (1998) proposed the autoregressive conditional duration (ACD) model. It is analogous to the
GARCH volatility model and is similarly popular in the financial durations field. The ACD model has
received many extensions over the years. Various continuous distributions with non-negative support and
various dynamics of time-varying mean were proposed in the duration literature. Notably, the logarith-
mic transform for the ACD was utilized by Bauwens and Giot (2000) and Lunde (1999). It allows to
omit non-negativity constrains and include exogenous variables. For the survey of duration analysis, see
Pacurar (2008), Bauwens and Hautsch (2009), Hautsch (2011) and Saranjeet and Ramanathan (2019).
Financial durations can also be modeled by the class of generalized autoregressive score (GAS) models
(Creal et al., 2008, 2013), also known as dynamic conditional scoremodels (Harvey, 2013). This general
class includes many widely used models such as the GARCH model based on the normal distribution
of Bollerslev (1986) and ACD model based on the exponential distribution of Engle and Russell (1998).
The GAS models capture dynamics of time-varying parameters by the autoregressive term and the term
based on the score of the conditional probability density function (or the conditional probability mass
function for the case of discrete models). The GAS specification therefore utilizes the entire shape of the
underlying distribution. This allows us to formulate novel duration models based on various distributions
within a single framework.
We propose a new model for trade durations named the zero-inflated autoregressive conditional duration
(ZIACD) model. This model is based on the zero-inflated negative binomial distribution and the GAS
specification for the time varying parameter. We have two motivations for the proposed model. First, it is
suitable for discrete durations as it utilizes a discrete distribution. Second, it allows to capture excessive
zero durations caused by split transactions as it utilizes a zero-inflated distribution. In the theoretical part
of this chapter, we discuss the consistency and asymptotic normality of the maximum likelihood estimator
for the proposed ZIACD model. In the empirical part of this chapter, we show that the proposed discrete
ZIACD model is a good fit when duration data is discrete and outperforms traditional continuous models
even when duration data is virtually continuous due to its correct treatment of zero values.
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Parameters
Article Distribution Time-Varying Constant
Engle and Russell (1998) Exponential Mean 0
Engle and Russell (1998) Weibull Mean 1
Lunde (1999) Generalized Gamma Mean 2
Grammig and Maurer (2000) Burr Mean 2
Hautsch (2001) Generalized F Mean 3
Bhatti (2010) Birnbaum–Saunders Median 1
Xu (2013) Log-Normal Mean 1
Leiva et al. (2014) Power-Exponential Birnbaum–Saunders Median 2
Leiva et al. (2014) Student’s t Birnbaum–Saunders Median 2
Zheng et al. (2016) Fréchet Mean 1

Table 3.1: The use of continuous distributions in ACD models.

3.1 Distributions of Durations

Let T0 ≤ T1 ≤ ⋯ ≤ Tn be random variables denoting times of transactions. Trade durations are then
defined as Xi = Ti − Ti−1, i = 1,… , n. Note that we use slightly different notation than in Section 2 as
we denote durations as Xi instead of Di.
In this section, we focus on the distribution of Xi. We consider both continuous and discrete distribu-
tions. In any case, we assume that the distribution of Xi, i = 1,… , n has non-negative support and is
dependent on some time-varying parameters fi = (fi,1… , fi,k)′, i = 1,… , n and some static parameters
g = (g1,… , gl)′. In the following text, we utilize the conditional probability density function p(xi|fi, g)
for continuous random variable Xi and the conditional probability mass function P [Xi = xi|fi, g] for
discrete random variable Xi. The observed durations are denoted as xi. We also utilize the score and
the Fisher information for time-varying parameters. In the following text, let p(xi|fi, g) also denote the
conditional probability mass function. The score for time-varying parameters fi is then defined as

∇(xi, fi, g) =
) log p(xi|fi, g)

)fi
. (3.1)

The Fisher information for time-varying parameters fi is then defined as

(fi, g) = E
[

∇(xi, fi, g)∇(xi, fi, g)′
|

|

|

fi, g
]

= −E

[

)2 log p(xi|fi, g)
)fi)f ′i

|

|

|

|

|

fi, g

]

. (3.2)

Note, that the latter equality requires some regularity conditions (see Lehmann and Casella, 1998).
Next, we present various continuous and discrete distributions. We also suggest which parameters should
be time-varying and which static with regard to the duration models.

3.1.1 Continuous Distributions

Traditionally, duration models are based on continuous distributions. Table 3.1 reviews continuous dis-
tributions used in the autoregressive conditional duration literature. The ACD specification is usually
based on the time-varying mean with some additional constant shape parameters. As an illustration, we
focus on the generalized gamma distribution and its special cases – the exponential, Weibull and gamma
distributions.
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Exponential Distribution

The exponential distribution is a continuous distribution with non-negative support and one parameter.
We consider the scale parameter �i > 0 to be time-varying, i.e. fi = �i. The probability density function
is

p(xi|�i) =
1
�i
e−

xi
�i for xi ∈ [0,∞). (3.3)

The expected value and variance is
E[Xi] = �i,

var[Xi] = �2i .
(3.4)

The score for the parameter �i is
∇(xi, �i) = �−1i

(

xi�
−1
i − 1

) for xi ∈ [0,∞). (3.5)
The Fisher information for the parameter �i is

(�i) = �−2i . (3.6)

Weibull Distribution

The Weibull distribution is a continuous distribution with strictly positive support and two parameters.
We consider the scale parameter �i > 0 to be time-varying, while the shape parameter ' > 0 is static, i.e.
fi = �i and g = '. The probability density function is

p(xi|�i, ') =
'
�i

(

xi
�i

)'−1

e−
(

xi
�i

)'

for xi ∈ (0,∞). (3.7)

The expected value and variance is
E[Xi] = �iΓ

(

1 + '−1
)

,

var[Xi] = �2i Γ
(

1 + 2'−1
)

−
(

�iΓ
(

1 + '−1
)

)2
.

(3.8)

The score for the parameter �i is

∇(xi, �i, ') = '�−1i
(

x'i �
−'
i − 1

)

for xi ∈ (0,∞). (3.9)
The Fisher information for the parameter �i is

(�i, ') = �−2i '2. (3.10)
A special case of the Weibull distribution is the exponential distribution for ' = 1.

Gamma Distribution

The gamma distribution is a continuous distribution with strictly positive support and two parameters.
We consider the scale parameter �i > 0 to be time-varying, while the shape parameter  > 0 is static, i.e.
fi = �i and g =  . The probability density function is

p(xi|�i,  ) =
1

Γ ( )
1
�i

(

xi
�i

) −1

e−
xi
�i for xi ∈ (0,∞). (3.11)

The expected value and variance is
E[Xi] = �i ,

var[Xi] = �2i  .
(3.12)
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The score for the parameter �i is
∇(xi, �i,  ) = �−1i

(

xi�
−1
i −  

)

for xi ∈ (0,∞). (3.13)
The Fisher information for the parameter �i is

(�i,  ) = �−2i  . (3.14)
A special case of the gamma distribution is the exponential distribution for  = 1.

Generalized Gamma Distribution

The generalized gamma distribution is a continuous probability distribution with strictly positive support
and a three-parameter generalization of the two-parameter gamma distribution (Stacy, 1962). It also
contains the exponential distribution and the Weibull distribution as special cases. We consider the scale
parameter �i > 0 to be time-varying, while the shape parameters  > 0 and ' > 0 are static, i.e. fi = �i
and g = ( ,')′. The probability density function is

p(xi|�i,  , ') =
1

Γ ( )
'
�i

(

xi
�i

) '−1

e−
(

xi
�i

)'

for xi ∈ (0,∞). (3.15)
The expected value and variance is

E[Xi] = �i
Γ
(

 + '−1
)

Γ ( )
,

var[Xi] = �2i
Γ
(

 + 2'−1
)

Γ ( )
−

(

�i
Γ
(

 + '−1
)

Γ ( )

)2

.
(3.16)

The score for the parameter �i is
∇(xi, �i,  , ') = '�−1i

(

x'i �
−'
i −  

)

for xi ∈ (0,∞). (3.17)
The Fisher information for the parameter �i is

(�i,  , ') = �−2i  '2. (3.18)
Special cases of the generalized gamma distribution include the gamma distribution for' = 1, theWeibull
distribution for  = 1 and the exponential distribution for  = 1 and ' = 1.

3.1.2 Discrete Distributions
Traditionally, durations are not considered to be discrete variables. However, as we discuss in Section
3.2.3, discrete distributions for durations are suitable in many cases. We present the Poisson, geometric
and negative binomial distributions alongside their zero-inflated modifications.
Non-negative integer variables are commonly analyzed using count data models based on specific un-
derlying distribution, most notably the Poisson distribution and the negative binomial distribution (see
Cameron and Trivedi, 2013). A distinctive feature of the Poisson distribution is that its expected value
is equal to its variance. This characteristic is too strict in many applications as count data often exhibit
overdispersion, a higher variance than the expected value. A generalization of the Poisson distribution
overcoming this limitation is the negative binomial distribution with one parameter determining its ex-
pected value and another parameter determining its excess dispersion.
The zero-inflated distribution is an extension of a discrete distribution allowing the probability of zero
values to be higher than the probability given by the original distribution. In the zero-inflated distri-
bution, values are generated by two components – one component generates only zero values while the
other component generates integer values (including zero values) according to the original distribution.
Lambert (1992) proposed the zero-inflated Poisson model and Greene (1994) used zero-inflated model
for the negative binomial distribution.
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Poisson Distribution

The Poisson distribution is a discrete distribution with one parameter. We consider the location parameter
�i > 0 to be time-varying, i.e. fi = �i. The probability mass function is

P[Xi = xi|�i] =
1

Γ(xi + 1)
�xii e

−�i for xi = 0, 1, 2,… . (3.19)

The expected value and variance is
E[Xi] = �i,

var[Xi] = �i.
(3.20)

The score for the parameter �i is
∇(xi, �i) = �−1i xi − 1 for xi = 0, 1, 2,… . (3.21)

The Fisher information for the parameter �i is
(�i) = �−1i . (3.22)

Zero-Inflated Poisson Distribution

Lambert (1992) proposed the zero-inflated modification of the Poisson distribution. The zero-inflated
Poisson distribution is a discrete distribution with two parameters. We consider the location parameter
�i > 0 to be time-varying, while the probability of excessive zero values � ∈ [0, 1) is static, i.e. fi = �i
and g = �. The variable Xi follows the zero-inflated Poisson distribution if

Xi ∼ 0 with probability �,
Xi ∼ Poiss(�i) with probability 1 − �. (3.23)

The first process generates only zeros, while the second process generates values from the Poisson distri-
bution. The probability mass function is

P[Xi = xi|�i, �] =

{

� + (1 − �)e−�i for xi = 0,
(1 − �) 1

Γ(xi+1)
�xii e

−�i for xi = 1, 2,… . (3.24)

The expected value and variance is
E[Xi] = �i(1 − �),

var[Xi] = �i(1 − �)(1 + ��i).
(3.25)

The score for the parameter �i is

∇(xi, �i, �) =
{

(� − 1)(1 + �e−�i − �)−1 for xi = 0,
�−1i xi − 1 for xi = 1, 2,… . (3.26)

The Fisher information for the parameter �i is
(�i, �) = �(� − 1)(�e�i − � + 1)−1 − (� − 1)�−1i . (3.27)

Geometric Distribution

The geometric distribution is a discrete distribution with one parameter. We consider the location param-
eter �i > 0 to be time-varying, i.e. fi = �i. The probability mass function is

P[Xi = xi|�i] =
1

1 + �i

(

�i
1 + �i

)xi
for xi = 0, 1, 2,… . (3.28)

- 39 -



The expected value and variance is
E[Xi] = �i,

var[Xi] = �i(1 + �i).
(3.29)

The score for the parameter �i is
∇(xi, �i) = �−1i (xi − �i)(�i + 1)

−1 for xi = 0, 1, 2,… . (3.30)
The Fisher information for the parameter �i is

(�i) = �−1i (�i + 1)
−1. (3.31)

Zero-Inflated Geometric Distribution

Similarly to the Poisson distribution, the geometric distribution can also be modified to capture excessive
zeros. The zero-inflated geometric distribution is a discrete distribution with two parameters. We consider
the location parameter �i > 0 to be time-varying, while the probability of excessive zero values � ∈ [0, 1)
is static, i.e. fi = �i and g = �. The variable Xi follows zero-inflated negative binomial distribution if

Xi ∼ 0 with probability �,
Xi ∼ Geom(�i) with probability 1 − �. (3.32)

The first process generates only zeros, while the second process generates values from the geometric
distribution. The probability mass function is

P[Xi = xi|�i, �] =

⎧

⎪

⎨

⎪

⎩

� + (1 − �) 1
1+�i

for xi = 0,
(1 − �) 1

1+�i

(

�i
1+�i

)xi for xi = 1, 2,… .
(3.33)

The expected value and variance is
E[Xi] = �i(1 − �),

var[Xi] = �i(1 − �)(1 + ��i + �i).
(3.34)

The score for the parameter �i is

∇(xi, �i, �) =
{

(� − 1)(�i + 1)−1(��i + 1)−1 for xi = 0,
�−1i (xi − �i)(�i + 1)

−1 for xi = 1, 2,… . (3.35)

The Fisher information for the parameter �i is

(�i, �) =
�(� − 1)

(�i + 1)2(��i + 1)
+ 1 − �
�i(�i + 1)

. (3.36)

Negative Binomial Distribution

The negative binomial distribution is a generalization of the Possion distribution and the geometric dis-
tribution. It has the location parameter and the dispersion parameter allowing for the variance to be
greater than the mean. The negative binomial distribution can be derived in many ways (see Boswell
and Patil, 1970). We use the NB2 parameterization of Cameron and Trivedi (1986) derived from the
Poisson-gamma mixture distribution. It is the most common parametrization used in the negative bino-
mial regression according to Hilbe (2011) and Cameron and Trivedi (2013). We consider the location
parameter �i > 0 to be time-varying, while the dispersion parameter � ≥ 0 is static, i.e. fi = �i and
g = �. The probability mass function is

P[Xi = xi|�i, �] =
Γ(xi + �−1)

Γ(xi + 1)Γ(�−1)

(

�−1

�−1 + �i

)�−1 ( �i
�−1 + �i

)xi
for xi = 0, 1, 2,… . (3.37)
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The expected value and variance is
E[Xi] = �i,

var[Xi] = �i(1 + ��i).
(3.38)

The score for the parameter �i is
∇(xi, �i, �) = �−1i (xi − �i)(��i + 1)

−1 for xi = 0, 1, 2,… . (3.39)
The Fisher information for the parameter �i is

(�i, �) = �−1i (��i + 1)
−1. (3.40)

Special cases of the negative binomial distribution include the Poisson distribution for � = 0 and the
geometric distribution for � = 1.

Zero-Inflated Negative Binomial Distribution

Greene (1994) used the zero-inflated model for the negative binomial distribution. The zero-inflated
negative binomial distribution is a discrete distribution with three parameters. We consider the location
parameter �i > 0 to be time-varying, while the dispersion parameter � ≥ 0 and the probability of exces-
sive zero values � ∈ [0, 1) are static, i.e. fi = �i and g = (�, �)′. The variableXi follows the zero-inflated
negative binomial distribution if

Xi ∼ 0 with probability �,
Xi ∼ NB(�i, �) with probability 1 − �. (3.41)

The first process generates only zeros, while the second process generates values from the negative bino-
mial distribution. The probability mass function is

P[Xi = xi|�i, �, �] =

⎧

⎪

⎨

⎪

⎩

� + (1 − �)
(

�−1

�−1+�i

)�−1 for xi = 0,
(1 − �) Γ(xi+�−1)

Γ(xi+1)Γ(�−1)

(

�−1

�−1+�i

)�−1 ( �i
�−1+�i

)xi for xi = 1, 2,… .
(3.42)

The expected value and variance is
E[Xi] = �i(1 − �),

var[Xi] = �i(1 − �)(1 + ��i + ��i).
(3.43)

The score for the parameter �i is

∇(xi, �i, �, �) =

{

(� − 1)(��i + 1)−1
(

1 + �(��i + 1)�
−1 − �

)−1 for xi = 0,
�−1i (xi − �i)(��i + 1)

−1 for xi = 1, 2,… .
(3.44)

The Fisher information for the parameter �i is

(�i, �, �) =
�(� − 1)

(��i + 1)2
(

�(��i + 1)�
−1 − � + 1

) + 1 − �
�i(��i + 1)

. (3.45)

Special cases of the zero-inflated negative binomial distribution include the negative binomial distribution
for � = 0, the zero-inflated Poisson distribution for � = 0 and the zero-inflated geometric distribution for
� = 1.
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3.2 Models of Durations
In this section, we focus on dynamics of time-varying parameter fi, i = 1,…n of the underlying dis-
tributions. We present the original autoregressive conditional duration (ACD) model with some of its
extensions and modifications. We also present the generalized autoregressive score (GAS) model, which
can be utilized for duration modeling as well. The highlight of this section is the proposed zero-inflated
autoregressive conditional duration (ZIACD) model based on the zero-inflated negative binomial distri-
bution with the time-varying parameter following the GAS recursion. We derive the model specification
and formulate asymptotic properties of the maximum likelihood estimator.

3.2.1 ACD Model and Its Extensions
Engle and Russell (1998) proposed to model durations Xi as

Xi = �iEi, E[Ei] = 1, i = 1,… , n, (3.46)
where �i ≥ 0 is the time-varying mean and Ei are independent and identically distributed random vari-
ables with non-negative support and unit mean. This is in line with our (slightly different) framework in
which we directly model distribution of Xi with both time-varying and static parameters instead of Ei
with only static parameters. Originally, Engle and Russell (1998) considered the exponential andWeibull
distributions with unit mean for Ei. In their ACD(p, q) model, the time-varying mean follows recursion

�i+1 = c +
q
∑

j=1
bj�i−j+1 +

p
∑

j=1
ajxi−j+1, (3.47)

where c, bj and aj are the parameters and xi are the observed values of Xi. This specification, however,
has some drawbacks. Dufour and Engle (2000) point out that this recursion requires constraints on the
parameters to ensure non-negativity of durations. Dufour and Engle (2000) and Fernandes and Grammig
(2006) also show that non-linear functional forms of the time-varying mean �i are more appropriate.
Model (3.46) is utilized in many studies following Engle and Russell (1998) with various underlying dis-
tributions for Ei. The recursion for the time-varying mean �i (3.47) is analogous to the popular GARCH
model and similarly to the GARCH model, it has received many extensions and modifications. Next,
we list some of the specifications for the mean dynamics proposed in the duration literature. For a more
comprehensive overview, see Hautsch (2011).

Specification of Logarithmic Duration Models

The logarithmic autoregressive conditional duration model was proposed by Bauwens and Giot (2000).
The LACD1(p, q) model is based on recursion

log �i+1 = c +
q
∑

j=1
bj log �i−j+1 +

p
∑

j=1
aj log

(

xi−j+1�
−1
i−j+1

)

, (3.48)

where c, bi and ai are the parameters and xi are the observed values of Xi. Terms xi−j+1�−1i−j+1 are
residuals, i.e. the observed values of Ei. The logarithmic model allows to include additional variables to
the model without the need of sign restrictions on their coefficients. This is the main motivation behind
this model.
Another logarithmic autoregressive conditional duration model was proposed by Lunde (1999). The
LACD2(p, q) model is based on recursion

log �i+1 = c +
q
∑

j=1
bj log �i−j+1 +

p
∑

j=1
ajxi−j+1�

−1
i−j+1, (3.49)

where c, bj and aj are the parameters and xi are the observed values of Xi.
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Specification of Additive and Multiplicative Duration Model

The additive and multiplicative autoregressive conditional duration model was described by Hautsch
(2011). The AMACD(p, r, q) model is based on recursion

�i+1 = c +
q
∑

j=1
bj�i−j+1 +

p
∑

j=1
ajxi−j+1 +

r
∑

j=1
djxi−j+1�

−1
i−j+1, (3.50)

where c, bj , aj and dj are the parameters and xi are the observed values of Xi. The ACD(p, q) model is
a special case of the AMACD(p, r, q) model for r = 0.

Specification of Box-Cox Duration Models

Engle (2000) proposed a duration model using the Box-Cox transformation of the past innovations. The
BCACD1(p, q) model is based on recursion

log �i+1 = c +
q
∑

j=1
bj log �i−j+1 +

p
∑

j=1
aj
x�i−j+1�

−�
i−j+1 − 1

�
, (3.51)

where c, bj , aj and � are the parameters and xi are the observed values of Xi. Special cases of the
BCACD1(p, q) model include the LACD1(p, q) model for � → 0 and LACD2(p, q) model for � = 1.
Hautsch (2001) and Hautsch (2003) further generalize this model using the Box-Cox transformation for
both past innovations and the time-varying mean. The BCACD2(p, q) model is based on recursion

�i+1 − 1


= c +
q
∑

j=1
bj
�i−j+1 − 1


+

p
∑

j=1
aj
x�i−j+1�

−�
i−j+1 − 1

�
, (3.52)

where c, bj , aj , � and  are the parameters and xi are the observed values of Xi. Special cases of the
BCACD2(p, q) model include the ACD(p, q) model for � = 1 and  = 1, LACD1(p, q) model for � → 0
and  → 0, LACD2(p, q) model for � = 1 and  → 0 and BCACD1(p, q) model for  → 0.

3.2.2 GAS Model

Generalized autoregressive score (GAS) models (Creal et al., 2008, 2013), also known as dynamic con-
ditional score models (Harvey, 2013), provide a general framework for modeling of time-varying pa-
rameters. They capture dynamics of time-varying parameters fi = (fi,1,… , fi,k)′ by the autoregressive
term and the scaled score of the conditional observation density (or the conditional observation probabil-
ity mass function in the case of discrete distribution). The time-varying parameters fi in the GAS(1, 1)
model follow the recursion

fi+1 = C + Bfi + AS(fi, g)∇(xi, fi, g), (3.53)
where C = (c1,… , ck)′ are the constant parameters, B = diag(b1,… , bk) are the autoregressive pa-
rameters, A = diag(a1,… , ak) are the score parameters, S(fi, g) is a scaling function for the score and
∇(xi, fi, g) is the score defined in (3.1). The score for the time-varying vector fi is the gradient of the
log-likelihood with respect to fi. It indicates how sensitive the log-likelihood is to parameter fi. In model
(3.53), the score drives the time variation in the parameter fi and links the shape of the density function
(or the probability mass function) directly to the dynamics of fi. As the scaling function, we consider

• the unit scaling S(fi, g) = I ,
• the square root of the inverse of the Fisher information scaling S(fi, g) = (fi, g)

− 1
2 ,
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• the inverse of the Fisher information scaling S(fi, g) = (fi, g)−1.

Note that each scaling function results in a different GAS model. The long-term mean and unconditional
value of the time-varying parameters is f̄ = (I − B)−1C .
In general, Cox (1981) classifies time series to observation-driven models and parameter-driven models.
The GAS models belong to the class of observation-driven models. Koopman et al. (2016) find that
observation-driven models based on the score perform comparably to parameter-driven models in terms
of predictive accuracy. Observation-driven models (including the GAS model) can be estimated in a
straightforward manner by the maximum likelihood method.

Reparametrization

The parameters fi in (3.53) are assumed to be unbounded. However, some distributions require bounded
parameters (e.g. variance greater than zero). The standard solution in the GAS framework is to use
an unbounded parametrization f̃i = H(fi), which follows the GAS recursion instead of the original
parametrization fi, i.e.

f̃i+1 = C̃ + B̃f̃i + ÃS̃(f̃i, g)∇̃(xi, f̃i, g), (3.54)
where C̃ = (c̃1,… , c̃k)′ are the constant parameters, B̃ = diag(b̃1,… , b̃k) are the autoregressive param-
eters, Ã = diag(ã1,… , ãk) are the score parameters, S̃(f̃i, g) is the reparametrized scaling function for
the score and ∇̃(xi, f̃i, g) is the reparametrized score. The reparametrized score equals to

∇̃(xi, f̃i, g) = Ḣ−1(fi)∇(xi, fi, g), (3.55)
while the Fisher information of the reparametrized model equals to

̃(f̃i, g) = Ḣ ′−1(fi)(fi, g)Ḣ−1(fi), (3.56)
where Ḣ(fi) = )H(fi)∕)f ′i is the Jacobian matrix ofH(fi).

Higher-Order Generalization

Naturally, the GAS(1, 1) model can be extend to the GAS(p, q) model. The time-varying parameters fi
in the GAS(p, q) model follow the recursion

fi+1 = C +
q
∑

j=1
Bjfi−j+1 +

p
∑

j=1
AjS(fi−j+1, g)∇(xi−j+1, fi−j+1, g), (3.57)

where C = (c1,… , ck)′ are the constant parameters, Bj = diag(bj,1,… , bj,k) are the autoregressive
parameters, Aj = diag(aj,1,… , aj,k) are the score parameters, S(fi, g) is the scaling function for the
score and ∇(xi, fi, g) is the score.

Specification of GAS Models Based on the Exponential Distribution

We can obtain various duration models using the GAS specification with various parametrizations and
scaling functions. We formulate the models for the case of the exponential distribution (3.3) with the
score (3.5). First, by considering the regular parametrization and the unit scaling, we obtain the model

�i+1 = c +
q
∑

j=1
bj�i−j+1 +

p
∑

j=1
aj
(

xi−j+1�
−2
i−j+1 − �

−1
i−j+1

)

, (3.58)

where c, bj and aj are the parameters and xi are the observed values of Xi.
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Second, by considering the regular parametrization and the square root of the inverse of the Fisher infor-
mation scaling, we obtain the model

�i+1 = c +
q
∑

j=1
bj�i−j+1 +

p
∑

j=1
aj
(

xi−j+1�
−1
i−j+1 − 1

)

, (3.59)

where c, bj and aj are the parameters and xi are the observed values ofXi. This specification is equivalent
to the AMACD(p, q, 0) model.
Third, by considering the regular parametrization and the inverse of the Fisher information scaling, we
obtain the model

�i+1 = c +
q
∑

j=1
bj�i−j+1 +

p
∑

j=1
aj
(

xi−j+1 − �i−j+1
)

, (3.60)

where c, bj and aj are the parameters and xi are the observed values ofXi. This specification is equivalent
to the ACD(p, q) model.
Fourth, by considering the logarithmic parametrization and the unit scaling, we obtain the model

log �i+1 = c +
q
∑

j=1
bj log �i−j+1 +

p
∑

j=1
aj
(

xi−j+1�
−1
i−j+1 − 1

)

, (3.61)

where c, bj and aj are the parameters and xi are the observed values ofXi. This specification is equivalent
to the LACD2(p, q) model. Note that the square root of the inverse of the Fisher information scaling and
the inverse of the Fisher information scaling results in exactly the same model as the Fisher information
is equal to 1 for this parametrization.
We can see that within the GAS framework, we can formulate some traditional durations models and
construct some brand new models as well. For other distributions with more parameters, the score and
the Fisher information are more complex and the expressions for time-varying mean tend to differ from
the traditional specifications.

Other Notable GAS Models

The GAS specification includes many commonly used econometric models. Most notably, the GAS
model with the normal distribution, the inverse of the Fisher information scaling and time-varying vari-
ance results in the GARCH model of Bollerslev (1986). Other continuous models which can be for-
mulated within the GAS framework include the autoregressive conditional intensity model of Russell
(1999), dynamic conditional correlation model of Engle (2002), time-varying quantile model of Engle
and Manganelli (2004) and dynamic copula model of Patton (2006).
The GAS framework can be utilized for discrete models as well. Koopman et al. (2015) and Koop-
man et al. (2018) used discrete copulas based on the Skellam distribution for high-frequency stock price
changes. Koopman and Lit (2017) used the bivariate Poisson distribution for a number of goals in football
matches and the Skellam distribution for a score difference. In a similar fashion, Pikhart and Holý (2018)
used the logistic regression for e-sport matches. Gorgi (2018) used the Poisson distribution as well as
the negative binomial distribution for offensive conduct reports. Blazsek and Escribano (2016) used the
Poisson count panel model for the number of successful patent applications. The Poisson count model of
Davis et al. (2003) can be formulated within the GAS framework as well.
For other continuous and discrete GAS models, see the list of papers on the GAS model website of Lucas
(2019). A total of 169 published articles, articles in press, working papers and doctoral theses related to
the GAS model were listed as of December 31, 2018.
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3.2.3 ZIACD Model

Traditional duration models are based on continuous distributions as discussed in Section 3.1.1. All data
are, however, inherently discrete. This is also the case of financial durations, whether they are recorded
with a second or millisecond precision. Discretness of real data is the first motivation of our approach.
Generally, there are three ways to deal with discrete values of observed variables.

• The first approach is to consider random variables to follow a continuous distribution and simply
ignore discretness of data. This is a valid and often the best solution when data are recorded with
a high precision (e.g. durations with millisecond precision). However, if the precision is lower
(e.g. durations with second precision), a bias in estimators increases and the significance level in
hypothesis tests is altered (see Schneeweiss et al., 2010). Tricker (1984) and Taraldsen (2011)
explore the effects of rounding on the exponential distribution while Tricker (1992) deals with
the gamma distribution. In autoregressive processes, the rounding errors can further accumulate
making continuous models unreliable (see Zhang et al., 2010 and Li and Bai, 2011).

• The second approach is to consider random variables to follow a continuous distribution and take
into account partial identification and interval uncertainty of the observations caused by rounding or
grouping (see e.g. Manski, 2003). In financial volatility analysis, discrete values of prices are often
(among other effects) captured by the market microstructure noise (see e.g. Hansen and Lunde,
2006). To our knowledge, Grimshaw et al. (2005) is the only paper addressing the issue of rounding
in financial durations analysis. They found that ignoring the discretness of data leads to a distortion
of time-dependence tests in financial durations.

• The third approach is to consider random variables to follow a discrete distribution. In financial
analysis, prices were directly modeled by discrete distributions e.g. by Russell and Engle (2005) and
Koopman et al. (2018). Kabasinskas et al. (2012) use discrete distributions to count zero changes
in prices. In this section, we follow the discrete approach for financial durations and utilize count
time series models (see e.g. Cameron and Trivedi, 2013).

There are many trade durations that are exactly zero or very close to zero. Zero durations can be caused
by split transcations, i.e. large trades broken into two or more smaller trades. Veredas et al. (2002) offer
another explanation as they notice that many simultaneous transactions occur at round prices suggesting
many traders post limit orders to be executed at round prices. Zero durations can as well just be inde-
pendent transactions executed at very similar times and originating from different sources. Whatever
the reason for zero durations, ignoring them can cause problems in estimation as many widely used dis-
tributions have strictly positive support and zero values have therefore zero density. Liu et al. (2018c)
examine the effect of zero durations on integrated variance estimation. The presence of zero durations is
the second motivation of our approach. There are several ways how to deal with zero durations.

• The most common approach dating back to Engle and Russell (1998) is to discard zero durations.
Specifically, observations with the same timestamp are merged together with the resulting price
calculated as an average of prices weighted by volumes. This helps with estimation but the distri-
bution of durations is distorted as zero-durations that are just independent transactions executed at
similar times should be kept in the dataset.

• Instead of discarding, Bauwens (2006) sets zero durations to a small given value. This helps with
estimation but the distribution of durations is distorted as zero-durations that correspond to split
transactions should be omitted from the dataset.

• The information of zero durations can be utilized in a model. Zhang et al. (2001) include indicator
of multiple transactions as an explanatory variable in their regression model.
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• Another way of incorporating zero durations in a model is to directly include excessive zero val-
ues in the underlying distribution. For continuous distributions, zero-augmented models proposed
by Hautsch et al. (2014) can be utilized 1. However, in high-precision data, there are no exact
zero values but rather very small positive values, many of which should be considered as zeros.
Grammig and Wellner (2002) suggest to treat successive trades with either non-increasing or non-
decreasing prices within one second as one large trade (i.e. as zero durations). The issue with this
approach is that these successive trades can as well be independent and originate from different
sources. Therefore, it is an uneasy task to identify whether close-to-zero durations indicate actual
split transactions.

• It is more convenient tomodel zero durations in a discrete framework. When the values are grouped,
zero durations corresponding to split transactions manifest themselves as an excessive probability
of the group containg zero values. For discrete distributions, the zero-inflated extension of Lambert
(1992) can be utilized. In this section, this is the approach we suggest.

For these two reasons, we propose the zero-inflated autoregressive conditional duration (ZIACD) model.
We directly take into account a discreteness of durations and utilize the negative binomial distribution to
accommodate for overdispersion in durations (see Boswell and Patil, 1970; Cameron and Trivedi, 1986;
Christou and Fokianos, 2014). The excessive zero durations caused by split transactions are captured
by the zero-inflated modification of the negative binomial distribution (see Greene, 1994). The time-
varying location parameter follows the specification of general autoregressive score (GAS) models (see
Creal et al., 2008, 2013; Harvey, 2013).

Specification of Zero-Inflated Duration Model

We operate within a discrete framework and assume trade durations to have discrete values Xi ∈ ℕ0, i =
1,… , n. In the proposed zero-inflated autoregressive conditional duration (ZIACD) model, we consider
observations to have zero-inflated negative binomial distribution with the time-varying parameter �i and
static parameters g = (�, �)′ specified in (3.42). We consider the time-varying parameter to follow the
GAS recursion. We follow the theory outlined in Section 3.1.2 and Section 3.2.2.
We use a reparametrization with the exponential link for the location parameter fi = H(�i) = log(�i).
Parameter log(�i) then follow recursion

fi+1 = c + bfi + as(xi, fi, g), (3.62)

where c is the constant parameter, b is the autoregressive parameter, a is the score parameter and
s(xi, fi, g) = S̃(fi, g)∇̃(xi, fi, g) is the reparametrized scaled score. Note that both the scaling function
S̃(fi, g) and the score ∇̃(xi, fi, g) are with respect to the reparametrizationH(�i), which can be obtained
from (3.55) and (3.56). The long-term mean and unconditional value of fi is then f̄ = (1 − b)−1c and
�̄ = e(1−b)−1c in the original restricted parametrization.
Next, we present the exact specifications of the scaled score for all three considered scaling functions.
The reparametrized scaled score for the unit scaling is equal to

s(xi, fi, g) =

⎧

⎪

⎨

⎪

⎩

exp(fi)(�−1)

(� exp(fi)+1)
(

1+�(� exp(fi)+1)�
−1−�

) for xi = 0,
xi−exp(fi)
� exp(fi)+1

for xi = 1, 2,… .
(3.63)

1The use of zero-augmented models was also suggested by T. V. Ramanathan during the 3rd Conference and Workshop on
Statistical Methods in Finance, Chennai, December 16–19, 2017.
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The reparametrized scaled score for the square root of the Fisher information scaling is equal to

s(xi, fi, g) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

exp(fi)
√

�−1
√

� exp(fi)−(� exp(fi)+1)
(

1+�(� exp(fi)+1)�
−1−�

)
√

1+�(� exp(fi)+1)�
−1−�

for xi = 0,

(xi−exp(fi))
√

1+�(� exp(fi)+1)�
−1−�

√

exp(fi)
√

�−1
√

� exp(fi)−(� exp(fi)+1)
(

1+�(� exp(fi)+1)�
−1−�

)

for xi = 1, 2,… .

(3.64)
The reparametrized scaled score for the inverse of the Fisher information scaling is equal to

s(xi, fi, g) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� exp(fi)+1

� exp(fi)−(� exp(fi)+1)
(

1+�(� exp(fi)+1)�
−1−�

) for xi = 0,
(xi−exp(fi))(� exp(fi)+1)

(

1+�(� exp(fi)+1)�
−1−�

)

exp(fi)(�−1)
(

� exp(fi)−(� exp(fi)+1)
(

1+�(� exp(fi)+1)�
−1−�

)) for xi = 1, 2,… .
(3.65)

As the score and the Fisher information for the zero-inflated negative binomial distribution is rather com-
plicated, the expressions (3.63), (3.64) and (3.65) are also quite complex. However, their interpretation
as the scaled score remains simple and straightforward.

Maximum Likelihood Estimation

Let us denote � = (�, �, c, b, a)′ the static parameter vector which defines the dynamics of the GASmodel
proposed in (3.62). The static parameter vector � is estimated by the method of maximum likelihood

�̂n ∈ argmax�∈Θ
L̂n(�), (3.66)

where L̂n(�) denotes the log likelihood function. The log likelihood is obtained from a sequence of
n observations x1,… , xn, which depends on the filtered time-varying parameter f̂1(�), ..., f̂n(�), and is
given by

L̂n(�) =
1
n

n
∑

i=1
l̂i(xi, �) =

1
n

n
∑

i=1
logP [Xi = xi|f̂i(�), �

]

. (3.67)

We approach the asymptotic theory of the maximum likelihood estimation within the traditional asymp-
totic framework described e.g. in Gallant and White (1988), Bougerol (1993), White (1994), Pötscher
and Prucha (1997), Straumann and Mikosch (2006) and Blasques (2017).
Below, we show that the maximum likelihood estimator of the ZIACD model is consistent and asymp-
totically normal. First, we present general asymptotic theorems as formulated in Blasques (2017). Next,
we derive conditions for the asymptotic properties of the proposed ZIACD model with general scaling.
Finally, we discuss how these conditions can be verified for the case of the unit scaling. We present results
for the ZIACD model without proofs and refer to Blasques, Holý and Tomanová (2018) for all proofs.

Filter Invertibility

Filter invertibility is crucial for statistical inference in the context of observation-driven time-varying
parameter models (see e.g. Straumann and Mikosch, 2006; Wintenberger, 2013; Blasques et al., 2014).
First, let us define some basic concepts. A random sequence {zi}i∈ℕ is said to be strictly stationary if
the distribution of every finite sub-vector is invariant in time. A random sequence {zi}i∈ℕ is said to be
ergodic if and only if, every event occurs with probability 0 or 1 over an infinite amount of time. The
filter {f̂i(�)}i∈ℕ initialized at some point f̂1 ∈ ℝ is said to be invertible if f̂i(�) converges almost surely
exponentially fast to a unique limit strictly stationary and ergodic sequence {fi(�)}i∈ℤ, i.e.

 i ||
|

f̂i(�) − fi(�)
|

|

|

a.s.
→ 0 as i→∞ for some  > 1. (3.68)
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Let Ln(�) denote the log likelihood which depends on the limit time-varying parameter f1(�), ..., fn(�)

Ln(�) =
1
n

n
∑

i=1
li(xi, �) =

1
n

n
∑

i=1
logP [Xi = xi|fi(�), �

]

. (3.69)

Let L∞(�) denote the limit log likelihood function
L∞(�) = E

[

li(�)
]

= E
[

logP [Xi = xi|fi(�), �
]]

. (3.70)
Let Exi>0 denote the conditional expectation Exi>0[⋅] = E[⋅|xi > 0]. Finally, let log+ denote the positive
part of the natural logarithm.
In Proposition 3.1, we establish the filter invertibility of the ZIACD model. In Example 3.1, we show
how the conditions of Proposition 3.1 can be verified for the case of the unit scaling. Proposition 3.1 is
based on Theorem 3.1.
Theorem 3.1. For some � ∈ Θ, let {f̂i(�, f̂1)}i∈ℕ be a random sequence initialized at i = 1 with value
f̂1 ∈  ⊆ ℝ and generated by the Markov dynamic system f̂i+1 = �(f̂i, "i, �) ∀i ∈ ℕ with differentiable
function � ∶  ×ℝn" × Θ →  and elements f̂i(�, f̂1) taking values in  ⊆ ℝ for every i ∈ ℕ. Suppose
further that the following conditions hold:

(i) {"i}i∈ℕ is an exogenous n"-variate strictly stationary and ergodic sequence.

(ii) There exists f̂1 ∈  such that E
[

log+ |�(f̂1, "i, �)|
]

<∞.

(iii) The dynamical system is contracting on average

E
[

log sup
f∈

|

|

|

|

)�(f, "i, �)
)f

|

|

|

|

]

< 0. (3.71)

Then {f̂i(�, f̂1)}i∈ℕ converges exponentially almost surely fast to a unique strictly stationary and ergodic
sequence {fi(�)}i∈ℕ as i→∞, i.e. |f̂i(�, f̂1) − fi(�)|

e.a.s.
→ 0 as i→∞.

Proof. See Theorem 3.1 of Bougerol (1993).
Proposition 3.1. Let the observed data {xi}i∈ℕ be strictly stationary and ergodic and letΘ be a compact
set which ensures that

(i) log+ sup�∈Θ
|

|

|

s(0, f̂1(�), �)
|

|

|

<∞,

(ii) Exi>0
[

log+ sup�∈Θ
|

|

|

s(xi, f̂1(�), �)
|

|

|

]

<∞,

(iii) P[xi = 0] log supf sup�∈Θ
|

|

|

a )s(0,f ,�)
)f

+ b||
|

+ P[xi > 0]Exi>0
[

log supf sup�∈Θ
|

|

|

a )s(xi,f ,�)
)f

+ b||
|

]

< 0.

Then the filter {f̂i(�)}i∈ℕ defined in (3.62) is invertible, uniformly in � ∈ Θ.

Proof. See Proposition 1 of Blasques, Holý and Tomanová (2018).
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Example 3.1. Consider the case of the score model for the zero-inflated negative binomial distribution
with the unit scaling. We note that the conditions of Proposition 3.1 are satisfied for strictly stationary
data {xi}t∈ℤ with finite logarithmic moment E[log+ |xi|] < ∞, and for a compact parameter space
Θ = [�−, �+] ⋅ [�−, �+] ⋅ [c−, c+] ⋅ [a−, a+] ⋅ [�−, �+] satisfying restrictions

a+(�− − 1)2

2�−
+
a+|�− − 1|
(�−)2

+ b+ < 1,

Exi>0

[

log
(

a+(�+xi + 1)
4�−

+ b+
)]

< 0.
(3.72)

Proof. See Example 1 of Blasques, Holý and Tomanová (2018).

Consistency of the Estimator

Theorem 3.4 below establishes the strong consistency of the maximum likelihood estimator �̂n as the
sample size n diverges to infinity. It uses the invertibility properties established in Proposition 3.1 for the
ZIACD model and obtains the consistency of the maximum likelihood estimator by imposing some ad-
ditional moment conditions. The moment conditions in Theorem 3.4 are written as high-level conditions
that apply to most maximum likelihood settings. The high-level formulation of these assumptions gives
us flexibility in applying these results to a wide range of designs of our score model. However, it can also
be unfortunately abstract. Luckily, for the ZIACD model with the unit scaling, both moment conditions
can be substituted for a simple moment bound directly on the data E[xi] < ∞ as shown in Example 3.2.
Theorem 3.4 is based on Theorem 3.2 and Theorem 3.3.
Theorem 3.2. Let Θ be a compact subset of ℝn, for some n ∈ ℕ and Qn ∶ ℝn × Θ → ℝ be criterion
function such that:

(i) Qn(xn, ⋅) ∶ Θ→ ℝ is continuous on Θ for each xn ∈ ℝn.

(ii) Qn(⋅, �) ∶ ℝn → ℝ is continuous on ℝn for each � ∈ Θ.

Then, there exists a measurable map �̂n ∶ Ω→ Θ satisfying

�̂n ∈ argmax�∈Θ
Qn(xn, �). (3.73)

Proof. See Theorem 2.11 of White (1994).
Theorem 3.3. Let �̂n be an estimator satisfying the conditions of Theorem 3.2. Further suppose that:

(i) The criterion functionQn converges uniformly almost surely over Θ to the limit deterministic func-
tion Q∞ as n →∞

sup
�∈Θ

|

|

Qn(xn, �) −Q∞(�)||
a.s.
→ 0 as n→∞. (3.74)

(ii) The parameter �0 ∈ Θ is the identifiably unique maximizer of the limit criterion function Q∞

sup
�∈Sc (�0,)

Q∞(�) < Q∞(�0). (3.75)

Then the estimator �̂n is strongly consistent for �0, i.e. �̂n
a.s.
→ �0 as n→∞.

Proof. See Theorem 3.4 of White (1994).
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Theorem 3.4. Let the conditions of Proposition 3.1 hold, the likelihood have one finite moment and the
score have finite logarithmic moment,

E
[

li(xi, �)
]

<∞ and E
[

log+ sup
f

|∇(xi, f )|
]

<∞. (3.76)

Finally, suppose �0 be the unique maximizer of the limit log likelihood function E
[

li(xi, ⋅)
]

∶ Θ → ℝ
over the parameter space Θ, i.e. E

[

li(xi, �0)
]

> E
[

li(xi, �)
]

∀ � ∈ Θ ∶ � ≠ �0. Then �̂n is strongly
consistent for �0, i.e. �̂n

a.s.
→ �0 ∈ Θ as n→∞.

Proof. See Theorem 1 of Blasques, Holý and Tomanová (2018).
Example 3.2. Consider again the score model for the zero-inflated negative binomial distribution with
the unit scaling.

(i) The finite moment for the log likelihood E[li(xi, �)] < ∞ stated in Theorem 3.4 holds trivially if
the data has one finite moment E[xi] <∞.

(ii) Additionally, the finite logarithmic moment E[log+ supf |∇(xi, f )|] < ∞ stated in Theorem 3.4
also holds under E[xi] <∞.

Proof. See Example 2 of Blasques, Holý and Tomanová (2018).

Asymptotic Normality of the Estimator

Theorem 3.6 establishes the√n-consistency rate of �̂n and the asymptotic normality of the standardized
estimator√n(�̂n − �0) as n → ∞. Again, the theorem is formulated using some high-level assumptions.
Example 3.3 shows how these assumptions can be verified for the ZIACD model with the unit scaling.
Theorem 3.6 is based on Theorem 3.5.
Theorem 3.5. Let �̂n be a consistent extremum estimator for a parameter �0 that lies in the interior of a
compact parameter space Θ. Suppose further that

(i) The scaled criterion derivative is asymptotically normal at �0
√

n
)Qn(�0)
)�

d
→ N(0,Σ) as n→∞, (3.77)

(ii) The second derivative of the criterion converges uniformly

sup
�∈Θ

‖

‖

‖

‖

‖

)2Qn(xi, �)
)�)�′

−
)2Q∞(�)
)�)�′

‖

‖

‖

‖

‖

p
→ 0 as n→∞. (3.78)

(iii) The second derivative of the limit criterion Q′′∞(�0) is invertible.

Then we have
√

n(�̂n − �0)
d
→ N

(

0,ΩΣΩ′
)

as n→∞, where

Ω =
(

)2Q∞(�0)
)�)�′

)−1

. (3.79)

Proof. See Theorem 6.2 of White (1994).
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Theorem 3.6. Let the conditions of Theorem 3.4 hold. Furthermore, let the zero-inflated negative bino-
mial score model be correctly specified and �0 ∈ int(Θ). Additionally, assume that

(i) the first-order derivatives of the log likelihood have four finite moments at �0,

E

[

‖

‖

‖

‖

)li(xi, �0)
)fi

‖

‖

‖

‖

4
]

<∞ and E

[

‖

‖

‖

‖

)li(xi, �0)
)�

‖

‖

‖

‖

4
]

<∞, (3.80)

(ii) the second-order derivatives of the log likelihood have one uniform finite moment,

E

[

sup
�∈Θ

‖

‖

‖

‖

‖

)2li(xi, �)
)fi)�′

‖

‖

‖

‖

‖

]

<∞, E

[

sup
�∈Θ

‖

‖

‖

‖

‖

)2li(xi, �)
)f 2i

‖

‖

‖

‖

‖

]

<∞,

E

[

sup
�∈Θ

‖

‖

‖

‖

‖

)2li(xi, �)
)�)�′

‖

‖

‖

‖

‖

]

<∞,

(3.81)

(iii) the third-order derivatives of the log likelihood have uniform finite logarithmic moment,

E

[

log+ sup
�∈Θ

‖

‖

‖

‖

‖

)3li(xi, �0)
)f 2i )�′

‖

‖

‖

‖

‖

]

<∞, E

[

log+ sup
�∈Θ

‖

‖

‖

‖

‖

)3li(xi, �0)
)f 3i

‖

‖

‖

‖

‖

]

<∞,

E

[

log+ sup
�∈Θ

‖

‖

‖

‖

‖

)3li(xi, �0)
)�)�′)f

‖

‖

‖

‖

‖

]

<∞,

(3.82)

(iv) the first and second derivatives of the filtering process converge almost surely, exponentially fast,
to a limit stationary and ergodic sequence,

‖

‖

‖

‖

‖

)f̂i(�0)
)�

−
)fi(�0)
)�

‖

‖

‖

‖

‖

e.a.s.
→ 0 and sup

�∈Θ

‖

‖

‖

‖

‖

)2f̂i(�)
)�)�′

−
)2fi(�)
)�)�′

‖

‖

‖

‖

‖

e.a.s.
→ 0 as i→∞, (3.83)

with four finite moments

E

[

‖

‖

‖

‖

)fi(�0)
)�

‖

‖

‖

‖

4
]

<∞ and E

[

sup
�∈Θ

‖

‖

‖

‖

‖

)2fi(�)
)�)�′

‖

‖

‖

‖

‖

4]

<∞. (3.84)

Then the estimator is asymptotically Gaussian
√

n(�̂n − �0)
d
→ N(0,(�0)−1) as n→∞, (3.85)

where (�0)−1 denotes the inverse of the Fisher information.

Proof. See Theorem 2 of Blasques, Holý and Tomanová (2018).
Example 3.3. Let us revisit once again the score model for the zero-inflated negative binomial distribution
with the unit scaling.

(i) The finite moments imposed in conditions (i), (ii) and (iii) of Theorem 3.6 can be verified by taking
the appropriate derivatives of the log likelihood and applying standard moment inequalities. For
example, it is easy to see that the four finite moments for score term )li(xi, �0)∕)fi can be obtained
if the data has four finite moments.

(ii) Similarly, the invertibility conditions stated in condition (iv) of Theorem 3.6 can be verified by
applying Theorem 3.1 to the derivative filters.

Proof. See Example 3 of Blasques, Holý and Tomanová (2018).
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Pseudo-True Parameters and Kullback-Leibler Divergence

Finally, we discuss pseudo-true parameters given by the maximum likelihood estimator. We follow
Blasques (2017) in this section. The pseudo-true parameter �0 is defined as the unique maximizer of
the limit criterion function L∞

�0 ∈ argmax�∈Θ
L∞(�). (3.86)

In the context ofmaximum likelihood estimation, the parameter �0 is themost likely parameter value given
an infinitely large sample. For the maximum likelihood estimator based on discrete random variable Xi,
the pseudo-true parameter �0 is given by

�0 ∈ argmax�∈Θ
E
[

logP[Xi = xi|�]
]

. (3.87)

This means that it is also the unique minimizer of

�0 ∈ argmin�∈Θ

(

E
[

logP0[Xi = xi]
]

− E
[

logP[Xi = xi|�]
])

, (3.88)

where P0[Xi = xi] is the true unknown probability mass of Xi. This quantity is known as the Kullback-
Leibler divergence between the conditional probability mass P[Xi = xi|�] implied by the model and the
true probability mass P0[Xi = xi]. Kullback-Leibler divergence is a measure of how one probability
distribution is different from another distribution. It was introduced by Kullback and Leibler (1951).
When the model is correctly specified, the parameter �0 then corresponds to the true parameter as the
Kullback-Leibler divergence is minimized at the point �0 where P[Xi = xi|�] = P0[Xi = xi]. When
the model is mis-specified, �0 is the parameter value that provides the best approximation to the data
generating process in Kullback-Leibler divergence.

3.3 Application to Discrete Trade Durations

In an empirical study, we analyze 30 stocks that form Dow Jones Industrial Average (DJIA) index. For
more details about the analyzed stocks, see Appendix A. The data are taken from April to May, 2018. We
clean data according to the procedure described in Section 2.1.1 omitting the step merging simultaneous
transactions.
Basic statistical characteristics after data cleaning are presented in Table 3.2. We give a special attention
to the IBM stock as many other studies including Engle and Russell (1998). Figure 3.1 shows trading
intensity during trading hours for several trading days of the IBM stock. We can see that there is clear
autocorrelation, although each day has a different course. Generally, more trades occur both at the begin-
ning and at the end of a day while the lunch-time is a quiet period with less trades. This behavior is well
captured by the ACD models.

3.3.1 Models Performance

We compare models based on the Poisson, geometric and negative binomial distribution together with
their zero-inflated versions. First, we evaluate in-sample performance of the discrete models with unit
scaling. Second, we evaluate their out-of-sample performance. In both cases, the zero-inflated negative
binomial distribution is the best choice. Third, we compare the unit scaling with the square root of the
inverse of the Fisher information scaling and the inverse of the Fisher information scaling. We argue that
there are not significant differences among the three considered scaling functions as the results are very
similar in our application.

- 53 -



April 2018 May 2018
Stock Mean Var. n n0∕n Mean Var. n n0∕n

AAPL 0.3325 1.2398 1 033 149 0.8553 0.4801 2.4949 816 757 0.8328
AXP 4.8469 107.9742 95 618 0.5306 6.4839 162.4193 75 848 0.4912
BA 2.6756 50.5394 170 401 0.6826 3.1278 59.5706 153 908 0.6605
CAT 3.1267 51.0194 145 195 0.6020 4.0331 72.0750 119 633 0.5611
CSCO 1.1183 16.7652 399 797 0.8270 1.2048 24.6283 394 975 0.8467
CVX 3.0356 33.2949 147 191 0.5309 3.1524 42.1781 150 090 0.5713
DIS 2.6397 24.0900 166 417 0.5275 2.3905 22.6665 191 029 0.5553
DWDP 2.9671 38.7329 151 087 0.5548 3.7913 67.6563 126 805 0.5735
GE 2.1086 29.1117 206 774 0.6332 2.5770 39.3522 179 714 0.5870
GS 2.8363 48.6788 159 905 0.6408 3.9585 80.4010 122 094 0.5854
HD 3.2071 45.2574 140 834 0.5647 3.5334 49.5467 134 424 0.5400
IBM 3.1991 47.0185 141 173 0.5665 4.5602 70.0383 105 697 0.4835
INTC 0.6562 5.6652 630 689 0.8367 1.0788 14.0168 427 737 0.8143
JNJ 2.6894 29.1461 164 944 0.5564 3.6135 47.0778 131 119 0.5035
JPM 1.0586 4.9859 368 021 0.6508 1.5880 10.0435 274 251 0.5938
KO 3.7592 73.1405 121 132 0.5439 4.8639 108.7622 99 634 0.5195
MCD 4.6241 93.0448 99 920 0.5275 5.6159 116.5453 86 826 0.4791
MMM 3.9806 76.2675 115 427 0.5751 6.0409 146.2070 81 086 0.5102
MRK 2.2550 24.0990 191 893 0.5724 2.7490 35.0742 169 067 0.5683
MSFT 0.4358 2.2432 860 371 0.8452 0.6300 4.8465 676 757 0.8313
NKE 3.3765 45.2257 133 242 0.5118 3.9377 63.5151 121 253 0.5070
PFE 2.9778 41.5950 149 534 0.5527 3.3798 65.5733 140 374 0.5881
PG 2.5414 28.9706 172 395 0.5565 3.3726 43.9835 139 142 0.5067
TRV 9.4651 389.7584 50 208 0.4810 10.6297 423.1976 46 946 0.4385
UNH 3.8590 74.8488 119 276 0.5849 5.3471 130.9015 91 672 0.5573
UTX 4.2728 78.2773 107 689 0.5386 5.8129 133.8689 8 3 967 0.4886
V 2.4218 26.5329 182 851 0.5991 3.3445 44.5483 142 026 0.5543
VZ 2.9317 42.0215 152 214 0.5574 3.7413 69.2588 127 330 0.5403
WMT 3.1127 32.1728 143 003 0.4904 2.7936 28.5493 165 904 0.5227
XOM 1.8195 1 4.6438 232 388 0.5896 1.8329 16.4846 243 875 0.6141

Table 3.2: The sample mean of durations, sample variance of durations, number of observations n and
ratio n0∕n of durations shorter than 1 second .
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Figure 3.1: Daily trading intensity estimated by the Epanechnikov kernel density for the IBM stock.

In-Sample Results

We fit durations rounded down to seconds of the 30 DJIA stocks using data from April, 2018. To evaluate
in-sample fit of the models, we use the Akaike information criterion (AIC) (Akaike, 1974) defined as

AIC = 2q − 2nL̂n(�̂), (3.89)
where q = 3k + l is the number of parameters.
We find that the model based on the zero-inflated negative binomial distribution is the best fit. Estimated
parameters are reported in Table 3.3. There is clear evidence of overdispersion, i.e. the variance higher
than expected value. Table 3.2 shows that sample variance is much higher than sample mean. According
to Table 3.3, the estimated value of dispersion parameter � in the zero-inflated negative binomial model
ranges between 1.37 and 2.78 depending on the stock. This favors the negative binomial distribution over
Poisson distribution with fixed � = 0 and geometric distribution with fixed � = 1. Overdispersion is also
supported by AIC of the models reported in Table 3.4. The Poisson distribution has the highest AIC for
all stocks followed by the geometric distribution. One possible reason for overdispersion could just be
the presence of excessive zeros. Zero-inflated Poisson and geometric distributions perform better than
the original distributions. However, they are inferior to the zero-inflated negative binomial distribution
suggesting there is overdispersion present in non-zero values as well.
Our analysis also reveals the presence of excessive zeros suggesting the existence of the process generating
only zero values (i.e. split transactions) alongside the process generating regular durations. According
to Table 3.3, the estimated probability of excessive zeros � in the zero-inflated negative binomial model
ranges between 0.21 and 0.75 depending on the stock. This corresponds to the ratio of excessive zeros to
all zeros ranging between 0.37 and 0.90. Again, the presence of excessive zeros is supported by a decrease
in AIC in the zero-inflated distributions as reported in Table 3.4. Table 3.5, Figure 3.2 and Figure 3.3
illustrate shortcomings of the regular negative binomial distribution. In this model, the probability of
zero values is underestimated while probabilities of values equal to 1 and 2 are overestimated. The zero-
inflated negative binomial distribution better captures probabilities of zero as well as positive values.

Out-of-Sample Results

We forecast durations during May, 2018 for 30 DJIA stocks. We use the models estimated using April,
2018 durations and perform one-step-ahead forecasts. Again, we compare models based on the Poisson,
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Figure 3.2: Deviation of average in-sample conditional probability mass of duration models based on the
negative binomial and zero-inflated negative binomial distributions from data for the IBM stock.
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Figure 3.3: Deviation of average in-sample tail conditional probability mass of duration models based on
the negative binomial and zero-inflated negative binomial distributions from data for the IBM stock.
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Stock c b a � � � �n∕n0
AAPL -0.0005 0.9992 0.1365 0.5536 2.1981 0.5423 0.6341
AXP 0.0023 0.9986 0.1043 5.2194 1.5091 0.3406 0.6421
BA 0.0015 0.9989 0.0746 4.3259 1.5896 0.5531 0.8105
CAT 0.0013 0.9989 0.0864 3.2437 1.6095 0.3946 0.6555
CSCO 0.0009 0.9992 0.0909 3.0562 1.6550 0.7468 0.9031
CVX 0.0033 0.9973 0.0683 3.4714 1.4882 0.3240 0.6106
DIS 0.0025 0.9979 0.0443 3.2370 1.4352 0.3174 0.6019
DWDP 0.0027 0.9978 0.0758 3.4297 1.5376 0.3544 0.6388
GE 0.0011 0.9986 0.1234 2.1912 2.3913 0.2963 0.4681
GS 0.0019 0.9986 0.0958 4.0308 1.6823 0.4753 0.7419
HD 0.0025 0.9981 0.0575 3.7249 1.5584 0.3783 0.6701
IBM 0.0013 0.9991 0.0781 3.8894 1.4851 0.3619 0.6389
INTC -0.0000 0.9997 0.1022 0.9973 1.8114 0.6785 0.8109
JNJ 0.0016 0.9986 0.0923 3.0145 1.5536 0.3168 0.5695
JPM 0.0003 0.9976 0.0950 1.1269 1.6171 0.2746 0.4220
KO 0.0023 0.9983 0.0938 3.8186 1.7727 0.3350 0.6161
CD 0.0029 0.9981 0.0974 4.6377 1.6524 0.3277 0.6214
MMM 0.0019 0.9988 0.0466 4.9913 1.5057 0.4231 0.7358
MRK 0.0019 0.9975 0.0629 2.1716 2.2495 0.2106 0.3680
MSFT -0.0006 0.9986 0.1834 0.6531 2.7830 0.5261 0.6225
NKE 0.0043 0.9967 0.0921 3.6153 1.5318 0.3029 0.5920
PFE 0.0014 0.9988 0.0361 3.1641 1.9766 0.3014 0.5455
PG 0.0015 0.9984 0.0420 2.5336 1.8560 0.2657 0.4776
TRV 0.0135 0.9945 0.0768 11.8486 1.5690 0.3745 0.7789
UNH 0.0021 0.9986 0.0866 4.7575 1.6127 0.4194 0.7172
UTX 0.0044 0.9972 0.0787 4.9029 1.6319 0.3650 0.6779
V 0.0013 0.9988 0.0746 2.8667 1.3962 0.4026 0.6721
VZ 0.0011 0.9987 0.0718 2.2735 1.7328 0.3017 0.5413
WMT 0.0014 0.9987 0.0673 2.9697 1.3694 0.2639 0.5383
XOM 0.0018 0.9973 0.0577 1.9454 1.8167 0.2764 0.4688

Table 3.3: Estimated parameters of duration model based on the zero-inflated negative binomial distri-
bution.

geometric and negative binomial distributions together with their zero-inflated versions and we restrict
ourselves to the unit scaling. Let n denote the number of in-sample observations and m the number of
out-of-sample observations. We evaluate forecasting accuracy of the models using a score rule based on
the out-of-sample likelihood. For a single prediction at time i, we use the logarithmic score (LS) (see e.g.
Amisano and Giacomini, 2007; Bao et al., 2007; Diks et al., 2011) defined as

LSi = log P[Xi = xi|f̂i, ĝ], i = n + 1,… , n + m, (3.90)

where P[Xi = xi|f̂i, ĝ] is the forecasted probability of the actual value xi at time i. Higher values of LS
indicate higher prediction accuracy. For a comparison of models A and B, we adopt theDiebold-Mariano
test (Diebold and Mariano, 1995). Let LSAi denote the logarithmic score for the model A and LSBi for
the model B at time i. Let us define difference between logarithmic scores of the two models as

DA,B
i = LSAi − LS

B
i , i = n + 1,… , n + m. (3.91)
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Stock P G NB ZIP ZIG ZINB
AAPL 1 752 835 1 436 127 1 274 892 1 329 073 1 324 993 1 273 668
AXP 1 116 440 453 481 405 616 692 445 427 167 402 954
BA 1 714 949 671 432 530 018 793 071 545 287 525 603
CAT 1 251 216 589 332 516 469 764 941 541 448 513 647
CSCO 2 242 102 1 108 899 741 638 970 148 753 770 735 754
CVX 1 292 853 626 788 574 269 776 359 588 582 571 962
DIS 1 276 179 681 546 631 054 807 139 643 547 628 753
DWDP 1 380 739 631 931 568 598 794 463 586 941 566 040
GE 1 585 084 729 731 640 220 892 066 674 969 639 487
GS 1 599 302 646 101 535 237 797 104 553 623 531 869
HD 1 391 154 605 618 536 811 773 215 551 925 534 074
IBM 1 409 646 587 759 527 272 762 254 551 672 524 298
INTC 2 156 336 1 275 969 988 674 1 134 875 1 025 972 984 691
JNJ 1 352 421 655 228 600 622 800 594 623 946 598 487
JPM 1 425 972 983 194 935 525 1 020 591 970 479 934 605
KO 1 240 075 547 311 483 538 776 119 503 712 481 649
MCD 1 138 054 475 858 424 350 710 930 443 140 422 252
MMM 1 241 189 528 115 455 307 721 713 469 907 451 916
MRK 1 413 460 717 368 656 316 876 315 682 954 655 864
MSFT 2 007 496 1 398 027 1 183 376 1 274 651 1 229 614 1 182 340
NKE 1 294 371 589 112 539 781 766 888 556 507 537 530
PFE 1 399 374 634 262 565 807 824 666 583 032 564 604
PG 1 378 713 673 862 619 087 834 969 643 021 618 046
TRV 1 125 310 308 609 263 795 643 669 271 665 261 338
UNH 1 271 795 538 710 460 092 736 672 476 276 456 995
UTX 1 209 229 514 266 450 870 733 816 463 881 448 394
V 1 434 679 694 257 622 431 809 263 643 856 618 864
VZ 1 211 910 617 784 561 035 805 736 587 971 559 527
WMT 1 222 539 608 654 574 724 762 183 595 135 572 621
XOM 1 400 264 802 635 743 016 905 705 766 784 742 016

Table 3.4: In-sample Akaike information criterion of durationmodels based on the Poisson (P), geometric
(G), negative binomial (NB), zero-inflated Poisson (ZIP), zero-inflated geometric (ZIG) and zero-inflated
negative binomial (ZINB) distributions.

Duration Value
Distribution 0 1 2 3 4 5
Observed Data 0.5664 0.0865 0.0595 0.0437 0.0350 0.0279
Negative Binomial 0.5521 0.1220 0.0664 0.0442 0.0322 0.0248
Zero-Inflated Negative Binomial 0.5625 0.0954 0.0618 0.0448 0.0344 0.0274

Table 3.5: Average in-sample conditional probability mass for the IBM stock.
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Figure 3.4: Deviation of average out-of-sample conditional probability mass of duration models based
on the negative binomial distribution and zero-inflated negative binomial distributions from data for the
IBM stock.
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. (3.92)

Diebold-Mariano test statistic is then defined as

DMA,B =
√

mD
A,B

�A,BD

. (3.93)

Under the null hypothesis of equal performance of both models, the statistic has asymptotically standard
normal distribution.
We compare the zero-inflated negative binomial distribution with the other considered distributions.
Diebold-Mariano test statistics are reported in Table 3.6. All values are positive, which means that the
zero-inflated negative binomial distribution outperforms all the other distributions. The values are also
quite high, which means that the zero-inflated negative binomial distribution is significantly better at any
reasonable significance level. These out-of-sample results together with in-sample results clearly show
that the duration model based on the zero-inflated negative binomial distribution is the most suitable
model among the considered candidates.
However, there are some shortcomings in the predictive ability of our models. Table 3.7 and Figure
3.4 illustrate forecasted probability mass of the negative binomial and zero-inflated negative binomial
distributions. We can see that the zero-inflated negative binomial distribution is a very good fit for positive
values but overestimates zero value for the IBM stock. This could be explained by a decrease in probability
of excessive zeros in May, 2018. Indeed, we can see in Table 3.2 that the ratio of all zero values decreased
from 57% to 48% from April to May for the IBM stock.
We leave the analysis of long-term dynamics of excessive zero probability as a topic for future research.
In the context of financial duration modeling, non-stationary ACD models were studied by Bortoluzzo
et al. (2010) and Mishra and Ramanathan (2017).
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Stock ZINB/P ZINB/G ZINB/NB ZINB/ZIP ZINB/ZIG
AAPL 182.6095 182.7811 22.9323 78.5214 110.7903
AXP 116.7725 97.0725 19.2860 78.2483 31.5584
BA 122.6371 164.7156 29.1190 80.7895 31.5362
CAT 137.0735 127.0594 27.7917 83.5686 47.1496
CSCO 121.9222 230.0715 36.7724 71.1828 47.6283
CVX 138.1669 123.9111 16.7692 84.9286 24.4014
DIS 147.2722 103.5195 14.4460 75.0423 40.0487
DWDP 111.6772 139.3729 28.7878 78.4778 37.4006
GE 102.2640 101.3909 9.2927 74.7982 73.1739
GS 104.2343 128.0335 26.5007 79.8998 50.4813
HD 125.3915 85.2530 14.8932 77.9376 23.4781
IBM 111.4394 91.4346 23.4384 88.2387 49.8152
INTC 126.7347 233.6059 46.4575 76.5541 54.6382
JNJ 115.4911 91.8415 17.0701 85.7032 46.5001
JPM 133.5494 107.1435 21.8151 84.5418 80.2947
KO 116.0503 110.0412 19.3464 75.4929 49.2069
MCD 119.3942 93.0403 21.0761 79.8904 41.5543
MMM 115.9969 80.4366 12.1684 78.3872 26.0296
MRK 113.5194 100.2440 15.2540 68.4814 28.4557
MSFT 143.1199 211.3403 21.9804 78.4489 73.6277
NKE 109.3419 111.8271 24.1253 79.8502 51.2108
PFE 107.0852 115.4612 12.7901 75.2372 44.2632
PG 105.6457 72.6883 16.7427 69.5813 34.0538
TRV 90.0728 62.7401 19.8402 64.8239 30.7718
UNH 118.2081 117.8648 26.2378 74.8625 39.2313
UTX 108.5396 79.4963 11.1877 73.6593 29.6606
V 122.8782 119.7647 23.7352 88.0254 55.6638
VZ 115.9128 110.8392 15.2525 72.5115 43.6104
WMT 147.7816 105.3120 17.0288 85.8218 75.0586
XOM 137.5378 105.4905 9.3978 72.0103 37.6252

Table 3.6: Out-of-sample Diebold-Mariano test statistic comparing duration model based on the zero-
inflated negative binomial distribution (ZINB) with duration models based on the Poisson (P), geometric
(G), negative binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated geometric (ZIG) distributions.

Duration Value
Distribution 0 1 2 3 4 5
Observed Data 0.4833 0.0824 0.0595 0.0456 0.0392 0.0330
Negative Binomial 0.4904 0.1181 0.0681 0.0473 0.0357 0.0283
Zero-Inflated Negative Binomial 0.5141 0.0836 0.0593 0.0459 0.0370 0.0306
Generalized Gamma with Discarding 0.4349 0.1139 0.0748 0.0555 0.0436 0.0354
Generalized Gamma with Truncating 0.5462 0.0908 0.0575 0.0421 0.0329 0.0267

Table 3.7: Average out-of-sample conditional probability mass for the IBM stock.
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Scaling Function

So far, we have used only the unit scaling. In this section, we compare the unit scaling S(fi, g) = I with
the square root of the inverse of the Fisher information scaling S(fi, g) = (fi, g)

− 1
2 and the inverse of

the Fisher information scaling S(fi, g) = (fi, g)−1. The results of both in-sample and out-of-sample
analysis are reported in Table 3.8. It is evident that there is no universally best scaling. Each of the
three considered scalings leads to the lowest AIC for some stocks and the highest AIC for other stocks.
Out-of-sample analysis is also inconclusive. For some stocks (e.g. AXP and KO), Diebold-Mariano test
shows no significant differences between the models. For some stocks (e.g. BA, CVX), a single model
is significantly preferred. However, this may be inconsistent with the in-sample preference as in the case
of CVX suggesting the choice of scaling may change in time. Overall, differences between estimated
coefficients are quite negligible. For these reasons, we use only the unit scaling throughout the section.

3.3.2 Discrete vs. Continuous Approach

We assess both motivations for the discrete approach by comparing discrete distributions with the expo-
nential, Weibull, gamma and generalized gamma distributions within the GAS framework. The exponen-
tial distribution and the Weibull distribution were proposed to model financial durations by Engle and
Russell (1998), while the generalized gamma distribution was proposed by Lunde (1999). Both Bauwens
et al. (2004) and Fernandes and Grammig (2005) found than the generalized gamma distribution is more
adequate than the exponential, Weibull and Burr distributions. The study Xu (2013) shows that the log-
normal distribution does not outperform the generalized gamma distribution either. For these reasons, the
generalized gamma distribution is our main candidate for the competing continuous distribution. In our
comparison, we do not consider the generalized F distribution as it has four parameters and in most cases
of financial durations reduces to the generalized gamma distribution as discussed by Hautsch (2003) and
Hautsch (2011). We also do not consider Birnbaum-Saunders distribution as it models median instead of
mean and therefore does not strictly belong to the traditional ACD class.
First, in a simulation study, we study discretness of data and show how various degrees of rounding affect
discrete and continuous models. Second, in an empirical study, we study zero durations and show how
various treatments of zero values induce loss of information. We find that the proposed discrete approach
is superior from both perspectives.

Simulation Study

In a simulation study, we explore the influence of rounding on estimation of a GAS model based on
discrete and continuous distributions. For this purpose we restrict ourselves to a comparison of the expo-
nential distribution (a special case of the generalized gamma distribution) with the geometric distribution
(a special case of the negative binomial distribution) as the geometric distribution is the discrete analogue
of the exponential distribution. Specifically, if a random variable Xi follows the exponential distribution
with the scaling parameter �i, the variable rounded down to the nearest integer ⌊Xi⌋ follows the geometric
distribution with the parameter �i. The parameters �i and �i are then related by

�i =
1

exp
(

�−1i
)

− 1
, �i =

1
log

(

�−1i + 1
) . (3.94)

We use the geometric distribution reparametrized according to (3.94) so both GAS specifications model
the same parameter.
We simulate 1000 observations following the GAS specification based on the exponential distribution
with true parameters c = 0, b = 0.9, a = 0.1 and unconditional value of the scale parameter equal to
1. Then, we round down the observations to a given number of decimal places. Finally, we estimate the
GAS model using the rounded observations. The simulation is performed 1000 times.
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In-Sample AIC Out-of-Sample DM
Stock I −

1
2 −1 I∕−

1
2 I∕−1

AAPL 1 273 668 1 274 470 1 273 668 15.3206 1.3221
AXP 402 954 402 740 402 866 0.6763 -1.3888
BA 525 603 525 655 525 603 5.6978 3.6410
CAT 513 647 513 687 513 647 -2.5933 4.0843
CSCO 735 754 735 724 735 754 -1.1811 -13.9296
CVX 571 962 572 371 571 958 12.5461 2.1536
DIS 628 753 629 133 628 762 4.3508 0.4103
DWDP 566 040 566 272 566 033 2.2668 -3.5294
GE 639 487 639 493 639 487 -3.8839 6.6827
GS 531 869 531 811 531 869 -2.8932 -2.2265
HD 534 074 534 448 534 080 8.8983 0.1088
IBM 524 298 524 168 524 248 -6.7754 -15.5891
INTC 984 691 984 638 984 691 -12.4427 -3.5159
JNJ 598 487 598 264 598 427 2.0586 -6.7557
JPM 934 605 934 760 934 623 -3.3771 -8.4668
KO 481 649 481 611 481 649 0.9593 -0.1152
MCD 422 252 422 307 422 219 -5.2202 -10.3754
MMM 451 916 452 175 451 915 7.2350 5.3239
MRK 655 864 656 471 655 866 4.9090 -0.9545
MSFT 1 182 340 1 182 245 1 182 306 -8.7383 -5.2511
NKE 537 530 537 322 537 401 -0.3547 -2.9612
PFE 564 604 564 857 564 604 9.4416 -1.9040
PG 618 046 619 369 618 049 15.0810 -1.8765
TRV 261 338 261 409 261 342 3.6553 2.1572
UNH 456 995 456 830 456 995 -1.5005 2.8147
UTX 448 394 448 594 448 399 7.0043 5.7113
V 618 864 618 927 618 854 -6.0081 -6.4800
VZ 559 527 559 931 559 546 4.3381 -2.3639
WMT 572 621 572 373 572 418 -7.1384 -8.6033
XOM 742 016 742 818 742 028 12.1894 -2.5186

Table 3.8: In-sample Akaike information criterion and out-of-sample Diebold-Mariano test statistic for
duration models based on the zero-inflated negative binomial distribution with the unit scaling I , the
square root of the inverse of the Fisher information scaling − 1

2 and the inverse of the Fisher information
scaling −1.

Estimate G(0) G(1) G(2) E(0) E(1) E(2) E(∞)
c 0.005 0.005 0.005 0.055 0.007 0.005 0.005
b 0.039 0.037 0.037 0.039 0.037 0.037 0.037
a 0.029 0.027 0.027 0.031 0.027 0.026 0.026
� 0.051 0.051 0.051 0.424 0.067 0.051 0.051

Table 3.9: Mean absolute errors of the parameters estimated from a simulated GAS model based on the
geometric (G) and exponential (E) distributions with data rounded down to a given precision as denoted
in parentheses.
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Figure 3.5: Mean absolute error of the unconditional scale estimated from a simulated GAS model based
on the geometric and exponential distributions with data rounded down to a given precision.

In Figure 3.5 and Table 3.9, we see the results of the simulation experiment. Both exponential distribu-
tion and geometric distribution identify the autoregressive parameter b and the score parameter a under
any degree of rounding. The model with geometric distribution also estimates the constant parameter
c and the unconditional scale with a minimal error under any degree of rounding. The model with the
exponential distribution, however, gives a biased estimate of the constant parameter c and therefore the
biased unconditional scale when the rounding is significant. The results show that it is more appropriate
to use correctly specified discrete distribution when the continuous process has rounded values.

Out-of-Sample Comparison

We resume the empirical analysis with the continuous approach. For this purpose, we use the original
unrounded durations. As they have a precision of 6 decimal places or more for some stocks, it is quite
suitable to model them using continuous distributions. However, a numerical problem with close-to-zero
values arises. There are two ways how to deal with close-to-zero durations. The first option is to discard
close-to-zero values. This is a very common approach dating back to Engle and Russell (1998). The sec-
ond option is to truncate close-to-zero values. This is a less used approach proposed by Bauwens (2006).
We compare proposed discrete approach with the continuous approach that discards close-to-zero values
and the approach that truncates close-to-zero values. In all cases, the original data are modified. All three
approaches alter observations and discarding close-to-zero values also reduces the number of observa-
tions. For this reason, we focus on the out-of-sample forecasts, in which we do not discard observations.
In the estimation process, we face some numerical issues. We consider close-to-zero values lower than
0.001. This is an empirically selected treshold that leads to convergence of the estimator for most stocks.
When the close-to-zero values are present, the likelihood function increases far above a reasonable limit
for the Weibull, gamma and generalized gamma distributions. This is more significant for frequently
traded stocks such as AAPL, CSCO, INTC and MSFT. Note that these are the four stocks in the DJIA
index traded onNASDAQwhile the rest is traded onNYSE. The estimation of the exponential distribution
is unaffected by close-to-zero values as it contains zero in its support. As the estimation procedure, we use
a combination of the Nelder–Mead algorithm (NM) (Nelder and Mead, 1965) and the Broyden–Fletcher–
Goldfarb–Shanno algorithm (BFGS) (Broyden, 1970a,b; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)
implemented in the open-source NLopt library (Johnson, 2019). In the case of the four most traded stocks
and truncating close-to-zero values, neither algorithm does converge. This is because of a huge number
of close-to-zero values. Specifically, 54% for AAPL, 70% for CSCO, 65% for INTC and 59% for MSFT.
JPM is also a frequently traded stock but has only 22% of close-to-zero values and its convergence is
therefore unaffected.
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Figure 3.6: Deviation of average out-of-sample conditional probability mass of duration model based on
the generalized gamma distribution from data with close-to-zero values either discarded or truncated for
the IBM stock.

For evaluation, we use the logarithmic score with Diebold-Mariano test statistic as in Section 3.3.1. To
be able to compare the discrete ZINB model with continuous models, we evaluate all models on the same
discrete grid. For continuous distributions, we modify the logarithmic score (3.90) to

LSi = log P[xi < Xi ≤ xi|f̂i, ĝ], i = n + 1,… , n + m, (3.95)
where xi is the value of the actual observation rounded down to the nearest integer while xi is its value
rounded up to the nearest integer.
Table 3.10 and Table 3.11 report the Diebold-Mariano test statistic which compares the ZIACD model
with models based on continuous distributions. For most stocks, the values are positive and quite high
indicating the ZIACD model produces more precise forecasts. For the GE stock, the test statistic indi-
cates similar performance of the ZIACD model with models discarding close-to-zero values based on
the gamma and generalized gamma distributions. For the DWDP, MRK and PFE stocks, the test statistic
indicates similar performance of the ZIACD model with models truncating close-to-zero values based
on the gamma and generalized gamma distributions. Overall, the results imply that the loss of decimal
places in the discrete approach is of less importance than the loss of close-to-zero values in the continuous
approach. With regard to continuous distributions, the results do not clearly show which zero treatment is
the best in terms of predictive accuracy. When truncating close-to-zero values in frequently traded stocks,
however, the estimation does not converge as previously discussed. Table 3.7 and Figure 3.6 show us the
shortcomings of both zero treatments. Discarding close-to-zero values leads to underestimation of zero
values while truncating them results in overestimation. In both cases, the distributions are significantly
distorted.

3.3.3 Discussion
In an empirical study, we analyze 30 stocks that form Dow Jones Industrial Average index with values
of trade durations rounded down to seconds. We compare the Poisson, geometric and negative binomial
distributions together with their zero-inflated modifications. We find that the proposed ZIACD model is
a good fit as it captures both overdispersion and excessive zero values. We argue that zero or close-to-
zero durations should not be removed from data as they contain important information and their removal
distorts the estimated distribution. This is because only part of them is actually caused by split transactions
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Close-to-Zero Values Discarded
Stock ZINB/E ZINB/W ZINB/G ZINB/GG
AAPL 106.9908 67.8638 52.8650 60.0127
AXP 73.2643 17.9373 15.4072 16.6935
BA 140.3922 39.4326 50.5946 50.5621
CAT 114.6549 32.9050 24.4430 23.5386
CSCO 129.4904 81.3149 107.4502 118.5973
CVX 109.4995 14.2293 22.3204 35.2534
DIS 96.5620 12.1016 11.9358 17.1803
DWDP 111.6567 29.2596 38.8707 41.7382
GE 66.1663 10.9305 -1.3031 -1.4056
GS 102.1125 31.3903 22.3592 22.1285
HD 93.6815 15.4376 17.9416 17.7019
IBM 64.6579 26.8612 5.5353 5.7665
INTC 117.5481 74.0000 90.9294 105.2006
JNJ 66.9729 18.5150 15.9069 13.7316
JPM 79.1881 22.9344 1.4320 12.6533
KO 101.5418 21.3555 22.6800 20.5254
MCD 75.8810 22.3171 7.9754 7.8753
MMM 79.3406 17.1030 13.7454 13.1427
MRK 103.9809 10.3362 21.5666 15.5205
MSFT 112.6267 69.5370 78.2352 86.7501
NKE 80.1893 24.5685 19.0817 23.7879
PFE 117.6369 5.2013 22.2919 18.7775
PG 90.6864 10.4339 8.5639 8.2226
TRV 60.9655 17.5976 9.2966 9.5009
UNH 92.3429 28.6549 20.5646 23.0692
UTX 70.2034 11.6773 7.9131 9.1428
V 86.0509 29.1858 14.2810 21.9443
VZ 102.1814 10.9463 18.2628 17.8147
WMT 71.2637 16.7298 4.0405 12.2646
XOM 117.5449 6.0814 15.2313 11.3587

Table 3.10: Out-of-sample Diebold-Mariano test statistic comparing duration model based on the zero-
inflated negative binomial distribution (ZINB)with durationmodels based on the exponential (E),Weibull
(W), gamma (G) and generalized gamma (GG) distributions with close-to-zero values discarded.
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Close-to-Zero Values Truncated
Stock ZINB/E ZINB/W ZINB/G ZINB/GG
AAPL - - - -
AXP 73.1534 27.3467 9.4732 8.1273
BA 133.6607 114.4500 59.6291 38.0899
CAT 109.7037 56.2401 14.2042 8.8725
CSCO - - - -
CVX 108.1999 21.3970 7.1023 19.5490
DIS 94.7389 42.1165 17.4469 15.8197
DWDP 112.3021 27.3929 1.6377 1.7461
GE 68.3601 50.8589 16.9671 54.1558
GS 100.4230 59.2803 11.0896 83.9239
HD 92.7702 31.8002 31.1084 30.3689
IBM 65.1237 71.4568 29.2430 20.5622
INTC - - - -
JNJ 66.4611 65.0253 24.9040 23.5725
JPM 80.5696 84.5780 37.5159 30.4522
KO 102.3197 44.7889 10.8268 8.4080
MCD 71.3971 48.3043 18.5807 10.0202
MMM 81.3998 28.1204 13.8402 12.8514
MRK 103.4981 21.2388 -1.4653 -1.3740
MSFT - - - -
NKE 88.6302 52.3342 12.6283 16.2392
PFE 114.1245 14.8362 -1.1426 0.4174
PG 89.8912 31.9824 18.6263 18.9892
TRV 60.9610 33.5640 18.0302 12.4438
UNH 86.6440 40.1384 13.9099 8.8888
UTX 68.0445 34.1515 17.9190 18.3269
V 82.1849 65.5784 22.2183 18.2378
VZ 100.3199 27.4085 4.9086 5.0960
WMT 75.9355 61.6785 19.6004 12.4074
XOM 111.3729 28.1351 8.6675 9.2472

Table 3.11: Out-of-sample Diebold-Mariano test statistic comparing duration model based on the zero-
inflated negative binomial distribution (ZINB)with durationmodels based on the exponential (E),Weibull
(W), gamma (G) and generalized gamma (GG) distributions with close-to-zero values truncated.
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while the rest is due to execution of independent transactions at similar times. The portion of zeros caused
by split transactions ranges from 37% up to 90% depending on the stock with the average of 63%.
We also compare the proposed ZIACD model with the commonly used continuous models based on the
exponential, Weibull, gamma and generalized gamma distributions. In a simulation study, we find that
when data are rounded, the estimates of the continuous model are biased while the proper use of the
discrete model identifies true parameters. Further, we resume with the empirical study. Our original
duration data have very high precision and as we round them to seconds for the discrete model, we lose
some information. Continuous approach, however, also causes a loss of information as close-to-zero
durations need to be removed or set to a given threshold value for estimation purposes. We find that
the loss of decimals is less severe than the loss of zeros and the proposed ZIACD model outperforms
considered continuous models in terms of predictive accuracy.
Our proposed model can be utilized in a joint modeling of prices and durations. It also allows to study
the trading process from the market microstructure perspective.
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- Chapter 4 -

Quadratic Variation

The focus of financial time series analysis is the price process. Cont (2001) presents several stylized
empirical facts regarding prices in various financial markets. One of these facts is the absence of lin-
ear autocorrelations in returns. Another fact is clustering of volatility. For these two reasons, financial
analysis focuses more on the second moment than the first moment.
Quadratic variation is a measure of volatility over a given time interval. It is a common tool in analysis
of stochastic processes, especially suitable for high-frequency data (Aït-Sahalia and Jacod, 2014). In
financial econometrics, there are two topics regarding quadratic variation – ex-post estimation and ex-
ante forecasts. In this chapter, we present the highlights of both worlds. We also compare presented
methods in simulation and empirical studies.
First, we deal with ex-post estimation of quadratic variation. Quadratic variation is an unobserved quantity
because of two reasons. We do not observe the price process in continuous time, but only in a finite number
of times. We also observe the price process contaminated by the market microstructure noise. When
the noise is not present, quadratic variation can be straightforwadly estimated by the realized variance
(Barndorff-Nielsen and Shephard, 2002b). When the noise is present, however, the realized variance
is significantly biased and inconsistent. In the case of the white noise, it linearly diverges to infinity,
while in the case of time-dependent and cross-dependent noise, it can have more complex bias (Hansen
and Lunde, 2006). Luckily, many alternative estimators of quadratic variation have been proposed in
the literature. These include the two-scale estimator of Zhang et al. (2005), realized kernel estimator of
Barndorff-Nielsen et al. (2008), pre-averaging estimator of Jacod et al. (2009) and least squares estimator
of Nolte and Voev (2012). All of these estimators can be conveniently expressed as a quadratic form (Sun,
2006; Andersen et al., 2011).
Second, we deal with ex-ante forecasts of quadratic variation. Once we know how to estimate historical
quadratic variation, the next question is how to forecast its future values. Traditional time series models
can be utilized, see e.g. Andersen et al. (2003) and Aït-Sahalia and Mancini (2008). Models specifically
designed for high-frequency data include the HAR model of Corsi (2009) and realized GARCH model
of Hansen et al. (2012).
We also approach quadratic variation from a perspective of interval uncertainty. It is natural to consider
prices to be observed as intervals due to discretness of price values and bid-ask spread. However, we
show that the lack of any further assumptions makes quadratic variation under this setting unidentifiable.
Only some information about volatility of large jumps can be uncovered. Nevertheless, these results are
important as they show necessity of more strict assumptions.
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4.1 Theory of Quadratic Variation
Our main focus is the quadratic variation of a process. Without loss of generality, we limit ourselves to
the time interval [0, 1]. Let us consider a sampling of the process Pt at discrete times 0 = T0 < T1 <
… < Tn = 1. The quadratic variation of the process Pt is then given by

QV = plim
Δn→0

n
∑

i=1

(

PTi − PTi−1
)2
, (4.1)

where plim denotes the limit in probability andΔn = max{T1−T0, T2−T1,… , Tn−Tn−1} is the maximal
lag between the observations.
Quadratic variation is not the only variation of the process. The absolute variation of the process Pt is
defined as

V = plim
Δn→0

n
∑

i=1

|

|

|

PTi − PTi−1
|

|

|

, (4.2)

where Δn = max{T1 −T0, T2 −T1,… , Tn −Tn−1} is the maximal lag between the observations. It can be
shown that for the process with finite absolute variation, the quadratic variation exists and is equal to zero.
It can also be shown that the process with positive quadratic variation has infinite absolute variation. See
the literature listed in Section 2.2.2 for more details.
We present two frameworks for the quadratic variation. First, we briefly present the widespread approach
of the semimartingale theory and stochastic calculus. Second, we introduce the interval approach based
on the interval uncertainty.

4.1.1 Stochastic Calculus Approach
We build on the efficient price model presented in Section 2.2.2. Let us remind the expression for semi-
martingale (2.10) with the following decomposition

Pt = P0 + ∫

t

0
Dz dz

⏟⏞⏞⏟⏞⏞⏟
PDt

+∫

t

0
Vz dWz

⏟⏞⏞⏞⏟⏞⏞⏞⏟
P Vt

+
∑

k∶Sk≤t
Jk

⏟⏞⏟⏞⏟
P Jt

, (4.3)

where Dz is a finite variation càdlàg drift process, Vz is an adapted càdlàg volatility process, Wz is a
standard Wiener process and Jk are non-zero random variables with random times Sk.
An important result of stochastic calculus is that quadratic variation exists for every semimartingale.
Quadratic variation plays a major part in stochastic calculus as it appears in the integration by parts
formula and the stochastic change of variables formula known as Ito’s lemma. See the literature listed in
Section 2.2.2 for more details.

Integrated Variance and Jump Variance

Let us define two following volatility measures based on the semimartingale (4.3). The integrated vari-
ance is given by

IV = ∫

t

0
V 2
z dz. (4.4)

The jump variance is given by
JV =

∑

k∶Sk≤t
J 2k . (4.5)

Both of these measures are related to quadratic variation as we show bellow.
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Let us consider decomposition (4.3). Quadratic variation for the drift component PDt is zero. For the
volatility component P Vt , it is equal to the integrated variance IV . Finally, for the jump component
P Jt , it is equal to the jump variance JV . This means that, for a continuous semimartingale without jumps
(2.11), quadratic variation is equal to the integrated variance, i.e.QV = IV . For a general semimartingale
(4.3), we have QV = IV + JV . Again, see the literature listed in Section 2.2.2 for more details
A portion of the high-frequency literature is devoted to estimation of integrated variance rather then
quadratic variation as it may be suitable to filter out jumps in prices. In this chapter, however, we mostly
focus on the case of continuous semimartingale (2.11), in which the quadratic variation is equal to the
integrated variance.

Integrated Power Variation

The integrated variance can be generalized to higher powers. The integrated power variation of order p
is defined as

IPV (p) = ∫

t

0
V p
z dz. (4.6)

Notably, the fourth power of volatility is called the integrated quarticity and is given by

IQ = IPV (4) = ∫

t

0
V 4
z dz. (4.7)

4.1.2 Interval Approach

This section follows Holý and Sokol (2018) with a slightly different notation. We build on the interval
model presented in Section 2.2.5. First, we decompose the quadratic variation into the continuous part and
the finite-jump part. Next, we introduce the interval quadratic variation and show some of its properties.
Finally, we briefly illustrate one possible use of the interval quadratic variation in a simulation study.

Decomposition of Quadratic Variation

Let us consider the proccess Pt with continuous time t ≥ 0. We assume this process can be decomposed
into the continuous component P Ct with continuous path and the jump component P Jt with a finite number
of discrete jumps, i.e. Pt = P Ct + P Jt . Formally, the jump component is defined as

P Jt =
∑

i∶0≤Si≤t
Ji, t ≥ 0, (4.8)

where Ji are non-zero random variables with non-equal random times Si. We define the continuous
variance CV and the jump variance JV as the quadratic variation for the continuous component P Ct and
jump component P Jt respectively.
Proposition 4.1. Quadratic variation can be decomposed into QV = CV + JV .

Proof. We decompose quadratic variation as

QV = plim
Δn→0

n
∑

i=1

(

P CTi − P
C
Ti−1

+ P JTi − P
J
Ti−1

)2

= plim
Δn→0

( n
∑

i=1

(

P CTi − P
C
Ti−1

)2
+

n
∑

i=1

(

P JTi + P
J
Ti−1

)2
+ 2

n
∑

i=1

(

P CTi − P
C
Ti−1

)(

P JTi − P
J
Ti−1

)

)

= CV + JV + 2plim
Δn→0

n
∑

i=1

(

P CTi − P
C
Ti−1

)(

P JTi − P
J
Ti−1

)

.

(4.9)

- 71 -



As P JTi − P JTi−1 is non-zero only in a finite number of cases, we have

plim
Δn→0

n
∑

i=1

(

P CTi − P
C
Ti−1

)(

P JTi − P
J
Ti−1

)

=
∑

i∶0≤Si≤1
plim
Δn→0

(

P CSi − P
C
Si−Δn

)(

P JSi − P
J
Si−Δn

)

. (4.10)

Because
plim
Δn→0

(

P CSi − P
C
Si−Δn

)

= 0 and plim
Δn→0

(

P JSi − P
J
Si−Δn

)

= Ji, (4.11)
we have

plim
Δn→0

(

P CSi − P
C
Si−Δn

)(

P JSi − P
J
Si−Δn

)

= 0, (4.12)
and therefore,

∑

i∶0≤Si≤1
plim
Δn→0

(

P CSi − P
C
Si−Δn

)(

P JSi − P
J
Si−Δn

)

= 0. (4.13)

Proposition 4.2. Quadratic variation for the jump component is JV =
∑

i∶0≤Si≤1 J
2
i .

Proof. As P JTi − P JTi−1 is non-zero only in a finite number of cases, we have

JV = plim
Δn→0

n
∑

i=1

(

P JTi − P
J
Ti−1

)2
=

∑

i∶0≤Si≤1
plim
Δn→0

(

P JSi − P
J
Si−Δn

)2
. (4.14)

Because
plim
Δn→0

(

P JSi − P
J
Si−Δn

)

= Ji, (4.15)
we have

plim
Δn→0

(

P JSi − P
J
Si−Δn

)2
= J 2i , (4.16)

and therefore,
∑

i∶0≤Si≤1
plim
Δn→0

(

P JSi − P
J
Si−Δn

)2
=

∑

i∶0≤Si≤1
J 2i . (4.17)

Interval Setup

Let us consider we do not observe the process Pt, t ≥ 0 but rather a collection of intervals [P t, P t]
guaranteeing that Pt ∈ [P t, P t], t ≥ 0. This setup, in which the true values are not observable but the
bounds are available, is studied in the area of partial identification. Due to our weak assumptions, the
only information we can infer about any statistic from the observable intervals [P t, P t], t ≥ 0 is its lower
and upper bound. In the case of quadratic variation, QV ∈ [QV ,QV ], where QV and QV is the lower
and upper bound of the form

QV = plim
Δn→0

min
{

n
∑

i=1

(

P̃Ti − P̃Ti−1
)2
∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n

}

,

QV = plim
Δn→0

max
{

n
∑

i=1

(

P̃Ti − P̃Ti−1
)2
∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n

}

.

(4.18)

We let P̃t denote any possible process satisfying P Ti ≤ P̃Ti ≤ P Ti for i = 0,… , n. Bellow, we work with
the set of all possible processes P̃t rather than the true process Pt as it is unobservable.
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We assume a process P̃t can be decomposed into the continuous component P̃ Ct and the jump component
P̃ Jt just like the original process Pt. We further decompose the jump component into the small-jump
component P̃ SJt containing only jumps smaller or equal to a given threshold � in absolute value and
the large-jump component P̃LJt containing only jumps larger than � > 0 in absolute value, i.e. P̃ Jt =
P̃ SJt + P̃LJt . Formally, the small-jump component and the large-jump component are defined as

P̃ SJt =
∑

i∶0≤Si≤t,|Ji|≤�
J̃i, P̃LJt =

∑

i∶0≤Si≤t,|J̃i|>�

Ji, t ≥ 0, (4.19)

where J̃i are non-zero random variables with non-equal random times Si. For a given � > 0, the price
component can then be decomposed into P̃t = P̃ Ct + P̃ SJt + P̃LJt .
We define CV , CV , SJV , SJV , LJV , LJV as the minimal/maximal quadratic variation for processes
P̃ Ct /P̃ SJt /P̃LJt over all possible processes P̃t ∈ [P t, P t]. For simplification, we assume all intervals
[P t, P t] have constant width ! = P t − P t for all t ≥ 0. The threshold separating small and large jumps
is then set to � = 2!.

Properties of Quadratic Variation Under Interval Uncertainty

In the following propositions, we investigate properties of quadratic variation under interval uncertainty.
We find that quadratic variation is unbounded from above. Quadratic variation for both the continuous
component and the small-jump component is also unbounded from above. Quadratic variation for the
large-jump component is, however, bounded from above and therefore partially identifiable.
Proposition 4.3. Quadratic variation is unbounded from above, i.e. QV = ∞.

Proof. The upper bound of quadratic variation is given by

QV = plim
Δn→0

max
{

n
∑

i=1

(

P̃Ti − P̃Ti−1
)2
∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n

}

. (4.20)

Let us consider process P̂Ti defined for i = 0 as P̂T0 = P T0 and for i = 1,… , n as P̂Ti = P Ti if |P̂Ti−1 −
P Ti| > |P̂Ti−1 − P Ti| or P̂Ti = P Ti else. For any two consecutive values, we have |P̂Ti − P̂Ti−1| ≥ !

2
.

Therefore, we have
!2

4
n ≤

n
∑

i=1

(

P̂Ti − P̂Ti−1
)2

≤ max
{

n
∑

i=1

(

P̃Ti − P̃Ti−1
)2
∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n

}

. (4.21)

For Δn → 0, we have n→∞ and quadratic variation diverges to infinity.
Proposition 4.4. Quadratic variation for the continuous component as well as the small-jump component
is unbounded from above, i.e. CV = ∞ and SJV = ∞ respectively.

Proof. The upper bound of quadratic variation for the continuous component is given by

CV = plim
Δn→0

max
{

n
∑

i=1

(

P̃ CTi − P̃
C
Ti−1

)2
∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n

}

. (4.22)

while the upper bound of quadratic variation for the small-jump component is given by

SJV = plim
Δn→0

max
{

n
∑

i=1

(

P̃ SJTi − P̃ SJTi−1

)2
∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n

}

, (4.23)
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where P̃ SJt =
∑

j∶0≤SSj ≤t,|J
S
j |>2!

JSj , t ≥ 0 is the small-jump component with jumps J̃Sj and jump times
S̃Sj corresponding to a process P̃t. As there are only finite number of values that can be attributed to jumps,
a non-trivial time interval [a, b] ⊂ [0, 1] with min{plim

Δn→0
|P t − P t−Δn|, plim

Δn→0
|P t − P t−Δn|} ≤ 2! for each

t ∈ (a, b] exists. LetQV [a,b] denote the upper bound of quadratic variation on interval [a, b]. This interval
cannot contain any large jumps, i.e.QV LJ

[a,b] = 0, and the upper bound of quadratic variation for continuous
component is indistinguishable from the small-jump component, i.e.QV [a,b] = QV

C
[a,b] = QV

SJ
[a,b]. From

Theorem 4.3, we haveQV [a,b] = ∞. Finally, we haveCV ≥ QV
C
[a,b] = ∞ andSJV ≥ QV

SJ
[a,b] = ∞.

Proposition 4.5. The lower and upper bounds of quadratic variation for the large-jump component are
finite and respectively given by

LJV = plim
Δn→0

n
∑

i=1
�2
Ti,Ti−1

I{�
Ti,Ti−1

>2!},

LJV = plim
Δn→0

n
∑

i=1
�2Ti,Ti−1I{�Ti,Ti−1>2!},

(4.24)

where I denotes the indicator function and

�
Ti,Ti−1

= min{|P Ti − P Ti−1|, |P Ti − P Ti−1|},

�Ti,Ti−1 = max{|P Ti − P Ti−1|, |P Ti − P Ti−1|}.
(4.25)

Proof. The lower and upper bounds of quadratic variation for the large-jump component are defined as

LJV = plim
Δn→0

min
{

n
∑

i=1

(

P̃LJTi − P̃LJTi−1

)2
∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n

}

,

LJV = plim
Δn→0

max
{

n
∑

i=1

(

P̃LJTi − P̃LJTi−1

)2
∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n

}

,

(4.26)

where P̃LJt =
∑

j∶0≤SLj ≤t,|J
L
j |>2!

JLj , t ≥ 0 is the large-jump component with jumps J̃Lj and jump times
S̃Lj corresponding to a process P̃t. An absolute difference between two consecutive values plim

Δn→0
|P̃LJTi −

P̃LJTi−Δn| can either be |J̃Lj | > 2! or zero from the definition of the large-jump component. If a large
jump J̃Lj occurs at time Ti, we have 2! < plim

Δn→0
|P̃Ti − P̃Ti−Δn| = plim

Δn→0
|P̃LJTi − P̃LJTi−Δn| = |J̃Lj | as the

absolute difference between two consecutive values in limit is zero for both the continuous and small-
jump component. Therefore, we can ignore plim

Δn→0
|P̃Ti − P̃Ti−Δn| ≤ 2! as they do not correspond to a

large jump. On the other hand, plim
Δn→0

|P̃Ti − P̃Ti−Δn| > 2! may correspond to a large jump and must be
included. We can replace plim

Δn→0
|P̃LJTi − P̃LJTi−Δn| with plimΔn→0

|P̃Ti − P̃Ti−Δn| as we have a finite number of
plim
Δn→0

|P̃Ti − P̃Ti−Δn| > 2!. The lower and upper bounds are then given by

LJV = plim
Δn→0

min
{

n
∑

i=1

(

P̃Ti − P̃Ti−1
)2

I{|P̃Ti−P̃Ti−1 |>2!} ∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n
}

,

LJV = plim
Δn→0

max
{

n
∑

i=1

(

P̃Ti − P̃Ti−1
)2

I{|P̃Ti−P̃Ti−1 |>2!} ∶ P Ti ≤ P̃Ti ≤ P Ti , i = 0,… , n
}

.

(4.27)
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Figure 4.1: A simulation of lower and upper bounds of quadratic variation for the large-jump component.

As two jumps cannot occur at the same time, we have

LJV = plim
Δn→0

n
∑

i=1
min

{(

P̃Ti − P̃Ti−1
)2

I{|P̃Ti−P̃Ti−1 |>2!} ∶ P Ti ≤ P̃Ti ≤ P Ti
}

,

LJV = plim
Δn→0

n
∑

i=1
max

{(

P̃Ti − P̃Ti−1
)2

I{|P̃Ti−P̃Ti−1 |>2!} ∶ P Ti ≤ P̃Ti ≤ P Ti
}

.

(4.28)

Finally, we can restrict the minimization and maximization to extreme points and get the desired expres-
sions with �

Ti,Ti−1
and �Ti,Ti−1 respectively. Both bounds are finite because plim

Δn→0
|P̃Ti − P̃Ti−1| > 2! can

occur only at finite number of times.

Simulation of Interval Quadratic Variation

In a simulation study, we illustrate the finite-sample properties of estimation of quadratic variation for
the large-jump component. We simulate 1 000 000 observations as the sum of the continuous and jump
components. The continuous component is simulated as the Wiener process with zero mean and unit
standard deviation. The jump component contains 10 000 jumps with values generated from the normal
distribution with zero mean and standard deviation equal to 10 and with times generated according to the
exponential distribution. The lower and upper bounds of observed intervals are given by rounding down
to the nearest integer and rounding up to the nearest integer respectively.
The finite-sample counterpart of quadratic variation is called the realized variance. Simulated interval
estimates of quadratic variation (i.e. interval realized variances) for various numbers of observations are
presented in Figure 4.1. We can see that for a smaller number of observations, the interval estimate is not
precise as it omits some jumps. For a larger number of observations, the interval estimate converges and
the bounds contain the true value of quadratic variation for the large-jump component.

4.2 Estimators of Quadratic Variation
We follow the framework presented in Section 2.2.3 and consider the price process to be given by the
additive model Xi = PTi + Ei, i = 0,… , n observed at times 0 = T0 < T1 < ⋯ < Tn = 1. Unless
otherwise stated, we assume the price process PTi to follow a continuous semimartingale (2.11) through
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this section. In this case, the quadratic variation QV is equal to the integrated variance IV . We also
assume that we measure volatility of the price process on interval [0, 1].
We estimate quadratic variation QV by non-parametric methods within a unified framework based on
a quadratic form. The class of qudratic estimators was introduced by Sun (2006) and independently by
Andersen et al. (2011). Estimators in this class can be formulated as a quadratic form

QE = Y ′W Y =
n
∑

i=1

n
∑

j=1
Yiwi,jYj , (4.29)

where Y = (Y1,… , Yn)′ = (X1 − X0,… , Xn − Xn−1)′ is a vector of returns and W = (wi,j)
n,n
i=1,j=1 is amatrix of weights for returns determining an estimator. It can also be rewritten using the actual prices

X = (X0, X1,…Xn)′ instead of returns as

QE = Y ′W Y = X′U ′WUX = X′V X =
n
∑

i=0

n
∑

j=0
Xivi,jXj , (4.30)

where V = (vi,j)
n,n
i=0,j=0 is a matrix of weights for prices determining an estimator based on the matrixW

and matrix U = (ui,j)
n,n
i=1,j=0 with elements

ui,j =

⎧

⎪

⎨

⎪

⎩

1 for j = i + 1,
−1 for j = i,
0 otherwise.

(4.31)

The class of quadratic estimators includes the realized variance as well as two-scale estimator of Zhang
et al. (2005), realized kernel estimator of Barndorff-Nielsen et al. (2008), pre-averaging estimator of Jacod
et al. (2009) and least squares estimator of Nolte and Voev (2012).

4.2.1 Realized Variance

A natural estimator of quadratic variation is the realized variance defined as

RVn =
n
∑

i=1

(

Xi −Xi−1
)2 =

n
∑

i=1
Y 2i . (4.32)

It is simply the sum of squared returns and finite-sample version of quadratic variation. As the returns
are random variables, realized variance is also a random variable.
Under the very general assumption of semimartingale (2.10), the realized variance converges to quadratic
variation in probability

lim
n→∞

P
[

|RVn −QV | > "
]

= 0 ∀ " > 0. (4.33)
However, as Barndorff-Nielsen and Shephard (2002b) note, this result lacks a theory of measurement
error. They also argue that for a stronger result, additional assumptions are needed.
Next, consider a continuous semimartingale (2.11). Recall that quadratic variation QV is equal to inte-
grated variance IV in this case. Barndorff-Nielsen and Shephard (2002a) show that realized variance
converges to integrated variance at rate√n. They also derive asymptotic distribution of the estimator

RVn − IV
√

2
3
∑n
i=1 Y

4
i

→ N(0, 1). (4.34)
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Realized Variance
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Figure 4.2: Quadratic form of realized variance with n = 24.

Bias of Realized Variance

The situation complicates as we contaminate the price process by the market microstructure noise. We
consider the additive noise model discussed in Section 2.2.3. Specifically, let the observed price follow
the processXi = PTi +Ei, i = 0,… , n, where PTi is the semimartingale efficient price and Ei is the noise
with zero mean and variance !2.
In this setting, realized variance is biased and inconsistent estimator of quadratic variation. Let us de-
compose realized variance as

RVn =
n
∑

i=1

(

Xi −Xi−1
)2

=
n
∑

i=1

(

PTi − PTi−1 + Ei − Ei−1
)2

=
n
∑

i=1

(

PTi − PTi−1
)2
+ 2

n
∑

i=1

(

PTi − PTi−1
)

(

Ei − Ei−1
)

+
n
∑

i=1

(

Ei − Ei−1
)2

=
n
∑

i=1
R2i + 2

n
∑

i=1
RiFi +

n
∑

i=1
F 2i .

(4.35)

Following Hansen and Lunde (2006), we investigate the bias of realized variance under various noise
settings. First, let us assume that the market microstructure noise Ei is weakly stationary with autoco-
variance function �(s) and variance !2 = �(0). The bias of realized variance is then

E[RVn −QV ] = 2
n
∑

i=1
E[RiFi] + 2n

(

!2 − �
(

Ti − Ti−1
))

. (4.36)

The second bias term 2n (!2 − � (Ti − Ti−1
)) is always non-negative, while the first term 2∑n

i=1 E[RiFi]can have any value. This means that the bias can be either positive or negative. As Hansen and Lunde
(2006) argue, the negative bias is possible only if the innovations in the noise process Fi are negatively
correlated with the returns Ri, i.e. E[RiFi] < 0.
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Sparse Realized Variance
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Figure 4.3: Quadratic form of sparse realized variance with n = 24, ℎ = 1 and s = 4.

Next, let us consider the market microstructure noise to be the white noise with variance !2 independent
of the price process. The bias of realized variance is then

E[RVn −QV ] = 2n!2. (4.37)
In other words, the bias is positive and realized variance linearly diverges to infinity with increasing
number of observations n.

Sparse Realized Variance

The bias of realized variance can be reduced by sampling at lower frequencies. However, this is at cost of
data loss. This approach is called the sparse realized variance. Let ℎ denote the initial observation and
s denote the sampling interval for ticks. For example ℎ = 2 and s = 3 would correspond to observations
at times {T2, T5, T8, T11,…}. The number of used observations is then

m(n, ℎ, s) =
⌊n − ℎ

s

⌋

, (4.38)
where ⌊⋅⌋ denotes rounding down. The sparse realized variance is then defined as

SRVn,ℎ,s =
m(n,ℎ,s)
∑

i=1

(

Xis+ℎ −X(i−1)s+ℎ
)2 =

m(n,ℎ,s)
∑

i=1
Y 2(i−1)s+ℎ,is+ℎ. (4.39)

The optimal sampling frequency of the realized variance was studied by Aït-Sahalia et al. (2005), Zhang
et al. (2005), Bandi and Russell (2006, 2008) and De Pooter et al. (2008).

Average Realized Variance

Sparse realized variance uses only a fraction of available observations. To fully utilize all data, the average
realized variance can be adopted (Zhang et al., 2005). It averages sparse realized variances over subgrids
given by different initial observations ℎ. For a given sampling interval s, it is defined as

ARVn,s =
1
s

s
∑

ℎ=1
SRVn,ℎ,s, (4.40)

where SRVn,s is given by (4.39). Although this approach reduces the impact of the noise, the average
realized variance is still a biased estimator of the quadratic variation.
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Average Realized Variance
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Figure 4.4: Quadratic form of average realized variance with n = 24 and s = 4.

Quadratic Form

This section follows Holý (2017e). The realized variance (4.32) can easily be expressed as a quadratic
estimator using the weight matrixW RV

n given by elements

wRV
i,j =

{

1 for j = i,
0 otherwise. (4.41)

An example of this weight matrix is shown in Figure 4.2.
The sparse realized variance (4.39) with initial observation ℎ and sampling interval s can be expressed
as a quadratic estimator using the weight matrixW SRV

n,ℎ,s given by elements

wSRV
i,j =

{

1 for (k − 1)s + ℎ ≤ i, j ≤ ks + ℎ − 1, k = 1,… , m(n, ℎ, s),
0 otherwise. (4.42)

It is visualized in Figure 4.3.
The average realized variance (4.40) with sampling interval s can be expressed as a quadratic estimator
using the weight matrix

W ARV
n,s = 1

s

s
∑

ℎ=1
W SRV
n,ℎ,s , (4.43)

whereW SRV
n,ℎ,s is given by (4.42). This weight matrix is shown in Figure 4.4.

Simulation of the Impact of Market Microstructure Noise

This section loosely follows Holý (2016). We illustrate the bias of realized variance under various noise
settings using simulations. We consider the following model for simulations. The number of observations
is set to n = 23 400. The times of observations Ti, i = 0,… , n are generated by the Poisson point process
and normalized to interval [0, 1]. The observed price is given by the additive model Xi = PTi + Ei,
i = 0,… , n. The efficient price Pt follows the Wiener process

dPt = �dWt, t ∈ [0, 1]. (4.44)
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Bias of Realized Variance due to White Noise
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Figure 4.5: Simulated means of realized variance (solid lines) with true values (dotted lines) for the
W-CV-WN-1, W-CV-WN-2 and W-CV-WN-3 models.

Standard Deviation of Realized Variance with White Noise
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Figure 4.6: Simulated standard deviations of realized variance for the W-CV-WN-1, W-CV-WN-2 and
W-CV-WN-3 models.
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Bias of Realized Variance due to Time-Dependent Noise
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Figure 4.7: Simulated means of realized variance (solid lines) with true values (dotted lines) for the
W-CV-TDN-1, W-CV-TDN-2 and W-CV-TDN-3 models.
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Figure 4.8: Simulated standard deviations of realized variance for the W-CV-TDN-1, W-CV-TDN-2 and
W-CV-TDN-3 models.
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Bias of Realized Variance due to Cross-Dependent Noise
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Figure 4.9: Simulated means of realized variance (solid lines) with true values (dotted lines) for the
W-CV-CDN-1, W-CV-CDN-2 and W-CV-CDN-3 models.

Standard Deviation of Realized Variance with Cross-Dependent Noise
! = 10−5 ! = 10−4 ! = 10−3

1e-06
2e-06
3e-06
4e-06
5e-06
6e-06

0 20 40 60
Sampling Interval

Sta
nd
ard

De
via

tio
n

1e-06
2e-06
3e-06
4e-06
5e-06
6e-06

0.00 0.25 0.50 0.75 1.00
Frequency

Sta
nd
ard

De
via

tio
n

3e-06

4e-06

5e-06

6e-06

0 20 40 60
Sampling Interval

Sta
nd
ard

De
via

tio
n

3e-06

4e-06

5e-06

6e-06

0.00 0.25 0.50 0.75 1.00
Frequency

Sta
nd
ard

De
via

tio
n

0e+00
1e-04
2e-04
3e-04
4e-04
5e-04

0 20 40 60
Sampling Interval

Sta
nd
ard

De
via

tio
n

0e+00
1e-04
2e-04
3e-04
4e-04
5e-04

0.00 0.25 0.50 0.75 1.00
Frequency

Sta
nd
ard

De
via

tio
n

Figure 4.10: Simulated standard deviations of realized variance for the W-CV-CDN-1, W-CV-CDN-2
and W-CV-CDN-3 models.
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Model � ! ' �

W-CV-WN-1 0.01 10−5
W-CV-WN-2 0.01 10−4
W-CV-WN-3 0.01 10−3
W-CV-TDN-1 0.01 10−5 0.5
W-CV-TDN-2 0.01 10−4 0.5
W-CV-TDN-3 0.01 10−3 0.5
W-CV-CDN-1 0.01 10−5 -0.1
W-CV-CDN-2 0.01 10−4 -0.1
W-CV-CDN-3 0.01 10−3 -0.1

Table 4.1: Parameter values for the simulation models based on the Wiener process (W) with con-
stant volatility (CV) and either white noise (WN), time-dependent noise (TDN) or cross-dependent noise
(CDN).

The market microstructure noise follows the process

Ei = 'Ei−1 + �
(

PTi − PTi−1
)

+ Ui, Ui
i.i.d.∼ N

(

0, !2
)

, i = 1,… , n. (4.45)

We consider 9 simulation settings in total with different values of parameters �, !, ' and �. These
scenarios are listed in Table 4.1. Each simulation is performed 10 000 times.
A visual tool for investigating the impact of the market microstructure noise is the volatility signature
plot. This technique was introduced by Andersen et al. (2000). It shows the dependency of bias of esti-
mated volatility on sampling frequency. More specifically, our volatility signature plots show the average
realized variance ARVn,s with different values of sampling intervals s. We also present dependency on
frequency f = 1∕s. Volatility signature plots are shown in figures 4.5, 4.7 and 4.9 while their standard
deviations are shown in figures 4.6, 4.8 and 4.10.
The market microstructure noise following the white noise (scenarios W-CV-WN-1, W-CV-WN-2 and
W-CV-WN-3) is investigated in figures 4.5 and 4.6. We can see that the bias is linear in the frequency for
all considered variances of the noise. This is in line with (4.37). The behavior of standard deviation of
the estimator, however, varies. Asymptotically, the variance of realized variance diverges to infinity. We
see this behavior for the noise with large variance ! = 10−3. Specifically, standard deviation diverges
as O(f ) for f → ∞, i.e. variance diverges as O(f 2) for f → ∞. For the noise with small variance
! = 10−5, standard deviation can be approximated by O(f−1∕2) for f → 0 and variance by O(f−1) for
f → 0. Plots with medium variance ! = 10−4 illustrate how one behaviour transits into the other. The
analytic expression of the variance of the realized variance under the independent white noise setting can
be found e.g. in Zhang et al. (2005), Hansen and Lunde (2006) and Bandi and Russell (2008).
The market microstructure noise following the time-dependent noise (scenarios W-CV-TDN-1, W-CV-
TDN-2 andW-CV-TDN-3) is investigated in figures 4.7 and 4.8. As suggested by (4.36), realized variance
also diverges to infinity under this noise setting. The bias is however no longer linear.
The market microstructure noise following the cross-dependent noise (scenarios W-CV-CDN-1, W-CV-
CDN-2 andW-CV-CDN-3) is investigated in figures 4.9 and 4.10. When the noise is negatively correlated
with the efficient price, realized variance can diverge to minus infinity as discussed by Hansen and Lunde
(2006). We observe this behaviour for the noise with small variance ! = 10−5.
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4.2.2 Two-Scale Estimator
The first unbiased and consistent non-parametric estimator of the integrated variance proposed in the
literature is the two-scale estimator of Zhang et al. (2005). It combines average realized variance at lower
frequency as a biased estimate of quadratic variation with realized variance at highest possible frequency
as an estimator of the noise variance (and therefore the bias under white noise assumption). For a given
sampling interval s, it is defined as

TSEn,s =
n

n − m̃(n, s)
ARVn,s −

m̃(n, s)
n − m̃(n, s)

RVn, (4.46)

where the realized variance RVn is given by (4.32), the average realized variance ARVn,s is given by
(4.40) and

m̃(n, s) = 1
s

s
∑

ℎ=1

⌊n − ℎ
s

⌋

. (4.47)

The estimator is consistent assuming the market microstructure noise follows the white noise. Zhang
et al. (2005) show that the optimal choice for the number of subgrids s∗ is

s∗ = c∗n2∕3, c∗ =
(

12!4
IQ

)1∕3

, (4.48)

where !2 is the variance of the noise and IQ is the integrated quarticity given by (4.7). The two-scale
estimator then converges at rate n1∕6.

Multi-Scale Estimator

Zhang (2006) generalizes the two-scale estimator to themulti-scale estimator. It utilizes multiple average
realized variances to cancel out the noise. The multi-scale estimator converges at rate n1∕4, which is the
best achievable convergence rate for estimators of integrated variance (see Zhang, 2006). The estimator
was further studied by Aït-Sahalia et al. (2011).

Quadratic Form

This section follows Holý (2017e). The two-scale estimator is a quadratic estimator with weight matrix

W TSE
n,s = n

n − m̃(n, s)
W ARV
n,s −

m̃(n, s)
n − m̃(n, s)

W RV
n , (4.49)

whereW ARV
n,s is given by (4.43) andW RV

n is given by (4.41). As we can see in Figure 4.11, the structure
is similar to the average realized variance. However, unlike the average realized variance it is a consistent
estimator under the white noise assumption.

4.2.3 Realized Kernel Estimator
A popular estimator of integrated variance is the realized kernel estimator of Barndorff-Nielsen et al.
(2008). It is consistent even for the time-dependent and cross-dependent noise. It is defined as

RKn,k = RVn +
k
∑

l=1
K
( l − 1

k

)

(

RAn,l + RAn,−l
)

, (4.50)

where K(⋅) is a kernel function and RAn,l is the realized autocovariance defined as

RAn,l =
n
∑

i=1

(

Xi −Xi−1
) (

Xi−l −Xi−l−1
)

=
n
∑

i=1
YiYi−l. (4.51)
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Figure 4.11: Quadratic form of two-scale estimator with n = 24 and s = 4.

Further, let us define �2 as the noise-to-signal ratio

�2 = !2
√

IQ
, (4.52)

where !2 is the variance of the noise and IQ is the integrated quarticity given by (4.7).
First, let us consider kernel functions satisfying K(0) = 1 and K(1) = 0 with the bandwidth k selected
as

k =
⌊

c�4∕3n
2
3

⌋

, (4.53)
where c is a constant depending on the kernel function. The realized kernel estimator is then asymptoti-
cally mixed Gaussian and converges at rate n1∕6.
Second, let us consider kernel functions satisfying K(0) = 1, K(1) = 0, K ′(0) = 0 and K ′(1) = 0 with
the bandwidth k selected as

k =
⌊

c�n1∕2
⌋

, (4.54)
where c is a constant depending on the kernel function. The realized kernel estimator is then asymptot-
ically mixed Gaussian and converges at rate n1∕4. We list some appropriate kernel functions with their
optimal values c∗ in the next section.
The realized kernel estimator was further studied and extended by Barndorff-Nielsen et al. (2009), Bandi
and Russell (2011), Barndorff-Nielsen et al. (2011) and Ikeda (2015).

Kernel Functions

A simple kernel function satisfying K(0) = 1 and K(1) = 0 is the Bartlett kernel given by
K(x) = 1 − x, 0 ≤ x ≤ 1. (4.55)

For the optimal bandwidth k∗ in (4.53), we have c∗ = 2.28. Interestingly, the realized kernel estimator
with the Bartlett kernel function has asymptotically the same distribution as the two-scale estimator (see
Barndorff-Nielsen et al., 2008).

- 85 -



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

k(x
)

Kernel
Cubic
Parzen
Tukey-Hannig2

Kernel Functions

Figure 4.12: Various kernel functions.

Additionally, we consider three kernel functions satisfyingK(0) = 1,K(1) = 0,K ′(0) = 0 andK ′(1) = 0.
First, the cubic kernel is given by

K(x) = 1 − 3x2 + 2x3, 0 ≤ x ≤ 1. (4.56)
For the optimal bandwidth k∗ in (4.54), we have c∗ = 3.68. The realized kernel estimator with the
cubic kernel function has asymptotically the same distribution as the multi-scale estimator (see Barndorff-
Nielsen et al., 2008).
Second, the Parzen kernel is given by

K(x) =

{

1 − 6x2 + 6x3, 0 ≤ x ≤ 1
2
,

2(1 − x)3, 1
2
< x ≤ 1.

(4.57)

For the optimal bandwidth k∗ in (4.54), we have c∗ = 4.77.
Third, the Tukey-Hanning kernel of order two is given by

K(x) = sin2
(�
2
(1 − x)2

)

, 0 ≤ x ≤ 1. (4.58)
For the optimal bandwidth k∗ in (4.54), we have c∗ = 5.74.
The last three defined kernel functions are illustrated in Figure 4.12. Formore alternative kernel functions,
see Barndorff-Nielsen et al. (2008).

Quadratic Form

This section follows Holý (2017e). The realized kernel estimator can be expressed as a quadratic form
with weight matrixW RK

n,k given by elements

wRK
i,j =

⎧

⎪

⎨

⎪

⎩

1 for j = i,
K
(

l−1
k

)

for |i − j| = l, l = 1,… , k,
0 otherwise.

(4.59)

An example of the structure of the weight matrix for the realized kernel with Tukey-Hanning kernel of
order two is shown in Figure 4.13.
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Figure 4.13: Quadratic form of realized kernel estimator with n = 24 and k = 4.

4.2.4 Pre-Averaging Estimator
The market microstructure noise can be removed by locally averaging returns. The pre-averaging esti-
mator of Jacod et al. (2009) is based on this idea. The estimator is consistent for the time-dependent and
cross-dependent noise. First, let us define the averaged returns as

Zi =
k
∑

l=1
G
( l
k

)

(

Xi+l−1 −Xi+l−2
)

=
k
∑

l=1
G
( l
k

)

Yi+l−1, (4.60)

where G(⋅) is a function given by
G(x) = min (x, 1 − x) . (4.61)

A direct analogue of realized variance with averaged returns is then given by

PAVn,k =
n−k+1
∑

i=1
Z2
i . (4.62)

Hautsch and Podolskij (2013) suggest to select the window size k as
k∗ =

⌊

�
√

n
⌋

, � = 0.8. (4.63)
This value of k∗ leads to the optimal convergence rate of n1∕4 for the estimator. Finally, the pre-averaging
estimator is defined as

PAEn,k =

(

1 −
 1,kn−1

2�2 2,k

)−1( √

n
(n − k + 2)� 2,k

PAVn,k −
 1,kn−1

2�2 2,k
RVn

)

, (4.64)

where
 1,k = k

k
∑

l=1

(

G
( l + 1

k

)

− G
( l
k

))2
,

 2,k =
1
k

k−1
∑

l=1
G2

( l
k

)

.

(4.65)

The pre-averaging estimator was further studied and extended by Christensen et al. (2010), Hautsch and
Podolskij (2013), Jacod and Mykland (2015) and Liu et al. (2017).
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Figure 4.14: Quadratic form of pre-averaged variance with n = 24 and k = 4.

Quadratic Form

This section follows Holý (2017e). The pre-averaged variance can be formulated as a quadratic form with
weight matrixW PAV

n,k = S′S, where S is a matrix with n− k rows and n−1 columns given by elements

si,j =

{

G
(

l
k

)

for j = i + l − 1, l = 1,… , k,
0 otherwise. (4.66)

The structure of the weight matrix is shown in Figure 4.14. The pre-averaging estimator can then be
formulated as a quadratic form with weight matrix

W PAE
n,k =

2�
√

n
(2�2 −  1,kn−1)(n − k + 2)

W PAV
n,k −

 1,k
2�2 2,kn −  1,k

W RV
n . (4.67)

where W PAV
n,k is given by (4.66) and W RV

n is given by (4.41). The weight matrix of the pre-averaging
estimator is visualized in Figure 4.15.

4.2.5 Least Squares Estimator
This section loosely follows Holý (2017b). The idea behind the least squares estimator of Nolte and Voev
(2012) is quite simple. Several realized variances are estimated using different numbers of observations
ni (i.e. different data subsamples). Assuming white noise, the bias of these estimates should be linearly
dependent on the number of subsampled observations. The expected value of sparse realized variance
(4.39) with the initial observation ℎ and the sampling interval s is

E[SRVn,ℎ,s] = IV + 2m(n, ℎ, s)!2, (4.68)
where m(n, ℎ, s) is the number of observations utilized by the sparse realized variance given by (4.38).
We can model this behaviour using linear regression of the form

SRVn,ℎ,s = � + �m(n, ℎ, s) + "ℎ,s, "ℎ,s
i.i.d.∼ N(0, �2), s = 1,… , k, ℎ = 1,… , s. (4.69)

In other words we fit a line in signature volatility plot in Figure 4.5. Coefficient � then represents the
integrated variance IV and coefficient � represents double the variance of the noise 2!2.
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Figure 4.15: Quadratic form of pre-averaging estimator with n = 24 and k = 4.

The least squares estimator is given by

LSEn,k =
N̄2

∑s
ℎ=1 SRVn,ℎ,s − N̄1

∑s
ℎ=1Nℎ,sSRVn,ℎ,s

N̄0N̄2 − N̄2
1

, (4.70)

where
N̄d =

k
∑

s=1

s
∑

ℎ=1
|m(n, ℎ, s)|d . (4.71)

Nolte and Voev (2012) find the optimal k∗ as
k∗ =

⌊

anb
⌋

, (4.72)
where

a =

(

33.75!4
(

�2 − 4
(

20 + 21
))

IQ

)1∕3

,

b = 2
3

(

1 −
log(log(n))
log(n)

)

,

(4.73)

where � is the Archimedes’ constant (approximately 3.14159), 0 is the Euler–Mascheroni constant (ap-
proximately 0.57722), 1 is the first Stieltjes constant (approximately −0.07282), !2 is the variance of
the noise and IQ is the integrated quarticity given by (4.7).

Heteroskedasticity

Model (4.69) assumes that the variance of the error term "ℎ,s is constant. However, the variance of the
sparse realized variance is not constant as illustrated in Figure 4.6 resulting in heteroskedasticity. The
model can be improved by accounting for this variance. It is, however, quite complex as it is dependent
on the integrated quarticity and the fourth moment of the noise. Holý (2017b) suggests to approximate
standard deviation of the sparse realized variance byO (

m(n, ℎ, s)−1∕2
). The linear regression model then

takes the form
m(n, ℎ, s)

1
2SRVn,ℎ,s = �m(n, ℎ, s)

1
2 + �m(n, ℎ, s)

3
2 + m(n, ℎ, s)

1
2 "ℎ,s, "ℎ,s

i.i.d.∼ N(0, �2). (4.74)
This approximation is valid only for a finite sample and noise with relatively small variance as suggested
by Figure 4.6.
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Figure 4.16: Quadratic form of least squares estimator with n = 25 and k = 4.

Test for the Presence of the Noise

Modeling the bias of realized variance by the ordinary least squares allows us to test for the presence of
the market microstructure noise quite easily within the framework of linear regression. As suggested by
Holý (2017b), the t-test for zero value of coefficient � in model (4.69) or (4.74) is actually the test for the
presence of the noise.

Quadratic Form

This section follows Holý (2017e). The least squares estimator is a quadratic estimator with weight matrix

W LSE
n,k =

k
∑

s=1

s
∑

ℎ=1

N̄2 − N̄1Nℎ,s

N̄0N̄2 − N̄2
1

W SRV
n,ℎ,s , (4.75)

where W SRV
n,ℎ,s is given by (4.42). The structure of the weight matrix of the least squares estimator is

similar to the average realized variance in Figure 4.4 and two-scale estimator in Figure 4.11. This is
because all these methods are based on sparse realized variances.

4.3 Models of Quadratic Variation

To forecast daily volatility, various parametric models relating daily returns with latent volatility and
intraday realized measure are utilized. The realized measure RMi for day i = 1,… , n can be the realized
variance or an estimator of integrated variance robust to the market miscrostructure noise. In this section,
we present three models – the traditional time series model ARIMA, the HAR model of Corsi (2009)
utilizing realized measures over various time horizons and the realized GARCH model of Hansen et al.
(2012) based on the GARCH model augmented by realized measure.

4.3.1 ARIMAModel

Autoregressive models for realized measure forecasting were utilized e.g. by Andersen et al. (2003) and
Aït-Sahalia and Mancini (2008). We consider the autoregressive integrated moving average (ARIMA)
model (see e.g. Shumway and Stoffer, 2011). The ARIMA(p, d, q) model for realized measure RMi is
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given by
ΔdRMi = � +

p
∑

j=1
'jΔdRMi−j +

p
∑

j=1
�j"i−j + "i, i = 1,… , n, (4.76)

where operator Δd denotes the d-th difference, "i is the uncorrelated white noise with variance �2 and
�, 'j , �j are the parameters. Without some additional constraints on parameters, this model does not
ensure the non-negativity of realized measure.

Choosing the Order

The question is how to choose the autoregressive order p, differencing order d and moving-average order
q. As we need to estimate a large number of models in our empirical analysis in Section 4.4.2, we adopt
the automatic framework of Hyndman and Khandakar (2008). In this procedure, the differencing order d
is selected according to successive KPSS unit-root tests (Kwiatkowski et al., 1992)1. The autoregressive
order p and the moving-average order q are then selected by minimizing the Akaike information criterion
(Akaike, 1974). This approach was utilized e.g. by Holý (2017c) and Holý (2017d).

Logarithmic Transformation

Andersen et al. (2003) argue in their empirical study that the distribution of logarithm of realized vari-
ance is closer to the Gaussian distribution than the distribution of realized variance. For this reason,
we also consider the logarithm of realized measure to follow the ARIMA process. The logarithmic
ARIMA(p, d, q) model for realized measure RMi is given by

Δd logRMi = � +
p
∑

j=1
'jΔd logRMi−j +

p
∑

j=1
�j"i−j + "i, i = 1,… , n, (4.77)

where operator Δd denotes the d-th difference, "i is the uncorrelated white noise with variance �2 and
�, 'j , �j are the parameters. An advantage of the logarithmic model over the regular model is that it does
not require constrains ensuring non-negativity of realized measure.
Gonçalves andMeddahi (2011) and Taylor (2017) generalized the logarithm transformation in the context
of volatility forecasting by considering Box-Cox transformations for realized measures.

Relating Realized Measure to Returns

Models (4.76) and (4.77) concern only with dynamics of realized measure. To jointly model realized
measure RMi and daily returns Yi, Aït-Sahalia and Mancini (2008) suggest extending the model (4.76)
or (4.77) by equation

Yi =Mi +
√

RMi�i, i = 1,… , n, (4.78)
whereMi is a process for mean and �i are i.i.d. N(0, 1).
Daily returns Yi can be defined in several ways. Daytime return (open-to-close return)measures the return
generated by a stock during trading hours. It is based on the difference between the opening price of a
given day and the closing price of that day. Overnight return (close-to-open return) measures the return
generated by a stock when the market is closed. It is based on the difference between the closing price of
a given day and the opening price of the next trading day. Overnight return and daytime return together
form the total daily return (close-to-close return), which is based on the difference between the closing
price of a given day and the closing price of the next trading day. Differences between daytime, overnight
and total daily returns were studied for example by Wang et al. (2009), Kelly and Clark (2011), Tsai et al.
(2012) and Ochiai and Nacher (2019).

1When considering seasonality in the model, the procedure additionaly performs the extended Canova-Hansen test to de-
termine seasonal differencing (Canova and Hansen, 1995)
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4.3.2 HAR Model

Corsi (2009) proposes to model daily realized measures by the heterogeneous autoregressive (HAR)
model. It features realized measures over different time horizons motivated by market agents operat-
ing at different frequencies. A standard HAR model explains daily realized measure by realized measure
of the last day, week (last 5 days) and month (last 22 days). The HAR model for realized measure RMi
is given by

RMi = � + �1RMi−1 + �2
1
5

5
∑

j=1
RMi−j + �3

1
22

22
∑

j=1
RMi−j + "i, i = 1,… , n (4.79)

where "i is an independent and identically distributed innovation process with zero mean and �, �1, �2,
�3 are the parameters.
The HARmodel was further studied and extended byMcAleer andMedeiros (2008b), Busch et al. (2011),
Patton and Sheppard (2015) and Čech and Baruník (2017).

Logarithmic Transformation

Simalarly to Section 4.3.1, we also consider the HAR model for the logarithm of realized measure. The
logarithmic HAR model for realized measure RMi is given by

logRMi = � + �1 logRMi−1 + �2
1
5

5
∑

j=1
logRMi−j + �3

1
22

22
∑

j=1
logRMi−j + "i, i = 1,… , n (4.80)

where "i is an independent and identically distributed innovation process with zero mean and �, �1, �2,
�3 are the parameters.

4.3.3 Realized GARCHModel

Hansen et al. (2012) propose the realized GARCH model to jointly model observed returns, latent volatil-
ity and realized measure. It is a modification of the generalized autoregressive conditional heteroskedas-
ticity (GARCH) model of Engle (1982) and Bollerslev (1986). In the realized GARCH model, lagged
realized variances are used instead of lagged errors and the measurement equation of realized measure is
added. The realized GARCH(p, q) model for realized measure RMi is given by

Yi =Mi +
√

Hi�i

Hi = ! +
p
∑

j=1
�jHi−j +

q
∑

j=1
jRMi−j

RMi = � + 'Hi + �(�i) + "i

(4.81)

with the leverage function �(⋅) given by
�(x) = �1x + �2

(

x2 − 1
)

, (4.82)
where Mi is a process for mean, �i are i.i.d. N(0, 1), "i are i.i.d. N(0, �2) and !, �j , j , �, ', �1, �2,
� are the parameters. Note that Yi and RMi are observable while Hi is latent. Daily returns Yi can be
either open-to-close returns or close-to-close returns similarly to Section 4.3.1. The last equation relates
realized measure to the latent volatility with the leverage function �(⋅) allowing for asymmetric response
in volatility to return shocks.
The realized GARCHmodel was further studied and extended by Watanabe (2012), Hansen et al. (2014),
Baruník et al. (2016), Huang et al. (2016) and Jiang et al. (2018).
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Logarithmic Transformation

Hansen et al. (2012) also suggest to use the realized GARCH model with logarithmic volatility and re-
alized measure. The logarithmic realized GARCH(p, q) model for realized measure RMi is given by

Yi =Mi +
√

Hi�i

logHi = ! +
p
∑

j=1
�j logHi−j +

q
∑

j=1
j logRMi−j

logRMi = � + ' logHi + �(�i) + "i,

(4.83)

whereMi is a process for mean, �i are i.i.d. N(0, 1), "i are i.i.d. N(0, �2) and !, �j , j , �, ', �1, �2, � are
the parameters.

4.4 Application to Daily Volatility

We assess suitability of quadratic variation estimators and models for daily volatility of various stocks.
We study 30 stocks forming Dow Jones Industrial Average (DJIA) index as of March 19, 2015. We have
data from January, 2015 until June, 2018. We clean data according to the procedure described in Section
2.1.1. For more details about analyzed stocks, see Appendix A. Our goal is to find an estimator with the
best finite sample performance and a model with the most precise forecasting ability.

4.4.1 Estimators Performance

We compare the realized variance with the noise-robust estimators described in Section 4.2. For this
purpose, we do not aggregate observations and utilize tick data. We denote the realized variance (4.32)
as RV, two-scale estimator 4.46 as TSE, realized kernel estimator (4.50) with cubic kernel (4.56) as RK-C,
realized kernel estimator (4.50) with Parzen kernel (4.57) as RK-P, realized kernel estimator (4.50) with
Tukey-Hanning kernel of order two (4.58) as RK-TH2, pre-averaging estimator (4.64) as PAE and least
squares estimator (4.70) as LSE.

Simulation Study

This section follows Holý and Černý (2017). To compare finite-sample performance of estimators, we
conduct a simulation study. We consider the followingmodel for simulations. The number of observations
is set to n = 23 400. The times of observations Ti, i = 0,… , n are generated by the Poisson point process
and normalized to interval [0, 1]. The observed price is given by the additive model Xi = PTi + Ei,
i = 0,… , n. The efficient price PTi follows the process

dPt = �(� − Pt)dt + �eGtdWt,
dGt = −�Gtdt + �dVt,

(4.84)

where Wt and Vt are Wiener processes correlated with coefficient �. This is the one-factor stochastic
volatility (SV1F) model commonly used in simulations (see e.g. Barndorff-Nielsen and Shephard, 2004;
Huang and Tauchen, 2005). The market microstructure noise follows the process

Ei = 'Ei−1 + �
(

PTi − PTi−1
)

+ Ui, Ui
i.i.d.∼ N

(

0, !2
)

, i = 1,… , n. (4.85)

We consider 8 simulation settings in total with different values of parameters �, �, �, �, �, �, !, ' and
�. These scenarios are listed in Table 4.2. We denote constant volatility as CV, stochastic volatility as
SV, no noise as P, white noise as WN, time-dependent noise as TDN and cross-dependent noise as CDN.
Each simulation is performed 10 000 times.
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Model � � � � � � ! ' �

OU-CV-P 1 10 0.01
OU-CV-WN 1 10 0.01 0.0001
OU-CV-TDN 1 10 0.01 0.0001 0.5
OU-CV-CDN 1 10 0.01 0.0001 -0.1
OU-SV-P 1 10 0.01 0.1 0.1 -0.5
OU-SV-WN 1 10 0.01 0.1 0.1 -0.5 0.0001
OU-SV-TDN 1 10 0.01 0.1 0.1 -0.5 0.0001 0.5
OU-SV-CDN 1 10 0.01 0.1 0.1 -0.5 0.0001 -0.1

Table 4.2: Parameter values for the simulation models based on the Ornstein–Uhlenbeck process (OU)
with either constant volatility (CV) or stochastic volatility (SV) and either no noise (P), white noise (WN),
time-dependent noise (TDN) or cross-dependent noise (CDN).

Model RV TSE RK-C RK-P RK-TH2 PAE LSE
OU-CV-P 0.0088 0.1037 0.0163 0.0161 0.0162 0.0544 0.0091
OU-CV-WN 4.6793 0.1053 0.1436 0.1561 0.1635 0.0564 0.0217
OU-CV-TN 3.1192 0.0991 0.5752 0.5875 0.5927 0.0535 1.2179
OU-CV-CN 4.4996 0.1039 0.1261 0.1370 0.1444 0.0551 0.0216
OU-SV-P 0.1485 0.1846 0.1496 0.1504 0.1500 0.1603 0.1488
OU-SV-WN 4.6559 0.1849 0.1773 0.1826 0.1850 0.1631 0.1531
OU-SV-TN 3.0941 0.1823 0.5513 0.5687 0.5712 0.1614 1.1752
OU-SV-CN 4.4734 0.1901 0.1739 0.1764 0.1783 0.1636 0.1562

Table 4.3: Mean absolute errors of quadratic variation estimated by various non-parametric methods
using simulations of several price models.

The results of simulations are reported in Table 4.3. For the case of process without the noise OU-CV-P
and OU-SV-P, the realized variance performs the best due to its simplicity. However, in other scenarios,
it is clearly biased. Generally, quadratic variation in scenarios with stochastic volatility OU-SV-P, OU-
SV-WN, OU-SV-TDN and OU-SV-CDN is much harder to estimate than in the case of constant volatility
OU-CV-P, OU-CV-WN, OU-CV-TDN and OU-CV-CDN. The realized kernel estimator and least squares
estimator are strongly affected by time dependence in the noise as seen in scenarios OU-CV-TDN andOU-
SV-TDN. The pre-averaging estimator is, on the other hand, stable for various noise settings and overall
performs the best. This is consistent with the study of Holý and Černý (2017) which uses a different
simulation setup.

Evidence in Stock Prices

We estimate quadratic variation for the DJIA stocks from January, 2015 to June, 2018. First, we inves-
tigate structure of the market microstructure noise. We utilize the volatility signature plot of Andersen
et al. (2000). Figure 4.17 shows the noise behavior on four examplary days. In some cases, we can see
decreasing value of estimated quadratic variation with increasing number of observations. This was also
observed by Hansen and Lunde (2006) in a similar dataset. The only reason for this kind of bias is a neg-
ative correlation between the noise and the efficient price. Overall, we can see that the noise is relatively
small but has complex structure. This is also in line with Hansen and Lunde (2006).
Median quadratic variations estimated by various methods are reported in Table (4.4). We resort to me-
dian values as volatility reaches extreme values on a few days as illustrated in Figure 4.18. The estimated
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Stock RV TSE RK-C RK-P RK-TH2 PAE LSE
AAPL 0.7939 0.7443 0.8493 0.8493 0.8481 0.8349 0.8122
AXP 0.6819 0.5252 0.6920 0.6905 0.6917 0.6616 0.6937
BA 0.8729 0.6079 0.8700 0.8654 0.8686 0.7718 0.8750
CAT 1.1546 0.8859 1.1584 1.1584 1.1584 1.1045 1.1727
CSCO 0.7195 0.6507 0.7219 0.7224 0.7261 0.7926 0.7342
CVX 0.8950 0.7327 0.8889 0.8906 0.8895 0.8412 0.9048
DD 1.0498 0.7832 1.0444 1.0478 1.0474 0.7919 0.9998
DIS 0.6196 0.4863 0.6289 0.6298 0.6301 0.6253 0.6293
GE 0.7436 0.5988 0.7541 0.7552 0.7547 0.7418 0.7486
GS 1.1380 0.8336 1.1285 1.1260 1.1282 1.0082 1.1378
HD 0.6933 0.5118 0.6912 0.6912 0.6912 0.6490 0.6963
IBM 0.6348 0.4512 0.6396 0.6387 0.6381 0.5709 0.6347
INTC 0.9306 0.8571 0.9416 0.9403 0.9420 1.0471 0.9464
JNJ 0.4982 0.3569 0.4941 0.4941 0.4942 0.4461 0.5030
JPM 0.9249 0.9071 0.9597 0.9631 0.9614 0.6399 0.9326
KO 0.4219 0.3278 0.4254 0.4259 0.4255 0.4017 0.4290
MCD 0.5459 0.3696 0.5500 0.5515 0.5513 0.4853 0.5535
MMM 0.5282 0.3311 0.5258 0.5261 0.5267 0.4071 0.5142
MRK 0.6930 0.5833 0.6994 0.7001 0.6997 0.7175 0.7091
MSFT 0.7373 0.7233 0.7751 0.7748 0.7751 0.8133 0.7516
NKE 0.8627 0.6791 0.8795 0.8799 0.8799 0.8613 0.8810
PFE 0.6823 0.5315 0.6848 0.6863 0.6856 0.6903 0.6966
PG 0.4492 0.3454 0.4633 0.4643 0.4636 0.4438 0.4575
TRV 0.5960 0.3747 0.5856 0.5849 0.5856 0.4585 0.5756
UNH 0.9228 0.6144 0.9153 0.9149 0.9150 0.7778 0.9080
UTX 0.6400 0.4267 0.6391 0.6383 0.6392 0.5160 0.6334
V 0.5778 0.4297 0.5897 0.5896 0.5898 0.5575 0.5848
VZ 0.5938 0.5113 0.6055 0.6054 0.6073 0.6355 0.6021
WMT 0.6135 0.4594 0.6184 0.6187 0.6190 0.5869 0.6182
XOM 0.6459 0.5569 0.6677 0.6684 0.6688 0.6489 0.6514

Table 4.4: Medians of daily quadratic variation estimated by the various non-parametric methods.

values do not distinctly differ as the noise induces sometimes increasing and sometimes decreasing bias
in our dataset. Based on our simulation study, we consider the values estimated by the pre-averaging
estimator as the most reliable.

4.4.2 Models Performance

We compare forecasting ability of models for realized measures described in Section 4.3. As realized
measure we adopt the pre-averaging estimator (4.64). We denote the ARIMA model (4.76) as ARIMA,
logarithmic ARIMA model (4.77) as ARIMA-LN, HAR model (4.79) as HAR, logarithmic HAR model
(4.80) as HAR-LN, logarithmic realized GARCH model (4.83) with open-to-close returns as RGARCH-
OC and logarithmic realized GARCHmodel (4.83) with close-to-close returns as RGARCH-CC.We also
consider some elementary naive models. The forecast equal to the value of previous day is denoted as
PREV, the forecast equal to the mean of past historical values is denoted as MEAN and the forecast equal
to the median of past historical values is denoted as MED.
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Figure 4.17: Volatility signature plots of NKE stock on various days.

Evidence in Stock Prices

Figure 4.18 shows examples of time series we forecast. There is some degree of autocorrelation present
but also some observations with extreme values. We focus on one-step-ahead forecasts of realized mea-
sure. Table 4.5 and Table 4.6 report median absolute errors of forecasts. Generally, models with logarith-
mic transformation perform much better. Interestingly, the naive PREV model outperforms the ARIMA
and HAR models, which are sensitive to extreme observations. The HAR-LN, however, has the low-
est median absolute error among all considered models. In this case, the logarithmic scale reduces the
impact of large values of volatility. Realized GARCH model with logarithmic transform also performs
adequately. We find that the use of the returns given by the difference between the closing and open-
ing price of the same day (the RGARCH-OC model) is more suitable in this application than the returns
given by the difference between closing prices of successive days (the RGARCH-CCmodel). We see that
models HAR-LN, RGARCH-OC and RGARCH-CC specifically designed for high-frequency data have
more accurate forecasts than the traditional ARIMA-LN model.

4.4.3 Discussion
First, we compare estimators of quadratic variation in the presence of the market microstructure noise.
In a simulation study, we find that the pre-averaging estimator is the best alternative for finite-sample
estimation of quadratic variation. It exhibits relatively small errors even for the time-dependent and
cross-dependent noise. Although it is outperformed by other methods in some scenarios, it has rather
stable performance and does not cause extreme errors in any scenario. For this reason, we recommend to
use the pre-averaging estimator for quadratic variation estimation.
Second, we compare models for realized measure forecasting. Following the comparison of ex-post es-
timators, we select the pre-averaging estimator as realized measure. The empirical study shows that it
is necessary to use the logarithmic transformation for realized measure. If the goal is to solely forecast
realized measure, the logarithmic HAR model is the best choice. If the goal is to jointly model returns,
volatility and realized measure, the logarithmic realized GARCH model performs adequately.
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Stock PREV MEAN MED ARIMA HAR
AAPL 2.4758 4.8201 3.3948 3.0910 3.0659
AXP 2.2267 3.2660 2.2909 2.5527 2.6609
BA 2.7419 4.1360 3.4876 3.0323 3.1444
CAT 3.6633 5.6677 5.2383 4.3074 4.2637
CSCO 2.3029 3.6396 2.6921 2.5117 2.5477
CVX 2.5448 3.5907 3.5389 2.6197 2.5545
DD 3.7109 4.0291 3.2170 2.9344 3.2416
DIS 1.9707 3.1009 2.3421 2.3182 2.1531
GE 2.8384 3.8303 3.6604 2.7167 2.8193
GS 3.5255 4.9245 3.9007 3.6179 3.7763
HD 2.1249 3.6600 2.2731 2.5155 2.4113
IBM 1.7954 2.7260 2.3295 2.0096 2.0655
INTC 2.8695 4.4331 3.4076 3.1777 3.0712
JNJ 1.3633 2.2745 1.7236 1.6964 1.6971
JPM 3.7248 6.4754 3.6022 4.7961 6.0715
KO 1.1205 1.8137 1.2731 1.3014 1.3422
MCD 1.5160 2.0884 1.7430 1.6954 1.8347
MMM 1.3189 2.0605 1.5252 1.4372 1.5226
MRK 2.1655 4.0791 2.9284 2.7302 2.9306
MSFT 2.2494 3.9312 3.0617 2.6711 2.5744
NKE 3.1729 4.1483 3.4244 3.0669 3.1101
PFE 2.0662 4.0580 2.9021 2.5046 2.6306
PG 1.3232 2.0572 1.5838 1.4780 1.4745
TRV 1.6313 2.3427 1.6163 1.7352 1.8324
UNH 2.5298 4.1908 3.1899 2.9564 3.0985
UTX 1.8267 2.4309 2.1382 1.7816 2.0530
V 1.5682 2.6779 1.7819 1.5799 1.7273
VZ 2.1086 3.4119 2.3123 2.6512 2.5718
WMT 2.0958 3.1225 2.2289 2.3191 2.3879
XOM 1.8118 2.8572 2.4249 1.8313 1.9118
Average 2.2794 3.5281 2.7078 2.5212 2.6182

Table 4.5: Median absolute errors of one-step-ahead forecasts of daily quadratic variation estimated by
pre-averaging estimator and forecasted by various models.
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Stock ARIMA-LN HAR-LN RGARCH-OC RGARCH-CC
AAPL 2.2378 2.3462 2.2626 2.2687
AXP 1.9345 1.9302 1.9438 1.9634
BA 2.4374 2.3241 2.5698 2.4730
CAT 3.4316 3.4671 3.4081 3.3660
CSCO 2.0163 1.9260 1.9852 1.9455
CVX 2.2778 2.1953 2.2525 2.2287
DD 3.4348 3.5842 3.2550 3.5192
DIS 1.7278 1.6612 1.7039 1.6843
GE 2.4083 2.3728 2.4204 2.4286
GS 3.1508 2.9903 3.1162 3.0968
HD 1.7844 1.6996 1.7256 1.7676
IBM 1.6292 1.6186 1.6015 1.6069
INTC 2.5469 2.4392 2.4392 2.4826
JNJ 1.2440 1.2047 1.2419 1.2468
JPM 3.9702 3.9288 3.5737 3.9726
KO 1.0423 1.0305 0.9936 0.9989
MCD 1.3366 1.3377 1.2722 1.3436
MMM 1.1328 1.1839 1.1396 1.1080
MRK 1.9819 1.9992 2.0442 2.0039
MSFT 2.0891 2.0948 2.1460 2.1849
NKE 2.7593 2.6539 2.7646 2.6978
PFE 1.8920 1.9375 1.9826 1.9320
PG 1.1477 1.1395 1.1265 1.1652
TRV 1.3386 1.2985 1.2981 1.3158
UNH 2.1366 2.1240 2.2049 2.2066
UTX 1.5626 1.5421 1.6019 1.5320
V 1.3699 1.3891 1.3779 1.4104
VZ 1.8120 1.6991 1.7323 1.7572
WMT 1.8722 1.7712 1.7557 1.7442
XOM 1.6851 1.6300 1.7383 1.6688
Average 2.0463 2.0173 2.0226 2.0373

Table 4.6: Median absolute errors of one-step-ahead forecasts of daily quadratic variation estimated by
the pre-averaging estimator and forecasted by various logarithmic models.
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Figure 4.18: Daily quadratic variation of AXP, INTC and TRV stocks estimated by the pre-averaging
method.
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- Chapter 5 -

Ornstein–Uhlenbeck Process

This section follows Holý and Tomanová (2018). In finance, many different time series tend to move to
their mean values over time. This behaviour is known as the mean reversion and is often captured by the
Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein, 1930). It can be used to model currency exchange
rates (Ball and Roma, 1994; Gil-Alana, 2000) and commodity prices (Schwartz, 1997). A major applica-
tion of the Ornstein–Uhlenbeck process is the modeling of interest rates by the so-called Vasicek model
(Vasicek, 1977; Hull and White, 1990; Babbs and Nowman, 1999; Andresen et al., 2014). The Ornstein–
Uhlenbeck process can also be utilized tomodel stochastic volatility of financial assets (Barndorff-Nielsen
and Shephard, 2001; Griffin and Steel, 2006; Hofmann and Schulz, 2016; Peng et al., 2016; Benth et al.,
2018). Another application is the trading strategy called the pairs trading. It is based on a tendency of the
spread between highly correlated time series to return to its long-term mean value making the movement
of the prices predictable and profitable (Elliott et al., 2005; Bertram, 2010; Cummins and Bucca, 2012;
Zeng and Lee, 2014; Liu et al., 2017). An example of Ornstein–Uhlenbeck process path is shown in
Figure 5.1.
The Ornstein–Uhlenbeck process can be utilized when analyzing financial high-frequency data. In gen-
eral, high-frequency time series exhibit specific characteristics such as heavy tailed distribution, the pres-
ence of jumps andmarket microstructure noise. In the Ornstein–Uhlenbeck model, the first two character-
istics are often captured by generalizing the background driving process to the Lévy process (Barndorff-
Nielsen and Shephard, 2001). The Ornstein–Uhlenbeck process driven by the Lévy process was further
studied by Masuda (2004), Lindner and Maller (2005), Brockwell et al. (2007), Borovkov and Novikov
(2008), Behme and Lindner (2012), Fasen (2013), Pakkanen et al. (2017) and Kevei (2018).
We focus on challanges surrounding the market microstructure noise. The majority of the literature con-
cerning the market microstructure noise is focused on non-parametric volatility estimation. However, a
parametric modeling is also important as it can be directly utilized in forecasting and decision-making. In
this section, we estimate parameters of the Gaussian Ornstein–Uhlenbeck process in the presence of the
independent Gaussian noise. The noise-robust approach we propose has several important implications
and advantages. We show that Ornstein–Uhlenbeck parameters estimated by methods ignoring the noise
are biased and inconsistent. In addition, we demonstrate that even when the variance of the noise is rela-
tively small and one would simply decide to ignore it (which is unfortunately quite common in practice),
it has a great impact on estimated parameters. The reliance of market participants on this biased estimates
can lead to wrong decisions and have harmful consequences as we illustrate in an application to the pairs
trading strategy. The pitfall of this lies in the fact that estimated parameters might appear as reliable
values at the first sight but they are actually multiple times higher than their true values. As we argue
this is caused by the fact that the Ornstein–Uhlenbeck process contaminated by the independent Gaus-
sian white noise and observed at discrete equidistant times follows ARMA(1,1) process instead of AR(1)
process. We make use of this finding and propose a noise-robust estimator based on the ARMA(1,1)
reparametrization. We also deal with the situation when the observations are not equidistant and propose
noise-robust estimator based on the maximum likelihood.
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Figure 5.1: Simulated path of the Ornstein–Uhlenbeck process with parameters � = 1, � = 10 and
�2 = 10−4.

5.1 Estimators of Ornstein–Uhlenbeck Process
The Ornstein–Uhlenbeck process Pt, t ≥ 0 is a process satisfying stochastic differential equation

dPt = �(� − Pt)dt + �dWt, (5.1)
where Wt is a Wiener process, � is a parameter representing long-term mean, � > 0 is a parameter
representing speed of reversion and � > 0 is a parameter representing instantaneous volatility. This
stochastic differential equation has solution

Pt = P0e−�t + �(1 − e−�t) + � ∫

t

0
e−�(t−s)dWs. (5.2)

When assuming P0 ∼ N(�, �2∕2�) and P0 ⟂ Wt, t ≥ 0, the Ornstein–Uhlenbeck process Pt is a stationary
process with normally distributed increments and unconditional moments

E[Pt] = �,

var[Pt] =
�2

2�
,

cov[Pt, Ps] =
�2

2�
e−�|t−s|, t ≠ s.

(5.3)

For a given initial value p0, the Ornstein–Uhlenbeck process Pt is a non-stationary process with normally
distributed increments and conditional moments

E[Pt|P0 = p0] = p0e−�t + �
(

1 − e−�t
)

,

var[Pt|P0 = p0] =
�2

2�

(

1 − e−2�t
)

,

cov[Pt, Ps|P0 = p0] =
�2

2�

(

e−�|t−s| − e−�(t+s)
)

, t ≠ s.

(5.4)

In practice, we do not observe continuous paths of the process. Instead, we only observe the process
PTi at a finite number of discrete times 0 = T0 < T1 < … < Tn = 1, where Ti are deterministic times
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of observations. Without loss of generality, we restrict ourselves to the time interval [0, 1]. We further
assume that the observed process is contaminated by independent white noise Ei ∼ N(0, !2). For the
observed discrete process Xi, we utilize the additive noise model

Xi = PTi + Ei, i = 0,… , n. (5.5)
When assuming P0 ∼ N(�, �2∕2�) and P0 independent of WTi , i ≥ 0, the observed process Xi is a
stationary process with normally distributed increments and unconditional moments

E[Xi] = �,

var[Xi] =
�2

2�
+ !2,

cov[Xi, Xj] =
�2

2�
e−�|Ti−Tj |, i ≠ j.

(5.6)

For a given x0 the observed process Xi is a non-stationary process with normally distributed increments
and conditional moments

E[Xi|X0 = x0] = E[P0|X0 = x0]e−�Ti + �
(

1 − e−�Ti
)

,

var[Xi|X0 = x0] = var[P0|X0 = x0]e−2�Ti +
�2

2�

(

1 − e−2�Ti
)

+ !2,

cov[Xi, Xj|X0 = x0] = var[P0|X0 = x0]e−�(Ti+Tj ) +
�2

2�

(

e−�|Ti−Tj | − e−�(Ti+Tj )
)

, i ≠ j,

(5.7)

where
E[P0|X0 = x0] =

x0�2 + 2��!2

�2 + 2�!2
,

var[P0|X0 = x0] =
�2!2

�2 + 2�!2
.

(5.8)

The above conditional distribution is derived using the following proposition with P = P0, �P = �,
�2P = �

2∕(2�), E = E0, �E = 0, �2E = !2 and X = X0.
Proposition 5.1. Let P ∼ N(�P , �2P ), E ∼ N(�E , �2E) and P ⟂ E. Let X = P + E. The conditional
probability density function is then

fP (p|X = x) = 1
√

2��2C (x)
exp

{

−

(

p − �C (x)
)2

2�2C (x)

}

, (5.9)

where

�C (x) =
�P�2E − �E�

2
P + x�

2
P

�2P + �
2
E

,

�2C (x) =
�2P�

2
E

�2P + �
2
E

.

(5.10)

Proof. The joint probability density function of P and X is given by

gP ,X(p, x) =
1

√

2��2P

exp

{

−
(p − �P )2

2�2P

}

1
√

2��2E

exp

{

−
(x − p − �E)2

2�2E

}

= 1
√

2��2P
√

2��2E

exp

{

−
�2P + �

2
E

2�2P�
2
E

p2 +
�P�2E + x�

2
P − �E�

2
P

�2P�
2
E

p

+
2x�E�2P − �

2
P�

2
E − x

2�2P − �
2
E�

2
P

2�2P�
2
E

}

.

(5.11)
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Using the property of Gaussian function integral

∫

∞

−∞
exp

{

−ap2 + bp + c
}

dp =
√

�
a
exp

{

b2

4a
+ c

}

, (5.12)
we get the marginal probability density function
ℎX(x) = ∫

∞

−∞
gP ,X(p, x)dp

= 1
√

2��2P
√

2��2E

√

√

√

√

�
�2P+�

2
E

2�2P �
2
E

exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

�P �2E+x�
2
P−�E�

2
P

�2P �
2
E

)2

4
(

�2P+�
2
E

2�2P �
2
E

) +
2x�E�2P − �

2
P�

2
E − x

2�2P − �
2
E�

2
P

2�2P�
2
E

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 1
√

2�
(

�2P + �
2
E

)

exp

{

−
(�P − x + �E)2

2(�2P + �
2
E)

}

.

(5.13)
The conditional probability density function is then derived as

fP (p|X = x) =
gP ,X(p, x)
ℎX(x)

= 1
√

2� �2P �
2
E

�2P+�
2
E

exp

{

−
(p − �P )2

2�2P
−
(x − p − �E)2

2�2E
+
(�P − x + �E)2

2(�2P + �
2
E)

}

= 1
√

2��2C (x)
exp

{

−

(

p − �C (x)
)2

2�2C (x)

}

.

(5.14)

Let us analyze the situation in which we assume observations to follow the Ornstein–Uhlenbeck process
PTi but they actually follow the noisy process Xi. From (5.3) and (5.6) we have unconditional moments

E[Xi] = E[PTi],

var[Xi] = var[PTi] + !
2,

cov[Xi, Xj] = cov[PTi , PTj ], i ≠ j.
(5.15)

This means that an unbiased estimate of the expected value of Xi is also an unbiased estimate of the
expected value of PTi . The same applies for the autocovariance function of Xi and the autocovariance
function of PTi . An unbiased estimate of the variance of Xi, on the contrary, is a positively biased esti-
mator of the variance of PTi . Because of this, the autocorrelation function

cor[Xi, Xj] = cor[PTi , PTj ] −
2�!2

�2 + 2�!2
e−�|Ti−Tj |, i ≠ j (5.16)

also differes from the autocorrelation function of PTi . Figure 5.2 shows the autocorrelation function of
the process with and without the noise. To sum up, the misspecification of the process does not affect
unconditional expected value and autocovariance estimation, but does affect unconditional variance and
autocorrelation estimation.
Our goal is to estimate the parameters �, �, � of the Ornstein–Uhlenbeck process PTi and the parameter
! of the market microstructure noise Ei from the observed process Xi. For this purpose, we propose
the method of moments estimator, maximum likelihood estimator and the estimator reparametrizing dis-
cretized Ornstein–Uhlenbeck process with the noise as an ARMA(1,1) process.
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Figure 5.2: The autocorrelation function of the process Xi with parameters � = 1, � = 10, �2 = 10−4
and various values of !2.

5.1.1 Method of Moments

The method of moments is based on relating theoretical values of random variable moments to their
finite-sample estimates. The advantage of the method of moments lies in its simplicity and closed-form
solution. It is often used as an initial solution for more sofisticated methods such as the maximum like-
lihood estimator. In this section, we assume that the times of observations Ti are equally spaced and
Ti − Ti−1 = n−1.

Noise-Sensitive Estimator

First, we derive the method of moments for the case of the equidistantly sampled Ornstein–Uhlenbeck
process with no noise. As we need to estimate parameters �, � and �, we utilize three unconditional
moments

E[PTi] = �,
var[PTi] =

�2

2�
,

cov[PTi , PTi−1] =
�2

2�
e−�n

−1
,

(5.17)

We can estimate these moments using observed values pT0 , pT1 ,… , pTn as

M1,n =
1

n + 1

n
∑

i=0
pTi ,

M2,n =
1
n

n
∑

i=0
(pTi −M1,n)2,

M3,n =
1

n − 1

n
∑

i=1
(pTi −M1,n)(pTi−1 −M1,n),

(5.18)

By solving equations
E[PTi] =M1,n, var[PTi] =M2,n, cov[PTi , PTi−1] =M3,n, (5.19)
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we get estimates
�̂ =M1,n,

�̂ = n log
M2,n

M3,n
,

�̂2 = 2nM2,n log
M2,n

M3,n
.

(5.20)

Illustration of Bias

We illustrate the bias of the method of moments when the Ornstein–Uhlenbeck process is contaminated
by the white noise with standard deviation !. Parameter � can be consistently estimated by sample mean.
For the other two parameters, the situation is more difficult. Parameter � can be estimated using equation

�P ,n = n log
var[PTi−1]

cov[PTi , XTi−1]

= −n log cor[PTi , PTi−1].
(5.21)

The method of moments replaces the theoretical correlation in this equation by the sample correlation to
estimate �. However, if the actual process follows Xi, the equality (5.21) does not hold and instead we
have

�X,n = n log
var[Xi−1]

cov[Xi, Xi−1]
= −n log cor[Xi, Xi−1]

= −n log
(

�2

�2 + 2�!2
e−�(Ti−Ti−1)

)

= �P ,n − n log
�2

�2 + 2�!2
.

(5.22)

The estimate �X,n is a function of the number of observations, which for n → ∞ linearly diverges to
infinity. Similarly, parameter � can be estimated using equation

�2P ,n = 2nvar[PTi] log
var[PTi−1]

cov[PTi , XTi−1]

= −2nvar[PTi] log cor[PTi , PTi−1].
(5.23)

When the process is noisy, we have

�2X,n = 2nvar[Xi] log
var[Xi−1]

cov[Xi, Xi−1]
= −2nvar[Xi] log cor[Xi, Xi−1]

= −2n
(

�2

2�
+ !2

)

log
(

�2

�2 + 2�!2
e−�(Ti−Ti−1)

)

= �2P ,n + 2�!
2 − 2n

(�2

2�
+ !2

)

log �2

�2 + 2�!2
,

(5.24)

which also linearly diverges to infinity for n→ ∞. We show the bias of �X,n and �2X,n in Figure 5.3.

Noise-Robust Estimator

In the noise-robust variant of the method of moments estimator, we additionally need to estimate the
standard deviation of the noise !. As we estimate four parameters of the observed process Xi, we utilize
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Figure 5.3: The bias of functions �X,n and �2X,n with parameters � = 1, � = 10, �2 = 10−4 and various
values of !2.

four unconditional moments

E[Xi] = �,

var[Xi] =
�2

2�
+ !2,

cov[Xi, Xi−1] =
�2

2�
e−�Δ,

cov[Xi, Xi−2] =
�2

2�
e−2�Δ.

(5.25)

We can estimate these moments using observed values x0, x1,… , xn as

M1,n =
1

n + 1

n
∑

i=0
xi,

M2,n =
1
n

n
∑

i=0
(xi −M1,n)2,

M3,n =
1

n − 1

n
∑

i=1
(xi −M1,n)(xi−1 −M1,n),

M4,n =
1

n − 2

n
∑

i=2
(xi −M1,n)(xi−2 −M1,n).

(5.26)

By solving equations

E[Xi] =M1,n, var[Xi] =M2,n, cov[Xi, Xi−1] =M3,n, cov[Xi, Xi−2] =M4,n, (5.27)
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we get estimates
�̂ =M1,n,

�̂ = 1
Δ
log

M3,n

M4,n
,

�̂2 = 2 1
Δ

M2
3,n

M4,n
log

M3,n

M4,n
,

!̂2 =M2,n −
M2
3,n

M4,n
.

(5.28)

Higher moments and higher lags of autocovariance function can also be used. However, because we use
this method mainly as initial estimates, we do not focus on finding the optimal set of moments.

Online and Streaming Estimation Perspective

It is natural to consider financial high-frequency data Xi as a data stream. A streaming algorithm can
examine a sequence of inputs in a single pass only. The available memory is limited and cannot store
all data. We can store only a constant number of real variables (i.e. not depending on a size of our data
stream). An online algorithm is based on a similar idea of a single pass. The focus here is more on
the updating scheme rather than the memory constraints. With a new observation, a statistic of interest
is updated using the previous value of the statistic, the new observation and possibly some auxiliary
variables.
We show that the method of moments estimator of the Ornstein–Uhlenbeck process is indeed a streaming
and online algorithm. Our sample moments can be recursively computed as

M1,n =
n

n + 1
M1,n−1 +

1
n + 1

Xn.

M2,n =
n − 1
n

M2,n−1 +
1
n
(Xn −M1,n)2 +

(

M1,n−1 −M1,n
)2 .

M3,n =
n − 2
n − 1

M3,n−1 +
1

n − 1
(

Xn −M1,n
) (

Xn−1 −M1,n
)

+
(

M1,n−1 −M1,n
)2

+ 1
n − 1

(

M1,n−1 −M1,n
) (

X1 +Xn−1 − 2M1,n
)

,

M4,n =
n − 3
n − 2

M4,n−1 +
1

n − 2
(

Xn −M1,n
) (

Xn−2 −M1,n
)

+
(

M1,n−1 −M1,n
)2

+ 1
n − 2

(

M1,n−1 −M1,n
) (

X1 +X2 +Xn−2 +Xn−1 − 4M1,n
)

.

(5.29)

As all four sample moments can be expressed in a recursive form as an update of their previous values, this
estimation method is an online algorithm. It is required only to store variablesM1,n−1,M2,n−1,M3,n−1,
M4,n−1, X1, X2, Xn−2, Xn−1 at time n and this estimation method is therefore a streaming algorithm.
Other examples of online or streaming algorithms from the statistics and econometrics field include the
estimation and diagnostics of linear regression (Černý, 2018), estimation of GARCH process (Aknouche
and Guerbyenne, 2006; Hendrych and Cipra, 2018), estimation of unobserved mean-reverting spread
(Triantafyllopoulos and Montana, 2011), estimation of spot volatility (Lahalle et al., 2008; Dahlhaus and
Neddermeyer, 2014) and detection of changepoints in a data stream (Bodenham and Adams, 2017).

5.1.2 Maximum Likelihood Method
A widely used method for parameter estimation is the maximum likelihood estimator. It maximizes the
likelihood function (or, equivalently, the logarithmic likelihood function) given the observations. In our
case, it utilizes the normal conditional density function for the Ornstein–Uhlenbeck process. In some
simple cases, the maximum likelihood estimators are available in a closed form. Tang and Chen (2009)
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present the closed-form estimates for the regularly spaced Ornstein–Uhlenbeck process without the noise.
We focus on the more general case of the irregularly spaced Ornstein–Uhlenbeck process contaminated
by the noise. As its likelihood is more complicated, we present it only as an optimization problem. In
this section, we allow for irregularly spaced observations with deterministic times of observations Ti.

Noise-Sensitive Estimator

In the case of the Ornstein–Uhlenbeck process without the noise, the maximum likelihood estimates are
obtained by maximizing the logarithmic likelihood function given by

L(�, �, �2) =
n
∑

i=1
log fPTi

(

pTi|PTi−1 = pTi−1
)

, (5.30)

where fPTi
(

pTi|PTi−1 = pTi−1
)

is the conditional density function of the observations. According to equa-
tion (5.4), it is the conditional density function of the normal distribution

fPTi

(

pTi|PTi−1 = pTi−1
)

= 1
√

2�var[PTi|PTi−1 = pTi−1]
exp

⎧

⎪

⎨

⎪

⎩

−

(

pTi − E[PTi|PTi−1 = pTi−1]
)2

2var[PTi|PTi−1 = pTi−1]

⎫

⎪

⎬

⎪

⎭

, (5.31)

with conditional moments
E[PTi|PTi−1 = pTi−1] = pTi−1e

−�(Ti−Ti−1) + �
(

1 − e−�(Ti−Ti−1)
)

,

var[PTi|PTi−1 = pTi−1] =
�2

2�

(

1 − e−2�(Ti−Ti−1)
)

.
(5.32)

The logarithmic likelihood function can be simplified to

L(�, �, �2) = −1
2

n
∑

i=1
log

(

2�var[PTi|PTi−1 = pTi−1]
)

− 1
2

n
∑

i=1

(

pTi − E[PTi|PTi−1 = pTi−1]
)2

var[PTi|PTi−1 = pTi−1]
. (5.33)

The estimates are then given by
(�̂, �̂, �̂2)′ = argmax

�,�,�2
L(�, �, �2) s. t. �2 ≥ 0. (5.34)

Noise-Robust Estimator

In the case of the Ornstein–Uhlenbeck process contaminated by the noise, the maximum likelihood esti-
mates are obtained by maximizing the logarithmic likelihood function given by

L(�, �, �2, !2) =
n
∑

i=1
log fXi

(

xi|Xi−1 = xi−1
)

, (5.35)

where fXi

(

xi|Xi−1 = xi−1
) is the conditional density function of the observations. According to Propo-

sition 5.1, it is the conditional density function of the normal distribution

fXi
(xi|Xi−1 = xi−1) =

1
√

2�var[Xi|Xi−1 = xi−1]
exp

{

−

(

xi − E[Xi|Xi−1 = xi−1]
)2

2var[Xi|Xi−1 = xi−1]

}

(5.36)

with conditional moments
E[Xi|Xi−1 = xi−1] =

xi−1�2 + 2��!2

�2 + 2�!2
e−�(Ti−Ti−1) + �

(

1 − e−�(Ti−Ti−1)
)

,

var[Xi|Xi−1 = xi−1] =
�2!2

�2 + 2�!2
e−2�(Ti−Ti−1) + �2

2�

(

1 − e−2�(Ti−Ti−1)
)

+ !2.
(5.37)
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The logarithmic likelihood function can be simplified to

L(�, �, �2, !2) = −1
2

n
∑

i=1
log

(

2�var[Xi|Xi−1 = xi−1]
)

− 1
2

n
∑

i=1

(

xt − E[Xi|Xi−1 = xi−1]
)2

var[Xi|Xi−1 = xi−1]
. (5.38)

The estimates are then given by
(�̂, �̂, �̂2, !̂2)′ = arg max

�,�,�2,!2
L(�, �, �2, !2) s. t. �2 ≥ 0, !2 ≥ 0. (5.39)

5.1.3 Time Series Reparametrization
The time series reparametrization lies in the following three steps. First, we reparametrize the discretized
equidistant process to a commonly used and studied time series model. Second, we estimate parameters of
the time series model, e.g. by the conditional-sum-of-squares or maximum likelihood estimators. Third,
we transform the estimates back to the original parametrization. One possible disadvantage is that the
reparametrization does not respect parameter restrictions. In our case, �2 and !2 parameters should be
non-negative, but the reparametrization allows for negative values. In this section, we assume the times
of observations Ti are equally spaced and denote Δ = Ti − Ti−1 = n−1.
It is well known that the discretized Ornstein–Uhlenbeck process corresponds to an AR(1) process. Aït-
Sahalia et al. (2005) reparametrized the discretizedWiener process contaminated by the white noise as an
ARIMA(0,1,1) process. As the discretizedWiener process without the noise is an ARIMA(0,1,0) process,
the noise therefore induces a moving average component of order one. We show that the same happens
for the discretized Ornstein–Uhlenbeck process contaminated by the white noise as it corresponds to an
ARMA(1,1) process.

Noise-Sensitive Estimator

When the noise is not present, the discrete process PTi can be reparametrized as an AR(1) process. Using
(5.2), the process PTi can be rewritten as

PTi = PTi−1e
−�Δ + �(1 − e−�Δ) + � ∫

Ti

Ti−1
e−�(Δ−s)dWs. (5.40)

We denote
� = �(1 − e−�Δ),
' = e−�Δ.

(5.41)
We further denote

Vi = � ∫

Ti

Ti−1
e−�(Δ−s)dWs. (5.42)

From equation (5.4) we have that the random variable Vi is normally distributed with variance
2 = var[Vi] = �2

2�
(

1 − e−2�Δ
)

. (5.43)
The random variable Vi is independent from PTi−1 . Using (5.41) and (5.43), we can reparametrize the
process (5.40) as an AR(1) process

PTi = � + 'PTi−1 + Vi, Vi
i.i.d.∼ N(0, 2). (5.44)

We can estimate parameters �, ' and 2 by any suitable method. Finally, by solving equations
�̂ = �̂(1 − e−�̂Δ),

'̂ = e−�̂Δ,

̂2 = �̂2

2�̂
(

1 − e−2�̂Δ
)

,

(5.45)
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we get estimates
�̂ = �̂

1 − '̂
,

�̂ = − 1
Δ
log '̂,

�̂2 = −2 1
Δ

̂2

1 − '̂2
log '̂.

(5.46)

Noise-Robust Estimator

When the process PTi is contamined by the white noise, the discrete processXi can be reparametrized as
an ARMA(1,1) process. Using (5.2) with initial time Ti−1, the process Xi can be decomposed as

Xi = PTi + Ei

= �(1 − e−�Δ) + PTi−1e
−�Δ + � ∫

Δ

0
e−�(Δ−s)dWs + Ei

= �(1 − e−�Δ) +Xi−1e
−�Δ + � ∫

Δ

0
e−�(Δ−s)dWs + Ei − Ei−1e−�Δ,

(5.47)

where the last equality holds because PTi−1 = Xi−1 − Ei−1. We denote
� = �(1 − e−�Δ),
' = e−�Δ.

(5.48)

We further denote
Ui = � ∫

Δ

0
e−�(Δ−s)dWs + Ei − Ei−1e−�Δ. (5.49)

Using (5.7) we have that the random variable Ui is normally distributed with moments
E[Ui] = 0,

var[Ui] = �2

2�
(1 − e−2�Δ) + !2(1 + e−2�Δ),

cov[Ui, Ui−1] = −!2e−�Δ,
cov[Ui, Ui−j] = 0, j > 1.

(5.50)

Using substitutions (5.48) and (5.49), we rewrite (5.47) as
Xi = � + 'Xi−1 + Ui. (5.51)

Let us define a moving average process of order one Ũi, i ≥ 0 as
Ũi = �Vi−1 + Vi, Vi

i.i.d.∼ N(0, 2). (5.52)
Variable Ũi is then normally distributed with moments

E[Ũi] = 0,
var[Ũi] = 2(1 + �2),

cov[Ũi, Ũi−1] = �2.
cov[Ũi, Ũi−j] = 0, j > 1.

(5.53)

We show that the process {Ui}i≥0 is equivalent to the process {Ũi}i≥0 for the right choice of  and �
parameters satisfying

var[Ui] = var[Ũi],
cov[Ui, Ui−1] = cov[Ũi, Ũi−1].

(5.54)
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The joint distribution of the process {Ui}i≥0 is identical to the joint distribution of the process {Ũi}i≥0
as both processes are normally distributed with zero first moment and the same autocovariation function.
We can then rewrite (5.51) as

Xi = � + 'Xi−1 + Ũi. (5.55)
This is an ARMA(1,1) process of the form

Xi = � + 'Xi−1 + �Vi−1 + Vi, Vi
i.i.d.∼ N(0, 2). (5.56)

We can estimate parameters �, ', � and 2 by any suitable method. Substitution (5.48) and equivalency
(5.54) with (5.50) and (5.53) imply

�̂ = �̂(1 − e−�̂Δ),

'̂ = e−�̂Δ,

̂2(1 + �̂2) = �̂2

2�̂
(1 − e−2�̂Δ) + !̂2(1 + e−2�̂Δ),

�̂̂2 = −!̂2e−�̂Δ.

(5.57)

Finally, by solving this system of equations, we get estimates
�̂ = �̂

1 − '̂
,

�̂ = − 1
Δ
log '̂,

�̂2 = −2 1
Δ
̂2('̂ + �̂2'̂ + �̂'̂2 + �̂)

'̂(1 − '̂2)
log '̂,

!̂2 = −
�̂̂2

'̂
.

(5.58)

5.2 Application to Pairs Trading Strategy
As an application of the noise-robust high-frequency estimators of the Ornstein–Uhlenbeck process, we
analyze the pairs trading strategy based on stochastic spread. This application allows us to evaluate the
added value of the noise-robust estimators compared to the noise-sensitive estimators in terms of profit.
The idea behind pairs trading lies in taking an advantage of financial markets that are out of equilibrium.
When some pairs of prices exhibit strong similarity in the long run and they are currently far enough from
their equilibrium, traders might profit by taking a long position in one security and a short position in the
other security in a predetermined ratio. When the price spread reverts back to its mean level, the positions
are closed and the profit is made. Typically, two similar commodities (e.g. West Texas Intermediate crude
oil and Brent crude oil) or two stocks of companies in the same industry (e.g. Coca-Cola company and
Pepsi company) are traded. The pairs trading can be further generalized to trading of groups of securities.
For a comprehensive review of the pairs trading literature, see Krauss (2017). There are three commonly
used approaches in pairs trading.

• The distance approach was introduced by Gatev et al. (2006). In this method, a pair of comoving
and potentionally profitable securities is selected according to some distance metric in the so-called
formation period. Trading itself is controlled by elementary non-parametric entry and exit rules.
For example, a trade is opened when the spread diverges by two standard deviations and closed
when the spread returns to its long-term equilibrium. In comparison to other methods, the distance
method is rather simple and easy to use. Other studies following the distance approach include
Perlin (2009), Bowen et al. (2010), Do and Faff (2010), Mori and Ziobrowski (2011), Broussard
and Vaihekoski (2012), Do and Faff (2012), Huck (2013), Huck (2015), Jacobs (2015), Jacobs and
Weber (2015), Bowen and Hutchinson (2016) and Rinne and Suominen (2017).
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• The cointegration approach was described in detail by Vidyamurthy (2004). It relies on cointegra-
tion analysis and suitable pairs of securities are identified by cointegration tests. Trading signals
are again some elementary rules just as in the case of the distance method. Other studies following
the cointegration approach include Wahab et al. (1994), Girma and Paulson (1999), Simon (1999),
Dunis and Lequeux (2000), Emery and Liu (2002), Liu and Chou (2003), Lin et al. (2006), Puspan-
ingrum et al. (2010), Cheng et al. (2011), Gutierrez and Tse (2011), Peters et al. (2011), Galenko
et al. (2012), Caldeira and Moura (2013), Li et al. (2014), Miao (2014) and Clegg and Krauss
(2018).

• The stochastic spread approachwas suggested by Elliott et al. (2005). The focus of this approach is
more on the time series analysis of a given pair of securities rather than the selection of securities.
Typically, the spread process is modeled by a mean-reverting autoregressive process with discrete
time or the Ornstein–Uhlenbeck process with continuous time. Entry and exit signals are generated
in an optimal way (e.g. maximazing mean profit). Other studies following the stochastic spread
approach include Bertram (2009), Bertram (2010), Kanamura et al. (2010), Triantafyllopoulos and
Montana (2011), Cummins and Bucca (2012), Bogomolov (2013), Song and Zhang (2013), Zeng
and Lee (2014), Leung and Li (2015), De Moura et al. (2016), Göncü and Akyildirim (2016) and
Liu et al. (2017).

A few of the abovementioned studies deal with intraday trading and high-frequency data. Namely, Bowen
et al. (2010) use 60-minute data, Dunis and Lequeux (2000) 30-minute data, Miao (2014) 15-minute data,
Peters et al. (2011) 10-minute data and Liu et al. (2017) 5-minute data. However, none of these studies
utilizes tick data. Our aim is therefore to bring an insight into the pairs trading strategy in the context of
ultra-high-frequency data.
In our study, we focus on stocks of 7 Big Oil companies traded on New York Stock Exchange (NYSE).
Stocks of Chevron (CVX), Phillips 66 (PSX) and ExxonMobil (XOM) companies are primarily listed on
NYSE while stocks of BP (BP), Eni (E), Royal Dutch Shell (RDS-A) and Total (TOT) companies are
primarily listed on some other exchanges and only secondary listed on NYSE. The analyzed stocks are
described in Appendix A in more detail. As all 7 companies are in the same industry and they are all
influenced by crude oil prices, some degree of comovement of their stock prices can be expected. The 7
considered stocks can form 21 possible pairs in total. Figure 5.4 illustrates daily price movement of BP
and RDS-A stocks. Our pairs trading strategy falls into the category of stochastic spread methods and
consists of the following steps.

• First, we analyze historical intraday data. We separately estimate the parameters of the Ornstein–
Uhlenbeck process for each considered pair on each considered day. Some days exhibit strong
mean-reversion suggesting the Ornstein–Uhlenbeck process with high speed of reversion as illus-
trated in the upper plot of Figure 5.5 while others exhibit random walk behaviour suggesting the
Wiener process as illustrated in the lower plot of Figure 5.5. Days with high speed of reversion and
high volatility offer more opportunities for profit.

• Second, we utilize time series models to capture time-varying nature of daily parameter values.
This allows us to predict future parameter values. In other words, we assume the prices during a
single day in future to follow the Ornstein–Uhlenbeck process with forecasted parameters.

• Third, assuming the Ornstein–Uhlenbeck process with specific parameters, we find the optimal
entry and exit signals together with the expected profit and the variance of the profit for a given
pair on a given day. Based on the values of the mean profit and its variance, we decide whether to
trade the given pair on the given day or not. If the decision is positive, the trading is then controlled
by the optimal entry and exit signals.
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5.2.1 Estimators Performance

We compare the presented noise-sensitive and noise-robust estimators of the Ornstein–Uhlenbeck process
together with non-parametric estimators of variance. For the methods requiring equidistant observations,
we aggregate tick data to 1-minute data using the previous tick method. The noise-sensitive method of
moments is denoted as 1MIN-MOM and its noise-robust modification as 1MIN-MOM-NR. The approach
based on the reparametrization to time series models estimates parameters by the conditional sum-of-
squares and is denoted as 1MIN-AR for the noise-sensitive reparametrization to the AR(1) process and 1-
MIN-ARMA-NR for the noise-robust reparametrization to the ARMA(1,1) process. The noise-sensitive
and noise-robust maximum likelihood estimators based on 1-minute data are denoted as 1MIN-MLE and
1MIN-MLE-NR respectively while their tick-data counterparts are denoted as TICK-MLE and TICK-
MLE-NR respectively.
The variance of the process can also be estimated by non-parametric methods. Since the parameter �2 of
the Ornstein–Uhlenbeck process is equal to the quadratic variation of the process over time interval (0, 1),
we can estimate �2 by non-parametric estimators of quadratic variation. The straightforward estimator of
quadratic variation is the realized variance. However, as shown for example by Hansen and Lunde (2006),
it is biased and inconsistent in the presence of the market microstructure noise. We denote the realized
variance based on 1-minute data as 1MIN-RV and TICK-RV for tick data. There are many noise-robust
alternatives for the non-parametric quadratic variation estimation in the literature. One of the method is
the realized kernel estimator proposed by Barndorff-Nielsen et al. (2008). We utilize the variant with the
modified Tukey-Hanning kernel and denote it as 1MIN-RK-TH2 for 1-minute data and TICK-RK-TH2 for
tick data. Another noise-robust method is the pre-averaging estimator of Jacod et al. (2009). It is denoted
as 1MIN-PAE for 1-minute data and TICK-PAE for tick data. The variance of the noise !2 is estimated
using biased realized varianceRVn adjusted for the noise-robust estimateRMn (either the realized kernel
or the pre-averaging estimate) !̂2 = (RVn − RMn)∕2n, where n is the number of observations.

Simulation Study

We evaluate the finite-sample performance of the proposed estimators using simulations. We simulate
the observed price process as the Ornstein–Uhlenbeck process with parameters � = 10−1, � = 10 and
�2 = 10−4 contaminated by the independent Gaussian white noise with variance !2 = 10−8. We select
the values of parameteres to resemble values reported in the empirical study of the 7 Big Oil companies.
The simulated observations are irregularly spaced and the times of observations are generated by the
Poisson point process. We perform the simulation 10 000 times, each with 23 400 observations. The
number of observations corresponds to durations between price changes to be one second on average
during 6.5 hours long trading day.
The results of simulations are reported in Table 5.1. We compare the estimators by mean absolute er-
rors of estimated parameters. Generally, the noise-robust estimators based on tick data outperform the
noise-robust estimators based on 1-minute data while the noise-sensitive estimators based on tick data are
outperformed by the noise-sensitive estimators based on 1-minute data. This is because the noise-robust
estimators can utilize the additional information from tick data while the noise-sensitive estimators are
more biased with more observations. We further investigate this property in Figure 5.6 in the empirical
study. When considering only 1-minute data, the best parametric estimator is the 1MIN-ARMA-NR.
However, for the volatility estimation based on 1-minute data, non-parametric estimators 1MIN-RK-TH2
and 1MIN-PAE are superior to parametric estimators. When considering both tick data and 1-minute
aggregation, the best parametric estimator is the TICK-MLE-NR. The shortcoming of this estimator is
slightly worse estimation of �, but it is compensated by the lowest mean absolute error of � and �2 param-
eters. On the other hand, its noise-sensitive variant TICK-MLE performs very poorly due to the misspec-
ification of the process (omitting the noise). The TICK-MLE-NR even outperforms the non-parametric
TICK-RK-TH2 and TICK-PAE estimators in the estimation of the variance �2. In the rest of the study,
we work solely with tick data and focus only on the TICK-MLE and TICK-MLE-NR estimators.
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Method � � � !

1MIN-MOM 7.3437 ⋅ 10−4 0.4932 ⋅ 102 0.9855 ⋅ 10−2 -
1MIN-MOM-NR 7.3437 ⋅ 10−4 0.2128 ⋅ 102 0.4392 ⋅ 10−2 3.6847 ⋅ 10−5
1MIN-AR 7.3437 ⋅ 10−4 0.4893 ⋅ 102 0.9905 ⋅ 10−2 -
1MIN-ARMA-NR 7.3437 ⋅ 10−4 0.1414 ⋅ 102 0.2782 ⋅ 10−2 2.8072 ⋅ 10−5
1MIN-MLE 7.4366 ⋅ 10−4 0.4898 ⋅ 102 0.9905 ⋅ 10−2 -
TICK-MLE 7.3500 ⋅ 10−4 9.4178 ⋅ 102 8.6879 ⋅ 10−2 -
1MIN-MLE-NR 7.4366 ⋅ 10−4 0.2124 ⋅ 102 0.4464 ⋅ 10−2 3.6924 ⋅ 10−5
TICK-MLE-NR 7.4058 ⋅ 10−4 0.0586 ⋅ 102 0.0259 ⋅ 10−2 0.0652 ⋅ 10−5
1MIN-RV - - 0.9893 ⋅ 10−2 -
TICK-RV - - 1.3830 ⋅ 10−2 -
1MIN-RK-TH2 - - 0.1380 ⋅ 10−2 0.3247 ⋅ 10−5
TICK-RK-TH2 - - 0.0790 ⋅ 10−2 0.1812 ⋅ 10−5
1MIN-PAE - - 0.0319 ⋅ 10−2 0.0823 ⋅ 10−5
TICK-PAE - - 0.0327 ⋅ 10−2 0.0835 ⋅ 10−5

Table 5.1: Mean absolute errors of parameters estimated by various methods from the simulated noisy
Ornstein–Uhlenbeck process with true parameters � = 1, � = 10, �2 = 10−4 and !2 = 10−8. Estimators
based on 1-minute data are denoted as 1MIN while estimators based on tick data as TICK. The noise-
sensitive method of moments is denoted as MOM, the noise-robust method of moments as MOM-NR,
the noise-sensitive AR(1) reparametrization as AR, the noise-robust ARMA(1,1) reparametrization as
ARMA-NR, the noise-sensitive maximum likelihood as MLE, the noise-robust maximum likelihood as
MLE-NR, the realized variance as RV, the realized kernel estimator as RK-TH2 and the pre-averaging
estimator as PAE.

Evidence in Stock Prices

We analyze high-frequency data of the 7 Big Oil stocks traded on NYSE from January 2, 2015 to June
29, 2018 consisting of 880 trading days. We perform data cleaning procedure described in Section 2.1.1.
The first question is whether the market microstructure noise is indeed present in the observed prices. As
the high-frequency data studies agree that the noise is present (e.g. Hansen and Lunde, 2006), we address
the issue only briefly using a graphical analysis. In Figure 5.6, we adopt the so-called volatility signature
plot introduced by Andersen et al. (2000). The plot shows the dependence of the average estimated value
of variance on the sampling interval. For tick data, the sampling interval k refers to data consisting of
each k-th observation. For example, value 1 corresponds to complete tick data while value 2 corresponds
to every second observation being dropped. The number of observations for sampling interval k is ap-
proximately n∕k, where n is the number of observations of complete tick data. We can see in Figure 5.6
that the variance estimated by the noise-sensitive method increases with the number of observations. This
is exactly the behaviour caused by the market microstructure noise. Noise-robust estimator, on the other
hand, sticks around a constant value. For k = 1, the bias of the TICK-MLE method is quite big causing
very distorted image of the price volatility.
The second question about the market microstructure noise is whether the independent white noise as-
sumption is met in practice. Hansen and Lunde (2006) analyze stocks traded on the NYSE and NASDAQ
exchanges and find that the market microstructure noise present in prices is dependent in time and depen-
dent on efficient prices. Using volatility signature plots, they notice decreasing volatility with increasing
number of observations n∕k, which can be explained only by the innovations in the noise process neg-
atively correlated with the efficient returns. We further discuss this issue in Section 4.2.1. When we
analyze stock prices, we achieve the same results. However, when we analyze spreads between pairs of
stocks, the volatility estimated by the noise-sensitive method is distinctly increasing with shorter sam-
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Figure 5.6: Volatility signature plot of CVX/XOM pair on February 22, 2018.

pling interval in the vast majority of days as shown in the example in Figure 5.6. We argue that the noise
in the spread process has twice as many sources than the noise in a price process which diminishes de-
pendency of the noise. For this reason, we consider the white noise assumption reasonable for the pair
spread process, even when it is not suitable for the price process itself.
The average parameters estimated by the TICK-MLE and TICK-MLE-NR methods for each pair are
reported in Table 5.2. The estimated means � are quite similar for the two methods while parameters �
and � are much higher for the TICK-MLE method. On average, the speed of reversion � is 6.36 times
higher and the standard error � is 2.21 higher (the variance �2 is 4.78 higher) when estimated by the
TICK-MLE method. Note that Table 5.2 reports standard deviation � and not variance �2. Following our
theory and Figure 5.6, we argue that the estimates of � and � by the TICK-MLE method are significantly
biased and this estimator should be avoided. The proposed TICK-MLE-NR method, on the other hand,
is not affected by the noise while utilizing all available tick data.

Numerical Estimation

The log likelihood function is maximized by numerical methods. As an initial solution, we use themethod
of moments estimates. The optimal solution is then found iteratively by the Subplex algorithm (SBPLX)
(Rowan, 1990), a variant of the Nelder–Mead algorithm (NM) (Nelder and Mead, 1965), implemented in
the open-source NLopt library (Johnson, 2019).
During the estimation, we face the following issue concerningwith distribution assumptions. We consider
the Ornstein–Uhlenbeck process based on the normal distribution. This is quite restrictive assumption as
financial data often exhibit heavy tails and the presence of jumps. Although somewhat rare, large jumps
can cause problems for the estimators based on the maximum likelihood. A large jump over short period
of time is not consistent with the assumed volatility process which is proportional to the time period
and the maximum likelihood estimator attributes this jump to the noise component. This results in zero
variance of the Ornstein–Uhlenbeck process �2 and overestimation of the noise variance !2. To avoid
such problems, we consider large jumps to be outliers and remove them from data for the estimation
purposes. We remove 1 % of all observations with the lowest log likelihood at initial parameter values.
In the subsequent analysis, removed observations are again included. An inclusion of jumps in the model
is possible improvement of the method which we leave for the future research.
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TICK-MLE Estimator TICK-MLE-NR Estimator
Pair � � � � � �

BP / CVX -1.0546 29.9279 1.7401 ⋅ 10−2 -1.0552 3.9524 0.6676 ⋅ 10−2
BP / E 0.1149 35.7787 1.7458 ⋅ 10−2 0.1149 6.5204 0.9428 ⋅ 10−2
BP / PSX -0.8416 25.5638 1.9848 ⋅ 10−2 -0.8418 4.1090 0.8054 ⋅ 10−2
BP / RDS-A -0.4256 65.3009 1.7258 ⋅ 10−2 -0.4256 6.4025 0.6903 ⋅ 10−2
BP / TOT -0.3324 49.7040 1.8318 ⋅ 10−2 -0.3326 7.0370 0.8302 ⋅ 10−2
BP / XOM -0.8230 26.4986 1.5536 ⋅ 10−2 -0.8240 3.0105 0.6908 ⋅ 10−2
CVX / E 1.1697 18.0115 1.6074 ⋅ 10−2 1.1690 4.4924 0.8804 ⋅ 10−2
CVX / PSX 0.2129 21.9259 1.8796 ⋅ 10−2 0.2130 3.9646 0.8357 ⋅ 10−2
CVX / RDS-A 0.6286 28.4128 1.7110 ⋅ 10−2 0.6284 3.7525 0.6507 ⋅ 10−2
CVX / TOT 0.7223 24.6909 1.7381 ⋅ 10−2 0.7233 4.8954 0.8190 ⋅ 10−2
CVX / XOM 0.2316 33.6227 1.5280 ⋅ 10−2 0.2316 3.2192 0.5324 ⋅ 10−2
E / PSX -0.9566 19.8339 1.9473 ⋅ 10−2 -0.9565 5.6958 1.1065 ⋅ 10−2
E / RDS-A -0.5393 32.5781 1.6314 ⋅ 10−2 -0.5396 5.9070 0.8110 ⋅ 10−2
E / TOT -0.4473 56.8259 1.9806 ⋅ 10−2 -0.4472 10.1327 0.9431 ⋅ 10−2
E / XOM -0.9389 15.2862 1.3825 ⋅ 10−2 -0.9388 3.4012 0.7846 ⋅ 10−2
PSX / RDS-A 0.4160 22.8768 1.9327 ⋅ 10−2 0.4161 3.6241 0.8121 ⋅ 10−2
PSX / TOT 0.5094 23.1866 2.0295 ⋅ 10−2 0.5096 5.5541 1.0106 ⋅ 10−2
PSX / XOM 0.0186 19.4030 1.7160 ⋅ 10−2 0.0186 2.8399 0.7516 ⋅ 10−2
RDS-A / TOT 0.0933 51.7991 1.7501 ⋅ 10−2 0.0934 7.1039 0.6976 ⋅ 10−2
RDS-A / XOM -0.3985 25.8139 1.5277 ⋅ 10−2 -0.3987 2.7363 0.5473 ⋅ 10−2
TOT / XOM -0.4907 21.0923 1.5298 ⋅ 10−2 -0.4910 3.5759 0.7001 ⋅ 10−2

Average -0.1491 30.8635 1.7368 ⋅ 10−2 -0.1492 4.8537 0.7862 ⋅ 10−2

Table 5.2: Average values of the Ornstein–Uhlenbeck process parameters estimated by the noise-sensitive
estimator TICK-MLE and the noise-robust estimator TICK-MLE-NR.

5.2.2 Models Performance

In this section, we present the time series models used for time-varying parameters of the Ornstein–
Uhlenbeck process. We assume values of parameters can change on each day i = 1,… , ℎ. In other words,
we assume the time-varying parameters to follow piecewise constant process, in which parameters are
constant during the whole day. For each parameter, we consider separate model. The main purpose of
these models is to forecast future values of the parameters.
Models with time-varying parameters were studied for example by Swamy and Tinsley (1980), Tucci
(1995) and Cai (2007) in the context of linear regression and Peiris (1986), Bibi and Francq (2003),
Francq and Gautier (2004) and Azrak and Mélard (2006) in the context of ARMA time series.
Daily mean parameter �i is modeled as the AR(1) process with the opening price X0,i on day i as an
exogenous variable, i.e.

�i = a + b�i−1 + cX0,i + "i, i = 1,… , ℎ, (5.59)

where a, b, c are the coefficients and "i is the Gaussian white noise. This is a very similar idea to the
doubly mean-reverting process of Liu et al. (2017). In their study, they consider the prices to follow
two mean-reverting processes on two frequencies. The low frequency corresponds to daily opening and
closing prices while the high frequency corresponds to intraday prices. In our case, the low frequency
mean-reverting process is represented by the autoregressive process for the daily mean parameter.
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Daily speed of reversion parameter �i is modeled only by the mean value, i.e.
�i = a′ + "′i, i = 1,… , ℎ, (5.60)

where a′ is the coefficient and "′i is the Gaussian white noise. The one-step-ahead forecast of �i is then
simply the average of its past values. We resort to this static model as we find no autocorrelation structure
in the empirical study.
For the daily variance parameter �2i , we utilize the HAR model of Corsi (2009). They model volatility by
the realized variance over different time periods. Specifically, the daily realized variance is dependent on
the realized variance of the previous day, the realized variance of the previous week and the realized vari-
ance of the previous month. This model is further discussed in Section 4.3.2. In our case, the logarithm
of the parameter �2i follows the autoregressive process

log �2i = a
′′ + b′′ log �2i−1 + c

′′ 1
5

5
∑

j=1
log �2i−j + d

′′ 1
22

22
∑

j=1
log �2i−j + "

′′
i , i = 1,… , ℎ, (5.61)

where a′′, b′′, c′′, d′′ are the coefficients and "′′i is the Gaussian white noise.

Evidence in Stock Prices

We train the models using a rolling window of 132 days (approximately 6 months) and perform one-step-
ahead forecasts. The median coefficients of determination and the median absolute errors of one-step-
ahead forecasts of the Ornstein–Uhlenbeck process parameters are reported in Table 5.3. We resort to
the median statistics because there are several days with extreme volatility as illustrated in Figure 5.7.
We find that the model (5.59) for the long-term mean parameter explains 96 % of the variance of �i on
average while the model (5.61) for the variance parameter explains 25 % of the variance of �2i on average.By definition, the model (5.60) for speed of reversion parameter explains exactly 0 % of the variance of �.
Overall, we find that the models for �i and �2i parameters are satisfactory while the parameter �i is very
hard to predict.

5.2.3 Optimal Strategy

For a given pair of stocks A and B, the pairs trading strategy is based on the logarithmic price spread
process

Pt = log
(

At
Bt

)

= logAt − logBt, (5.62)

where At is the price of stock A and Bt is the price of stock B. We model the process Pt as the Ornstein–
Uhlenbeck process given by (5.1) with a long-termmean �, speed of reversion � and instantaneous volatil-
ity � > 0. The strategy itself consists of the following steps. First, we wait until the logarithmic price
spread Pt reaches a given entry level a at time t1. Without loss of generality, we assume the entry level
a is greater than the long-term mean �, i.e. a > �. When the entry level is reached, we simultaneously
enter short position in stock A and long posistion in stock B. We expect the price of A to go down and
price of B to go up, i.e. the spread to revert to its long-term mean. When the logarithmic price spread
Pt reaches a given exit level b < a at time t2, we clear both positions and make profit. The profit from
stock A in terms of continuous compound rate of return is logAt1 − logAt2 while the profit from stock B
is logBt2 − logBt1 . Adding a transaction cost c for the whole pairs trade, we have the total profit

r = logAt1 − logAt2 + logBt2 − logBt1 − c

= Pt1 − Pt2 − c

= a − b − c.

(5.63)
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MedR2 MedAE
Pair � �2 � � �2

BP / CVX 0.9675 0.3551 4.0942 ⋅ 10−3 1.9615 0.8709 ⋅ 10−5
BP / E 0.9827 0.2072 3.1735 ⋅ 10−3 3.5419 1.5074 ⋅ 10−5
CVX / E 0.9487 0.3146 5.1204 ⋅ 10−3 2.3681 1.2568 ⋅ 10−5
BP / PSX 0.9586 0.2875 5.4505 ⋅ 10−3 2.1768 1.2934 ⋅ 10−5
CVX / PSX 0.9436 0.2286 5.7493 ⋅ 10−3 2.2265 1.1816 ⋅ 10−5
E / PSX 0.9726 0.3406 5.9111 ⋅ 10−3 2.6825 2.0679 ⋅ 10−5
BP / RDSA 0.9816 0.2018 2.4141 ⋅ 10−3 3.9130 0.6701 ⋅ 10−5
CVX / RDSA 0.9660 0.2744 4.7031 ⋅ 10−3 1.9110 0.8604 ⋅ 10−5
E / RDSA 0.9768 0.2564 3.3555 ⋅ 10−3 3.3164 1.3228 ⋅ 10−5
PSX / RDSA 0.9403 0.3339 5.6414 ⋅ 10−3 1.8570 1.1742 ⋅ 10−5
BP / TOT 0.9653 0.2604 2.9551 ⋅ 10−3 3.7663 1.1387 ⋅ 10−5
CVX / TOT 0.9555 0.3332 5.0260 ⋅ 10−3 2.5196 1.2753 ⋅ 10−5
E / TOT 0.9681 0.2514 2.6592 ⋅ 10−3 5.1985 1.5872 ⋅ 10−5
PSX / TOT 0.9361 0.3448 5.5260 ⋅ 10−3 2.7046 1.7659 ⋅ 10−5
RDSA / TOT 0.9830 0.2249 2.5487 ⋅ 10−3 3.8992 1.0673 ⋅ 10−5
BP / XOM 0.9689 0.1988 4.7299 ⋅ 10−3 1.6379 0.6464 ⋅ 10−5
CVX / XOM 0.9523 0.2228 3.7614 ⋅ 10−3 1.8123 0.5655 ⋅ 10−5
E / XOM 0.9127 0.1664 5.0604 ⋅ 10−3 1.9967 1.1112 ⋅ 10−5
PSX / XOM 0.9607 0.1839 5.6828 ⋅ 10−3 1.5600 0.8629 ⋅ 10−5
RDSA / XOM 0.9726 0.1903 4.0018 ⋅ 10−3 1.3017 0.5872 ⋅ 10−5
TOT / XOM 0.9624 0.1673 4.4425 ⋅ 10−3 1.9390 0.9087 ⋅ 10−5

Average 0.9608 0.2545 4.3813 ⋅ 10−3 2.5853 1.1296 ⋅ 10−5

Table 5.3: Median coefficients of determination MedR2 and median absolute errors MedAE of one-step-
ahead forecasts of the Ornstein–Uhlenbeck process parameters estimated by the TICK-MLE-NRmethod.

After the trade, we again wait for the spread Pt to reach the entry level a and repeat the whole trading
cycle. The trading cycle is thus composed of two parts. In the first part, we hold short and long positions
in stocks A and B respectively, while in the second part, we wait until the next trading signal. We denote
the duration of the trading cycle as

 = a→b + b→a, (5.64)
where a→b is the first passage time from a to b and b→a is the first passage time from b to a.
In this strategy, we short stock A and long stock B. The opposite strategy can be adopted as well. In that
case, when reaching the entry level a′ < �, we long A and short B. Then, when reaching the exit level
b′ > a′, we make profit b′ − a′ − c. Since the Ornstein–Uhlenbeck process is symmetric around �, the
second strategy for stocks A and B is identical to the first strategy for stocks B and A. For simplicity, we
focus only on the first case for stocks A and B with a > �.
Our goal is to determine the values of entry signal a and exit signal b for a given transaction cost c and
static parameters �, � and �. To optimally select signals a and b, we closely follow the framework of
Bertram (2009) and Bertram (2010), also adopted by Cummins and Bucca (2012), Zeng and Lee (2014)
and Göncü and Akyildirim (2016). All these papers focus on maximazing the expected profit while
Bertram (2010) also deals with maximazing the Sharpe ratio. In our work, we adopt the mean-variance
optimization related to the modern portfolio theory pioneered by Markowitz (1952). We formulate the
problem as the maximization of the expected profit for a given level of maximum variance. If the level
of maximum variance is large enough, the problem reduces to the maximization of the expected profit.
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Figure 5.7: Estimated daily parameters of the Ornstein–Uhlenbeck process of E/TOT pair.

Let Zt be the random profit of the strategy over time t. For a given entry signal a, exit signal b and
transaction cost c, it is equal to

Zt = (a − b − c)Nt, (5.65)
whereNt is the counting process representing the number of trades during time t. Because the profit per
trade a − b − c is always constant, the only randomness lies in the process Nt. Next, let us define the
expected profit per unit time and variance of profit per unit time as

ZM = lim
t→∞

E[Zt]
t

= lim
t→∞

(a − b − c) ENt

t
,

ZV = lim
t→∞

var[Zt]
t

= lim
t→∞

(a − b − c)2 varNt

t
.

(5.66)

As in Bertram (2010), using the results from the renewal theory for the expected value and variance (see
e.g. Cox, 1962; Cox and Miller, 1965), we obtain

ZM = a − b − c
E

,

ZV =
(a − b − c)2 var

(E )3
,

(5.67)
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where  is the trading cycle duration given by (5.64). In our mean-variance optimization, we utilize these
two moments per unit time.

Dimensionless System

Following Bertram (2010) and Zeng and Lee (2014), we reparametrize the Ornstein–Uhlenbeck process
(5.1) to the dimensionless system. We transform the process to

P̃t =
√

2�
�2

(

Pt − �
)

, (5.68)

and perform the time dilation t̃ = �t. Using Itô’s lemma, we have

dP̃t̃ = −P̃t̃dt̃ +
√

2dWt̃. (5.69)
A major advantage of this reparametrization is that it does not depend on parameters �, � and �2. For
this reason, the subsequent analysis of first passage times and optimal signals is much more simple. The
dimensionless system also allows us to study the impact of biased parameters on the pairs trading strategy.
The reparametrized entry level, exit level and transaction cost are respectively

ã =
√

2�
�2
(a − �) , a =

√

�2
2�
ã + �,

b̃ =
√

2�
�2
(b − �) , b =

√

�2
2�
b̃ + �,

c̃ =
√

2�
�2
c, c =

√

�2
2�
c̃.

(5.70)

The reparametrized duration of trading cycle is

̃ = � ,  = 1
�
̃ . (5.71)

Finally, the reparametrized expected profit per unit time and variance of profit per unit time are respec-
tively

Z̃M =
√

2
��2

ZM , ZM =
√

��2
2
Z̃M ,

Z̃V =
2
�2
ZV , ZV =

�2

2
Z̃V .

(5.72)

First Passage Times

The key variable in expression for moments per time (5.67) is the duration of trading cycle. In the dimen-
sionless system, it is equal to

̃ = ̃ã→b̃ + ̃b̃→ã. (5.73)
When assuming ã > 0 and b̃ < ã, it is the sum of the first passage time from ã to b̃ and the first passage
time from b̃ to ã defined as

̃ã→b̃ = inf
{

t ∶ P̃t < b̃|P̃0 = ã
}

,

̃b̃→ã = inf
{

t ∶ P̃t > ã|P̃0 = b̃
}

.
(5.74)

In this section, we present the expected value and variance of the trading cycle duration. These results are
based on the explicit expressions of the first-passage-time moments derived by Ricciardi and Sato (1988).
We denote the gamma function as Γ(⋅) and digamma function as  (⋅) (see Appendix D for definition).
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The expected values of the first passage times from ã to b̃ and from b̃ to ã are respectively
Ẽã→b̃ = �1(−b̃) − �1(−ã),
Ẽb̃→ã = �1(ã) − �1(b̃),

(5.75)

where

�1(z) =
1
2

∞
∑

k=1

(
√

2z
)k

k!
Γ
(k
2

)

. (5.76)

The expected value of the trading cycle duration is then

Ẽ =
∞
∑

k=1

(
√

2ã
)2k−1

−
(
√

2b̃
)2k−1

(2k − 1)!
Γ
(2k − 1

2

)

. (5.77)

The variances of the first passage times from ã to b̃ and from b̃ to ã are respectively
var̃ã→b̃ =

(

�1(−b̃)
)2 − �2(−b̃) + �2(−ã) −

(

�1(−ã)
)2 ,

var̃b̃→ã =
(

�1(ã)
)2 − �2(ã) + �2(b̃) −

(

�1(b̃)
)2 ,

(5.78)

where �1(z) is given by (5.76) and

�2(z) =
1
2

∞
∑

k=1

(
√

2z
)k

k!
Γ
(k
2

)(

 
(k
2

)

−  (1)
)

. (5.79)

The variance of the trading cycle duration is then
var̃ = w1(ã) −w1(b̃) −w2(ã) +w2(b̃), (5.80)

where

w1(z) =

⎛

⎜

⎜

⎜

⎝

1
2

∞
∑

k=1

(
√

2z
)k

k!
Γ
(k
2

)

⎞

⎟

⎟

⎟

⎠

2

−

⎛

⎜

⎜

⎜

⎝

1
2

∞
∑

k=1

(

−
√

2z
)k

k!
Γ
(k
2

)

⎞

⎟

⎟

⎟

⎠

2

,

w2(z) =
∞
∑

k=1

(
√

2z
)2k−1

(2k − 1)!
Γ
(2k − 1

2

)

 
(2k − 1

2

)

.

(5.81)

By applying (5.77) and (5.80) to (5.67), we have the explicit formula for the expected profit per unit time
and variance of profit per unit time.

Optimization Problem

We continue to operate within the dimensionless system. For a given transaction cost c̃ and maximum
allowed variance per unit time �̃, we find the optimal entry signal ã and exit signal b̃ by the optimization
problem

max
ã,b̃

Z̃M (ã, b̃, c̃)

such that Z̃V (ã, b̃, c̃) ≤ �̃,
b̃ ≤ ã,
ã ≥ 0,

(5.82)

where the expected profit per unit time Z̃M (ã, b̃, c̃) and variance of profit per unit time Z̃V (ã, b̃, c̃) are
given by (5.72). This formulation corresponds to the strategy in which we short stock A and long stock
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B. The formulation for the opposite positions strategy with signals ã′ = −ã and b̃′ = −b̃ is symmetrical.
In any case, it is a non-linear constrained optimization problem which we solve by numerical methods.
Let us denote ã∗ the optimal entry signal, b̃∗ the optimal exit signal and Z̃∗

M the optimal mean profit in
the dimensionless system. Our numerical results show that the optimal exit signal is b̃∗ = −ã∗. This is
the exactly same behavior as for the optimal exit signal in the case of unrestricted maximization of the
expected profit and maximization of the Sharpe ratio as shown by Bertram (2010). This also means that
the waiting part of the trading cycle for the strategy allowing for both long/short and short/long positions
reduces to zero as the exit level is equal to the entry level for the strategy with opposite positions, i.e.
b̃∗ = −ã∗ = ã′∗. The optimal strategy suggests to simply switch positions from short to long for stock A
and from long to short for stock B at signal −ã∗ and vice versa at signal ã∗.

Impact of Biased Estimates

Next, we investigate the impact of biased estimates of � and �2. As the optimization problem (5.82)
itself is formulated in the dimensionless system, it is unaffected by the values of the Ornstein–Uhlenbeck
process parameters. Reparametrization (5.68) is, however, affected. This means that the inputs to the
optimization problems c̃ and �̃ based on the values c and � in the original parametrization can be biased.
According to (5.70), the transaction cost c̃ is biased when the ratio of � and �2 is biased. The maximum
allowed variance �̃ is, similarly to the variance in (5.72), reparametrized as �̃ = 2�∕�2 and is therefore
biased when �2 is biased. A bias can also occur when the resulting optimal signals ã and b̃ are transformed
back to a and b in the original parametrization. According to (5.70), the entry level a and exit level b are
biased when the ratio of � and �2 is biased. The optimal mean profit per unit time ZM is also biased
when either � or �2 is biased according to (5.72). Overall, the biased estimates of � and �2 have impact
on the maximum variance constraint, optimal expected profit and optimal entry and exit signals.
We illustrate the bias of the optimal expected profit when �2 is correctly specified but � is considered 10
times higher than the actual value. In this case, the maximum variance constraint is unbiased. Figure 5.8
shows the efficient frontier of the mean-variance model for the optimization problem based on correctly
specified as well as biased parameters. We can see that the optimization problem based on incorrectly
specified parameter � overestimates the optimal mean profit. It also finds suboptimal entry and exit signals
resulting inmuch lower actual mean profit in comparisonwith the optimal mean profit based on the correct
parameters.

5.2.4 Strategy Performance
For a set of parameters of the Ornstein–Uhlenbeck process obtained by the forecasting models and a given
maximum allowed variance of the profit �, we find the optimal entry and exit signals together with the
maximal expected profit. As the forecasted parameter values are uncertain, we trade only if the expected
profit is larger than a given threshold � .
We use transaction costs c = 0.0015 per round-trip pair-trade. In the literature, this is considered as a
moderate level of transaction costs. For example, Avellaneda and Lee (2010), Bertram (2010) and Liu
et al. (2017) use an optimistic transaction costs level of 0.0010, Bowen et al. (2010) use a moderate level
of 0.0015 and Bogomolov (2013) uses a conservative level of 0.0040.

Trading Algorithm

In this section, we summarize the proposed pairs trading strategy. We describe the strategy in general
with notes regarding our specific setting. First, we need to select several parameters of the strategy. The
initialization of the strategy requires the following steps.

• A set of potentially tradable pairs is selected. The number of pairs is denoted as p. In our case, we
consider p = 21 pairs created from 7 stocks.
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• The length of history ℎ is selected. In our case, we use history of ℎ = 132 days corresponding
roughly to 6 months.

• The maximum allowed variance � for daily profit is selected. In our case, we consider � = 10−5,
� = 5 ⋅ 10−5, and � = ∞. The value � = 5 ⋅ 10−5 is found to yield the best results.

• The minimum allowed mean � for daily profit is selected. In our case, we consider � ∈ (0, 0.7).
The value 0.009 is found to yield the best results.

Next, we describe the strategy for a single trading day ℎ + 1. The execution of the strategy lies in the
following steps.

• For each pair j = 1,… , p and each historical day i = 1,… , ℎ, the Ornstein–Uhlenbeck parameters
�j,i, �j,i and �2j,i are estimated. In our case, we use the TICK-MLE and TICK-MLE-NR estimators
presented in Section 5.1.2.

• For each pair j = 1,… , p, the models (5.59), (5.60) and (5.61) for daily Ornstein–Uhlenbeck
parameters are estimated using history ℎ. Future parameter values �j,ℎ+1, �j,ℎ+1 and �2j,ℎ+1 are
then forecasted.

• For each pair j = 1,… , p, the optimal entry signal a∗j , the optimal exit signal b∗j and the optimal
mean profit Z∗

M,j are found using (5.82). In this model, the mean profit ZM,j is maximized while
the variance of the profitZV ,j is lower than �. For the opposite pairs trade, the optimal entry signal
is a′∗j = b∗j , the optimal exit signal is b′∗j = a∗j and the optimal mean profit is Z ′∗

M,j = Z
∗
M,j .

• For each pair j = 1,… , p, it is decided whether this pair will be traded on day ℎ + 1 or not. The
pair will be traded if its optimal mean is higher than the selected threshold, i.e. Z∗

M,j ≥ � .
• For each tradable pair j, intraday prices are monitored. When the price reaches the entry level a∗j

or a′∗j , the appropriate pairs trade is entered as described in Section 5.2.3. When the price reaches
the exit level b∗j = a′∗j or b′∗j = a∗j , long and short positions are switched. Right before the market
closes, both positions are closed regardless the price.
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Evidence in Stock Prices

We asses the profitability of the pairs trading strategy for the 21 pairs comprising of the 7 Big Oil com-
panies. As we use 6 months history for the training of the forecasting models, we evaluate the strategy
from the second half of the year 2015 to the second half of the year 2018.
We consider � = 10−5, � = 5 ⋅ 10−5, and � = ∞ as levels for the maximum allowed variance. Figure 5.9
shows the total daily profit of the strategy based on 21 pairs for various values of the minimummean profit
� . We can see that the profit is quite sensitive to the selection of thresholds � and � . When the expected
mean is not limited, almost all pairs are traded on all days resulting in a huge loss. When the minimum
mean profit � is set around 0.009, the strategy based on the TICK-MLE-NR estimator performs the best
and achieves daily profit up to 0.0069 in terms of the continuous compound rate of return for � = 5 ⋅10−5.
When we further increase the threshold for minimum mean profit � , less trades are carried out and even
the profitable trades are cut resulting in decline of the profit. Naturally, the profit converges to zero with
increasing minimum mean profit � .
Interestingly, the number of trades and the profit are not evenly distributed throughout the years. Figure
5.10 shows the daily number of trades. Most trades are executed during the years 2015, 2016 and 2018
while the year 2017 is quiet period for the strategy based on the TICK-MLE-NR estimator. We attribute
this to the lower volatility of the spread prices during 2017 as indicated by Figure 5.7.
Table 5.4 reports daily profit for each pair separately while Table 5.5 reports the number of trades. Gener-
ally, pairs with higher estimated values of � and �2 are traded more as their expected profit is also higher.
We focus on the TICK-MLE-NR estimator with the most profitable setting of the maximum variance
of the profit 5 ⋅ 10−5 and the minimum mean profit 0.009. Table 5.4 indicates that E/PSX, E/TOT and
PSX/TOT are the most traded pairs while E/PSX and E/TOT are also the most profitable pairs. Table 5.2
shows that these pairs have the above average estimated values of � and �2.
Finally, we compare the TICK-MLE and TICK-MLE-NR estimators. Figure 5.9 illustrates that both
estimators have quite different ideas of the mean profit and its variance. As shown in Section 5.2.3, the
values of the moments are quite distorted when the parameter estimates are biased as they are in the case
of the TICK-MLE estimator. More important, even when selecting the best thresholds for the minimum
mean profit � and the maximum variance of the profit � for each method separately, the TICK-MLE-NR
estimator significantly outperforms the TICK-MLE estimator. This is because the optimization based
on the TICK-MLE estimator finds suboptimal values of entry and exit signals. The TICK-MLE-NR
estimator, on the other hand, finds optimal values leading to a much greater profit. This finding is the key
result of our pairs trading application.

5.2.5 Discussion

We propose three estimators of the Ornstein–Uhlenbeck process directly taking the market microstructure
noise into account. For initial estimates, we propose the closed-formmethod of moments. For equidistant
sampling, we propose an approach based on the reparametrization of the process to the ARMA(1,1)
process and subsequent estimation by the maximum likelihood or conditional sum-of-squares methods.
For irregularly spaced observations, we propose the method based on the maximum likelihood. We show
in a simulation study as well as in an empirical study that the proposed noise-robust estimators outperform
the traditional estimators ignoring the noise. The behavior of the estimators is consistent with the high-
frequency literature dealing with the market microstructure noise represented for example by Aït-Sahalia
et al. (2005) and Hansen and Lunde (2006).
We illustrate the benefits of the proposed estimators in an application to the pairs trading strategy. How-
ever, our goal is not to present a ready-to-use pairs trading strategy with a guaranteed profit. That would
be quite futile task in the ever-changing financial market. Instead, our study aims to bring an insight to
the pairs trading strategy in the context of ultra-high-frequency data. We show that the strategy based
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TICK-MLE Estimator TICK-MLE-NR Estimator
Pair � = 0.000 � = 0.009 � = 0.040 � = 0.000 � = 0.009 � = 0.040

BP / CVX -0.003235 -0.003235 0.000000 -0.002608 0.000018 0.000000
BP / E 0.000944 0.000944 0.000002 0.000611 0.001127 0.000000
BP / PSX -0.004420 -0.004420 0.000000 -0.002965 -0.000011 0.000000
BP / RDSA -0.002371 -0.002362 -0.000130 -0.002364 -0.000056 0.000000
BP / TOT -0.002026 -0.002026 0.000151 -0.001873 0.000239 0.000000
BP / XOM -0.004307 -0.004307 0.000000 -0.003813 -0.000063 0.000000
CVX / E -0.000925 -0.000946 0.000000 -0.001030 0.000780 0.000000
CVX / PSX -0.005322 -0.005322 0.000000 -0.004387 -0.000760 0.000000
CVX / RDSA -0.003398 -0.003417 0.000000 -0.002683 0.000128 0.000000
CVX / TOT -0.002068 -0.002068 0.000000 -0.001198 0.000607 0.000000
CVX / XOM -0.004745 -0.004752 0.000000 -0.003945 0.000051 0.000000
E / PSX -0.001614 -0.001614 0.000000 -0.000254 0.001487 0.000000
E / RDSA 0.000144 0.000144 0.000000 0.000455 0.001219 0.000000
E / TOT 0.001941 0.001941 0.000654 0.001360 0.001823 0.000000
E / XOM -0.000196 -0.000126 0.000000 -0.000961 -0.000019 0.000000
PSX / RDSA -0.004710 -0.004710 0.000000 -0.003634 0.000122 0.000000
PSX / TOT -0.003660 -0.003660 0.000000 -0.001192 -0.000034 0.000000
PSX / XOM -0.005219 -0.005219 0.000000 -0.003389 0.000031 0.000000
RDSA / TOT -0.001325 -0.001264 0.000150 -0.001266 0.000128 0.000000
RDSA / XOM -0.004145 -0.004069 0.000000 -0.003553 0.000000 0.000000
TOT / XOM -0.002483 -0.002481 0.000000 -0.002504 0.000053 0.000000
Sum -0.053140 -0.052969 0.000826 -0.041193 0.006868 0.000000

Table 5.4: Average daily profit with � = 5 ⋅ 10−5 and various values of � for the noise-sensitive and
noise-robust estimators.
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Figure 5.10: Daily number of trades with � = 5 ⋅ 10−5 and � = 0.009 for the noise-sensitive and noise-
robust estimators.

TICK-MLE Estimator TICK-MLE-NR Estimator
Pair � = 0.000 � = 0.009 � = 0.040 � = 0.000 � = 0.009 � = 0.040

BP / CVX 5.59 5.59 0.00 4.10 0.14 0.00
BP / E 5.89 5.89 0.03 4.39 0.87 0.00
BP / PSX 5.99 5.99 0.00 4.25 0.25 0.00
BP / RDSA 4.50 4.49 1.73 3.61 0.03 0.00
BP / TOT 5.24 5.24 1.47 3.84 0.25 0.00
BP / XOM 4.83 4.83 0.00 4.04 0.01 0.00
CVX / E 5.94 5.93 0.00 4.37 0.76 0.00
CVX / PSX 6.05 6.05 0.00 4.25 0.34 0.00
CVX / RDSA 5.18 5.17 0.00 3.88 0.12 0.00
CVX / TOT 6.35 6.35 0.00 4.29 0.65 0.00
CVX / XOM 4.62 4.61 0.00 4.06 0.03 0.00
E / PSX 6.79 6.79 0.00 4.88 2.21 0.00
E / RDSA 5.35 5.35 0.00 4.18 0.69 0.00
E / TOT 6.28 6.28 1.50 4.52 1.52 0.00
E / XOM 4.93 4.89 0.00 4.15 0.12 0.00
PSX / RDSA 5.74 5.74 0.00 3.97 0.25 0.00
PSX / TOT 6.42 6.42 0.00 4.61 1.39 0.00
PSX / XOM 5.47 5.47 0.00 4.30 0.10 0.00
RDSA / TOT 5.11 5.10 1.31 3.91 0.22 0.00
RDSA / XOM 4.61 4.59 0.00 4.01 0.00 0.00
TOT / XOM 5.09 5.06 0.00 4.03 0.02 0.00
Sum 115.99 115.84 6.04 87.64 9.96 0.00

Table 5.5: Average daily number of trades with � = 5 ⋅10−5 and various values of � for the noise-sensitive
and noise-robust estimators.
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on biased estimates of the Ornstein–Uhlenbeck process parameters caused by ignoring the market mi-
crostructure noise leads to a decline in profitability.
It is an inherent characteristic of the pairs trading strategy that it is sensitive to almost all aspects. In
the literature, the strategy is found to be sensitive to transaction costs, speed of execution, length of the
formation period, changes in model parameters over time, diversity of traded securities and news shocks.
These unpleasant properties were studied for example by Bowen et al. (2010), Do and Faff (2012), Huck
(2013) and Jacobs and Weber (2015). We add to this long list the sensitivity of the intraday pairs trading
strategy to the market microstructure noise.
One possible direction for the future research is an inclusion of the parameter uncertainty in the optimiza-
tion problem finding the trading signals. In this study as well as many other studies including Bertram
(2010), Cummins and Bucca (2012), Zeng and Lee (2014) and Göncü and Akyildirim (2016), the opti-
mization of the trading signals is based on given values of the Ornstein–Uhlenbeck paramaters. In reality,
however, the values of parameters are subject to considerable uncertainty. We believe that addressing this
issue would increase stability of the profitability and help to remove ambiguity in determining trade op-
portunities.
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- Conclusion -

In the thesis, we deal with financial high-frequency data. We review the high-frequency literature and con-
tribute to the statistical and econometric theory. In the empirical study, we apply the presented method-
ology to high-frequency prices of the 30 stocks forming Dow Jones Industrial Average index and 7 stocks
representing Big Oil companies. All analyzed stocks are traded either on the NYSE exchange or the
NASDAQ exchange. Specifically, we investigate three topics in financial high-frequency analysis.
First, we analyze durations between successive transactions. Traditionally, trade durations are modeled
by the autoregressive conditional duration (ACD) model. We utilize this model in a discrete framework
and particularly focus on zero values of trade durations. Zero values can be caused by multiple trans-
actions occuring at the same time but originating from different sources or by a single order split into
multiple transactions for faster execution. Most of the duration literature removes zero values from the
analysis. We propose to keep them in dataset and directly model them using the zero-inflated autoregres-
sive conditional duration (ZIACD) model. This model is based on the generalized autoregressive score
(GAS) specification with the zero-inflated negative binomial distribution.
Second, we analyze non-parametric volatility of the price process. Intraday volatility is often measured by
the quadratic variation. For the class of semimartingale processes, it can be decomposed to the integrated
variance for the continuous part and the jump variance for the discontinuous part. We introduce the
quadratic variation under interval uncertainty. However, we show that the use of the interval quadratic
variation is quite limited in practice as it is not identified. For this reason, we stay within the traditional
framework based on the additive model for the market microstructure noise. We illustrate the bias of
realized variance due to the noise and compare various noise-robust estimators introduced in the high-
frequency literature. In the simulation study, we find that the pre-averaging estimator outperforms the
realized variance, two-scale estimator, realized kernel estimator and least squares estimator. We also
compare various models used for volatility forecasting. In the empirical study, we find that the HAR
model and the realized GARCH model with logarithmic specification outperforms naive models as well
as the ARIMA model for the one-step ahead forecasts of the quadratic variation.
Third, we analyze the price process by parametric methods. A popular model in finance is the Ornstein–
Uhlenbeck process with continuous time. It is often used to model interest rates, exchange rates, com-
modity prices, stochastic volatility and spreads between correlated assets. We address the issues in the
estimation of the Ornstein–Uhlenbeck process using high-frequency data. The price process is known
to be contaminated by the market microstructure noise which causes a significant bias in volatility esti-
mation. We show that the Ornstein–Uhlenbeck process contaminated by the white noise and sampled at
discrete equidistant time folows the ARMA(1,1) process instead of the AR(1) process. We also consider
irregularly spaced observations and propose a noise-robust estimator based on the maximum likelihood.
We illustrate the added value of our proposed approach in an application to the pairs trading strategy.
We show that the volatility and speed of reversion parameters estimated by the traditional methods are
distinctively biased and many times higher than the parameters estimated by the proposed noise-robust
methods. This leads to suboptimal decision-making and significant decrease in profits of the pairs trading
strategy.
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- Appendix A -

Stock Market

A stock is a security representing fractional ownership of a given company. Stocks are commonly traded
on stock exchanges. Some companies are listed only on a single stock exchange while other companies
prefer multiple exchanges. A typical example is a company outside the United States that is primarily
listed in its home country and secondarily listed in the United States. Some smaller companies that do
not qualify for the listing requirements of the major exchanges can be traded over-the-counter.
Table A.1 and Figure A.1 list the largest stock exchanges in the world measured by the domestic market
capitalization. New York City is the capital of the financial world as it is home to the two largest stock
exchanges – the NYSE exchange located at 11 Wall Street and the NASDAQ exchange located at 165
Broadway.
To give an idea of the size of the stock market, we report the market capitalization for the exchanges as
well as for the individual stocks. The market capitalization is the market value of outstanding shares of
a publicly traded company. For a given stock i, the market capitalizationMCi is simply the number of
shares outstandingNi times the closing price per share Pi, i.e.MCi = NiPi. For a given exchange j, the
domestic market capitalization is the sum of market capitalizations of all listed domestic companies as
well as foreign companies exclusively listed on the exchange j. The source of the market capitalization
of the exchanges is World Federation of Exchanges (2019). For the individual stocks, the source of the
numbers of shares outstanding is Nasdaq (2019) while the source of closing prices is Yahoo! (2019).
In the thesis, we analyze two sets of stock. For the duration analysis in Chapter 3 and the volatility analysis
in Chapter 4, we use tick data of 30 stocks forming the Dow Jones Industrial Average index. For the pairs
trading strategy in Chapter 5, we use tick data of 7 stocks representing the Big Oil companies. The source
of our tick data is the Daily TAQ database of New York Stock Exchange (2019).

Dow Jones Industrial Average Index

The Dow Jones Industrial Average (DJIA) index is a stock market index consisting of 30 publicly owned
American companies. It was founded by Charles Dow on May 26, 1896 and is the second-oldest index

NYSE NASDAQ
Figure A.1: Two largest stock exchanges in the world.
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Exchange Name Location Companies Market Cap
NYSE New York Stock Exchange United States 2 292 23 216 420
NASDAQ Nasdaq Stock Exchange United States 3 004 10 998 591
JPX Tokyo Stock Exchange Japan 3 628 6 059 062
SSE Shanghai Stock Exchange China 1 432 4 526 023
EURONEXT Euronext Stock Exchange Netherlands 1 239 4 341 984
LSE London Stock Exchange United Kingdom 2 491 4 316 300
HKEX Hong Kong Stock Exchange Hong Kong 2 215 4 219 596
SZSE Shenzhen Stock Exchange China 2 115 3 091 590
TSX Toronto Stock Exchange Canada 3 366 2 276 829
BSE Bombay Stock Exchange India 5 290 2 121 000
FSX German Stock Exchange Germany 509 2 113 779
NSE National Stock Exchange of India India 1 951 2 097 899
KRX Korea Stock Exchange South Korea 2 151 1 638 023
SIX Swiss Stock Exchange Switzerland 268 1 518 557
ASX Australian Securities Exchange Australia 2 150 1 450 006
OMX Stockholm Stock Exchange Sweden 1 008 1 449 594
TWSE Taiwan Stock Exchange Taiwan 934 1 064 851
JSE Johannesburg Stock Exchange South Africa 364 1 061 518
BME Spanish Stock Exchange Spain 3 046 851 755
BOVESPA Brazilian Stock Exchange Brazil 342 783 499

Table A.1: List of 20 stock exchanges with highest domestic market capitalization in millions of USD as
of June 29, 2018.

in the United States. Currently, it is owned by S&P Dow Jones Indices company. Figure A.3 shows daily
prices as well as daily volume of the index since January, 2000.
Components of the DJIA index changes over time. Table A.2 and Figure A.2 list the composition of the
index from September 1, 2017 to June 25, 2018. On September 1, 2017, DuPont (DD) was replaced by
DowDuPont (DWDP) due to the merger of Dow Chemical Company with DuPont. On June 26, 2018,
General Electric (GE) was replaced by Walgreens Boots Alliance (WBA). For the duration analysis in
Chapter 3, we use the 30 stocks that formed the index from September 1, 2017 to June 25, 2018 as listed
in Table A.2. For the volatility analysis in Chapter 4, we use the 30 stocks that formed the index from
March 19, 2015 to August 31, 2017, i.e. the stocks listed in Table A.2 with the DD stock instead of the
DWDP stock.

Big Oil Companies

The term Big Oil refers to the 7 largest publicly traded oil and gas companies, also known as the super-
majors. The national producers and the OPEC oil companies are not considered to be a part of the Big
Oil, although they have much greater influence on oil and gas prices.
Table A.3 and Figure A.4 list the 7 Big Oil companies. Some sources exclude Phillips 66 from the Big
Oil. Chevron, Phillips 66 and ExxonMobil are American companies listed on the NYSE exchange. BP,
Eni, Royal Dutch Shell and Total are European companies primarily listed on European exchanges and
secondarily listed on the NYSE exchange. The market capitalization in Table A.3 refers only to stocks
traded on the NYSE exchange. The total market capitalization for European companies is therefore much
higher as it includes stocks traded on home exchanges. For the pairs trading strategy in Chapter 5, we use
only stocks traded on the NYSE exchange as indicated in Table A.3.
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Stock Exchange Company Industry Market Cap
AAPL NASDAQ Apple Consumer Electronics 909 841
AXP NYSE American Express Credit Services 84 383
BA NYSE Boeing Aerospace & Defense 192 753
CAT NYSE Caterpillar Farm & Construction Equipment 81 124
CSCO NASDAQ Cisco Systems Communication Equipment 202 365
CVX NYSE Chevron Oil & Gas 241 602
DIS NYSE Walt Disney Media 156 222
DWDP NYSE DowDuPont Chemicals 152 986
GE NYSE General Electric Conglomerate 118 207
GS NYSE Goldman Sachs Capital Markets 83 313
HD NYSE The Home Depot Home Improvement 225 056
IBM NYSE IBM Computers & Technology 128 240
INTC NASDAQ Intel Semiconductors 231 649
JNJ NYSE Johnson & Johnson Pharmaceuticals 325 452
JPM NYSE JPMorgan Chase Banking 354 778
KO NYSE Coca-Cola Beverages 186 636
MCD NYSE McDonald’s Restaurants 123 029
MMM NYSE 3M Conglomerate 116 791
MRK NYSE Merck & Company Pharmaceuticals 163 301
MSFT NASDAQ Microsoft Software 757 640
NKE NYSE Nike Apparel 102 029
PFE NYSE Pfizer Pharmaceuticals 212 222
PG NYSE Procter & Gamble Household & Personal Products 196 290
TRV NYSE Travelers Insurance 32 748
UNH NYSE UnitedHealth Group Health Care Plans 235 767
UTX NYSE United Technologies Aerospace & Defense 100 031
V NYSE Visa Credit Services 236 577
VZ NYSE Verizon Communications Telecommunication Services 207 876
WMT NYSE Walmart Retail 255 832
XOM NYSE ExxonMobil Oil & Gas 350 265

Table A.2: List of 30 stocks forming the Dow Jones Industrial Average index from September 1, 2017 to
June 25, 2018 with market capitalization in millions of USD as of June 29, 2018.

Stock Exchange Company Listing Market Cap
BP NYSE BP Secondary 41 574
CVX NYSE Chevron Primary 241 602
E NYSE Eni Secondary 1 361
PSX NYSE Phillips 66 Primary 52 318
RDS-A NYSE Royal Dutch Shell Secondary, Class A 32 291
TOT NYSE Total Secondary 12 010
XOM NYSE ExxonMobil Primary 350 265

Table A.3: List of 7 stocks representing the Big Oil companies with market capitalization in millions of
USD as of June 29, 2018.
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NASDAQ:AAPL NYSE:AXP NYSE:BA NYSE:CAT

NASDAQ:CSCO NYSE:CVX NYSE:DIS NYSE:DWDP

NYSE:GE NYSE:GS NYSE:HD NYSE:IBM

NASDAQ:INTC NYSE:JNJ NYSE:JPM NYSE:KO

NYSE:MCD NYSE:MMM NYSE:MRK NASDAQ:MSFT

NYSE:NKE NYSE:PFE NYSE:PG NYSE:TRV

NYSE:UNH NYSE:UTX NYSE:V NYSE:VZ

NYSE:WMT NYSE:XOM
Figure A.2: List of 30 stocks forming the Dow Jones Industrial Average index from September 1, 2017
to June 26, 2018.
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Figure A.3: Daily closing prices adjusted for dividends and splits and daily number of shares traded of
the DJIA index from January, 1997 to December, 2018.

NYSE:BP NYSE:CVX NYSE:E NYSE:PSX

NYSE:RDS-A NYSE:TOT NYSE:XOM
Figure A.4: List of 7 stocks representing the Big Oil companies.
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- Appendix B -

High-Frequency Data Literature

We take a brief look at some statistics of the high-frequency data literature according to Elsevier (2019).
Table B.1 lists the most productive authors in terms of the number of papers with keywords related to
high-frequency data. Table B.2 lists themost prominent journals publishing papers with related keywords.

Author Affiliation Articles
Aït-Sahalia, Yacine Princeton University,USA 10
Andersen, Torben G. Northwestern University, USA 11
Barndorff-Nielsen, Ole E. Aarhus University, Denmark 17
Bollerslev, Tim National Bureau of Economic Research, USA 16
Corsi, Fulvio University of London, United Kingdom 11
Degiannakis, Stavros Panteion University, Greece 13
Hansen, Peter Reinhard Aarhus University, Denmark 10
Hwang, Eunju J. Gachon University, South Korea 10
Jacod, Jean Pierre and Marie Curie University, France 14
Kong, Xin-Bing Nanjing Audit University, China 10
Liu, Zhi University of Macau, Macao 14
Lunde, Asger Aarhus University, Denmark 11
Ma, Feng Southwest Jiaotong University, China 11
McAleer, Michael National Tsing Hua University, Taiwan 13
Meddahi, Nour Toulouse School of Economics, France 11
Mykland, Per Aslak University of Illinois at Chicago, USA 18
Podolskij, Mark Aarhus University, Denmark 23
Russo, Francesco University of Paris-Saclay, France 16
Shephard, Neil Harvard University, USA 16
Shin, Dong Wan Ewha Womans University, South Korea 16
Todorova, Neda Griffith University, Australia 14
Vetter, Mathias University of Kiel, Germany 11
Wang, Yazhen University of Wisconsin Madison, USA 10
Wei, Yu Yunnan University of Finance and Economics, China 10
Zhang, Lan University of Illinois at Chicago, USA 10

Table B.1: List of authors with 10 or more scientific articles containing the term integrated volatility,
integrated variance, quadratic variation, realized volatility, realized variance or microstructure noise in
the title, abstract or keywords as of December 31, 2018.
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ISSN Journal Articles
0091-1798 Annals of Probability 15
0090-5364 Annals of Statistics 14
0361-0926 Applied Economics 13
0960-3107 Applied Financial Economics 14
1350-486X Applied Mathematical Finance 16
1350-7265 Bernoulli 22
0167-9473 Computational Statistics and Data Analysis 20
0361-0926 Communications in Statistics - Theory and Methods 13
0747-4938 Econometric Reviews 23
0266-4666 Econometric Theory 17
0012-9682 Econometrica 10
0264-9993 Economic Modelling 21
0165-1765 Economics Letters 15
0140-9883 Energy Economics 20
1351-847X European Journal of Finance 11
0949-2984 Finance and Stochastics 14
1544-6123 Finance Research Letters 19
0029-5981 International Journal for Numerical Methods in Engineering 11
0169-2070 International Journal of Forecasting 29
0219-0249 International Journal of Theoretical and Applied Finance 17
1057-5219 International Review of Financial Analysis 17
0883-7252 Journal of Applied Econometrics 16
0378-4266 Journal of Banking and Finance 39
0735-0015 Journal of Business and Economic Statistics 27
0304-4076 Journal of Econometrics 80
0927-5398 Journal of Empirical Finance 37
1479-8409 Journal of Financial Econometrics 45
0304-405X Journal of Financial Economics 19
0277-6693 Journal of Forecasting 29
0270-7314 Journal of Futures Markets 48
1042-4431 Journal of International Financial Markets, Institutions and Money 10
0261-5606 Journal of International Money and Finance 11
0162-1459 Journal of the American Statistical Association 15
1062-9408 North American Journal of Economics and Finance 10
0378-4371 Physica A: Statistical Mechanics and Its Applications 34
0178-8051 Probability Theory and Related Fields 10
1469-7688 Quantitative Finance 46
0275-5319 Research in International Business and Finance 10
0167-7152 Statistics and Probability Letters 15
0736-2994 Stochastic Analysis and Applications 11
0304-4149 Stochastic Processes and Their Applications 64
1000-6788 System Engineering Theory and Practice 16

Table B.2: List of journals with 10 or more scientific articles containing the term integrated volatility,
integrated variance, quadratic variation, realized volatility, realized variance or microstructure noise in
the title, abstract or keywords as of December 31, 2018.
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- Appendix C -

High-Frequency Data Analysis in R

This appendix closely follows Holý (2018c). We review capabilities of statistical software R developed
by R Core Team (2019) in financial high-frequency data analysis. For statistical analysis, R offers a
tremendous amount of user-created packages. Growth of the number of R packages published on CRAN
over the years is shown in Figure C.1. Underlying data for Figure C.1 are retrieved using a script by
Daróczi (2017). Many packages are directly related to academic research as indicated by Table C.1.
Underlying data for Table C.1 are retrieved from Elsevier (2019). Table C.2 lists R packages useful in
analysis of financial high-frequency data while Table C.3 lists some generally useful packages.
We describe the functionality of selected packages throughout this appendix. The package xts (Ryan
et al., 2018a) handles time series recorded at very fine scale and the quantmod (Ryan et al., 2018b)
package offers basic tools for financial data. The package highfrequency (Boudt et al., 2018) is a
general source of various high-frequency methods while the ACDm (Belfrage, 2016) package focuses on
the ACDmodel, the midasr (Kvedaras and Zemlys, 2016) package focuses on the MIDASmodel and the
rugarch (Ghalanos, 2018) package focuses on the GARCH model. Packages PortfolioEffectEstim
(Kostin et al., 2016) and PortfolioEffectHFT (Kostin et al., 2017) provide an interface to cloud service
PortfolioEffect specializing in financial analysis but can be utilized for client-side high-frequency data as
well. For a more detailed description of the packages, we refer to the documentation included in the
individual packages. For other relevant packages, we refer to R CRAN task views Time Series Analysis
(Hyndman, 2019) and Empirical Finance (Eddelbuettel, 2019)
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Figure C.1: Growth of the number of R packages published on CRAN.
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ISSN Journal Articles
1367-4803 Bioinformatics 340
1471-2105 BMC Bioinformatics 239
1471-2164 BMC Genomics 33
0167-9473 Computational Statistics and Data Analysis 50
1061-8600 Journal of Computational and Graphical Statistics 43
1548-7660 Journal of Statistical Software 486
2041-210X Methods in Ecology and Evolution 100
1755-0998 Molecular Ecology Resources 36
0305-1048 Nucleic Acids Research 33
1932-6203 PLOS One 126
2073-4859 The R Journal 161
0277-6715 Statistics in Medicine 40

Table C.1: List of journals with 30 or more scientific articles containing the term R package in the title,
abstract or keywords as of December 31, 2017.

Package Title
ACDm Tools for Autoregressive Conditional Duration Models
highfrequency Tools for Highfrequency Data Analysis
midasr Mixed Data Sampling Regression
PortfolioEffectEstim High Frequency Price Estimators by PortfolioEffect
PortfolioEffectHFT High Frequency Portfolio Analytics by PortfolioEffect
quantmod Quantitative Financial Modelling Framework
rugarch Univariate GARCH Models
xts eXtensible Time Series

Table C.2: List of R packages useful in financial high-frequency data analysis.

Package Title
data.table Extension of ’data.frame’
dplyr A Grammar of Data Manipulation
ggplot2 Create Elegant Data Visualisations Using the Grammar of Graphics
gridExtra Miscellaneous Functions for "Grid" Graphics
knitr A General-Purpose Package for Dynamic Report Generation in R
Rcpp Seamless R and C++ Integration
reshape2 Flexibly Reshape Data: A Reboot of the Reshape Package
rio A Swiss-Army Knife for Data I/O
shiny Web Application Framework for R
tikzDevice R Graphics Output in LaTeX Format
xtable Export Tables to LaTeX or HTML

Table C.3: List of generally useful R packages.
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Data Preprocessing

In practice, it is necessary to clean high-frequency data before the actual analysis. Brownlees and Gallo
(2006) and Barndorff-Nielsen et al. (2009) discuss individual steps in data cleaning. Preprocessing
of high-frequency data can be done using the highfrequency package. The cleaning procedure for
trade data includes removing transactions with zero prices (the function noZeroPrices), restricting
transactions to a single exchange (the function selectExchange), removing transactions with abnor-
mal sales condition (the function salesCondition), merging transactions with the same timestamp
(the function mergeTradesSameTimestamp) and removing outliers in transactions based on quote data
(the function rmTradeOutliers). It is also possible to use wrapper functions tradesCleanup and
tradesCleanupFinal. The cleaning procedure for quote data includes removing quotes with zero prices
(the function noZeroQuotes), restricting quotes to a single exchange (the function selectExchange),
removing quotes with a large spread (the function rmLargeSpread), removing quotes with a nega-
tive spread (the function rmNegativeSpread), merging quotes with the same timestamp (the function
mergeQuotesSameTimestamp) and removing outliers in quotes (the function rmOutliers). It is also
possible to use wrapper function quotesCleanup.
In some cases, it may also be suitable to aggregate data to a given frequency. Although this naturally
leads to a data loss, it can be very useful specially in multivariate analysis due to trading asynchronicity
of different assets. The calendar sampling may be accomplished by the function aggregatets of the
highfrequency package.

Market Microstructure

It is often assumed (specially from the volatility analysis perspective) that there exists a theoretical ef-
ficient price with continuous values. This price is, however, unobserved mainly due to discretness of
the observed price and bid-ask spread. A common approach is to model the observed price as the
sum of the efficient price and the market microstructure noise which captures all the undesirable ef-
fects (Hansen and Lunde, 2006). Properties of the market microstructure noise can be investigated using
the PortfolioEffectEstim package. Variance of the noise is estimated by functions noise_acnv,
noise_rnv, noise_urnv and noise_uznv. The noise to signal ratio is estimated by the noise_nts

function.

Duration Analysis

As high-frequency data are irregularly spaced, it is natural to investigate behavior of times between suc-
cessive transactions denoted as trade durations. Other financial durations such as price durations (times
until the price process changes by a given level) and volume durations (times until traded volume reaches
a given level) are subject of duration analysis as well. Engle and Russell (1998) proposed the autoregres-
sive conditional duration (ACD) model, which became the standard in financial duration modeling. The
package ACDm is centered around the ACD model and its extensions. The function computeDurations
computes trade, price and volume durations. As financial durations exhibit strong intraday patterns, it is
suitable to remove diurnal patterns using the diurnalAdj function. The function acdFit fits the ACD
model based on various dynamics and distributions.

Volatility Analysis

Perhaps the most studied area in the high-frequency literature is the volatility analysis. First, we es-
timate the integrated variance. The integrated variance is equal to the quadratic variation in the ab-
sence of jumps. Simple estimator of the integrated variance is the realized variance (the function rCov

from the highfrequency package and the function variance_rv from the PortfolioEffectEstim
package). However, this estimator is biased in the presence of the jumps and the market microstruc-
ture noise. The average realized variance (the function rAVGCov from the highfrequency package)
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can be used to diminish effects of the noise, but it is still a biased estimator. Jump-robust estima-
tors include the realized bi-power variation of Barndorff-Nielsen (2004) (the function rBPCov from the
highfrequency package), the min realized variance of Andersen et al. (2012) (the function minRV from
the highfrequency package) and the median realized variance of Andersen et al. (2012) (the func-
tion medRV from the highfrequency package). Noise-robust estimators include the two scales realized
variance of Zhang et al. (2005) (the function rTSCov from the highfrequency package and the function
variance_tsrv from the PortfolioEffectEstim package), themulti scales realized variance of Zhang
(2006) (the function variance_msrv from the PortfolioEffectEstim package), the realized kernel of
Barndorff-Nielsen et al. (2008) (the function rKenelCov from the highfrequency package and the func-
tion variance_krv from the PortfolioEffectEstim package), the pre-averaging estimator or modu-
lated realized covariance of Hautsch and Podolskij (2013) (the function MRC from the highfrequency
package and the function variance_mrv from the PortfolioEffectEstim package) and the uncer-
tainty zones realized variance of Robert and Rosenbaum (2012) (the function variance_uzrv from the
PortfolioEffectEstim package). The jump robust modulated realized variance of Podolskij and Vet-
ter (2009) (the function variance_jrmrv from the PortfolioEffectEstim package) is robust to both
jumps and the noise.
Next, we forecast the estimated integrated variance (denoted as the realized measure). A popular
model forecasting realized measure is the HAR model of Corsi (2009) (the function harModel from
the highfrequency package). Another model for volatility of returns and realized measure is the
HEAVY model of Shephard and Sheppard (2010) (the function heavyModel from the highfrequency
package). Realized measure can also be augmented into the GARCH model resulting in the realized
GARCH model of Hansen et al. (2012). Univariate GARCH models (including the realized GARCH
model) are provided by the rugarch package with the ugarchspec function specifying the model, the
ugarchfit function fitting the model, the ugarchforecast function forecasting the model as well
as other functions. The MIDAS models of Ghysels et al. (2006) can be estimated using the midasr

package. Package PortfolioEffectHFT also offers a framework for volatility forecasting. Traditional
models such as ARIMA in various time series packages may be utilized as well.
Finally, we estimate the spot volatility. The function spotvol from the highfrequency package provides
various methods for the spot volatility estimation. For details, see documentation of the highfrequency
package.

Higher Moments Analysis

An analogue of the realized variance for the skewness is the realized skewness (the function rSkew from
the highfrequency package) and realized kurtosis (the function rKurt from the highfrequency pack-
age) for the kurtosis. Both estimators are biased in the presence of jumps and the market microstructure
noise.
The integrated quarticity can be estimated by the realized quarticity (the function rQuar from the
highfrequency package and the function quarticity_rq from the PortfolioEffectEstim pack-
age). However, this estimator is biased in the presence of the jumps and the market microstructure noise.
Jump-robust estimators include the min realized quarticity of Andersen et al. (2012) (the function minRQ
from the highfrequency package), the median realized quarticity of Andersen et al. (2012) (the function
minRQ from the highfrequency package), the realized tripower quarticity of Andersen et al. (2012) (the
function quarticity_rtq from the PortfolioEffectEstim package) and the realized quadpower
quarticity of Andersen et al. (2012) (the function quarticity_rqq from the PortfolioEffectEstim
package). Jump-robust and noise-robust estimators include the modulated realized quarticity of Podolskij
and Vetter (2009) (the function quarticity_mrq from the PortfolioEffectEstim package) and the
modulated tripower quarticity of Podolskij and Vetter (2009) (the function quarticity_mtq from the
PortfolioEffectEstim package).
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A generalization of the integrated variance and the integrated quarticity is the integrated power variation.
It can be estimated by the realized multipower variation of Andersen et al. (2012) (the function rMPV from
the highfrequency package). It is biased in the presence of the market miscrostructure noise. However,
for some values of powers, it can be robust to jumps. The class of the realized multipower variation
includes specifications for the realized variance, the bi-power variation and the realized quarticity.

Jump Analysis

The asset price is often modeled as a process with continuous values and a finite number of jumps.
The question is whether the jumps are present in the price process in a given time frame. The pack-
age highfrequency offers three functions testing for the presence of jumps. The function AJjumptest
implements the test of Aït-Sahalia and Jacod (2009), the function BNSjumptest implements the test of
Barndorff-Nielsen and Shephard (2006) and the function JOjumptest implements the test of Jiang and
Oomen (2008).

Liquidity Analysis

Various liquidity measures can be estimated by the tqLiquidity function from the highfrequency

package. Most of these measures require quote data while some also need transaction data. For details,
see documentation of the highfrequency package.

Discussion

The software and programming language R offers several packages specializing in financial high-
frequency data analysis. One possible drawback is the inconsistency of function structures between
packages (and even within the package highfrequency itself) as unfortunately expected in the software
with so many packages and authors. Overall, the presented packages well cover data preprocessing and
market microstructure investigation as well as analysis of durations, jumps, volatility, higher moments
and liquidity. For other topics or more deeper analysis, it is needed to write own code in R.
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- Appendix D -

Special Functions in Mathematics

In this appendix, we define some lesser-known special functions in mathematics used in the thesis.
Namely, we focus on the gamma function, the digamma function and the polygamma function. For a
comprehensive list of special functions with definitions, descriptions and figures, we refer to Olver et al.
(2010) and National Institute of Standards and Technology (2019).
The gamma function is an extension of the factorial function to real and complex numbers. It is defined
for all complex numbers except zero and negative integers x as

Γ(x) = ∫

∞

0
zx−1e−z dz. (D.1)

For a positive integer n, it is equal to

Γ(n) = (n − 1)!, (D.2)

where ! denotes the factorial. The gamma function Γ(x) is illustrated in Figure D.1.
The digamma function is defined as the derivative of the logarithm of the gamma function

 (x) = )
)x
log Γ(x) =

Γ′(x)
Γ(x)

. (D.3)

The digamma function  (x) is illustrated in Figure D.2.
The polygamma function of order m is defined as the (m+ 1)th derivative of the logarithm of the gamma
function

 m(x) =
)m+1

)xm+1
log Γ(x) = )m

)xm
 (x). (D.4)

For m = 0, it is simply the digamma function, i.e.  0(x) =  (x). The trigamma function  1(x), the
tetragamma function  2(x), the pentagamma function  3(x) and the hexagamma function  4(x) are il-
lustrated in Figure D.3.
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