

©DSDM Consortium 2006. All Rights Reserved.

DSDM and UML

© DSDM Consortium 2006. All Rights Reserved. Page 2

Table of Contents

11 IInnttrroodduuccttiioonn ..33

1.1 Aim...3
1.2 Scope ...3
1.3 Audience ...3
1.4 Section Structure ..4
1.6 Related White Papers ..4

22 DDSSDDMM PPhhaasseess aanndd UUMMLL PPrroodduuccttss ..55

2.1 The table ...5
2.2 Producing the UML Products using DSDM techniques.. 10

33 DDSSDDMM RRoolleess iinn aa UUMMLL eennvviirroonnmmeenntt .. 1122

3.1 Roles and Responsibilities .. 12
3.2 Specialist roles .. 12
3.3 Responsibility Matrix ... 12

44 CCoonncclluuddiinngg RReemmaarrkkss .. 1155

AAppppeennddiixx AA –– BBiibblliiooggrraapphhyy .. 1166

Contributors ... 17

© DSDM Consortium 2006. All Rights Reserved. Page 3

1 Introduction
Software development projects rely heavily on diagrammatic models to bridge semantic gaps between
business and IT team members. Table 1 describes concisely how DSDM (a software development
approach without prescribed modelling techniques) and the Unified Modelling Language (a modelling
notation and model-driven technique without a prescribed process) complement each other.

DSDM UML

DSDM is a process framework without a
prescribed notation.

UML is a notation without a process.

DSDM is non-prescriptive: it says what you need
to do to run a successful RAD project, but it
doesn’t tell you how to do it. It permits you to
choose the most suitable techniques for a
particular project and to adapt the framework to
different circumstances using “all of DSDM some
of the time and some of DSDM all of the time”.

UML can be adapted to suit the circumstances: it
is non-prescriptive; you can just use whichever
techniques are most suited to the particular
development, extending the notation as required;
UML acknowledges that different processes will
be suitable for different projects.

DSDM was designed to embody best practice in
RAD.

UML was designed to bring together the best
features of different OO modelling techniques.

DSDM emphasises the importance of delivering
both users’ functional requirements and their
non-functional requirements, including ease of
use and maintainability.

UML, as an OO modelling language, supports the
solicitation of users' needs in models that are
easy to use and easy to maintain. UML is not well
suited to capturing non-functional requirements.

DSDM demands productive developers and
enhances developer productivity.

UML may enhance developer productivity.

DSDM requires an iterative and incremental
approach.

UML has been designed with iterative and
incremental development in mind.

Table 1: DSDM and UML synergy

1.1 Aim
The White Paper has the following objective

• To illustrate the sort of products that you can expect to see in a DSDM UML project

• To show which UML products enhance the DSDM products and phases.

1.2 Scope
The guidance in this White Paper applies before and during a project of the following nature:

• a business process project (i.e. a project with no technical development content)

• building an Enterprise Architecture

• a software development project (and not necessarily in an object-oriented development
environment).

1.3 Audience
This White Paper supplements the content of the DSDM Manual version 4.1. It does not attempt to
teach UML. Basic familiarity with both DSDM and UML is assumed. Readers who wish to get some
understanding of UML and its origins should refer to the reading material in the bibliography. The
White Paper is based on UML version 1.4. The White Paper is aimed primarily at the following
people:

© DSDM Consortium 2006. All Rights Reserved. Page 4

• Project Managers

• Developers

• Business Users

• Business Architects

• Technical Co-ordinators

1.4 Section Structure
Following the introduction in section 1, section 2 provides guidance on introducing and evolving the
UML products in the DSDM phases.

Section 3 discusses the DSDM roles and responsibilities in an UML environment.

Section 4 contains some brief concluding remarks.

The Appendix contains a bibliography.

1.6 Related White Papers
The DSDM consortium has produced a number of White Papers that may also be useful when
considering a DSDM and UML project:

• The DSDM Development Techniques White Paper would be of assistance when making a choice
about which modelling technique to use. It includes guidance on object-oriented techniques.

• The DSDM and Component Based Development White Paper is a guide to producing the
components required for a CBD project and re-using them.

• The Guidelines for Reuse in DSDM White Paper highlights where reuse improve the speed and
accuracy of delivering systems in a DSDM environment.

• The Process Prototyping in a DSDM Project White Paper describes techniques that can be used to
get Use Case detail (see section 2.2).

© DSDM Consortium 2006. All Rights Reserved. Page 5

2 DSDM Phases and UML Products

2.1 The table
Table 2 details the UML components that could be introduced or evolved within each of the five
DSDM phases from the project lifecycle. To supplement this, the case study on the website contains
examples of the level of detail that can be expected in each stage of the lifecycle.

©DSDM Consortium 2006. All Rights Reserved.

 Table 2: UML in DSDM phases

UML Notation Feasibility Study Business Study Functional Model

Iteration
Design & Build
Iteration

Implementation

Use Cases

Major Use Case names Complete list of Use
Cases. May have a
definition of major
Use Cases. The
Prioritised
Requirements List is
based on the Use
Cases.

Normal' usage of the
Use Case (ie what
happens 80% of the
time). Drives the
prototyping process.

Descriptions of Use
Cases, refined as
needed to ensure
fitness for business
purpose. Now
includes the exceptions
as well as the main
flow. Drives testing.

Used to build User
Documentation.
Support departments
should receive these
UML products

Interaction
(Sequence/Collaboration)
Diagrams

 Could be used when
creating a Business
Process
Model/Enterprise
Model to help
understanding

One sequence diagram
per major Use Case.
Component diagrams
for individual scenarios.
More if required. Forms
part of the Functional
Model

Part of Design
Prototype. Structured
sentences derived from
sequence diagram
description will drive
testing.

Support departments
should receive these
UML products

Class Diagrams Major problem domain
concepts can be
captured as an initial
set of classes. These
could be extracted
from a logical data
model or the class
diagram from an earlier
project.

A first cut business
class diagram forms a
useful element of the
Business Area
Definition; should be
process-driven,
derived from the Use
Case definitions and
Interaction Diagrams

Business Class Diagram
is product of the
Sequence Diagram and
Use cases (all part of
the Functional Model)

Business Objects are
fairly stable at this
stage. Add
application/system
control here (could
draw a parallel with
logical/physical
database design)

Support departments
should receive these
UML products

©DSDM Consortium 2001-2003 Page 8

State Transition
Diagrams

 Has additional notation
which may be useful to
describe business
processing. Additional
processing of
relevant/selected
Business Objects.
Performed at class level
and only where it can
add value.

As in Functional Model
Iteration but now
concentrating on
control and
communication objects

Support departments
should receive these
UML products

Component Diagrams A project in a mature
OO environment
could be given a set of
components at this
stage and therefore
use this diagram to
show scope. Used in
the System
Architecture
Definition, a few
important
components will be
shown here.

A collection/partitioning
of the Business Classes.
The 'What'. Should
contain all the proposed
components

 Support departments
should receive these
UML products

Deployment Diagrams Used for scoping in an
environment with a
stable
software/hardware
architecture

Relevant to the
System Architecture
Definition.

 Part of the Delivered
System. Support
departments should
receive these UML
products.

©DSDM Consortium 2001-2003 Page 9

Activity Diagrams Used anywhere to
support the other UML
products. Especially
useful for Business
Process Modelling

Used anywhere to
support the other
UML products.
Especially useful for
Business Process
Modelling

Used anywhere to
support the other UML
products. May be useful
to describe Business
Processing. Additional
processing of
relevant/selected
Business Objects.
Performed at class level
and only where it can
add value.

Used anywhere to
support the other
UML products.
Used to make test
scripts

Used anywhere to
support the other UML
products. Support
departments should
receive these UML
products.

©DSDM Consortium 2006. All Rights Reserved.

2.2 Producing the UML Products using DSDM techniques

At the beginning of a Project when starting with a blank sheet of paper (=Pre Project and
Feasibility Study)

Within the Feasibility Study, perhaps as part of the project launch workshop, participants could take part in a
facilitated workshop to identify all of the principal actors, Use Cases and classes that will be needed. A sensible
mix of users and developers is required. The facilitator should have the attributes listed in the role description
of the DSDM Manual. The scribe would ideally be experienced in UML modelling, and therefore able to sketch
UML models on flipcharts and ensure everyone involved understands them. Flipcharts and/or electronic
whiteboards are useful in these sessions, but it is perhaps too early to introduce a modelling tool into these
workshops. A follow-up facilitated workshop could use CRC cards (Class, Responsibilities and Collaboration –
see Designing Object-Oriented Software, details in the Bibliography) and role-playing to test what has been
produced, refining and correcting as necessary. Defining and refining Use Cases is done best in an iterative way.
Both the number of Use Cases as the number of Classes can give an first indication on the required amount of
effort needed to develop the system.

Even during Pre Project UML notations like Use Cases and Activity Diagrams can be used for an outline scope
for the investigation to take place during the Feasibility Study.

To get detail on the Use Cases (= Business Study, Functional Modelling Iteration and Design
and Build Iteration)

A further workshop might be valuable for detailed Use Case definition. Each participant must be a stakeholder
in the system. Storyboarding may be an active way of drilling down to what actually happens/should happen
within each Use Case. In addition, the Process Prototyping in DSDM Project White Paper contains some techniques
that may also be useful when fleshing out Use Cases. One of the key advantages of Use Cases from a DSDM
point of view is that they can be used to derive partitioned work-packages that can be prioritised, developed
and tested to build the final solution. These work-packages can be used to define increments. The dependencies
between Use Cases must be taken into account when defining the increments. A Use Case can be related to
other Use Cases by Extends and Uses relations.

Use Cases can be tested by verification and validation. Verification of working code after code generation.
Validation early during the project by step wise walk through of the Use Case. This can be done by role-playing;
participants take on the role of an actor or a specific system part.

Per Use Case several Test cases (both logical and physical) should be developed during Functional Modelling
Iteration to test the Functional Prototypes and the Design Prototypes during Design and Build Iteration.
Developing activity diagrams can be an alternative for the textual description of a Use Case. The actors will help
to identify the affecting user groups (part of the Business Area Definition in Functional Modelling Iteration).

The detailed Use Case description can be developed by the Ambassador Users, this ensures that the
description is in the language of the users and recognisable. Object Constraint Language (OCL) of UML can be
used to document additional information that can't be recorded in the Class Diagram. These documents and
models complement the Functional Prototype and are part of the Functional Model.

Component Diagrams and Deployment Diagrams and their use in the System Architecture
Definition (= Business Study)

These diagrams represent the physical aspects of the system under development. As such they are both natural
candidates for inclusion in the System Architecture Definition (SAD), if this level of detail is required. Both are
forms of class diagram, with the classes substituted by icons representing specific elements of the system.

The component diagram shows the internal structure of the physical software components such as executables,
libraries, tables, files and documents. A component diagram is typically used to:

• model source code

• model executable releases

©DSDM Consortium 2001-2003 Page 11

• model physical databases

• model adaptable systems.

The deployment diagram models the hardware structure of the system and the runtime allocation of software
executables to the processing nodes. A deployment diagram is typically used to:

• model embedded systems

• model client/server systems

• model distributed systems.

Prototyping and the System Architecture Definition in Functional Model Iteration

When the project progresses into Functional Model Iteration, a prototype should be developed to test the
integrity of the SAD and reduce the technical risk. Quality criteria for the prototype would be based around
"do all components communicate with one another as required?"

The architecture is defined by several views, each necessary to complete the overall picture. These views are:

• Use Case view (Process)

• Logical view (Class diagram)

• Concurrency view

• Component view (Software Components)

• Deployment view (Hardware / Platform)

Documentation in Design and Build Iteration

During Design and Build Iteration the development of User Documentation, Training Documentation and other
documentation accompanying the Tested System is started. Use Cases and Activity Diagrams can help to
structure and develop this documentation.

©DSDM Consortium 2001-2003 Page 12

3 DSDM Roles in a UML environment

3.1 Roles and Responsibilities
Project team members and project roles have a many-to-many relationship. Roles and responsibilities are
defined in the Development Plan. All roles in the DSDM manual are also valid for projects using UML. Where
they are responsible for developing specific products, this must be refined by the corresponding UML models.
The development team is responsible for developing and maintaining the UML models (see Table 2). The
following section covers the additional Specialist Roles.

3.2 Specialist roles
Specialist roles exist to fulfil a specific function or bring specific detailed knowledge to the project. The following
are likely to be needed to support the use of UML (they are defined in the Component-Based Development White
Paper):

• Project Librarian: A Developer or a Scribe may undertake this role. He or she is responsible for managing
the UML library, in particular the storage of UML deliverables in the shared repository, version control of
UML deliverables and controlling access to the repository.

• Component assessor: with knowledge of available component libraries and their potential use in the
project – refer also to the Guidelines for Reuse in DSDM White Paper

• Component librarian: adds approved components to the component library and manages their use

• UML expert: specialist modeller with knowledge of UML modelling techniques.

3.3 Responsibility Matrix
The matrix in Table 3 shows responsibilities and products and which role is responsible for them.

©DSDM Consortium 2001-2003 Page 13

Table 3: responsibility matrix

 Developer Ambassad
or

User

Advisor

 User

Technical
Co-

ordinator

Component
Librarian

Component
Assessor

UML Expert Project

Librarian

Responsibility determine UML deliverables for
each DSDM stage

Product: UML work plan, in System
Architecture Definition

 a a

Responsibility: provide knowledge of specific
business processes

 a a

Responsibility: contribute to review and
acceptance of UML models

Product: validated models

 a a a a

Responsibility: develop required diagrams as
defined for project:

Product: validated models

a a a

Responsibility: use diagrams in building code

Product: code

a

Responsibility: maintain UML diagrams
through lifecycle

Product: validated models under version
control

a

Responsibility: manage UML project library

Product: UML project library

 a

Responsibility: define standards for use of
UML

Product: UML standards and ensure use

 a a

©DSDM Consortium 2001-2003 Page 14

Responsibility: oversee use of UML and
ensure use of component libraries in project

Product: Ensure use of UML standards and
component libraries

 a

Responsibility: provide UML consultancy and
guidance

Product: UML consultancy

 a a a

Responsibility: manage component library

Product: managed component library

 a

©DSDM Consortium 2006. All Rights Reserved.

4 Concluding Remarks
Despite their different origins, DSDM and UML are strongly compatible. In order to use UML
techniques within the DSDM framework, it is necessary to utilise the UML products in the
appropriate phases of DSDM.

For developers with an OO background wishing to exploit the benefits of DSDM this White Paper
has provided guidance on adapting the DSDM lifecycle.

Supplementary guidance on techniques and clear worked examples are available on the members’
pages of www.dsdm.org.

This paper has also identified additional roles and responsibilities related specifically to OO projects,
which would be using UML.

DSDM relies on tools, techniques and people skills to ensure the semantic gap between user and
developers is addressed. UML, when used and explained correctly, can improve DSDM projects by
assisting them to close this gap effectively.

©DSDM Consortium 2001-2003 Page 16

Appendix A – Bibliography

“Joint Application Design”: August, J., Yourdon Press, 1991, ISBN 0-13-508235-8

OMG Unified Modelling Language Specification (http://cgi.omg.org/cgi-bin/doc/formal/00-03-01)

This is the official UML Version 1.3 specification. It is downloadable from the above site (pdf format,
approx. 5 MB). Includes Summary, Semantics, Notation Guide, Extensions and Object Constraint
Language. The Notation Guide is the most practical for day-to-day use; the Semantics section mainly of
interest to academics and Case Tool manufacturers.

“The Unified Modelling Language User Guide”: Booch, Rumbaugh and Jacobson: Addison Wesley:
ISBN 0-201-57168-4

This book is the definitive guide and tutorial to UML and its use by the original authors of the
language.

“The Unified Modelling Language Reference Manual”: Rumbaugh, Jacobson and Booch: Addison
Wesley: ISBN 0-13-087014-5

This book provides detailed definitions and examples of all terms in the UML notation.

“UML Distilled”: Fowler: Addison Wesley: ISBN 0-201-32563-2

Arguably the best book to have by your side during early UML projects. This book presents a
practical, concise overview of the UML; do not be fooled by its size (168 pages).

“Use Case Driven Object Modelling with UML”: Rosenberg: Addison Wesley: ISBN 0-201-43289-7

This book describes a DSDM like development process using UML. Although a slim volume,
Rosenberg takes a pragmatic approach to the need for documentation and describes pitfalls to
avoid at each stage in handy checklists.

“Analysis Patterns: Reusable Object Models”: Fowler: Addison Wesley: ISBN 0-201-89542-0

This is an ideal book for Business Analysts and those setting standards to be used within DSDM
projects. Fowler describes many reusable OO/UML patterns found across business domains that
should decrease the time taken to produce the Business Area Definition.

“Design Patterns: Elements of Reusable Object-Oriented Software”: Gamma, Helm, Johnson and
Vlissides: Addison Wesley: ISBN 0-201-63442-2

Further to the Analysis Patterns (above), this book describes 23 patterns that are representative
of good OO design which would reduce risk and increase the productivity of DSDM developers;
also available on CD in HTML format.

“Designing Object-Oriented Software”: Wirfs-Brock, Wilkerson and Wiener: Prentice Hall: ISBN 0-
13-629825-7

Information about the use of CRC.

“Writing effective Use Cases”: A. Cockburn: Addison-Wesley ISBN 0 201 70225 8

Writing Effective Use Cases describe how "actors" interact with computer systems and are
essential to software-modelling requirements. For anyone who designs software, this title offers

©DSDM Consortium 2001-2003 Page 17

some real insight into writing use cases that are clear and correct and lead to better and less
costly software.

Contributors

Steve Ash, Independent – OO Training & Consultancy; Rob Day, Independent - RDA Limited; David
Harrison, Popkin Software; George Hay, CMG Admiral; Vic Page, London Metropolitan University;
Jim Rook, Centre for Software Engineering Limited; Jennifer Stapleton, Independent; Gwen Young
Chair), Independent.

Thanks are also due to Clare Casson of COI Communications, Kevin Day of HPD Software, and
Amanda Kent of DHL for their specific contributions. Thanks for updating the White Paper to Rik Jan
van Hulst of The Vision Web, Kees Peeters (Independent) and Raimond Wets of Cap Gemini Ernst &
Young.

