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Abstract  

Regression analysis is an increasingly used statistical technique for examining and 

modeling the relationship between various phenomena, which evolves formulation of a 

mathematical expression that characterizes the behavior of a particular random variable 

and its dependence on the set of external factors. The fundamental goal of the thesis is to 

illustrate the main steps of the model-building procedure, enhance understanding of the 

least squares estimation technique, and associated statistical methods. The emphasis of the 

theoretical part is placed on the discussion of the essential linear regression concepts and 

provision of tools necessary for utilizing a modeling approach for statistical analysis of the 

response variable. The practical part of the thesis aims at the illustration of the regression 

model-building process implemented using the actual data on the life expectancy at birth in 

various countries in order to investigate its dependence on the socio-economic 

development, demographic indicators, immunization coverage, nutritional status, and risk 

factors. The regression analysis is entirely conducted in the R statistical computing 

environment, which provides a broad spectrum of statistical and graphical techniques. 
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Introduction 

Regression analysis is a statistical technique for examining and modeling the relationship 

between various phenomena, which is being used increasingly in different scientific areas. 

Regression analysis is attractive theoretically because of the elegant mathematics and well-

designed statistical theory. Successful use of the regression methods demands a 

comprehension of both the theory and the practical problems that arise when the technique 

is applied to the real-world data (Montgomery et al., 2012). 

Modeling refers to the formulation of mathematical expressions that, in some sense, 

characterize the behavior of a particular random variable. Such a variable of interest is 

called the dependent (response) variable and is denoted as y. Generally, the modeling aims 

at describing how the expected value of the dependent variable, E(y), changes with varying 

conditions.  

Other variables, incorporated into the regression model, which provide information on the 

behavior of the response, are known as independent (explanatory) variables. These 

variables are denoted by Xj and are assumed to be known constants. Additionally, all 

regression models include unknown constants, parameters, which define the behavior of 

the model. These parameters are identified by the Greek letters and need to be estimated 

from the data.  

The degree of mathematical complexity of the model depends on the purpose of the 

modeling and knowledge about the process being analyzed (Rawlings et al., 1998). 

•    Regression Model-Building Process 

The model-building process in the regression analysis is an iterative process, as depicted in 

figure 1. It starts with usage of the theoretical knowledge of the phenomenon under 

consideration and available data to formulate an initial regression model. Graphical 

visualization of the data may assist in the specification of the initial model. Then the 

parameters of the model are estimated, frequently employing the least squares method, to 

evaluate the quantitative effect of the regressors upon the variable of interest. Afterward, 

the researcher must assess the model adequacy by looking for potential functional form 

misspecification, unusual data, or failure to include important predictors. If the diagnostics 

suggest the inadequacy of the model, then the model should be altered and the parameters 

estimated again. This procedure may be repeated until a satisfactory model is obtained.  
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Finally, it is necessary to validate the model to ensure that it produces the results that are 

suitable in the final application (Montgomery et al., 2012). 

 

 

Figure 1: Regression model-building process (Montgomery et al., 2012) 

 

•    Objective and Structure of Thesis 

The fundamental goal of the thesis is to illustrate the main steps of the model-building 

procedure, enhance understanding of the least squares estimation technique, and associated 

statistical methods. The emphasis is placed on the discussion of the essential linear 

regression concepts and provision of tools necessary for utilizing a modeling approach for 

statistical analysis of the response variable. 

The first chapter provides an insight into the specification and assumptions of the linear 

regression model, the properties of the least squares estimators, measures of fit, and 

generalization of the Ordinary Least Squares method in the presence of heteroskedasticity. 

The second chapter discusses the classical hypothesis tests conducted in the regression 

analysis in order to assess the statistical significance of specific parameters and the model 

as a whole, as well as the methods for constructing individual and joint confidence 

intervals that serve for making inferential statements about the population. Chapter 3 

reviews the techniques for diagnostics of a possible violation of the underlying 

assumptions on the error term in the regression model. Chapter 4 outlines methods for 

identification of the unusual observations which are, in some sense, remote from the rest of 

the data and may potentially affect the estimation and prediction results. The fifth chapter 

concludes the theoretical part by briefly covering several procedures for the features 

selection, which help to distinguish between the active and inactive predictors. 
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The practical part of the thesis aims at the illustration of the regression model-building 

process implemented on the actual data. For that purpose, the life expectancy at birth has 

been taken as the random variable whose behavior will be studied from the statistical point 

of view.   

Life expectancy is one of the key indicators reflecting the population's health, which is 

broadly used by the researchers and policymakers to supplement economic measures of a 

nation's prosperity, such as GDP per capita. The data on the indicators, which may 

potentially be connected with the life expectancy, were retrieved from the official 

databases of international institutions: Global Health Observatory (GHO) - a World Health 

Organization's (WHO) data repository, and the World Bank's (WB) databank. All the 

features which act as explanatory variables involve economic, demographic factors, as well 

as indicators based on the nutritional status, immunization coverage, and factors which 

may put a person's life at risk.  

The regression analysis is entirely conducted in the R statistical computing environment (R 

Core Team, 2018), which provides a broad spectrum of statistical and graphical 

techniques. Appendix A3 contains the complete reproducible R code with commented 

commands for better comprehension of the steps of the analysis. 
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Theoretical Part 

1. Linear Regression Model 

In a preliminary analysis of a particular phenomenon or in the case where predictions are 

the main objectives, the models usually belong to the group of models that are linear in the 

parameters. That is, the relationships are modeled as linear functions of predictors, and the 

parameters enter the model as simple coefficients. These models are referred to as linear 

regression models (Rawlings et al., 1998). 

 

1.1. Theoretical Regression Model 

The theoretical regression model is assumed to hold in the population of interest and is 

represented by the following equation 

 𝑦/ = 𝜂/ + 𝜀/,   for  i = 1, 2, …, n, (1.1) 

where 

n is the number of observations, 

𝑦/ is the value of the response variable y for the ith observation, 

𝜂/ is the population (theoretical) regression function corresponding to the ith 

observation, 

𝜀/ is an additive error term such that 

 𝐸(𝜀/) = 0,   for   i = 1, 2, …, n. (1.2) 

A population regression function (PRF) 𝜂/ is a systematic component, represented by a 

linear function of the predictor variables and unknown constants, which hypothesizes a 

theoretical relationship between a dependent variable and a set of independent variables.  

It is convenient to consider the regressors X1, …, Xk  as controlled by the researcher and 

measured with negligible error, while the response y is a random variable. That is, there is 

a conditional probability distribution for y at each possible value for X1, …, Xk. 

For a simple linear regression model with a single regressor X, the regression function 

describing the relationship with a response y is a straight line, and in accordance with (1.2) 

the mean of the distribution is 
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 𝜂/ = 𝐸(𝑦/) = 𝐸(𝛽8 + 𝛽9𝑥/ + 𝜀/) = 𝛽8 + 𝛽9𝑥/ + 𝐸(𝜀/) = 𝛽8 + 𝛽9𝑥/ , (1.3) 

where 

𝑥/ are the values of the explanatory variable X for the ith observation, 

𝛽8 is the intercept of the regression line (i.e., the expected value of y when X = 0), 

𝛽9 is the slope of the regression line (i.e., the change in the mean of the distribution of 

y produced by a unit change in X). 

If the range of X does not include zero, then 𝛽8	has no practical interpretation. 

Generally, the response y may be related to k explanatory variables. The regression 

function for a multiple regression, involving more than one predictor, is a hyperplane in a 

(k+1)-dimensional space and is given as 

 𝜂/ = 𝛽8 + 𝛽9𝑥/9 + 𝛽;𝑥/; + ⋯+ 𝛽=𝑥/=, (1.4) 

where 

k   is the number of regressors, 

𝑥/9, … , 𝑥/= are the values of the explanatory variables X1, …, Xk for the ith  observation, 

𝛽8  is the intercept of the regression line (i.e., the expected value of y when     

X1, …, Xk = 0), 

𝛽@, for j = 1, 2, …, k    are partial regression coefficients, representing the expected 

change in y per unit change in Xj when all of the remaining regressor variables are held 

constant (Montgomery et al., 2012). 

Consequently, the theoretical regression model is defined as 

 𝑦/ = 𝜂/ + 𝜀/ = 𝛽8 + 𝛽9𝑥/9 + 𝛽;𝑥/; +⋯+ 𝛽=𝑥/= + 𝜀/, (1.5) 

where 𝜀/ is an error term or random disturbance, named so because it "disturbs" an 

otherwise stable relationship. The disturbance arises for several reasons, principally 

because it is merely possible to capture every impact on an economic variable in a model, 

no matter how elaborate (Greene, 2003). Thus, it is a proxy of all factors other than 

predictors under consideration that could possibly influence the dependent variable. 

Under matrix notation, the equation (1.5) can be rewritten as 

 𝒚 = 𝑿𝜷 + 𝜺, (1.6) 
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where 

 𝒚 = E

𝑦9
𝑦;
⋮
𝑦G

H , 𝑿 = I

1 𝑥99
1 𝑥;9

⋯ 𝑥9=
⋯ 𝑥;=

⋮ ⋮
1 𝑥G9

⋮ ⋮
⋯ 𝑥G=

K ,	𝜷 = I

𝛽8
𝛽9
⋮
𝛽=

K ,	𝜺	 = E

𝜀9
𝜀;
⋮
𝜀G

H, (1.7) 

and 

𝒚 is the (n ´ 1) column vector of observations on the dependent variable yi, 

𝑿 is the (n ´ p) model matrix consisting of a column of ones allowing for estimation 

of the intercept, followed by the k column vectors of the observations on the independent 

variables, 

𝜷 is the (p ´ 1)  vector of parameters, 

𝜺 is the (n ´ 1)  vector of the error terms. 

Due to the presence of the intercept, the number of parameters in the model is equal to     

(p = k + 1). The vectors 𝒚 and 𝜺 are stochastic vectors; elements of these vectors are 

random variables. The matrix 𝑿 is regarded as a matrix of known constants. The vector 𝜷 

is a vector of fixed, but unknown, population parameters (Rawlings et al., 1998). 

 

1.2. Empirical Regression Model 

Multiple linear regression models are frequently applied as empirical models or 

approximating functions for the true underlying functional relationship between y and     

X1, …, Xk. This relationship is not known, but over certain sets of the predictor variables, 

the linear regression model may be a suitable approximation to the true unknown function 

(Montgomery et al., 2012). The fundamental purpose of the regression model is to estimate 

the population parameters 𝛽@ based on the data from a given sample.  

The sample regression function (SRF) is the counterpart of the fixed, but unknown 

population regression function (PRF). Since the SRF, which is an estimation of the PRF, is 

obtained for a given sample drawn from the population, a new sample will produce 

different parameter estimates. The SRF is defined as 

 �̂�/ = 𝑏8 + 𝑏9𝑥/9 + 𝑏;𝑥/; + ⋯+ 𝑏=𝑥/=, (1.8) 

where 𝑏@ are the estimators of the parameters 𝛽@.  
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Consequently, the empirical regression model is expressed as 

 𝑦/ = �̂�/ + 𝑒/ = 𝑏8 + 𝑏9𝑥/9 + 𝑏;𝑥/; + ⋯+ 𝑏=𝑥/= + 𝑒/, (1.9) 

where 

𝑦/ is the observed value of the response variable y for the ith observation, 

𝑒/ is the residual for ith observation. 

Using matrix notation, the equation (1.9) can be rewritten as 

 𝒚 = 𝑿𝒃 + 𝒆, (1.10) 

where 

𝒃 is the (p ´ 1) vector of estimators of 𝜷, 

𝒆 is the (n ´ 1) vector of the residuals (i.e., estimators of 𝜺). 

It follows that 

 𝑦Q/ = �̂�/ = 𝑏8 + 𝑏9𝑥/9 + 𝑏;𝑥/; +⋯+ 𝑏=𝑥/= , (1.11) 

where 𝑦Q/ is the fitted value of y for observation i, when X1= 𝑥/9, …, Xk= 𝑥/=, 

or equivalently 

 𝒚R = 𝑿𝒃, (1.12) 

where 𝒚R is the (n ´ 1) vector of fitted values. 

The residual is the difference between the observed value 𝑦/	and the corresponding fitted 

value 𝑦Q/, which provides a basis for the estimation of the realized value of the error term 

𝜀/. Mathematically, the ith residual is 

 𝑒/ = 𝑦/ − 𝑦Q/, (1.13) 

or the vector of residuals 

 𝒆 = 𝒚 − 𝒚R. (1.14) 

Since the residuals measure the discrepancy between the actual data and the fitted model, 

they play a significant role in examining model adequacy (Montgomery et al., 2012). The 

subsequent sections discuss the main underlying assumptions of the linear regression 

models, methods for detection of departures from these assumptions, and possible 

solutions to such problems. 
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1.3. Assumptions of the Classical Linear Regression Model 

The linear regression is a parametric approach, which means that the model consists of a 

set of the underlying assumptions. Since the population regression function (PRF) is 

unobservable, one has to „guess“ it from the sample regression function (SRF) based on a 

particular sample drawn randomly from the entire population. The Classical Linear 

Regression Model (CLRM) provides a framework which assists in the achievement of the 

best possible guess (Gujarati, 2018), based on the assumptions discussed below. For 

successful regression analysis, proper estimation and inference procedures, it is crucial to 

evaluate whether these assumptions on the form of the model and relationships between its 

parts are satisfied. 

A1. Linearity 

The model (1.5) determines a linear relationship between y and X1, …, Xk. In such context, 

this assumption requires that the response variable is a linear combination of the 

explanatory variables and the error term. Nonetheless, by including non-linear independent 

variables, such as power transformations, it is possible to model curvilinear relationships. 

A2. Full rank of the model matrix X 

There cannot be perfect linear dependence (multicollinearity) among any of the 

independent variables in the model. Perfect multicollinearity suggests exact linear 

relationship, that is, knowing the value of one regressor allows to precisely predict the 

values of the other regressors. If this is not the case, the columns of the model matrix X are 

linearly independent, and the rank of the model matrix is equal to the number of its 

columns. The assumption of the full column rank of X is necessary for estimation of the 

parameters of the model. 

A3. Exogeneity of the independent variables 

The expected value of the error term for the ith sample observation should not be a function 

of the values of the explanatory variables at any observation, including the ith one. That is 

disturbance 𝜀 is assumed to have zero conditional mean 

 𝐸[𝜀/|𝑿] = 0,   for all   i= 1, 2, …, n. (1.15) 

This assumption requires that the predictors do not contain any useful information for 

prediction of the random error 𝜀/. 
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A4. Homoskedasticity and nonautocorrelation of the error term 

This assumption requires that the error terms have finite constant variance 𝜎; 

 𝐷[𝜀/|𝑿] = 𝜎; < ∞,   for all   i= 1, 2, …, n (1.16) 

and are not correlated across observations 

 𝐶]𝜀/, 𝜀@^𝑿_ = 0,   for all   i¹ j. (1.17) 

The homoskedasticity (1.16) suggests an equal degree of variability of the disturbance 

across the range of the independent variables. The heteroskedasticity occurs when the 

variance of the error term changes across values of the predictors. In the presence of the 

heteroskedasticity, inferences about the population based on the Ordinary Least Squares 

estimation, discussed in chapter 2, may be generally incorrect. 

Uncorrelatedness implies that observations of the error term should not predict each other. 

The assumption (1.17) requires that deviations of observations yi and yj from their expected 

values are uncorrelated. 

A5. Data generation 

It is customary to assume that elements of X are non-stochastic, whereby the researcher 

chooses the values of the regressors and then observes yi. This assumption is a 

mathematical convenience, which allows simplifying the assumptions A3, A4, and A6 by 

considering the probability distribution of the error to be unconditional. That is, the 

distribution of 𝜀/	does not involve any of the constants in X. 

A6. Normality of the error term 

In addition to the assumptions A3 and A4, the disturbances are supposed to follow normal 

distribution 

 𝜺|𝑿	~	𝑁(𝟎, 𝜎;𝑰),	 (1.18) 

where I is the identity matrix with ones on the main diagonal and zeros elsewhere. 

The violation of the normality assumption does not lead to biased or inefficient estimation 

of the regression parameters.  Fulfillment of this assumption is essential for performing 

appropriate hypothesis testing and generating reliable confidence and prediction intervals. 

However, this is only a concern when the sample size is very small.  When the sample size 

is sufficiently large, the Central Limit Theorem ensures that the distribution of the 

unobservables will be approximately normal (Greene, 2003). 
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1.4. Least Squares Estimation 

There are various approaches to parameter estimation in the model. For many reasons, the 

method of least squares remains the benchmark technique, and in practice, the preferred 

method frequently results in a modification of the least squares (Greene, 2003). This 

section summarizes some of the features of the Ordinary Least Squares (OLS) method and 

its modification known as the Weighted Least Squares (WLS). 

 

1.4.1. Ordinary Least Squares 

The method of the Ordinary Least Squares (OLS) chooses the estimates to minimize the 

sum of squared residuals. In the multivariate case with k independent variables, that is, 

given n observations on y, X1, …, Xk , the least squares estimators of 𝛽@ are obtained by 

minimizing the following expression 

 d𝜀/;
G

/e9

=d(𝑦/ − 𝛽8 − 𝛽9𝑥/9 − 𝛽;𝑥/; −⋯− 𝛽=𝑥/=);	.
G

/e9

 (1.19) 

This minimization problem consists of taking partial derivatives of the (1.19) with the 

respect to each 𝛽@ and setting them to 0, leading to (k + 1) linear equations in (k + 1) 

unknowns 𝑏8, 𝑏9, … , 𝑏=  

 

𝑛g9d(𝑦/ − 𝑏8 − 𝑏9𝑥/9 − 𝑏;𝑥/; −⋯− 𝑏=𝑥/=);
G

/e9

 

𝑛g9d𝑥/9(𝑦/ − 𝑏8 − 𝑏9𝑥/9 − 𝑏;𝑥/; − ⋯− 𝑏=𝑥/=);
G

/e9

 

… 

𝑛g9d𝑥/=(𝑦/ − 𝑏8 − 𝑏9𝑥/9 − 𝑏;𝑥/; − ⋯− 𝑏=𝑥/=);
G

/e9

 

(1.20) 

These equations are often referred to as the OLS first order conditions, which can be 

computed by the method of moments under the exogeneity assumption A3 (Wooldridge, 

2015).  

Recall the equation (1.15) 𝐸[𝜀/|𝑿] = 0, which can be written as 𝐸[𝜀] = 0. The probability 

theory implies that 
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 𝐶[𝑋@, 𝜀] = 𝐸]𝑋@𝜀_ − 𝐸]𝑋@_𝐸[𝜀] = 0. (1.20 a) 

Given the mean value of the random element 𝐸[𝜀] = 0 by the assumption and 

independence of the error term form the jth regressor, it follows that 𝐸]𝑋@𝜀_ = 0.  

Using these assumptions and 𝜀 = 𝑦 − 𝛽8 − 𝛽9𝑋9 − 𝛽;𝑋; −⋯− 𝛽=𝑋= , the population 

moment conditions can be expressed as 

 

𝐸(𝑦 − 𝛽8 − 𝛽9𝑋9 − 𝛽;𝑋; − ⋯− 𝛽=𝑋=) = 0 

𝐸[𝑋9(𝑦 − 𝛽8 − 𝛽9𝑋9 − 𝛽;𝑋; −⋯− 𝛽=𝑋=)] = 0 

… 

𝐸[𝑋=(𝑦 − 𝛽8 − 𝛽9𝑋9 − 𝛽;𝑋; −⋯− 𝛽=𝑋=)] = 0 

(1.20 b) 

 

The method of moments is used to estimate population moments by their sample 

counterpart. Therefore, the equations (1.20) are the sample analogs to the population 

restrictions (1.20 b).  

In matrix terms, minimizing the sum of squared residuals requires to select a vector b such 

that the following function of 𝜷 is as small as possible 

 𝜺𝑻𝜺 = (𝒚 − 𝑿𝜷)𝑻(𝒚 − 𝑿𝜷). (1.21) 

Taking partial derivatives of the expression with respect to 𝜷 and setting them to null 

vector leads to the least squares normal equations for b 

 𝑿𝑻𝑿𝒃 = 𝑿𝑻𝒚. (1.22) 

If the square matrix (XTX) is non-singular, following from the full column rank 

assumption A2, the inverse of this matrix exists, and there is a unique solution to (1.22) 

obtained as 

 𝒃 = (𝑿𝑻𝑿)g𝟏𝑿𝑻𝒚. (1.23) 

Hence, b is given by a linear transformation of the random vector y (Bašta, 2017). 

 

1.4.2. Goodness of Fit 

Once the parameter estimates have been obtained, it is necessary to assess how well the 

regression model fits the data at hand. Measures of goodness of fit summarize the disparity 
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between actual values of the dependent variable and the values expected under the model 

in consideration. Both with simple and multiple regression, it is reasonable to define the 

explained sum of squares (SSE), the residual sum of squares (SSR) and the total sum of 

squares (SST) as 

 𝑆𝑆𝐸 =d(𝑦Q/ − 𝑦l/);
G

/e9

, (1.24) 

 𝑆𝑆𝑅 =d(𝑦/ − 𝑦Q/);
G

/e9

, (1.25) 

 𝑆𝑆𝑇 =d(𝑦/ − 𝑦l/);
G

/e9

. (1.26) 

The explained sum of squares (SSE) is the sum of squared differences between the fitted 

values and the mean of the response variable, which describes how well the model fits the 

data. The residual sum of squares (SSR) is the sum of squared distances between observed 

and predicted values, which quantifies the remaining variability which was not captured by 

the model. The total sum of squares (SST) is the sum of squared differences between the 

observed response variable and its mean, which measures the dispersion of the response 

around its average value. 

Thus, the total variation in y can be expressed as the sum of the explained and unexplained 

variation 

 𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅 (1.27) 

Considering that the total sum of squares, SST, being not equal to zero (which is true 

except the very rare case when all the yi are equal to the same value) it is possible to derive 

the coefficient of determination, or R-squared, as 

 𝑅; =
𝑆𝑆𝐸
𝑆𝑆𝑇 = 1 −

𝑆𝑆𝑅
𝑆𝑆𝑇	. 

(1.28) 

𝑅; indicates the proportion of the sample variation in y that is explained by independent 

variables X. The value of 𝑅; is always between zero and one because SSE cannot exceed 

SST. A value of 𝑅;that is nearly equal to zero is an evidence of a poor fit of the OLS 

model. On the contrary, the values close to 1 may signify that the OLS estimation provides 

a good fit to the data. For the purpose of interpretation, 𝑅;	is usually multiplied by 100 to 

express the percentage of the variation in y explained by the model. 
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An important fact about the coefficient of determination, 𝑅;, is that it never decreases, and 

moreover, usually increases when another regressor is added to the model. On the contrary, 

the adjusted 𝑅;	imposes a penalty for the inclusion of an additional predictor to a model. 

The formula (1.29) for the adjusted 𝑅;	shows that it depends explicitly on the number of 

independent variables k. Therefore, the adjusted 𝑅;	can either increase or decrease, 

depending on the contribution of the new regressor to the fit of the regression (Wooldridge, 

2015): 

 𝑅op@; = 1 − (1 − 𝑅;)
(𝑛 − 1)

(𝑛 − 𝑘 − 1)	. 
(1.29) 

 

1.4.3. Properties of the OLS Estimators 

Under the CLRM assumptions, discussed in section 1.3, the OLS estimators 𝑏@ are 

unbiased estimators of the population parameters 𝛽@ 

 

 𝐸r𝑏@s = 𝛽@,			for	all		𝑗 = 0, 1,… , 𝑘, (1.30) 

with the sampling variances 

 𝐷r𝑏@s =
𝜎;

𝑆𝑆𝑇@(1 − 𝑅@;)
,			for	𝑗 = 1, 2,… , 𝑘.  (1.31) 

where 

𝜎;    is the error variance, 

𝑆𝑆𝑇@ = ∑ (𝑥/@ − �̅�@);G
/e9   is the total sample variation in 𝑥@ and 𝑅; is the R-squared 

from regressing 𝑥@ on all other independent variables, and including an intercept 

(Wooldridge, 2015). 

Under the matrix notation, the properties (1.30) and (1.31) are defined as 

 𝐸(𝒃) = 𝜷 ,  (1.32) 

and 

 𝐶(𝒃) = 𝜎;(𝑿𝑻𝑿)g𝟏 .  (1.33) 

The main-diagonal elements of the covariance matrix 𝑪(𝑏) are variances of the least-

squares estimators of individual regression parameters, and the off-diagonal elements are 
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covariances between the estimators. The matrix 𝑪(𝑏) is entirely determined by the 𝜎; and 

the model matrix X. Furthermore, such OLS estimators follow approximately the 

multivariate normal distribution: 

 𝒃	~	𝑁(𝜷, 𝜎;(𝑿𝑻𝑿)g𝟏).	 (1.34) 

For construction of the confidence intervals and conducting hypothesis tests presented in 

chapter 2, it is necessary to estimate the standard deviation of 𝑏@, which is the square root 

of the estimators variance 

 
𝑠𝑑r𝑏@s =

𝜎

|𝑆𝑆𝑇@(1 − 𝑅@;)
. 

 (1.35) 

Since the theoretical error variance 𝜎; is unknown in real life, it must be estimated from 

the available sample data. In the general multiple regression case, an unbiased estimator of 

𝜎; is the residual variance calculated as 

 𝑠;(𝑒) =
𝑆𝑆𝑅

𝑛 − 𝑘 − 1. 
 (1.36) 

It follows that 𝜎 is replaced with its estimator, which gives the standard error of 𝑏@ 

 𝑠𝑒r𝑏@s =
𝑠(𝑒)

|𝑆𝑆𝑇@(1 − 𝑅@;)
.  (1.37) 

Therefore, the unbiased estimator of the covariance matrix C(b) (Bašta, 2017) is defined as  

 𝑆(𝒃) = 𝑠;(𝑒)(𝑿𝑻𝑿)g𝟏.  (1.38) 

 

1.4.4. Weighted Least Squares 

In response to the situation when the assumption of the constant error variance (A4) is 

violated, that is, in the presence of heteroskedasticity, a Weighted Least Squares (WLS) 

estimation may serve as an alternative to the Ordinary Least Squares. If the form of the 

heteroskedasticity as a function of explanatory variables is specified correctly, then the 

Weighted Least Squares approach is more efficient than the OLS and leads to the new t 

and F statistics that have t and F distributions (discussed in chapter 2). 

Let X denote the model matrix containing all the information on the explanatory variables 

and assume that 
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 𝐷(𝜀|𝑿) = 𝜎;𝑤(𝑿),  (1.39) 

where 𝑤(𝑿) is some function of the independent variables that determines the shape of the 

heteroskedasticity. Since variances must be positive, 𝑤(𝑿) > 0for all possible values of 

the explanatory variables. For a random drawing from the population, it can be written 

 𝜎/; = 𝐷(𝜀/|𝑿𝒊) = 𝜎;𝑤/,  (1.40) 

where 𝑿𝒊 denotes all independent variables for observation i, and 𝑤/ changes with each 

observation because the independent variables change across observations.  

To estimate the parameters 𝛽@, the original equation (1.5) containing heteroskedastic errors  

 𝑦/ = 𝛽8 + 𝛽9𝑥/9 + 𝛽;𝑥/; +⋯+ 𝛽=𝑥/= + ε/	,   

is transformed into an equation that has homoskedastic errors and satisfies the other CLRM 

assumptions. Since 𝑤/ is just a function of 𝑋/ the following holds for the transformed error 

term, stemming from (1.40): 

 𝐸 �
ε/
�𝑤/

|𝑿𝒊� = 0	, (1.41)  

 𝐷 �
ε/
�𝑤/

|𝑿𝒊� = 𝜎;	. (1.42) 

The equation (1.5) can be, therefore, divided by �𝑤/ to get 

 
𝑦/
�𝑤/	

= 𝛽8
1

�𝑤/	
+ 𝛽9

𝑥/9
�𝑤/	

+ 𝛽;
𝑥/;
�𝑤/	

+ ⋯+ 𝛽=
𝑥/=
�𝑤/	

+
ε/
�𝑤/	

 (1.43)  

or equivalently 

 𝑦/∗ = 𝛽8𝑥/8∗ + 𝛽9𝑥/9∗ + 𝛽;𝑥/;∗ + ⋯+ 𝛽=𝑥/=∗ + 𝜀/∗ (1.44)  

where 𝑥/8∗ = 	
9

���
 . 

The modified equation (1.44) satisfies the classical linear model assumptions (A1 through 

A6) if the initial model does so except for the homoskedasticity assumption. The parameter 

estimators 𝑏@ from this model will differ from the OLS estimators in the original equation 

and are the examples of Generalized Least Squares (GLS) estimators. In this particular 

case, the GLS estimators are used to correct for the heteroskedasticity in the errors and are 

termed the Weighted Least Squares (WLS) estimators. This name arises from the fact that 

the 𝑏@ minimize the weighted sum of squared residuals, where each squared residual is 
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weighted by 9
��

. The concept of the WLS is that less weight is given to the observations 

with a higher error variance, whereby the OLS assigns the same weight to each 

observation, assuming identical error variance for the whole population.  

Mathematically, the WLS estimators are the values of the 𝑏@ that make the following 

expression as small as possible 

 d
(𝑦/ − 𝑏8 − 𝑏9𝑥/9 −⋯− 𝑏=𝑥/=);

𝑤/

G

/e9

	. (1.45)  

In most situations, the exact form of heteroskedasticity is not apparent; hence, it is difficult 

to find the function 𝑤(𝑿). Nevertheless, it is convenient to model the function 𝑤/ and use 

the data to estimate the unknown parameters in this model. This results in an estimate of 

each 𝑤/ indicated as 𝑤R/. Using  𝑤R/in place of 𝑤/	in the GLS transformation yields an 

estimator known as the Feasible Weighted Least Squares (FWLS) estimator (a special case 

of the Feasible Generalized Least Squares, FGLS, whereby the error terms are not 

correlated (Franzese and Kam, 2009). 

There are many approaches to modeling heteroskedasticity, but one particular, reasonably 

flexible approach is considered in this section. Assume that 

 𝐷(ε|𝑿) = 𝜎;𝑒𝑥𝑝(𝛿8 + 𝛿9𝑋9 + 𝛿;𝑋; + ⋯+ 𝛿=𝑋=)	, (1.46)  

where 

𝑋9, … , 𝑋= are the independent variables appearing in the regression model equation 

(1.5) (for convenience, the subscripts i are omitted), 

𝛿@  are unknown parameters. 

The function 𝑤(𝑿) is then 

 𝑤(𝑿) = 𝑒𝑥𝑝(𝛿8 + 𝛿9𝑋9 + 𝛿;𝑋; +⋯+ 𝛿=𝑋=) . (1.47)  

The exponential function in (1.46) ensures that predicted values are positive since the 

estimated variances have to be positive in order to implement WLS. The parameters 𝛿@ 

estimated from the sample data will serve for construction of the weights. Under the 

assumption (1.45), it can be written 

 ε; = 𝜎;𝑒𝑥𝑝(𝛿8 + 𝛿9𝑋9 + 𝛿;𝑋; +⋯+ 𝛿=𝑋=)𝜈. (1.48)  
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where 𝜈 has a mean equal to unity, conditional on X. If 𝜈 is assumed to be independent of 

X, it is possible to write 

 log(ε;) = 𝛼8 + 𝛿9𝑋9 + 𝛿;𝑋; +⋯+ 𝛿=𝑋= + 𝜈�. (1.49)  

where 𝜈′ has a zero mean and does not depend on X. The intercept in this model differs 

from 𝛿8; however, it is not important in performing WLS. Since (1.49) satisfies the main 

assumptions, the unbiased estimators of 𝛿@ can be obtained using OLS. 

First, it is necessary to replace the unobserved ε with the OLS residuals e. Consequently, 

we run the regression of 

 log(𝑒;)	𝑜𝑛	𝑋9, 𝑋;, … , 𝑋=	. (1.50)  

After obtaining the fitted values from this regression, the estimates of 𝑤R/ can be simply 

derived through exponentiation 

 𝑤R/ = exprlog(𝑒�;)� s	. (1.51)  

Now, the  𝑤/ are substituted with 𝑤R/ in the expression (1.45). It is necessary to remember 

that each squared residual is weighted by 9
�R�

. If all the variables are transformed in the first 

place and then the OLS is applied, each variable gets multiplied by 9
��R�

	including the 

intercept. 

Similarly to the OLS, the FGLS estimation measures the marginal impact each Xj has on y. 

However, if the heteroskedasticity problem arises, the FWLS estimators are usually more 

efficient, and associated test statistics have the usual t and F distributions, at least in large 

samples (Wooldridge, 2015). 

In the matrix notation, the heteroskedastic regression model has the error covariance 

matrix 

 𝐶(𝛆|𝑿) = 𝛀 = σ;𝑾 (1.52)  

where 𝛀 is a diagonal positive semidefinite matrix. The disturbances are still regarded as 

uncorrelated across observations, so the off-diagonal elements of the covariance matrix 

would be zeros 
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 𝐶(𝛆|𝑿) = σ;𝑾 = σ; I

𝑤9
0
⋮
0
		

0
𝑤;
⋮
0

		

⋯
⋯
⋮
⋯
		

0
0
⋮
𝑤G

K = I
σ9;
0
⋮
0

		

0
σ;;
⋮
0

		

⋯
⋯
⋮
⋯
		

0
0
⋮
σG;
K (1.53)  

where the variance of the disturbances depends on the predictor values of the respective 

observation i. 

Thereby, the classical linear regression with homoskedastic error terms is a special case 

with wi = 1 for all i = 1,2,…, n (Greene, 2003). The matrix W equals to the identity matrix 

I, and the resulting the covariance matrix is 

 𝐶(𝛆) = 𝝈𝟐𝑰 . (1.54)  

 

It is possible to find an invertible matrix P such that 

 𝑷𝑻𝑷 = 𝑾g𝟏, (1.55)  

and 

 𝑰 = 𝑷𝑾𝑷𝑻. (1.56)  

If both sides of the equation 𝒚 = 𝑿𝜷 + 𝜺,	are premultiplied by the matrix P, the modified 

regression model is defined as 

 𝑷𝒚 = 𝑷𝑿𝜷 + 𝑷𝜺 . (1.57)  

Defining 𝐪 ≡ 𝐏𝐲, 𝐐 ≡ 𝐏𝐗 and 𝐮 ≡ 𝐏𝜺, equation (1.57) can be equivalently written as 

 𝒒 = 𝑸𝜷 + 𝒖	. (1.58)  

It can be proved, that in this transformed equation, the expectation and the variance of the 

error term u, conditioned on the model matrix X are 

 𝐸(𝒖) = 𝐸(𝑷𝜺) = 𝟎	, (1.59)  

 𝐶(𝒖) = 𝐶(𝑷𝜺) = σ;𝑰 . (1.60) 

Therefore, the classical regression model applies to this transformed model. The vector of 

the error terms u in the equation (1.58) satisfied the assumption A4. Thus, OLS estimator 

of 𝜷 becomes a GLS estimator, denoted as 𝒃¥ , which is obtained by minimizing the 

generalized sum of squares with respect to 𝜷 

 𝒖𝑻𝒖 = (𝒒 − 𝑸𝜷)𝑻(𝒒 − 𝑸𝜷)	, (1.61)  
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or equivalently  

 (𝒚 − 𝑿𝜷)𝑻𝐖g𝟏(𝒚 − 𝑿𝜷) , (1.62)  

and is given as 

 𝒃¥ 	= (𝑸𝑻𝑸)g𝟏𝑸𝑻𝒒 . (1.63)  

Since W is a diagonal matrix such that 

 𝑾 = I

𝑤9
0
⋮
0
		

0
𝑤;
⋮
0

		

⋯
⋯
⋮
⋯
		

0
0
⋮
𝑤G

K	,	   

the diagonal elements of 𝐖g𝟏 are given as 9
��

 

 𝑾g𝟏 = I
1/𝑤9
0
⋮
0

		

0
1/𝑤;
⋮
0

		

⋯
⋯
⋮
⋯
		

0
0
⋮

1/𝑤G

K	. (1.64)  

Consequently, the matrix P can be chosen such that its diagonal values are equal to 9
���

 

(Bašta, 2017): 

 𝑷 = I
1/√𝑤9
0
⋮
0

		

0
1/√𝑤;
⋮
0

		

⋯
⋯
⋮
⋯
		

0
0
⋮

1/�𝑤G

K	. (1.65)  

Since the matrix of weights is unknown in the real-life situation, the procedure described 

above is used to estimate the weights and to transform the original regression equation. 

Hence, finding the weighted least-squares estimators amounts to minimizing  

 d
𝑒/;

𝑤/

G

/e9

	. (1.66)  

All the results for the classical model, such as usual inference procedures, apply to the 

transformed model in (1.58). 

However, there is no explicit counterpart to R2 in the generalized regression model. As 

seen from the equation (1.43), the transformed regression (1.58) need not have a constant 

intercept, so the R2 is not bounded by zero and one. 
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2. Statistical Inference 

This chapter addresses the problem of testing the hypotheses about the parameters in the 

population regression model. 

 

2.1. Hypothesis Testing 

Once the parameters in the model (1.5) have been estimated, it is necessary to assess the 

overall adequacy of the model and the importance of specific regressors. Several 

hypothesis testing methods may serve for this purpose. To ensure that the formal tests 

provide reliable results, it is essential that the random disturbances follow approximately 

normal distribution with zero mean and constant variance. 

For a full comprehension of hypothesis testing, it is necessary to remember that the 𝛽@ are 

unknown characteristics of the population, and they will never be known with certainty. 

Nevertheless, an analyst can hypothesize about the value of 𝛽@ and then conduct statistical 

inference to test the hypothesis of interest.  

The null hypothesis, shortly H0, is the hypothesis being tested. To perform the testing of 

H0, one must calculate a test statistic, which is a random variable with a known distribution 

under the null hypothesis. When the null hypothesis is false, the test statistic has some 

other distribution (Davidson and MacKinnon, 2003).  

The explicit rejection rule depends on the alternative hypothesis, against which H0 is 

tested, and the chosen significance level of the test 𝛼, that is, the probability of rejecting H0 

when it is, in fact, true (Wooldridge, 2015). 

 

2.1.1. Test for Overall Significance of a Regression: The F-Test 

The test for significance of regression helps to see whether a linear relationship between 

the response y and any of the regressor variables X1, …, Xk exists or not. This procedure 

often evaluates overall adequacy of the model. The tested null hypothesis is 

 𝐻8:	𝛽9 = 𝛽; = ⋯ = 𝛽= = 0	. (2.1)  

This test is a joint test of the hypothesis that all the coefficients except the constant term 

are zero; thus, none of the explanatory variables has an impact on y. The alternative 

hypothesis is then 
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 𝐻9:	𝛽@ ≠ 0	,   for at least one   j, (2.2)  

which implies that at least one of the predictors X1, …, Xk contributes significantly to the 

model.  

The F-test is an example of a set of multiple restrictions since several restrictions are 

imposed on the regression parameters. 

If 	𝐻8:	𝛽9 = 𝛽; = ⋯ = 𝛽= = 0		is not rejected, it indicates that all explanatory variables X1, 

…, Xk have no effect on the response variable and might be excluded from the model.  

In its general form, the F-statistic (or F-ratio) used for testing the null hypothesis is given 

as 

 𝐹 =
(𝑆𝑆𝑅 − 𝑆𝑆𝑅®)/𝐽
𝑆𝑆𝑅®/(𝑛 − 𝑘 − 1)

	, (2.3)  

where  

J  is the number of explicitly imposed restrictions on the parameters of the 

general linear hypothesis in the regression (J parameters are equal to 0), 

𝑆𝑆𝑅, 𝑆𝑆𝑅®  are the sums of squared residuals from the restricted and unrestricted 

models, respectively. 

For testing restrictions, it is often convenient to compute the F-statistic using the 

coefficients of determination, 𝑅;, from the restricted and unrestricted models. Thus, the 

formula in (2.3) can be equivalently defined as 

 𝐹 =
(𝑅®; − 𝑅;)/𝐽

(1 − 𝑅®; )/(𝑛 − 𝑘 − 1)
	, (2.4)  

where 𝑅; and 𝑅®;  are the R-squareds from the restricted and unrestricted models 

respectively. 

Assuming the CLRM assumptions hold, it can be shown that under H0, F is distributed as 

an F random variable with (J, n – k – 1) degrees of freedom  

 𝐹~	𝐹°,			Gg=g9	. (2.5)  

When testing for the global significance of a regression model, J = k meaning that there 

are k restrictions in (1.5), and when they are imposed, the restricted model takes the form 

 𝑦/ = 𝛽8 + ε/ . (2.6)  
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That is, all independent variables have been dropped from the equation. Now, the 𝑅;  from 

estimating (2.6) is zero: the model explains none of the variation in y because it does not 

contain explanatory variables. Therefore, the F-statistic for testing (2.1) is 

 𝐹 =
𝑅;/𝑘

(1 − 𝑅;)/(𝑛 − 𝑘 − 1)	, 
(2.7)  

Where 𝑅; is just the usual R-squared from the regression of y on all independent variables, 

and the test statistic has the following distribution 

 𝐹~	𝐹=,			Gg=g9	. (2.8)  

One will reject H0 in favor of H1 when F is sufficiently “large”, exceeding the 

(1 − 𝛼) × 100%  percentile of an F distribution with (k, n – k – 1) degrees of freedom. 

The rejection region is defined as 

 𝑊 = {𝐹 > 	𝐹9g´,			=,			Gg=g9} . (2.9)  

If H0 is rejected, it can be stated that X1, …, Xk are jointly statistically significant at the 

corresponding significance level. This test alone does not allow to determine, which of the 

variables have a partial effect on y: they may all have an impact on y, or maybe only one 

predictor affects y. If H0 is not rejected, then the regressors are jointly insignificant, which 

often justifies dropping them from the model (Wooldridge, 2015). 

 

2.1.2. Test on Individual Regression Coefficients: The t-Test 

Once the F-test detected that at least one of the regressors is significant, the next step is to 

define which one. Adding a variable to a regression equation always causes the explained 

sum of squares (SSE) to increase. However, the inclusion of a regressor also increases the 

variance of the fitted value 𝑦Q, so one must preferably include only those regressors that are 

useful for explaining the response (Montgomery, 2013).  

The null hypotheses for testing the significance of any individual regression coefficient 𝛽@, 

are 

 𝐻8:	𝛽@ = 0	, (2.10)  

where j corresponds to any of the k independent variables. Since 𝛽@ reflects the partial 

effect of Xj on the expected value of y under ceteris paribus condition, (2.10) means that, 

once X1, X2, …, Xj-1, Xj+1, …, Xk have been controlled for, Xj has no influence on the 
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expectation of y. Thereby, this is a test of the contribution of Xj given the other variables in 

the model (Wooldridge, 2015). 

In case of a one-tailed t-test, we are testing for the possibility of the relationship in one 

direction and absolutely ignoring the possibility of a relationship in the other direction: 

 𝐻9:	𝛽@ > 0   or   𝐻9:	𝛽@ < 0	.    (2.11)  

That is the expected population value of 𝛽@ is significantly greater (or less) than 0, and the 

corresponding predictor Xj has a positive (or negative) effect on the expected value of the 

outcome. 

Classical statistical inference procedures presume that the null and alternative hypothesis 

are stated before analyzing the data. Using a two-sided test prevents the researched from 

looking at the estimated model and then formulating hypotheses on the population 

coefficients. Hence, in many applications, it is common to test the null hypothesis (2.10) 

against a two-sided alternative 

 𝐻9:	𝛽@ ≠ 0. (2.12)  

Under this alternative hypothesis, Xj has either positive or negative ceteris paribus effect on 

y. The two-tailed test is a suitable alternative when the sign of 𝛽@ is not entirely determined 

by the theory or common sense. 

If we fail to reject 𝐻8:	𝛽@ = 0, the regressor Xj might be omitted from the model. 

Nonetheless, the results of the statistical hypothesis test should be viewed as a guideline, 

and deleting the variables from the model depends on the research question and knowledge 

about the process. 

The statistic used to test (2.7) against any alternative is called the t-statistic or the t-ratio of  

𝛽@ and is defined as 

 𝑡¸¹ =
(𝑏@ − 𝛽@)
𝑠𝑒(𝑏@)

=
𝑏@

𝑠𝑒(𝑏@)
	, (2.13)  

where  

𝛽@  is the hypothesized value of the population parameter being tested (zero in 

this particular case), 

𝑠𝑒(𝑏@)  is the standard error of 𝑏@ from the equation (1.37). 



 24 

Under the CLRM assumptions A1 through A6, the t-statistic has t distribution with           

(n – k – 1) degrees of freedom 

 𝑡¸¹	~	𝑡Gg=g9	. (2.14)  

When the test is two-tailed, the absolute value of the t-statistic is taken. The rejection rule 

for H0 against H1 is 

 𝑊 = {|𝑡¸¹| ≥ 	 𝑡9g´;,			Gg=g9
}	, (2.15)  

where the critical value is chosen to make the area in each tail of the t distribution equal to 

»´
;
¼ × 100%.  

In case of rejection of H0 in favor of H1 at the 𝛼 × 100% significance level, Xj is 

considered to be statistically different from zero. Otherwise, the explanatory variable Xj is 

thought of as statistically insignificant (Wooldridge, 2015). 

 

2.2. Univariate and Joint Confidence Regions on Regression Coefficients 

Point estimation returns single values as an estimation of the unknown population 

parameters. The point estimators are considerably useful; however, they do not carry as 

much information on the parameters of interest as the interval estimators.  

Since there is a degree of uncertainty whether the estimated value is close to the true 

parameter value or not, the interval estimation solves this issue by construction an interval 

around the point estimate. Each interval built with regard to a prespecified confidence level 

(1 − 𝛼) × 100% is called confidence interval, and it is supposed to contain the real value 

of population parameter with (1 − 𝛼) × 100% probability. 

 

2.2.1. Univariate Confidence Intervals 

Accounting for the fact, that 𝑡¸¹  has a е distribution with (n – k – 1) degrees of freedom and 

assuming that the interval of interest would be symmetric around 𝑏@, a (1 − 𝛼) × 100% 

confidence interval for parameter 𝛽@ is derived as 

 𝑏@ ±	𝑡9g´;,			Gg=g9
× 𝑠𝑒r𝑏@s	. (2.16)  

More precisely, the lower and upper limits of the confidence interval are given by 
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 𝑏@ ≡ 𝑏@ −	𝑡9g´;,			Gg=g9
× 𝑠𝑒r𝑏@s (2.17)  

and 

 𝑏@ ≡ 𝑏@ +	𝑡9g´;,			Gg=g9
× 𝑠𝑒r𝑏@s (2.18)  

respectively. This means, that if random samples were drawn from the population over and 

over again, with 𝑏@ and 𝑏@ calculated each time, then the unknown population value 𝛽@ 

would lie in the interval [𝑏@; 𝑏@] for (1 − 𝛼) × 100% of the samples (Wooldridge, 2015). 

 

2.2.2. Simultaneous Confidence Intervals 

For the classical univariate case, the confidence coefficient (1 − 𝛼) applies to each 

confidence interval. Nevertheless, in the multiple linear regression, the degree of 

confidence connected to the statement that all (p = k + 1) intervals simultaneously 

comprise their respective parameters is much lower. One of the relatively simple 

procedures that retains the joint confidence coefficient for several simultaneous statements 

near a preselected level (1 − 𝛼) is called the Bonferroni method. 

The confidence intervals are constructed as given in (2.16), but using 𝛼∗ = ´
¾
, where p is 

the number of simultaneous intervals or statements. That is, in the expression (2.16), 

𝑡9g¿À,			Gg=g9
 is substituted by 𝑡9g ¿

ÀÁ,			Gg=g9
. This approach ensures that the true joint 

confidence coefficient for the p simultaneous statements is at least (1 − 𝛼). 

The Bonferroni simultaneous confidence intervals for the p parameters 𝛽@ are given by 

 𝑏@ ±	𝑡9g ´
;¾,			Gg=g9

× 𝑠𝑒r𝑏@s	. (2.19)  

Therefore, Bonferroni confidence intervals look somewhat like the regular one-at-a-time 

confidence intervals based on the t distribution, except that each Bonferroni interval has a 

confidence coefficient »1 − ´
¾
¼	  instead of (1 − 𝛼).  

The simultaneous confidence intervals obtained using Bonferroni approach provides 

confidence intervals for each individual parameter 𝛽@ in such a way that the p-dimensional 

region produced by the intersection of the p simultaneous confidence intervals gives at 
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least a (1 − 𝛼) × 100% joint confidence interval for all parameters. The shape of this 

simultaneous confidence interval is rectangular (for p = 2) or cubic (for p = 3).  

When the number of parameters is small, the Bonferroni simultaneous confidence intervals 

are not very wide. However, if p is large, the Bonferroni-adjusted intervals tend to be very 

broad, and the simultaneous coverage may be much larger than the specified confidence 

level (1 − 𝛼) (Rawlings et al., 1998). 

 

2.2.3. Joint Confidence Regions 

In case of the confidence intervals, the inferences about the population parameters are 

implicitly based on the marginal distributions of their estimates. However, if those 

estimates are not independent, it is preferable to construct a confidence region that captures 

their joint distribution. 

The confidence intervals described in the previous sections are all derived by inverting the 

t-tests. Each t-statistic depends explicitly on individual parameters and their standard 

errors. In order to construct the confidence regions, the joint tests for several parameters 

should be inverted. These are generally the tests based on the statistics which follow the F 

distribution, as they depend on the vectors of estimates 𝑏@ and their covariance matrix C(b) 

(Davidson and MacKinnon, 2003). 

Mathematically, the joint confidence region for all p parameters in 𝜷 results from the 

inequality 

 (𝜷 − 𝒃)𝑻(𝑿𝑻𝑿)(𝜷 − 𝒃) ≤ 𝑝	𝑠;(𝑒)	𝐹9g´,			¾,			Gg¾ (2.20)  

where  

𝐹9g´,			¾,			Gg¾ is the value of the F distribution with (p, n – p) degrees of freedom that 

leaves probability 𝛼 in the upper tail, 

	𝑠;(𝑒)  is the residual variance, defined in the equation (1.36). 

The left-hand side of the inequality (2.17) expresses a quadratic form in 𝜷, because b, 

XTX, and the right-hand side are known quantities calculated from the data. Solving this 

quadratic form for the inequality boundary establishes a p – dimensional ellipsoid, which 

represents the (1 − 𝛼) × 100%  joint confidence region for all the parameters in the 
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model. The slopes of the axes and eccentricity of the ellipsoid display the direction and 

strength, respectively, of the correlation between the parameter estimates. 

A disadvantage of this statistical technique is that the ellipsoidal confidence regions with 

more than two or three dimensions do not have straightforward interpretation. A possible 

approach to using the p-dimensional joint confidence region for all regression parameters 

is to construct confidence regions for two parameters at a time ignoring the other (p – 2) 

parameters. The confidence level (1 − 𝛼) × 100% then applies to the joint statement with 

regards to two parameters being analyzed at the time. This procedure focuses on the joint 

distribution of two parameter estimates but disregards the values of the other parameters. 

For this reason, the joint confidence region approach suffers from the same conceptual 

issue as the univariate confidence intervals (Rawlings et al., 1998). 
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3. Residual Diagnostics 

3.1. Assessment of Regression Function Specification: RESET test 

Misspecification of the functional form in a multiple regression model occurs when it does 

not correctly capture the relationship between the response and the observed explanatory 

variables (Wooldridge, 2015). 

If in the original model 

 𝒚 = 𝑿𝜷 + 𝜺 (3.1)  

the assumption 𝐸(𝜺) = 𝟎 does not hold, then 𝒚 ≠ 𝑿𝜷, and the regression function is 

regarded as misspecified. Improperly specifying the functional form can have serious 

consequences if the aim of the analysis is statistical inference about the population. On the 

contrary, the assumption of a correct regression function specification is not required for 

constructing models for prediction purposes (Bašta, 2017). 

A useful way to conduct specification tests is as if the original model (3.1) is the null 

hypothesis, and the alternative is some unstated generalization of that model. Ramsey’s 

(1969) Regression Specification Error Test (RESET) is one such test which attempts to 

reveal the nonlinearities in the functional form. A straightforward approach would be to 

include squares, cubes, and interactions of the regressors to the equation and view H0 as a 

restriction on the extended model. Thus, one way to formulate the hypothesis is 

 𝐻8:			𝑦 = 𝛽8 + 𝛽9𝑋9 + ⋯+ 𝛽=𝑋= + ε (3.2)  

𝐻9:	𝑦 = 𝛽8 + 𝛽9𝑋9 +⋯+ ℎ𝑖𝑔ℎ𝑒𝑟	𝑜𝑟𝑑𝑒𝑟	𝑝𝑜𝑤𝑒𝑟𝑠	𝑜𝑓	𝑋=	𝑎𝑛𝑑	𝑜𝑡ℎ𝑒𝑟	𝑡𝑒𝑟𝑚𝑠 +⋯+ 𝛽=𝑋= + 𝜀. 

(3.3) 

The complication is that with a large number of variables in X, the model could become 

cumbersome.  

As an alternative solution, Ramsey proposed to add powers of the OLS fitted values 𝑦Q	- 

typically, the square and, possibly, the cube - to detect general forms of the model 

misspecification. This approach requires a two-step estimation procedure since the 

coefficients are needed in order to obtain 𝑦Q; and 𝑦QÉ. The suggestion is to fit the null model 

first, applying the least squares. Afterward, the second step is to add the squares and cubes 

of the predicted values from the first-step estimation to the equation and refit it with these 

additional variables (Greene, 2003). Hence, the alternative hypothesis is stated as 
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 𝐻9:			𝑦 = 𝛽8 + 𝛽9𝑋9 +⋯+ 𝛽=𝑋= + 𝛿9𝑦Q; + 𝛿;𝑦QÉ + ε	. (3.4)  

Functions of the fitted values from the initial regression now act as explanatory variables; 

however, the estimated parameters from (3.4) are not of the primary interest. This equation 

serves for testing whether some significant nonlinearities have not been accounted for.  

Under the null hypothesis, the regression equation (3.2) is correctly specified, and the 

parameters corresponding to the powers of the fitted values are statistically insignificant. 

The RESET is the F-statistic for testing 

 𝐻8:			𝛿9 = 𝛿; = 0 (3.5)  

in the expanded model (3.4). A significant F-statistic implies a rejection of the null 

hypothesis and assumes some functional form problem. In large samples, under H0 and the 

CLRM assumptions, the F-statistic has approximately F distribution with (2, n – k – 3) 

degrees of freedom (Wooldridge, 2015): 

 𝐹~𝐹;,			Gg=gÉ . (3.6)  

The prominent advantage of such a test is that it ensures much greater generality than a 

simple test of restrictions such as whether a coefficient or a set of coefficients are equal to 

zero. Still, a shortcoming of the RESET test is that it does not suggest any direction in 

which the researcher should proceed if the null model is rejected. This is a common feature 

of the specification tests, whereby the rejection of the null model does not presume any 

particular alternative (Greene, 2003). 

 

3.2. Assessment of Homoskedasticity of Errors 

A variety of tests for heteroskedasticity of the disturbances have been applied over the 

years. Some of them, while being able to detect heteroskedasticity, do not test the 

assumption that the error variance is independent from the explanatory variables. This 

section describes the two modern tests that detect the nature of heteroskedasticity, under 

which the usual OLS statistics become invalid. If heteroskedasticity is discovered by one 

of those tests, the Weighted Least Squares (WLS) described in the section (1.4.4.) is a 

suitable alternative to the OLS. 
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3.2.1. The Breusch-Pagan Test for Heteroskedasticity 

For the linear model 

 𝑦 = 𝛽8 + 𝛽9𝑋9 + 𝛽;𝑋; + ⋯+ 𝛽=𝑋= + ε	,	 (3.7)  

the condition that 𝐸(𝜀|𝑋) = 0 is assumed to hold so that OLS estimators are unbiased and 

consistent. The null hypothesis states that the assumption of homoskedasticity is true: 

 𝐻8:			𝐷(𝜀|𝑿) = 𝜎;.	 (3.8)  

Due to the assumption of a zero conditional expectation of the error, the variance can be 

written as	𝐷(𝜀|𝑋) = 𝐸(𝜀;|𝑋), and so the null hypothesis of homoskedasticity is equivalent 

to 

 𝐻8:			𝐸(𝜀;|𝑿) = 𝐸(𝜀;) = 𝜎;.	 (3.9)  

Thus, the test for violation of the homoskedasticity assumption constitutes of testing 

whether the expected value of 𝜀; is associated with one or more of the explanatory 

variables. If H0 is rejected, the expectation of 𝜀;, given the predictors, can be practically 

any function of the Xj. One of the approaches is to assume a linear function: 

 𝜀; 	= 	 𝛿8 + 𝛿9𝑋9 + 𝛿;𝑋; +⋯+ 𝛿=𝑋= + 𝜈	,	 (3.10)  

where 𝜈 is an error term with mean zero given the Xj. 

The null hypothesis of homoskedasticity is formulated as 

 𝐻8:			𝛿9 = 𝛿; = ⋯ = 𝛿= = 0	.	 (3.11)  

The actual errors in the population model are never known but have to be estimated by the 

OLS residuals, 𝑒/. Thus, after estimation of the equation 

 𝑒; 	= 	 𝛿8 + 𝛿9𝑋9 + 𝛿;𝑋; + ⋯+ 𝛿=𝑋= + 𝑒𝑟𝑟𝑜𝑟	,	 (3.12)  

it is possible to compute the F or LM (Lagrange multiplier) statistics for the joint 

significance of X1, …, Xk . The F and LM statistics both depend on the R-squared from 

regression (3.12) denoted as 𝑅ÊÀ
; . 

The LM version of the test is referred to as the Breusch-Pagan test for heteroskedasticity 

(BP test), and the LM statistic for amounts to the product of the sample size and the R-

squared from (3.12): 

 𝐿𝑀 = 𝑛	𝑅ÊÀ
; 	.	 (3.13)  
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The LM statistic has Chi-Square distribution with k degrees of freedom 

 𝐿𝑀~𝜒=;	.	 (3.14)  

A sufficiently small p-value, that is, below the chosen significance level𝛼, leads to the 

rejection of the null hypothesis of homoskedasticity (Breusch and Pagan, 1980). 

 

3.2.2. The White Test for Heteroskedasticity 

According to Wooldridge (2015), the assumption 𝐷(𝜀|𝑿) = 𝜎; can be replaced with a 

weaker assumption that the squared disturbance, 𝜀;, is uncorrelated with all the 

explanatory variables 𝑋@, their squares 𝑋@;, and all the interaction terms 𝑋@𝑋Î	for 𝑗 ≠ ℎ , 

This feature motivated White (1980) to introduce a test for heteroskedasticity that 

incorporates the squares and cross products of all the predictors to the original model 

equation (3.7). The test explicitly aims to test for nature of heteroskedasticity that renders 

the OLS standard errors and test statistics invalid. 

However, the pure form of the White's test is weakened by the abundance of regressors: it 

consumes many degrees of freedom for models even with a small number of explanatory 

variables. For instance, if only three independent variables appear in the initial equation, 

the transformed model will have nine independent variables (three original predictors, 

three squared predictors, and three interaction terms). 

The idea of the White test can be retained while saving the degrees of freedom by utilizing 

the OLS fitted values to test for heteroskedasticity. The squared fitted values represent a 

specific function of all the squares and cross products of the explanatory variables. 

Similarly to the RESET test, the modified version of the White test suggests regressing the 

original OLS residuals on the fitted values 𝑦Q and their squares 𝑦Q; 

 𝑒; 	= 	 𝛿8 + 𝛿9𝑦Q + 𝛿;𝑦Q; + 𝑒𝑟𝑟𝑜𝑟	.	 (3.15)  

The F or LM statistics can be used to test the null hypothesis 

 𝐻8:			𝛿9 = 𝛿; = 0	 (3.16)  

in the equation (3.15). The null hypothesis now results in testing two restrictions which 

support homoskedasticity assumption, regardless of the number of predictors in the 

original regression model. 
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The LM statistic for this test is calculated in the same way as for the Breusch-Pagan test 

discussed above. However, the test statistic has Chi-Square distribution with only 2 

degrees of freedom 

 𝐿𝑀~𝜒;;	.	 (3.17)  

 

3.3. Assessment of Normality of Errors 

Deviation from the normality assumption may result in the suboptimal estimation, invalid 

inferential procedures, and erroneous conclusions, highlighting the necessity of the 

assumption assessment (Jarque and Bera, 1987). 

Typically, evaluation of the relevant residual plots is sufficient to diagnose departures from 

normality. However, more formal quantification of normality should be used together with 

the graphical diagnostics. Therefore, the researcher can conduct hypothesis tests stating the 

null hypothesis that the errors are normally distributed. For each test reviewed below, the 

formal hypotheses are written as: 

 𝐻8:			𝜀~𝑁(0, 𝜎;)	 (3.18)  

 𝐻9:			𝑛𝑜𝑛 − 𝐻8	. (3.19) 

A large p-value suggests that it is plausible to assume that the disturbances follow a normal 

distribution. This section describes some common non-parametric testing methods for 

normality. 

 

3.3.1. The Shapiro-Wilk Test 

Shapiro and Wilk proposed a test for normality of a sample data, which is now one of the 

most frequently used tests. The W-test is based on the W test statistic 

 𝑊 =
(∑ 𝑎/𝑒(/)G

/e9 );

∑ (𝑒/ − 𝑒̅);G
/e9

	 (3.20)  

where 

i is the rank of each value of 𝑒/, 

𝑒(/):	𝑒(9) ≤ 𝑒(;) ≤ ⋯ ≤ 𝑒(G) are the ordered values of a sample 𝑒9, 𝑒;,… , 𝑒G, 
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𝑎/ are constants generated from the means, variances and covariances of the order 

statistics of a sample of size n from a normal distribution (for the derivation of 𝑎/ see 

Shapiro and Wilk, 1965). 

Obtained test statistic W is compared against tabulated values of its distribution. Its 

maximum achievable value is 1, and small values of W are evidence of departure from 

normality and lead to rejection of the null hypothesis. 

 

3.3.2. The Lilliefors Test 

The Lilliefors Test is a modification of the Kolmogorov-Smirnov test that compares the 

empirical cumulative distribution function (ECDF) of the sample with the distribution 

anticipated if the data were normal. If the difference between these distributions is 

significantly large, the test rejects the null hypothesis of the population normality. The test 

statistic is given by: 

 𝐷 = 𝑚𝑎𝑥Ê^𝐹Gr𝑒(/)s − 𝐹r𝑒(/)s^		,	 (3.21)  

where 

𝐹r𝑒(/)s  is the cumulative normal distribution function (CDF) with parameters given 

as the residual mean 𝜇 = 𝑒̅ and variance 𝜎; = 𝑠;(𝑒), 

𝐹Gr𝑒(/)s is the empirical distribution function for n ordered variables 𝑒(9) ≤ 𝑒(;) ≤

⋯ ≤ 𝑒(G). 

The rejection of the null hypothesis requires that the maximum discrepancy is large enough 

opposed to the tabulated critical values to be statistically significant (Lilliefors, 1967). 

 

3.3.3. The Cramér-von Mises Test 

The Cramér-von Mises test is another approach for evaluating the goodness of fit, which 

tests whether the sample follows a specified continuous distribution. It uses the squared 

differences between observed and theoretical cumulative distribution functions as the test 

statistic. In case of the one-sample test, the Cramér-von Mises criterion is defined as  

 𝜔; = Ñ [𝐹Gr𝑒(/)s − 𝐹r𝑒(/)s];
Ò

gÒ
𝑑𝐹r𝑒(/)s		,	 (3.22)  
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where 𝐹r𝑒(/)s is the specified normal cumulative distribution function equivalent to that in 

the case of the Lilliefors test. If values 𝑒(/) have been standardized in advance, 𝐹r𝑒(/)s =

	Φ(𝑒(/)) representing the standard normal distribution. 

The test statistic T (Anderson, 1962) is then 

 𝑇 = 𝑛	𝜔;	,	 (3.23)  

or equivalently (Stephens, 1974) 

 𝑇 =
1
12𝑛 +dÔ

2𝑖 − 1
2𝑛 − 𝐹r𝑒(/)sÕ

;G

/e9

		.	 (3.24)  

If the computed value of T exceeds the tabulated critical value, then the null hypothesis 

that the disturbances follow the normal distribution can be rejected. 

 

3.3.4. The Anderson-Darling Test 

Similarly to the Cramér-von Mises test, the Anderson-Darling statistic belongs to the 

family of quadratic EDF statistics. 

Compared to the Lilliefors and Cramér-von Mises tests, the Anderson-Darling test puts 

more weight to the tails of the distribution. It is commonly viewed as one of the most 

powerful tests of normality, even when applied to small samples. 

Mathematically, the test statistic is given by: 

 𝐴; = 𝑛Ñ [𝐹Gr𝑒(/)s − 𝐹r𝑒(/)s];
Ò

gÒ
		𝜓(𝑒(/))		𝑑𝐹r𝑒(/)s		,	 (3.25)  

where  𝜓r𝑒(/)s	is a non-negative weighting function obtained as	 

𝜓r𝑒(/)s = Ø𝐹r𝑒(/)s »1 − 𝐹r𝑒(/)s¼Ù
g9

 (Anderson and Darling, 1954). 

Equivalently to the previous procedures, the Anderson-Darling test is a one-sided test, 

which rejects the hypothesis of the error normality if the test statistic, 𝐴;, is greater than 

the critical value. 
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4. Outliers and Influential Observations 

In some practical applications, mainly, but not only, with small data sets, the OLS 

parameter estimates are susceptible to the presence of observations which are significantly 

remote from the majority of the data points. Outliers can occur due to the inaccurate data 

entry or when the sample is drawn from a small population. In the latter case, one or 

several members of the population may greatly differ in some certain features from the rest 

of the population (Wooldridge, 2015). Typically, practical applications distinguish between 

two types of observations that substantially differ from all other ones: outliers in the 

response variable y, known simply as „outliers“, and outliers with respect to the 

explanatory variables, called „leverage points“ (Blatná, 2006).  

The researchers are mostly interested in the “regression outliers”, which correspond to the 

observations whose values of both the response and explanatory variables deviate from the 

regression relationship followed by the majority of the data. The OLS is sensitive to such 

outlying data points because it minimizes the sum of squared residuals: large residuals 

(either positive or negative) receive high weights in the least squares minimization 

procedure (Wooldridge, 2015).  

The observations are said to be influential if their inclusion or exclusion from the 

estimation procedure leads to significant changes in the fitted model – regression 

coefficients and fitted values (Blatná, 2006). One should be concerned if the estimates 

change by a noticeable large amount when the sample is slightly modified. 

 

4.1. Leverage: Hat-Values 

Observations that are comparatively distant from the center of the regressor space X, 

accounting for the correlational pattern among the regressors, have a potentially greater 

impact on the OLS estimates of the regression coefficients. Such points are assumed to 

have high leverage. The most well-known measures of leverage are the hat-values, which 

come from the relationship between the observed vector of the dependent variable and the 

vector of fitted values (Fox and Weisberg, 2011). The fitted values are given by 

 𝒚R = 𝑿𝒃 = 𝑿(𝑿𝑻𝑿)g𝟏𝑿𝑻𝒚 = 𝑯𝒚		,	 (4.1)  

where H is the hat (projection) matrix 
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 𝑯 = 𝑿(𝑿𝑻𝑿)g𝟏𝑿𝑻	.	 (4.2)  

The hat matrix (or the projection matrix) maps the vector of the response values to the 

vector of fitted values and plays an important role in identifying influential observations. 

The hat matrix H defines the variance-covariance matrices of 𝒚R and e, such that 

 𝐶(𝒚R) = 𝝈𝟐𝑯	 (4.3)  

and 

 𝐶(𝒆) = 𝜎;(𝑰 − 𝑯).	 (4.4)  

The off-diagonal elements ℎ/@ of the matrix H may be viewed as the measure of leverage 

exerted by the ith observation 𝑦/ on the jth fitted value 𝑦Q@. 

However, the attention is usually focused on the diagonal elements ℎ// of the hat matrix H 

- leverage values - written as 

 ℎ// = 𝒙𝒊𝑻(𝑿𝑻𝑿)g𝟏𝒙𝒊		,	 (4.5)  

where 𝒙𝒊𝑻 is the ith row of the X matrix. 

The hat matrix diagonal measures the distance between the ith observation and the centroid 

of the X space. The hat-values are bounded by 0 and 1, and those values that are close to 1 

indicate observations that are likely to be influential because they are far from the rest of 

the sample in the X space. 

Since the trace of H, given as the sum of diagonal values, is equal to the number of 

parameters p 

 𝑡𝑟(𝑯) =dℎ//
G

/e9

= 𝑝		,	 (4.6)  

it follows that the average size of a hat diagonal is 

 ℎ =
𝑝
𝑛		.	 (4.7)  

Traditionally, the rule of thumb is that any observation for which the hat-value is greater 

than twice the average  2 ¾
G
		 is remote enough from the remaining data to be treated as a 

leverage point. 

Not all leverage points necessarily influence the regression coefficients. Some data points 

that have a large value on the hat diagonal and are definitely a leverage point might have 
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almost no effect on the regression coefficients if they lie virtually on the line passing 

through the rest observations. Since the hat diagonals explore only the location of 

observations in the regressor space, it is useful to examine the studentized residuals in 

connection with the ℎ//. Observations with both large hat-values and large residuals are 

most likely to be influential (Montgomery et al., 2012). 

 

4.2. Regression Outliers: Externally Studentized Residuals 

The studentized residuals serve as a helpful criterion for regression outliers identification, 

that is the observations whose values of the response variable yi conditional on the 

combination of the regressors 𝑥/9, 𝑥/;, … , 𝑥/= considerably differ from the linear 

relationship which holds for the major part of the data. 

The basic concept of the externally studentized residuals is to remove the observations one 

at a time, each time refitting the regression model using the remaining (n – 1) observations. 

Then, the observed response values are compared to their fitted values based on the models 

with the ith observation omitted. This technique produces deleted (predicted) residuals 

which, after standardization, are known as the studentized residuals. 

Computationally, a studentized deleted (or externally studentized) residual is obtained as 

 𝑒°/ =
𝑒/

𝑠(g/)(𝑒)�1 − ℎ//
		,	 (4.8)  

where 

𝑒/  is the ordinary residual from the model estimated with the complete number 

of observartions, 

𝑠(g/)(𝑒) is the standard error of the estimated model with the ith observation deleted 

(Bašta, 2017). 

The logic behind the equation (4.8) is that if the ith observation 𝑦/ is, in fact, unusual, the 

regression model based on the complete set of observations may be overly affected by this 

particular observation. This estimation could produce a fitted value 𝑦Q/ that is quite similar 

to the observed value 𝑦/, and as a result, the ordinary residual 𝑒/ will be small, leading to 

difficulty of detecting the outlier. However, if the ith observation is deleted, it will not 

influence the newly fitted value 𝑦Q(g/), so the resulting residual should be likely to indicate 

the presence of the regression outlier (Montgomery et al., 2012). 
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Under the classical regression assumptions, the externally studentized residual 𝑒°/ follows 

the t distribution with (n – p – 1) degrees of freedom 

 𝑒°/~𝑡Gg¾g9		.	 (4.9)  

An outlier test for studentized residuals is performed by comparing the absolute value of 

the studentized residual with the threshold value |2|. Points with the corresponding 

studentized residuals that exceed the threshold value are reported as significant differences, 

that is regression outliers in this case. Special attention should be paid to the observations 

whose residuals exceed |3| (Blatná, 2006). 

 

4.3. Influence Measures 

As mentioned earlier, a data point that is both outlying and has high leverage exerts 

influence on the regression coefficients, in the sense that removal of this observation leads 

to a considerable change in the coefficients (Fox and Weisberg, 2011). 

 

4.3.1. Cook’s Distance 

Cook’s distance (Cook’s D) is developed to measure the shift in 𝐛 when a particular 

observation is excluded from the estimation. It is a measure of the contribution of that 

observation on all regression coefficients. To assess the degree of influence the ith 

observation has on the coefficient estimate 𝐛 in a linear model, a logical first step would be 

to obtain the least squares estimate of 𝜷 with the ith point deleted. 

Let 𝐛(g/) define the estimated value of the vector 𝜷, with with the observation i omitted. 

Then the difference (𝐛(g/) − 𝐛)  directly quantifies the influence of the ith observation on 

the estimate of 𝜷. If this difference is small, then the ith observation does not significantly 

affect the estimates. 

Formally, Cook's D (Cook, 2000) is found as 

 𝐷/ =
(𝒃(g𝒊) − 𝒃)𝑻(𝑿𝑻𝑿)(𝒃(g𝒊) − 𝒃)

𝑝𝑠;(𝑒) 		,	 (4.10)  

where 𝑠;(𝑒) is the residual variance obtained according to the equation (1.36). 
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Computationally, 𝐷/ is more easily found from the diagnostic statistics as 

 𝐷/ =
𝑒Ý/;

𝑝 Þ
ℎ//

1 − ℎ//
ß		,	 (4.11)  

where  

ℎ// is the hat-value for observation i from the equation (4.5), 

𝑒Ý/; is the squared standardized (internally studentised) residual, obtained from 

 𝑒Ý/ =
𝑒/

𝑠(𝑒)�1 − ℎ//
		.	 (4.12)  

Hence, in the formula (4.12), the first part may be regarded as a measure of remoteness, 

and the second as a measure of leverage corresponding to the point i (Fox and Weisberg, 

2011). 

𝐷/ is large when the standardized residual is large, and the data point is located far from the 

centroid of the X space — that is, in case of large values of ℎ// (Rawlings et al., 1998). The 

most commonly quoted criterion declares the ith point as influential if 𝐷/ exceeds the 

median of the F distribution with (p, n – p) degrees of freedom, where p is the number of 

regression coefficients including the intercept (McDonald, 2002) 

 𝐷/ > 𝐹8.à,			¾,			Gg¾	.	 (4.13)  

If any noteworthy 𝐷/ is evident, it is reasonable to remove the respective case temporarily 

from the data, refit the regression model, and observe how the results change (Fox and 

Weisberg, 2011). 

 

4.3.2.  DFFITS 

The deletion effect of ith observation on the predicted (or fitted) value 𝑦Q/ can be 

investigated using diagnostic DFFITS (Belsley et al., 1980). It provides a measure of the 

shift in 𝒚R when the ith observation is not used in the estimation of the population 

parameters 𝜷. 

Let 𝑦Q/ and 𝑦Q(g/) be the predictions for the ith observation with and without point i 

participating in the estimation of 𝜷. Then the DFFITS for the ith point is formulated as 
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 𝐷𝐹𝐹𝐼𝑇𝑆/ =
	𝑦Q/ −	𝑦Q(g/)

𝑠(g/)(𝑒)�1 − ℎ//
		,	 (4.14)  

where 𝑠(g/)(𝑒) is the estimate of 𝜎 obtained without the ith observation (Rawlings et al., 

1998). 

Alternatively, equation (4.14) can be written as 

 𝐷𝐹𝐹𝐼𝑇𝑆/ = 𝑒°/â
ℎ//

1 − ℎ//
		,	 (4.15)  

where 𝑒°/ the externally studentized residual from the equation (4.8). 

The 𝐷𝐹𝐹𝐼𝑇𝑆/ can be large in any of the cases when 𝑒°/ is large is the magnitude (the 

observation is an outlier) or when the ℎ// is close to unity (the data point has high 

leverage). Therefore, 𝐷𝐹𝐹𝐼𝑇𝑆/ is affected by both prediction error and leverage. The 

common suggestion is that any observation for which the following inequality holds 

 |𝐷𝐹𝐹𝐼𝑇𝑆/| > 2â
𝑝

𝑛 − 𝑝	 (4.16)  

can be used to indicate influential observations (Harrell, 2001). 

Although the values resulting from solution of the equations (4.11) and (4.15) are different, 

Cook's distance and DFFITS are conceptually identical, and a closed-form formula for 

conversion of one value to the other can be analytically derived. 
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5. Variable Selection Procedures 

In linear and generalized linear regression models, the "variable selection" (or "feature 

selection") means selecting which variables to include in the model. As such, it is a special 

case of model selection. Having a response variable y and a set of explanatory variables X, 

the aim is to divide X into two groups – active and inactive predictors. Thereby, all 

essential information about y is contained in the active predictors, and the redundant 

predictor is eliminated. 

The variable selection procedures follow two main objectives. First, a model should be as 

complete and realistic as possible, such that every regressor that somehow influences the 

dependent variable is included. Second, it is preferable to engage as few variables as 

possible since each irrelevant regressor weakens the precision of the estimated coefficients 

and fitted values. Also, the more variables are present in the model, more complex, costly, 

and time-consuming the data collection process becomes. Thus, it is necessary to achieve a 

balance between simplicity (as few regressors as possible) and fit (as many regressors as 

needed).  

General model selection can concern not just finding the active predictors, but also 

building the model itself, including defining regressors for the predictors (i.e., 

transformations). 

There are various types of variable selection procedures, such as, for instance, the best 

subset regression. This method compares all potential models that can be created based on 

a set of predictors and selects the subset of predictors that do the best at meeting some 

objective criterion, such as having the largest R2 value or the smallest values of MSE 

(Mean Squared Error) and information criteria. The procedure fits 2k regression models, 

where k is the total number of predictors. It may be suitable in case of a low-dimensional 

data, while with a large number of explanatory variables the algorithm becomes time-

consuming, effort-demanding, and at the end, it does not provide useful results. 

A better alternative to the best subset regression is stepwise (or stagewise) variable 

selection – a family of methods based on adding or removing variables from a model 

sequentially. It includes three algorithms, which work in three directions: backward, 

forward, and forward-backward. 

Two main differences from the best subset regression are that at each step:  



 42 

• The procedure is not considering every single possible model that contains k  

predictors, but just the models that contain the (k – 1) predictors, which have already 

been chosen in the previous step.  

• The goal is to select the variable that gives the most significant improvement to the 

model. 

 

5.1. Backward Elimination 

The starting point of the backward elimination is the full model estimated by the OLS 

containing all k predictors. Then iteratively the least useful predictor is removed, one-at-a-

time, based on the threshold significance level 𝛼ÊãäåÊ (e.g., 5%). The algorithm is 

defined as follows: 

Step 1: Start with a full model with all variables 

 𝑦/ = 𝛽8 + 𝛽9𝑥/9 + 𝛽;𝑥/; +⋯+ 𝛽=𝑥/= + 𝜀/		.	 (5.1) 

Step2: Remove the variable with the largest p-value of the corresponding two-sided t-test 

(that is, the least statistically significant variable), provided it exceed the threshold 

𝛼ÊãäåÊ. 

Step3: Re-estimate the model with (k – 1) predictors and return to Step 2. 

The procedure continues until all explanatory variables remaining in the model have         

p-values less or equal to 𝛼ÊãäåÊ. Once the regressor has been excluded from the model, it 

cannot be entered back. 

 

5.2. Forward Selection 

Forward selection is the opposite of the backward elimination. It begins with the least 

squares model without any predictors, that if only with intercept 𝛽8 (the mean over y), and 

then iteratively adds the most useful predictor, one-at-a-time, based on the threshold 

significance level 𝛼ÊGæÊ  (e.g., 5%). The procedure is then the following: 

Step1: Start with a null model with no predictors 

 𝑦/ = 𝛽8 + 𝜀/		.	 (5.2) 
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Step2: Fit k simple linear regression models, each with one of the variables in and the 

intercept. All the single-variable models are considered to select the best one, that is, the 

one that results in the lowest p-value of the respective two-sided t-test. This variable is 

permanently fixed in the model. 

Step3: Search through the remaining (k – 1) regression models with two variables (the first 

being fixed and the second being successively added) and determine the variable which 

should be added to the current model based on the lowest p-value. 

The process continues until the lowest p-value exceeds the threshold 𝛼ÊGæÊ  (Bašta, 2018). 

Once the variable has been defined as significant and included in the model, it cannot be 

deleted. 

 

5.3. Stepwise Regression 

The stepwise (bidirectional) regression is a modification of the forward selection. After 

each step, whereby a variable was added, all candidate predictors in the model are 

investigated to test if their significance has been reduced below the specified tolerance 

level. If an insignificant variable is detected, it is excluded from the model. This procedure 

requires two significance levels: one for adding variables 𝛼ÊGæÊ , and one for removing 

variables 𝛼ÊãäåÊ. 

All three methods may be based not only on the significance level 𝛼, but also on some 

other criteria such as AIC (Akaike Information Criterion) or BIC (Bayesian Information 

Criterion), which reflect the relative quality of each model. Both criteria evaluate the 

likelihood of the model, understood as the probability of obtaining the data that we have, 

given the model being tested. Mathematically, the AIC and BIC can be derived as 

 	𝐴𝐼𝐶 = −2	𝑙(𝒃) + 2𝑘		,	 (5.3) 

 𝐵𝐼𝐶 = −2	𝑙(𝒃) + 𝑙𝑜𝑔(𝑛)𝑘  , (5.4) 

where 

 𝑙(𝒃)   measures the improvement of the model fit when variables are added, 

2𝑘, 𝑙𝑜𝑔(𝑛)𝑘  are the penalizations for the number of parameters in the model.  

The preference is then given to the regression model with the lowest criterion value.  
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The alternative ways to calculate AIC and BIC is to replace the 𝑙(𝒃) by log »ÝÝé
G
¼, where 

SSR is the residual sum of squares from the equation (1.25): 

 	𝐴𝐼𝐶 = −2	log »ÝÝé
G
¼ ,+2𝑘	,	 (5.5) 

 𝐵𝐼𝐶 = −2	log »ÝÝé
G
¼ , +𝑙𝑜𝑔(𝑛)𝑘 . (5.6) 

The stepwise selection approach based on the information criteria lightly alters Step 2 of 

each procedure: the terms are dropped or added to the model until removal or inclusion of 

another term makes the criterion of interest worse, that is increasing it. 

Automatic variable selection methods do not guarantee optimal results and should be used 

as a guide only. Moreover, these procedures do not take into account the researchers 

knowledge about the problem: it may add redundant predictors to the model or delete the 

important ones. Therefore, it may be necessary to force the algorithm to include the 

predictors of interest. It is essential to assess the research problem carefully, costs of the 

data collection, consistency, and meaningfulness of the results when determining the 

variables to be included in the regression model. 
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Practical Part 

6. Data 

The dataset used for the implementation of the regression model building process is 

presented in the appendix A1. It contains information on 183 countries and nine attributes 

for the year 2016. Not all of the currently existing countries have been considered due to 

the unavailability of the data for the majority of features. Such areas are primarily those 

with a low development level and small land area, which often fail to provide reliable 

information on the indicators. All explanatory variables can be assigned to one of the five 

topics: Economy, Demographics, Immunization, Nutrition, and Risk Factors. 

 

6.1. Definition of Response and Explanatory Variables 

Dependent variable 

• Life expectancy at birth (both genders): the average number of years newborns could 

expect to live, provided they follow current age- and gender-specific mortality 

conditions prevailing in a specific geographic area.  

Explanatory variables 

Economy 

• Income level: income groups based on the gross national income (GNI) per capita. 

• GDP per capita: a country's total economic output in the current 2016 US dollars 

divided by the total mid-year population. 

• Current health expenditure per capita: average expenditure on health per capita 

converted to a US dollar and adjusted for the purchasing power of the national 

currencies using the economy-wide PPP (Purchasing Power Parity). 

Demographics 

• Adult mortality rate: the probability of dying in the interval from 15 to 60 years per 

hundred of population per year, not separated by gender. 

Immunization 

• Hepatitis B (HepB3) immunization coverage: the percentage of one-year-old children 

who have received three doses of a HepB3 vaccine in 2016. 
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Nutrition 

• Mean Body Mass Index (BMI): a ratio of a person's weight in kilograms to the square 

of height in meters 𝐵𝑀𝐼 = 	 êÊ/ëÎæ	
ìÊ/ëÎæÀ	

= 	 =ë
ãÀ	. 

Risk factors 

• Alcohol: total per capita (15+ years) consumption in liters of pure alcohol. 

• Concentration of PM2.5: the mean annual concentration of particulate matter of less 

than 2.5 microns of diameter (PM2.5) in urban areas. 

 

The following table summarizes the definition of the variables in the model and units of 

their measurement: 

Variable Unit of measurement 
life_exp Years 

inc_level Ordered factor with levels: 
Low < Lower-middle < Upper-middle < High 

adult_m Permille 
HepB Percent 
BMI kg/m2 (kilogram per square meters) 
alcohol Litres 
pm2.5 µg/m3 (micrograms per cubic meter) 
GDP US dollars (per capita) 
hlth_exp US dollars (per capita) 

Table 1: Definition of response and explanatory variables 

 

6.2. Expected Influence on Response Variable 

Economy 

Currently, the World Bank (WB) divides all economies into four income groups based on 

the gross national income (GNI) per capita converted using Atlas method: low-income, 

lower-middle-income, upper-middle-income, and high-income countries. For the 2016 

calendar year, the income level ranges were defined as follows: 

Analytical classification GNI per capita in USD  
Low income Below 1,005 
Lower-middle income 1,006 - 3,955 
Upper-middle income 3,956 - 12,235 
High income Above 12,235 

Table 2: Country classification by income group (World Bank, n.d.) 
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The distributional characteristics of the life expectancy at birth by income group are 

presented in table 3: 

 Income group 
Statistic Low Lower-middle Upper-middle High 
Minimum 53.0 52.9 59.5 71.8 
Lower quartile 59.8 65.4 71.9 77.2 
Mean 61.4 69.5 75.1 81.2 
Median 61.8 68.6 73.6 79.8 
Upper quartile 64.1 72.6 76.4 82.4 
Maximum 71.9 76.3 79.6 89.5 
Standard deviation 4.4618 5.6104 4.2824 3.4327 
Skewness 0.0335 -0.9313 -1.3561 -0.1632 
Kurtosis 3.0565 3.5829 4.5022 2.9772 

Table 3: Descriptive statistics of life expectancy by income level 

The life expectancy at birth for both genders is normally distributed for the low-income 

countries, among which the Central African Republic has the lowest value of 53 years, 

whereas people in North Korea expect to live on average 71.9 years (see figure 2). The 

distribution of the average number of years to be lived of by the lower-middle and upper-

middle income countries is negatively skewed, that is, there are several countries, 

particularly from the African region, with low life expectancy compared to others. From 

the countries with high disposable income per capita, the Southern American Trinidad and 

Tobago represents the minimum of 71.8 years, whereas an absolute record holder is 

Monaco, one of the wealthiest countries in the world, where Monacoians expect to live 

89.5 on average. 

 

Figure 2: Distribution of life expectancy at birth by income level 
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GDP per capita allows taking an insight into the inhabitants' prosperity. There is a non-

linear relationship between the GDP per capita and life expectancy since people fulfill both 

their needs and wants. In order to survive, people need to satisfy their basic needs, such as 

food, clothing, shelter, healthcare, education. Once those needs are met, people can spend 

the remaining money on the non-necessities. 

Higher income suggests better food supply, access to housing, medical and educational 

facilities, and other factors that improve the quality of life, reduce mortality rates and, 

consequently, increase overall life expectancy. However, at a certain point, the relationship 

between life expectancy and income starts to weaken: if everyone satisfied the needs, any 

further growth in the GDP per capita would hardly affect the lifespan. The developed high-

income countries serve as evidence of this phenomenon since higher disposable income 

goes in strong association with an unhealthy lifestyle, such as alcohol and tobacco 

consumption, which in turn negatively affects people's health. 

Current health expenditures cover private sources spending on personal health care 

(curative, rehabilitative and long-term care, medical goods and ancillary services) and 

public sources spending on collective services (public health services, prevention 

programs, and health administration) (OECD, 2017). In line with the GDP per capita, the 

rising expenditures on healthcare in the population increase the expected lifespan of the 

population up to a certain point. Thus, it is reasonable to assume that the number of years 

one could expect to live non-linearly depends on the health services spendings (see figure 

3). 

 

Figure 3: Scatterplots of life expectancy by GDP per capita (left) and by health expenditures per capita (right) 

 

Demographics  

The level of adult mortality is essential for evaluation of the population mortality pattern.  

Due to health transitions and population aging the incidence of the non-communicable 
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diseases among adults from 15 to 60 years old, the most productive group, is rapidly rising 

in developing countries. The adult mortality depicts the socio-economic, environmental, 

and health conditions in which the population lives; thus, it helps to identify population 

vulnerability. It is reasonable to assume that there is a strong negative linear dependence of 

the life expectancy on the adult mortality rate. 

 

Figure 4: Scatterplot of life expectancy by adult mortality rate 

 

Immunization 

Immunization is a proven and powerful tool for controlling and eradicating life-threatening 

infectious diseases, being vital for reducing population mortality. Vaccination, primarily 

provided to the children in their first year of life, stimulate the body resistance that lasts for 

at least 20 years and may be lifelong, which prevents infection and a potential threat to a 

person's life such as the development of chronic disease, cirrhosis, and liver cancer due to 

hepatitis B. Hence, broader health service coverage implies rising life expectancy of the 

population. 

 

Figure 5: Scatterplot of life expectancy by hepatitis B immunization coverage 
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Nutrition 

Body Mass Index (BMI) reflects the nutritional status of an adult and is a frequently used 

tool to associate the weight with the risk of various health problems. The BMI could serve 

as a good proxy for the investigation of the weight-related problems at the population 

level. The WHO classifies the adults over 20 years into the following categories: 

Nutritional status BMI 
Underweight Below 18.5 
Normal weight 18.5–24.9 
Pre-obesity 25.0–29.9 
Obesity classes I, II, III Above 30.0 

Table 4: Classification of nutritional status in adults by BMI, WHO (2019) 

A BMI falling below 18.5 signals insufficient weight, which may be a result of starvation, 

malnutrition, eating dysfunctions, or illnesses. On the contrary, a BMI greater than 25 and 

30 is regarded as overweight and obese, respectively, to which some common conditions 

may relate, such as high blood pressure, cardiovascular diseases, diabetes and other. This 

knowledge, supported by the scatterplot in figure 6 allows concluding that there is some 

curvilinear (quadratic or cubic) form of dependence on the average BMI. 

 

Figure 6: Scatterplot of life expectancy by BMI 

 

Risk factors 

Alcohol is a psychoactive beverage with addiction-producing features that many cultures 

widely used for centuries. Harmful alcohol consumption is associated with significant 

disease and socio-economic strain in societies. Drinking alcohol impacts health condition 

resulting in the incidence of alcohol intoxication, illnesses, behavioral and mental 

disorders. Figure 7 shows that the high-income developed countries tend to consume more 

alcoholic beverages, mainly due to affordability or cultural specifics.  
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A standard measure of air pollution is the concentration of the fine atmospheric particles 

PM2.5 with a size of less than 2.5 micrometers (2.5 ´ 10-6 meters) contained in the 

industrial and automobile emissions, waste incineration, coal burning, and inorganic 

aerosols. Due to their small size, PM2.5 penetrate deeply into the respiratory tract, and 

hence are dangerous for health and increase age-specific mortality for respiratory and 

cardiovascular diseases. According to the Air Quality Index (AQI), the 24-hour average 

concentration of the 2.5-type particles in the air should not exceed 12.0 µg/m3 (see table 

5). 

Air Quality Index (AQI) PM2.5 in µg/m3 (based on a 24-hour average) 
Good 0 – 12.0 
Moderate 12.1 – 35.4 
Unhealthy for sensitive groups 35.5 – 55.4 
Unhealthy 55.5 – 150.4 
Very unhealthy 150.5 – 250.4 
Hazardous Above 250.5 

Table 5: Air Quality Index based on 24-hour average concentration of fine particulate matter (PM2.5) in the 

air, EPA (2013) 

In developing countries, the air pollution is responsible for a high proportion of the burden 

of the diseases, however, in some high-income countries such as Qatar and Saudi Arabia, 

the concentrations of PM2.5 are close to 100 µg/m3. The LOESS (locally estimated 

scatterplot smoothing) in figure 7 suggests that life expectancy relates to the amount of 

PM2.5 in the air in a non-linear fashion due to the presence of several heavily polluted areas 

with high life expectancy, which are remote from the rest data points in the two-

dimensional plane. 

 

Figure 7: Scatterplots of life expectancy by alcohol consumption (left) and concentration of particulate matter 

PM2.5 (right) 
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6.3. Missing Data 

• Missing data pattern 

A missing data pattern defines the configuration of observed and missing values in a data 

set. It depicts the location of the gaps in the data; however, it does not explain why the data 

are missing. In the investigated dataset, the missing data follows a general pattern, that is, 

unavailable values are scattered throughout the data matrix in a haphazard fashion. The 

missing values represent only 1.5% of the total data points (that is, out of 183 ´ 9 = 1647). 

From the standpoint of observations, 90% of instances are fully observed, and only 10% of 

observations contain missing values in one, or in a combination of up to three variables. 

HepB is the variable that has the highest proportion of missingness, that is 5% of the values 

for that variable, which corresponds to 9 unavailable values. The rest five variables (GDP, 

hlth_exp, BMI, alcohol, and adult_m) contain from 1 to 7 missing values.  

 

• Multiple Imputation 

Imputation is one of the key procedures that researchers apply to fill in missing data in a 

dataset. There are different calculation techniques whereby the missing values are replaced 

with the most probable estimate allowing to conduct more accurate and reliable analyses. 

To ensure the correctness of the imputation procedure, one needs to asses the mechanism 

of missingness as a primary step. The missing data mechanisms describe potential 

associations between measured variables and the probability of missing data.  

For this particular set of variables, the data are missing not at random (MNAR), since some 

countries tend to provide insufficient information. However, there is only 1% of data 

values unavailable, so we will neglect the nature of missingness and impute the values 

using Miss Forest approach to be able to run the regression analysis on the full data. 

The Miss Forest approach, developed by Stekhoven and Buhlmann (2013) and specified in 

the {missForest} package, is frequently used to impute missing values, especially in the 

case of mixed-type data. It is a machine learning algorithm, which fits a random forest 

model using the available non-missing data to predict the missing data until convergence is 

attained iteratively. After each iteration, the difference between the preceding and the new 

imputed data matrix is evaluated for both the continuous and categorical parts. The process 

stops as soon as both differences go up for the first time. 
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Comparison of the descriptive statistics before and after the imputation justifies that full 

distribution of the variables with missing and imputed values do not significantly differ. 

The most notable discrepancy is observed for the variable GDP, which stems from the high 

variability of the income across countries.  

Statistic Min 
Lower 

quartile Median 
Upper 

quartile Max SD 
adult_m 49 96.0 146.5 218.3 483 85.706 
HepB 19 82.0 93.0 97 99 15.354 
BMI 20.5 23.8 26.3 27.3 31.9 2.277 
alcohol 0 2.4 6.1 9.3 15.2 4.108 
pm2.5 5.8 14.7 21.5 33.0 99.5 16.911 
GDP 219.2 1,716.3 5,787.3 15,265.9 191,586.6 23,157.240 
hlth_exp 16.6 86.3 301.2 958.5 9,818.0 1,693.895 

Table 6: Descriptive statistics of data containig missing values 

 

Statistic Min 
Lower 

quartile Median 
Upper 

quartile Max SD 
adult_m 49.0 96.0 146.0 217.5 483.0 85.825 
HepB 19.0 82.0 93.0 97.0 99.0 15.022 
BMI 20.5 23.8 26.2 27.3 32.0 2.278 
alcohol 0 2.5 6.1 9.3 15.2 4.087 
pm2.5 5.8 14.7 21.5 33.0 99.5 16.911 
GDP 219.2 1,697.4 5,382.8 14,977.9 191,586.6 22,801.460 
hlth_exp 16.6 91.0 295.4 936.5 9,818.0 1,679.517 

Table 7: Descriptive statistics of data after multiple imputation 

Although the missing data requires a more detailed and sophisticated approach, for this 

moment we will consider the result as acceptable.  
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7. Least Squares Estimation 

7.1. Model Specification 

According to the theoretical considerations described in section 6.2, the regression model 

which will be investigated in the subsequent chapters can be specified as 

 

life_exp = 𝛽8 + 𝛽9 Low+ 𝛽; Lower-middle + 𝛽É Upper-middle  

                 + 𝛽í adult_m + 𝛽à HepB + 𝛽î BMI + 𝛽ï BMI2  

                 + 𝛽ð alcohol + 𝛽ñ alcohol2 + 𝛽98 log(pm2.5)  

                 + 𝛽99 GDP + 𝛽9; GDP2  

                 + 𝛽9É  hlth_exp+ 𝛽9í  hlth_exp2 + 𝜀,	

(7.1) 

where  

Low, Lower-middle, Upper-middle  are the levels corresponding to the inc_level 

indicator variable with High being the reference category, 

𝛽9, 𝛽;, 𝛽É   express the expected difference in the life expectancy between countries 

with low, lower-middle or upper-middle income level and the high-income countries.  

Four variables (BMI, alcohol, GDP, and hlth_exp) enter this equation as the second-degree 

polynomials, due to the anticipated non-linear impact they have on the dependent variable 

life_exp. For better interpretability, the variable pm2.5 is included in the model as a 

logarithmic transformation. As a matter of convenience, the variables GDP and hlth_exp 

are intentionally divided by 1000 prior to the analysis, such that the resulting coefficients 

reflect a 1000 US dollars change in the income and health expenditures per capita. 

Despite the fact that the response variable life_exp is negatively skewed (coefficient of 

skewness = - 0.473) and slightly platykurtic (coefficient of kurtosis = 2.56) compared to 

the normal distribution, it enters the model without any transformation. The reason is that 

taking the logarithm of life_exp, while having a practical interpretation, makes the 

distribution even more skewed (see figure 8). Some other power transformations may be 

applied, such as Box-Cox or Ordered Quantile normalizing in order to bring the 

distribution of the response closer to normal. However, such transformations complicate 

the interpretation of the regression coefficients and prediction of the response, since it is 

uncertain how to transform the predicted values back to the original units.  
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Figure 8: Histograms of life expectancy (left) and logarithm of life expectancy (right) 

 

7.2. Ordinary Least Squares Estimation 

Assuming the relationships between the life expectancy at birth and other factors discussed 

in section 6.1, the equation (7.1) was estimated using the OLS, whereby the variables BMI, 

alcohol, GDP, and hlth_exp were represented by the second-order raw (ordinary) 

polynomials. That is, each of these variables enters the regression model as the first and the 

second power. Intuitively, since X2 is a vector whose elements are the squares of the 

respective elements of the vector X, they become almost perfectly linearly dependent. This 

may lead to a multicollinearity problem in a multiple regression, which in turn reduces the 

accuracy of the estimation. In the case of perfect multicollinearity, that is when an exact 

linear relationship exists among several variables, the matrix (XTX) is computationally 

singular, and the parameters 𝜷 cannot be estimated by the OLS.  To address this problem, 

the orthogonal polynomials may be used in place of the ordinary polynomials. 

Orthogonalization is an attractive technique for fitting curve to the data by the method of 

the least squares because it provides coefficients which are statistically independent.		

Figure 9 depicts the correlation between particular variables and their squares. Application 

of the raw polynomial fitting (correlogram to the left) leads to a strong positive linear 

relationship within each polynomial term with the Pearson correlation coefficients being 

higher than 0.86. However, implementation of the orthogonal polynomials (correlogram to 

the right) reduced the linear dependence to zero in each case. 
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Figure 9: Pairwise Pearson correlation coefficients of ordinary (left) and orthogonal (right) polynomial 

regressors 

 

The Variance Inflation Factor (VIF) is requently used to measure how much variance of 

the regression coefficient estimate is inflated in the presence of multicollinearity. 

Mathematically, the Variance Inflation Factor for the jth predictor it is expressed as  

 𝑉𝐼𝐹@ =
1

1 − 𝑅@;
		,	 (7.2) 

where 𝑅@; is the coefficient of determination obtained by regressing the jth predictor on all 

the other explanatory variables. Typically, if VIF exceeds the value of 10, the 

multicollinearity is considered to be high. 

Table 8 represents the values of VIF for the models fitted using raw and orthogonal 

polynomials. In the first case, the VIF for the BMI was 440.35 (√440.35 ≈ 	20.98), which 

means that the standard error for its coefficient was approximately 21 times as large as it 

would be in case these variables were not correlated with other predictors. 

Orthogonalization considerably reduced the value of VIF from 440.35 to 2.29 for the linear 

term of BMI. The largest VIF corresponds to the regressor hlth_exp is equal to 10.79, 

meaning that the standard error for the coefficient bhlth_exp is 3.3 times higher than in case 

of no collinearity. However, since this value does not dramatically exceed the threshold, 

the orthogonalized model will be considered as acceptable for the implementation of 

further analysis. A drawback of any polynomial regression is that the coefficients from 

such models are difficult to interpret since the ceteris paribus condition does not hold any 

longer.  
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 Ordinary Orthogonal 
Low 6.6967 6.6967 
Lower-middle 6.184 6.184 
Upper-middle 4.2116 4.2116 
adult_m 2.9816 2.9816 
HepB 1.446 1.446 
BMI 440.3532 2.2928 
BMI2 424.8769 1.2181 
alcohol 15.2029 1.6519 
alcohol2 14.5139 1.1787 
log(pm2.5) 1.784 1.784 
GDP 33.4243 8.7242 
GDP2 13.5236 3.536 
hlth_exp 41.5075 10.7903 
hlth_exp2 16.5968 2.5234 

Table 8: Variance Inflation Factors (VIF) for ordinary and orthogonal polynomial regressors 

Unfortunately, many studies applying an orthogonal polynomial regression fitting 

procedure do not offer sufficient guidance for interpreting the coefficients estimates. One 

of the most straightforward approaches is to follow the signs of the higher order terms in 

order to determine convexity or concavity of the function and compare them with the 

expectations on the functional relationship. 

The following equation depicts the estimated regression function obtained by the OLS 

method using orthogonalized polynomials: 

 

life_exp = 83.32  
                 – 3.06 Low – 1.43 Lower-middle – 0.47 Upper-middle  

                 –  0.07 adult_m + 0.02 HepB + 3.15 BMI – 1.15 BMI2  
                 + 5.68 alcohol – 4.05 alcohol2 – 0.59 log(pm2.5)  

                  – 4.68 GDP + 10.54 GDP2  
                  + 17.03 hlth_exp – 8.03 hlth_exp2  + e. 

(7.3) 

   
Each of the OLS slope coefficients except has the anticipated sign except for the GDP. In 

the countries with low- and middle-income level, the expected length of life is lower than 

in the areas with the GNI per capita above 12,235 USD. That is, transition to higher classes 

due to socio-economic advancement should potentially increase the number of years a 

child born in a particular territory could expect to live. Adult mortality and air pollution 

both have an adverse effect on longevity. The negative signs corresponding to the 
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quadratic terms of the variables BMI, alcohol, and hlth_exp reflect the anticipated concave 

form of relationship with the dependent variable. In consistency with the expectations 

made in chapter 6, the increasing body mass is associated with the rising life expectancy up 

to some point, at which the direction of the relationship changes. Similarly, positive 

relationship between life expectancy and health expenditures per capita gradually weakens, 

and additional spendings do not contribute to large changes in the response. 

The analysis of variance from table 9 indicated that eight predictors and their 

transformations explained 96.3% of the variation in the life_exp (𝑅op@;  = 0.9629). The 

squared differences between the OLS fitted values and the mean life expectancy lead to a 

considerably high F-statistic for testing the joint significance of the regression coefficients. 

However, prior to the interpretation of the coefficients estimates and making inferential 

statements regarding the individual coefficients, the residual diagnostics need to be 

conducted in order to detect possible assumptions violation. 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F-statistic p-value 

Regression 10347.52 14 739.1086 338.6833 < 2.2e-16 
Residual 366.63 168 2.1823 - - 
Total 10714.15 183 - - - 
Residual standard error: 1.477   
Multiple R-squared: 0.9658   
Adjusted R-squared: 0.9629   

Table 9: Analysis of variance (model estimated by OLS) 

 

• RESET Test 

The RESET statistic for the equation (7.3) turns out to be 4.41, this is the value of an F2, 166 

random variable (n = 183, k = 14), and the associated p-value is 0.014 (table 10). Thus, we 

do not reject the null hypothesis and assume that at 1% significance level, the functional 

form is correctly specified. However, at 5% and 10% significance level, the null hypothesis 

can be rejected in favor of the misspecification. 

 F-test  
Degrees of freedom 2, 166 
Test statistic 4.4133 
Critical value 𝛼 = 0.01 𝛼 = 0.05 𝛼 = 0.1 

4.7353 3.0505 2.3348 
p-value 0.0136 

Table 10: RESET test (model estimated by OLS) 
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• Normality Tests 

All the normality tests described in section 3.3 advocate the normal distribution of the error 

term in the regression model being considered, since the respective p-values noticeably 

exceed any reasonable significance level.  

Test Statistic p-value 
Shapiro-Wilk 0.9919 0.4001 
Lilliefors 0.0323 0.9134 
Cramér-von Mises 0.0330 0.8018 
Anderson-Darling 0.2660 0.6877 

Table 11: Normality tests (model estimated by OLS) 

 

The normal quantile-quantile plot in figure 10 confirms the result, as the distribution of the 

residuals is almost symmetrical around zero and the points in the lower and upper quartiles 

do not suggest either skewness or heavy tails. 

 

Figure 10: Quantile-comparison plot of ordinary residuals  

 

• Heteroskedasticity Tests 

Since the assumption of normality is satisfied, it is crucial to evaluate whether the variance 

of the error term is constant. A plot of the residuals versus the fitted values (figure 11) 

indicates possible nonconstant error variance. Low and lower-middle income countries 

(mostly African region) contribute to the higher spread of the residuals at lower values of 

the life expectancy, whereas countries from the upper-middle income group are more 

concentrated around zero.  
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Figure 11: Scatterplot of ordinary residuals against fitted values 

 

The Breusch-Pagan test rejects the null hypothesis of homoskedasticity at 10% and 5% 

significance levels,	𝜒; = 28.443, p = 0.0124, but fails to do so at 1% significance level. 

The special case of the White test, consisting of regressing residuals 𝑒; on the fitted values 

and 𝑙𝚤𝑓𝑒_𝑒𝑥𝑝�  and 𝑙𝚤𝑓𝑒_𝑒𝑥𝑝;� , produces 𝑅ÊÀ
;  = 0.0852; thus, LM = 183 ´ 0.0852 » 15.5871, 

and the corresponding p-value < 0.001. This is another evidence of heteroskedasticity, 

which requires implementation of some techniques, such as the Weighted Least Squares. 

 Breusch-Pagan              Modified White 
 LM test F-test LM test 
DF 14 2, 180 2 
Test statistic 28.4430 8.3795 15.5871 
Critical value 𝛼 = 0.05 23.6850 3.0462 5.9915 
p-value 0.0124 0.00033 0.00041 

Table 12: Heteroskedasticity tests (model estimated by OLS) 

 

7.3. Feasible Weighted Least Squares Estimation 

In the OLS, all observations contribute equally to the parameter estimation, and each 

individual data point has a weight of one. Since there is strong evidence of 

heteroskedasticity, we need to estimate the model using the FWLS procedure. The logged 

squared residuals log(𝑒/;), obtained from the estimation of the model (7.1) by OLS, were 

regressed on the fourteen predictors from that initial model. The estimates of the diagonal 

values 𝑤R/ of the matrix W were obtained through exponentiation of the resulting fitted 

values log(𝑒�;)� , and the corresponding diagonal values of the weighting matrix P were 

found as 9
��R�

. 
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The weights for each of 183 observations (diagonal elements of the weighting matrix P 

from equation (1.65)) have been estimated based on the equations (1.50-1.51) and (1.55). 

The full list of weights can be found in the appendix A2. Figure 12 depicts the distribution 

of weights assigned to the observations and grouped by the level of disposable income. In 

accordance with figure 12, the low-income countries have been given the lowest weights, 

all less than one, with an average of 0.7673. Since these underdeveloped areas are the main 

cause of high residual variance, their impact on the parameter estimates will be reduced 

after the weighting procedure. On the contrary, more weight is given to the upper-middle 

income areas, which may be thought to be more reliable source of information. The mean 

and median weights corresponding to the high-income group are less than that of the 

upper-middle income areas. The maximum weight of 3.374 is assigned to the USA, 

making its impact on the FWLS estimation procedure by 3.4 times larger than it had in the 

OLS. 

 

Figure 12: Distribution of estimated weights of observations by income group 

 

 Mean weight Median weight 
High 1.6637 1.6246 
Upper-middle 1.8275 1.7444 
Lower-middle 1.1008 1.0767 
Low 0.7673 0.7496 

Table 13: Mean and median weights of observations by income group 

 

After the data has been transformed using the computed weights, the regression 

coefficients were re-estimated by the OLS. The estimation outcome for the model adjusted 

for heteroskedasticity is as follows: 
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 Estimate Std. Error t-statistic p-value 
Non-constant 84.3125 1.1201 75.2700 < 2.2e-16 
Low -3.1896 0.7337 -4.3471 0.00002 
Lower-middle -1.6379 0.4861 -3.3695 0.00093 
Upper-middle -0.6706 0.3742 -1.7920 0.0749 
adult_m -0.0674 0.0022 -31.099 < 2.2e-16 
HepB 0.0157 0.008 1.9695 0.0505 
BMI 3.6234 2.3512 1.5411 0.1252 
BMI2 -2.3160 1.3044 -1.7755 0.0776 
alcohol 7.6404 1.5120 5.0532 <0.0005 
alcohol2 -4.2545 1.2624 -3.3701 0.00093 
log(pm2.5) -0.5393 0.2043 -2.6396 0.0091 
GDP -4.4266 3.3612 -1.3170 0.1896 
GDP2 10.7095 2.1725 4.9295 <0.0005 
hlth_exp 13.8027 3.7606 3.6704 0.00033 
hlth_exp2 -5.2708 1.5581 -3.3829 0.00089 

Table 14: Summary of regression model estimated by FWLS 

Life expectancy at birth in the upper-middle-income countries is expected to be by 0.67 

years lower compared to the high-income countries, according to the Feasible Weighted 

Least Squares. The lower-middle and low-income categories membership has an even 

larger negative effect on the number of years a newborn can expect to live on average, 

reducing the life expectancy by 1.64 and 3.19 years, respectively.  The increase in adult 

mortality rate by ten permille (10 deaths per thousand of the population), holding other 

factors fixed, reduces the life expectancy by 0.67 years (eight months) on average. A 10% 

increase in the Hepatitis B immunization coverage among population prolongs the 

expected lifespan by 0.16 years on average. For a 10% increase in the PM2.5 concentration 

in the air, the expected partial effect is a reduction of the life length by 0.05 years 

(−0.5393 ´ log»110
100
¼= −0.0514).  

 

• RESET Test 

The RESET statistic for the model (7.1) estimated by the FWLS is equal to 0.811, which is 

sufficiently smaller than critical values for 1%, 5%, and 10% significance levels. Thus, the 

test statistic does not fall into the rejection region, and with the associated p-value of 0.446, 

we fail to reject the null hypothesis of a correct functional form specification. 
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 F-test  
Degrees of freedom 2, 166 
Test statistic 0.8113 
Critical value 𝛼 = 0.01 𝛼 = 0.05 𝛼 = 0.1 

4.7353 3.0505 2.3348 
p-value 0.4460 

Table 15: RESET test (model estimated by FWLS) 

 

• Normality Tests 

Test Statistic p-value 
Shapiro-Wilk 0.9954 0.8497 
Lilliefors 0.0352 0.8386 
Cramér-von Mises 0.0248 0.9111 
Anderson-Darling 0.1647 0.9409 

Table 16: Normality tests (model estimated by FWLS) 

All normality tests strongly advocate normality of the residuals with the p-values being 

even higher than in case of the OLS, almost approaching the value of one. 

 

• Heteroskedasticity Tests 

 Breusch-Pagan              Modified White 
 LM test F-test LM test 
DF 14 2, 180 2 
Test statistic 13.381 0.9507 1.9129 
Critical value 𝛼 = 0.05 23.6850 3.0462 5.9915 
p-value 0.4968 0.3884 0.3843 

Table 17: Heteroskedasticity tests (model estimated by FWLS) 

Both the Breusch-Pagan and modified White heteroskedasticity tests fail to reject the null 

hypothesis of a constant error variance at any significance level. For the modified White 

test, the R-squared produced by regressing the FWLS residuals 𝑢; on the fitted values and 

𝑙𝚤𝑓𝑒_𝑒𝑥𝑝� ∗ and 𝑙𝚤𝑓𝑒_𝑒𝑥𝑝;∗�  is 𝑅®À
;  = 0.0105. That is a function of explanatory variables can 

explain only 1% of the residual variation. Failure to reject the homoskedasticity hypothesis 

signify that estimation of the weights and applying OLS on the weighted data solved the 

problem of the non-constant error variance. Thus, the usual inferential procedures can be 

conducted based on the FWLS estimates. Consequently, the final model which will serve 

as a basis for further analysis is expressed as  
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life_exp* = 84.31 Non-constant*  

                   – 3.19 Low* – 1.64 Lower-middle* – 0.67 Upper-middle*  
                   – 0.07 adult_m* + 0.02 HepB* + 3.62 BMI* – 2.32 BMI2*  

                   + 7.64 alcohol* – 4.25 alcohol2* – 0.54 log(pm2.5)*  
                   – 4.43 GDP* + 10.71 GDP2*  

                   + 13.80 hlth_exp* – 5.27 hlth_exp2* + e* , 

(7.4) 

where Non-constant term equals to the observation-specific values 9
��R�

. 

As a matter of convenience, the asterisk sign (*) corresponding to the transformed 

variables will be omitted from notation of the variables hereinafter. 

It is necessary to remember, that according to the equation (1.43) the model estimated by 

the FWLS does not contain a constant term any longer since the weights of individual 

observations replace the column of ones in the model matrix Q. Therefore, the explained 

sum of squares (SSE) is represented as the sum of squared fitted values  

 𝑆𝑆𝐸ûêüÝ = ∑ 𝑞Q/;G
/e9 	,	 (7.5) 

and the total sum of squares (SST) is no longer the sum of squared deviations from the 

mean, by merely the squared observed values of the transformed response q 

 𝑆𝑆𝑇êüÝ = ∑ 𝑞/;G
/e9 	.	 (7.6) 

Redefining the SSE and SST results in a highly inflated F-statistic for the FWLS model 

(F15, 168 = 46,827.35), which suggests rejection of the null hypothesis 

 𝐻8:	𝛽8 = ⋯ = 𝛽9í = 0	.	 (7.7) 

in favor of the statement that at least one of the regression coefficients is non-zero (table 

18). Thus, the whole model is assumed to be statistically significant at any level 𝛼, and 

individual t-statistics might be studied in order to judge the statistical relevance of the 

regression coefficients.  

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F-statistic p-value 

Regression 2,307,571.00 15 153,838.10 46,827.35 < 2.2e-16 
Residual 551.92 168 3.29 - - 
Total 2,308,122.92 183 - - - 
Residual standard error: 1.8125   
Multiple R-squared: 0.99976   
Adjusted R-squared: 0.99974   

Table 18: Analysis of variance (model estimated by FWLS) 
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According to the summary table 14, almost all explanatory variables have ceteris paribus 

statistically significant impact on the response variable. However, for certain regressors, 

the rejection of the null hypothesis depends on the significance level. Thereby, regressors 

HepB (𝑡ìÊ¾þ=1.9695, p = 0.0505) and BMI2 (𝑡þÿ!À= −1.7755 , p = 0.0776) are considered 

to be statistically significant at 10% level, but at 1% and at 5% significance levels we fail 

to reject the null hypothesis of the corresponding population coefficients being equal to 

zero. The t-test for the upper-middle income category suggests statistical significance at 

the level of 10% or higher (𝑡"¾¾Êgã/pp#Ê= −1.7920, p = 0.0749). Similarly, the logarithm 

of the PM2.5 concentration (𝑡#äë(¾ã;.à)	= −2.6396, p = 0.0091) is thought to be 

insignificant at 1% significance level, but at 5% level it is assumed to be different from 

zero. Despite the fact that the t-test defined BMI and GDP as statistically indistinguishable 

from zero, they remain in the model since corresponding higher order (quadratic) terms 

exhibit statistical significance. 

 

7.4. Confidence Intervals 

Due to the computational specifics of the SSE and SST in case of the Weighted Least 

Squares, the R2 does not provide a reliable basis for comparing the OLS and FWLS 

estimated models. For that purpose, better measures appear to be the standard errors and 

confidence intervals of the OLS and FWLS regressions. 

The OLS and FWLS estimates are not expected to be identical, though, the difference 

between them is not large. Almost all the FWLS coefficients have smaller standard errors 

than the OLS. Therefore, the confidence intervals derived by the FWLS are mostly 

narrower than that of the OLS, except for the linear term BMI.  

The following table provides the 90% univariate and simultaneous (Bonferroni corrected) 

confidence intervals for the regression parameters: 
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 Univariate 90% CI Simultaneous 90% CI 
 OLS FWLS OLS FWLS 

 5% 95% 5% 95% 0.33% 99.67% 0.33% 99.67% 
Non-constant 81.172 85.472 82.46 86.165 79.751 86.893 81.235 87.39 
Low -4.308 -1.815 -4.403 -1.976 -5.131 -0.992 -5.205 -1.174 
Lower-middle -2.434 -0.419 -2.442 -0.834 -3.101 0.248 -2.973 -0.302 
Upper-middle -1.292 0.361 -1.290 -0.052 -1.839 0.908 -1.699 0.357 
adult_m -0.069 -0.062 -0.071 -0.064 -0.071 -0.059 -0.073 -0.061 
HepB 0.009 0.038 0.003 0.029 0.000 0.048 -0.006 0.038 
BMI -0.555 6.845 -0.265 7.512 -3.000 9.290 -2.836 10.083 
BMI2 -3.842 1.551 -4.473 -0.158 -5.625 3.333 -5.899 1.268 
alcohol 2.538 8.818 5.140 10.141 0.462 10.894 3.487 11.794 
alcohol2 -6.707 -1.402 -6.343 -2.167 -8.46 0.352 -7.723 -0.786 
log(pm2.5) -0.987 -0.183 -0.877 -0.201 -1.253 0.083 -1.101 0.022 
GDP -11.902 2.532 -9.986 1.133 -16.672 7.302 -13.661 4.807 
GDP2 5.947 15.136 7.116 14.303 2.910 18.173 4.741 16.678 
hlth_exp 9.000 25.053 7.583 20.023 3.695 30.358 3.472 24.134 
hlth_exp2 -11.912 -4.15 -7.848 -2.694 -14.478 -1.584 -9.551 -0.991 

Table 19: Univariate and Bonferroni simultaneous 90% confidence intervals for parameters estimated by 

OLS and FWLS 

Since the FWLS estimator 𝐛 is assumed to be normally distributed with the mean 𝜷 and 

variance 𝜎;(𝑸𝑻𝑸)g9, the marginal distribution of each regression coefficient 𝑏@ is normal 

with the mean	𝛽@ and variance 𝜎;𝐶@@ , where 𝐶@@ is the jth diagonal element of the (𝑸𝑻𝑸)g9 

matrix. Consequently, the standard error of each regression coefficient can be expressed as 

 𝑠𝑒(𝑏@) = �𝑠;(𝑒)𝐶@@	,	 (7.8) 

where 𝑠;(𝑒) is the estimate of the error variance obtained from equation (1.36). It follows 

that the (1 − 𝛼) × 100% confidence interval for the coefficient 𝛽@ can be obtained as 

 𝑏@ ± 𝑡9g´/;,			Gg=g9 × |𝑠;(𝑒)𝐶@@	.	 (7.9) 

For instance, a point estimate of the parameter 𝛽í associated with the variable adult_m 

obtained by the FWLS approach is 𝑏í= −0.0674, the diagonal element of (𝑸𝑻𝑸)g9 

corresponding to this parameter is 𝐶íí= 0.00000143, and the standard error of the model 

amounts to 𝑠(𝑒) = 1.8125. Using expression (7.9), we find that 

 𝑏í ± 𝑡8.ñà,			9îð × �𝑠;(𝑒)𝐶íí		,	 (7.10) 
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and the resulting univariate 90% confidence for the parameter 𝛽í is [-0.071; -0.064]. The 

Bonferroni simultaneous confidence interval for 𝛼 = 0.1 is obtained as 

 𝑏í ± 𝑡8.ññîï,			9îð × �𝑠;(𝑒)𝐶íí		,	 (7.11) 

resulting in a slightly wider confidence interval [-0.073; -0.061] with the confidence 

coefficient being (1 − 8.8à
9à
) instead of (1 − 0.05). Thereby, there is at least 90% 

probability that the whole set of the confidence intervals contains the true values of the 

population parameters. Thus, one can be 99.67% certain that the population parameter 

corresponding to the adult mortality rate will be between -0.074 and -0.061.  

Figure 13 provides a visualization of the 90% simultaneous confidence intervals for the 

regression parameters 𝛽8 through 𝛽9à of the regression model (7.1) 

 

Figure 13: 90% Bonferroni simultaneous confidence intervals for parameters (models estimated by OLS and 

FWLS) 

The 90% OLS confidence interval with Bonferroni correction suggested that the regressor 

alcohol2 has no effect on the dependent variable, whereas in the FWLS estimation, the 

effect is statistically significant. The body mass index is assumed to be insignificant at 

10% level since its respective intervals cover zero, so the null hypotheses of no effect 

cannot be rejected. Nonetheless, assuming continuous scale, the interval contains a number 

of other values which cannot be rejected either. Moreover, statistical insignificance of a 

parameter does not necessarily imply an absence of a practical impact. Thus, one should 

analyze the process from both statistical significance and area-related knowledge. As 
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mentioned in section 6.2, people whose weight is much lower or much higher than is 

optimally healthy are more prone to various illnesses which may affect the life expectancy; 

thus, it was decided to keep the polynomial variable BMI in the model.  

Furthermore, it is possible to measure the uncertainty related to any statistical estimator 

using the bootstrap resampling technique. The bootstrap approach involves repeatedly 

drawing a sample of n observations from the original data set of size n (with replacement), 

and estimation the model on each bootstrap sample. The coefficients were estimated on 

500 bootstrap samples, each of size n = 183, the average of the standard errors after 500 

estimations is taken, and the results provide an insight into the overall variance of the 

model performance. 

 𝑏@  𝑠𝑒(𝑏@) 𝑠𝑒þ(𝑏@) 
Non-constant 84.312 1.120 1.266 
Low -3.190 0.734 0.762 
Lower-middle -1.638 0.486 0.573 
Upper-middle -0.671 0.374 0.447 
adult_m -0.067 0.002 0.003 
HepB 0.016 0.008 0.011 
BMI 3.623 2.351 3.069 
BMI2 -2.316 1.304 1.715 
alcohol 7.640 1.512 1.787 
alcohol2 -4.255 1.262 1.292 
log(pm2.5) -0.539 0.204 0.216 
GDP -4.427 3.361 5.884 
GDP2 10.709 2.173 6.308 
hlth_exp 13.803 3.761 4.797 
hlth_exp2 -5.271 1.558 4.365 

Table 20: FWLS and bootstrap standard errors 

The bootstrap standard errors are larger than the usual estimates of the regression 

coefficient standard errors. For instance, the standard error for the coefficient estimate 

corresponding to the lower-middle income group obtained using the formulas from   

section 1.4.3, is 𝑠𝑒(𝑏üä�Êgã/pp#Ê) = 0.486 as opposed to the bootstrap standard error 

estimate 𝑠𝑒þ(𝑏üä�Êgã/pp#Ê) = 0.573. The univariate 95% confidence interval for bLower-

middle is narrower in the first case, that is [- 2.610, - 0.667]. If the bootstrap estimate of 

	𝑠𝑒þ(𝑏üä�Êgã/pp#Ê) is used, the resulting confidence interval [- 2.784; -0.492] is slightly 

wider. 
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The traditional formula for the estimate standard error(1.35) involves the unknown 

parameter 𝜎;, which must be estimated and depends on the correctness of the linear model. 

Moreover, it is assumed that the xik are fixed and all the variability stems from the error 

term variation. Since the bootstrap approach does not rely upon these assumptions, it is 

likely to produce more accurate estimates of the standard errors of the bj. Therefore, 

confidence intervals calculated on the basis of the bootstrap standard errors will be more 

appropriate for statistical inference (James et al., 2013).  

 

7.5. Confidence Regions 

Since there are 15 parameters in the regression model under consideration, it is impossible 

to examine the 15-dimensional joint confidence region directly. Still, as mentioned in 

section 2.2.3, two-dimensional confidence regions might be constructed ignoring the rest 

13 parameters. The quadratic form for the joint confidence region for the parameters 

corresponding to the linear terms for the GDP and alcohol consumption is constructed 

from the equation (2.20) by: 

1. replacing (𝜷 − 𝒃) with the (2 ´ 1) vector comprising only two parameters under 

consideration; 

2. replacing (XTX) with the inverse of the (2 ´ 2) estimated variance-covariance 

matrix 𝑆(𝒃) for these two parameters; 

3. replacing 𝑝	𝑠;(𝑒)	𝐹9g´,			¾,			Gg¾  with  2	𝐹9g´,			;,			Gg¾. 

The term 𝑠;(𝑒) does not appear in the right-hand side of the inequality since it has been 

counted for in the variance-covariance matrix according to the formula (1.38).  

The estimates of parameters 𝛽o#$äÎä# and 𝛽¥%& are 7.6404 and -4.4266, respectively. The 

elements of 𝑆(𝒃) corresponding to the 𝑏o#$äÎä# and 𝑏¥%&  are as follows: 

𝑆(𝒃) = Ø2.2861 0.5922
0.5922 11.2978Ù. 

The main diagonal of the matrix contains the variances of parameter estimates, and the off-

diagonal elements represent the joint variability of these estimates. After taking the inverse 

of the matrix, the 95% joint confidence region is obtained from  

Ô 𝛽o#$äÎä# − 7.6404𝛽¥%& − (−4.4266)
Õ
𝑻
	Ø				0.4434 −0.0232
−0.0232 				0.0897Ù	Ô

𝛽o#$äÎä# − 7.6404
𝛽¥%& − (−4.4266)

Õ 	≤ 2	𝐹8.ñà,			;,			9îð. 



 70 

Solving this inequality with respect to 𝛽o#$äÎä# and 𝛽¥%& for the boundary 𝐹8.ñà,			;,			9îð= 

3.0498 establishes a 95% confidence region for the two parameters in question. The outer 

ellipse in figure 14 displays the resulting 95% joint confidence region for 𝛽o#$äÎä# and 

𝛽¥%&, meaning that there is 95% chance that these two population parameters will lie 

inside of the ellipse simultaneously. The ellipse is centered around the point whose 

coordinates are given by the estimates 𝑏o#$äÎä# and 𝑏¥%& . The upward slope of the ellipse 

stems from the positive covariance between the parameter estimates 

S(𝑏o#$äÎä# , 𝑏¥%&) =0.5922 suggesting the same direction of the errors in the point 

estimates. 

 

Figure 14: 50%, 90%, and 95% confidence ellipses for parameters 𝛽alcohol and	𝛽GDP. Corners of rectangle 

formed by dashed lines represent the intersection of the 95% Bonferroni univariate confidence intervals. 
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8. Outliers and Influential Observations 

8.1. Leverage: Hat-Values 

Data points with high leverage, that is with large hat-values, have the potential to affect the 

fitted model considerably. In our case with number of parameters p = 15 and sample size n 

= 183, the average hat-value is ℎ = 15/183 = 0.082. Recall that an observation can be 

regarded as extreme with respect to other data points if its hat-value is greater than two or 

three times the mean leverage ℎ.  

Table 21 contains the diagonal values of the hat-matrix, which exceed the cut-off values 

2ℎ	= 0.1639 and 3ℎ	= 0.2459. Out of 183 observations, 14 countries exhibit high leverage, 

indicating that their predictor values are unusual relative to other countries. In accordance 

with the equation (4.6), the trace of the H matrix expressed as the sum of its diagonal 

values with is exactly equal to the number of parameters 𝑡𝑟(𝑯) = ∑ ℎ//9ðÉ
/e9 = 15. 

 Hat-value 
Monaco 0.9259 
USA 0.5954 
Switzerland 0.5697 
Samoa 0.4713 
Tonga 0.4381 
Equatorial Guinea 0.2829 
Brunei Darussalam 0.2686 
Moldova 0.2664 
Luxembourg 0.2597 
Malta 0.2406 
Lithuania 0.2161 
Qatar 0.1856 
Iraq 0.1773 
Ukraine 0.1655 

Table 21: Hat-values exceeding thresholds 2ℎ	 (below dashed line) and 3ℎ	 (above dashed line) 

 

As seen from figure 15, the more distant observations in terms of their positions in the Q-

space (transformed X-space) are Samoa, Tonga, Switzerland, and the USA. Their leverage 

values are more than 5 times further from the mean hat-value (> 0.4098), partially due to 

the fact that they obtained the highest weights in the FWLS estimation (for each of these 

countries the weighting factors 1/√wi are greater than 3). Furthermore, according to the 

original unweighted data, residents of Switzerland and the USA spend the most on the 
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healthcare services. At the same time, in 2016 Samoa and Tonga, island states located in 

the South Pacific Ocean, had the largest average body mass indices in the world, 31.9 for 

both, which corresponds to the obesity of the first type.  

 

Figure 15: Hat-values 

The most isolated data point is Monaco, with the hat value ℎÿäGo$ä = 0.9259, close to the 

maximum possible of one. Even though the weighting factor for Monaco is almost twice 

smaller than that of the USA, its response and predictor values are still weighted heavier 

than for 75% of the countries in the FWLS estimation procedure. Thereby, the extremely 

large hat-value of Monaco may stem from the outstandingly high GDP per capita 

(191,586.6 USD), which is approximately 36 times higher than the median GDP per capita 

in 2016 (5,382.8 USD).  

Since the leverage depends only on the regressor values, additional statistics should be 

calculated to determine the real influence a particular data point has on the estimated 

regression function. 

 

8.2. Regression Outliers: Externally Studentized Residuals 

Generally, the attention is drawn to the data points with the largest externally studentized 

residuals exceeding the threshold of |2|, and even more concern arises if the residuals 

exceed |3| (Blatná, 2006). Figure 16 provides evidence of the presence of outlying 

observations since nine points fall behind the limits [-2; 2].  
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Figure 16: Externally studentized residuals 

The mean-shift outlier model may serve as a useful way of regression outliers detection. 

Recall a modified model without an intercept from the equation (1.44) 

𝑦/∗ = 𝛽8𝑥/8∗ + 𝛽9𝑥/9∗ + ⋯+ 𝛽=𝑥/=∗ + 𝛾𝑑/ + 𝜀/∗, 

where 𝑑/ is a binary variable coded 1 for the observation i and 0 for all other observations. 

If parameter 𝛾 ≠ 0, the conditional expectation of the ith observation depend on the 

regressors 𝑋8∗, 𝑋9∗, … , 𝑋=∗ in the same manner as the other data points, but its intercept is 

shifted from 0 to 𝛾. The t-statistic for testing the null hypothesis 𝐻8:		𝛾 = 0 that the ith 

observation is not a mean-shift outlier against the two-sided alternative is identical to the 

externally studentized residual 𝑒°/, that has t distribution with (n – k – 2) degrees of 

freedom. 

 Externally studentized residual 
Syrian Arab Republic 3.3466 
Bhutan 2.3103 
Kiribati 2.2838 
Turkmenistan 2.2534 
Singapore 2.2085 
Barbados 2.1006 
Maldives 2.0741 
El Salvador 2.0219 
Switzerland 2.0077 

Table 22: Absolute values of externally studentized residuals exceeding thresholds |2| (below dashed line) 

and |3| (above dashed line) 

The largest 𝑒°/ corresponds to the Syrian Arab Republic: 𝑒°,Ý,/o= 3.3466, and it is the only 

value which exceeds the cut-off |3| according to the table 22. 
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The p-value of the two-tailed t-test on parameter 𝛾  associated with the dummy variable  

𝑑Ý,/o  amounted to 0.001011. However, since the studentized residuals are not 

independent, the correct approach is to evaluate the Bonferroni-corrected t-test by 

multiplying the usual two-sided p-value by the sample size n = 183. The Bonferroni upper 

bound for the p-value = 0.18495 is not significant; thus, we fail to reject the null 

hypothesis that Syria is not a mean-shift outlier. On the contrary, Switzerland has one of 

the highest hat-values (0.5697) and the absolute value of residual value exceeding the cut-

off value 2. Thus, it should be further examined for being an influential observation. 

 

8.3. Influence Measures 

8.3.1. Cook’s Distance 

Figure 17 illustrates the hat-values, studentized residuals, and Cook’s distance 

simultaneously. The radius of each circle is proportional to the square root of the Cook’s 

Di, and hence the area is proportional to the Cook’s D of the ith observation. It is clearly 

visible that Monaco dramatically differs from the rest of the countries, and thus it most 

likely has considerable influence on the regression estimation.  

 

Figure 17: Plot of hat-values, externally studentized residuals and Cook's distances. Size of circles is 

proportional to Cook's Di 

As mentioned in the inequality (4.13), the observation i might be declared as influential if 

the Di is greater than the median of an F distribution with (15, 168) degrees of freedom, 

which is 𝐹0.5,	15,	168= 0.9597 in this particular case. Since the standardized residual for 

Monaco 𝑒Ý,ÿäGo$ä= 1.7884 exceeds the 95th percentile of its distribution, and the leverage 

is close to unity ℎÿäGo$ä = 0.9259, the corresponding Cook’s distance computed as 
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𝐷ÿäGo$ä = Ø1.7884
2

15
Ù× Ø 0.9259

1-0.9259
Ù	= 2.6652 stands out substantially from the rest of the data 

points. The extreme remoteness of the statistic from the critical value implies that 

exclusion of this observation from the estimation procedure can substantially change the 

coefficients estimates.  

Another widely used cut-off for detection of the influential observations based on the 

Cook’s distance is 𝐷/ >
4

Gg¾
, which amounts to 0.0238 in the case of 183 observations and 

15 estimated parameters. Based on this criterion, fourteen more countries may be viewed 

as influential according (see table 21). The second largest Cook’s distance after Monaco 

corresponds to Switzerland, 𝐷Ý�/æ.Ê#oGp	= 0.3495, which is 7.6 times less than that of 

Monaco.  

Therefore, it is reasonable to exclude these two observations from the estimation and 

evaluate the change in the regression coefficients. Table 23 provides the results of 

dropping the data points for Monaco and Switzerland one-at-a-time and both 

simultaneously.  

 All in Monaco out Switzerland out Both out 
Non-constant 84.3125 83.9802 83.8028 83.4653 
Low -3.1896 -2.7611 -3.1288 -2.6969 
Lower-middle -1.6379 -1.2556 -1.5729 -1.1876 
Upper-middle -0.6706 -0.3745 -0.6428 -0.3444 
adult_m -0.0674 -0.0675 -0.0661 -0.0662 
HepB 0.0157 0.0165 0.0182 0.019 
BMI 3.6234 3.5436 4.4215 4.3457 
BMI2 -2.316 -2.2147 -2.1729 -2.0701 
alcohol 7.6404 7.7642 7.3341 7.457 
alcohol2 -4.2545 -3.9942 -4.4114 -4.1501 
log(pm2.5) -0.5393 -0.5465 -0.528 -0.5351 
GDP -4.4266 -5.8545 -5.7937 -7.2396 
GDP2 10.7095 4.291 11.3766 4.9162 
hlth_exp 13.8027 13.148 15.5008 14.8512 
hlth_exp2 -5.2708 -4.8779 -7.3279 -6.944 

Table 23: Regression coefficients estimated with and without Monaco and Switzerland 

Omitting Monaco decreased the coefficient for GDP by about 32%, GDP2 by 60% and 

increased the coefficient for the upper-middle income group by 44%. Removing 

Switzerland and retaining Monaco leads to 12% and 39% increase in the coefficient 

estimates for hlth_exp and hlth_exp2 respectively, which stems from the highest spending 
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on the healthcare in that country. Exclusion of both, Monaco and Switzerland, results in 

the coefficient estimates for GDP and GDP2 being reduced by 63% and 54%, respectively, 

as well as the estimated parameter for the upper-middle-income class being increased by 

49% as compared to the model based on the complete dataset. Apparently, these two 

countries extensively affect the model estimation even after the weighting procedure. 

 

8.3.2. DFFITS 

The following table summarizes the Cook’s distances, sorted by the absolute values of the 

DFFITSi exceeding the threshold 2| 15
183-15

 = 0.5976. Based on this cut-off, fifteen 

countries have a feasible influence on the fitted values of the life expectancy. However, the 

critical values for identifying the observations as influential are just the basic guidelines, 

and it is more important to pay attention to the data points which substantially stand out 

from the rest of the sample.  

 Cook’s distance |DFFITSi| 
Monaco 2.6652 6.3649 
Switzerland 0.3495 2.3101 
Syrian Arab Republic 0.1071 1.3051 
Malta 0.0764 1.0791 
Equatorial Guinea 0.0749 1.0655 
Luxembourg 0.0563 0.9228 
Kiribati 0.0547 0.9169 
USA 0.0555 0.9112 
Ukraine 0.0483 0.8584 
Maldives 0.0391 0.7733 
Saint Lucia 0.0357 0.7377 
Singapore 0.0286 0.6624 
Lithuania 0.0270 0.6369 
Kuwait 0.0247 0.6105 
Azerbaijan 0.0239 0.6036 

Table 24: Cook's distances exceeding thresholds [4/(183-15)] (below dashed line) and F0.5, 15, 168 (above 

dashed line); DFFITSi exceeding threshold [2√(183-15)] 

Since both the Cook’s Di and DFFITSi depend directly on the magnitude of the hat-values, 

they provide similar results. It is evident that Monaco and Switzerland have the highest 

scores for both measures, which distinguish them from the rest of the countries and proves 
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the fact that these they exert a significant influence on the parameter estimates and the 

fitted values. 

 

Figure 18: DFFITSi 

It is worth mentioning that Monaco is one of the most problematic observations in terms of 

data availability. Most of the official international databases do not provide information on 

many socio-economic indicators and other attributes for Monaco. Therefore, the necessity 

for imputation of the missing values contributes to additional risks when Monaco 

participates in the estimating and predicting procedures.  

 

 

 

 

 

 

 

 

 

 

 



 78 

9. Variable Selection Procedures 

The FWLS model from the equation (7.4) has been defined as the full starting model, with 

regard to which several variable selection procedures were applied. Recall this model: 

 

life_exp = 84.31 Non-constant  
                   – 3.19 Low – 1.64 Lower-middle – 0.67 Upper-middle  

                   – 0.07 adult_m + 0.02 HepB + 3.62 BMI – 2.32 BMI2 
                   + 7.64 alcohol – 4.25 alcohol2 – 0.54 log(pm2.5)  
                   – 4.43 GDP + 10.71 GDP2  

                   + 13.80 hlth_exp – 5.27 hlth_exp2 + e . 

(9.1) 

 

The values of the information criteria for the initial Model 1, computed on the basis of the 

formulas (5.5) and (5.6), are AICfull = 183 ´ log(551.92
183

) + 2 ´ l5= 232.02 and               

BICfull = 183 ´ log(551.92
183

) + log(183) ´ l5 = 280.16, which provide a benchmark for 

selection of the subset models relative to the full model. The null model, that is, the 

smallest model we are willing to entertain is specified as 

 

life_exp = 80.11 Non-constant  

                  – 18.44 Low  – 11.13 Lower-middle – 6.30 Upper-middle , 
 

(9.2) 

where the first coefficient corresponds to the column of the weighting factors for the 

individual observations (diagonal elements of the transformation matrix P). Intentionally, 

R has been forced to include the inc_level variable, so that the algorithm does not omit 

individual levels, but involves all categories of the dummy variable in the model 

estimation. The information criteria for the null model AICnull = 652.25 and               

BICnull = 665.09 exceed the corresponding values for the full model by more than two 

times, implying a worse fit provided by the restricted model. 

The backward elimination method based on the information criteria omitted the second 

order polynomial in BMI, which decreased the AIC from 232.02 to 231.68 and BIC from 

280.16 to 273.4. Further variables removal increases the criteria, so the algorithm stoped 

after the regressors BMI and BMI2 were dropped from the model. The forward selection 

procedure provided identical results: starting with the null model, the variables have been 

added sequentially according to the largest potential reduction of the information criteria. 

All variables except for BMI and BMI2 have been included in the model, which reduced the 
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values of AIC from 652.25 to 232.02 and BIC from 665.09 to 231.68. Absolutely the same 

result was obtained using the stepwise regression.  

The p-values for these two terms in the full model amounted to 0.1252 for BMI and 0.0776 

for BMI2, after exclusion of the squared term the p-value for the BMI coefficient increased 

to 0.6257. Thus, when the procedures were repeated using the stopping significance levels  

𝛼ÊãäåÊ and 𝛼ÊGæÊ  being equal to 0.01, 0.05 and 0.1, the body mass index was 

equivalently considered to be insignificant in the prediction of the life expectancy, and the 

resulting model is expressed as 

 

life_exp = 84.12 Non-constant  

                   – 3.65 Low – 1.72 Lower-middle – 0.64 Upper-middle  
                   – 0.07 adult_m + 0.02 HepB  

                   + 7.97 alcohol – 4.13 alcohol2 – 0.54 log(pm2.5)  
                   – 4.49 GDP + 10.61 GDP2  

                   + 14.05 hlth_exp – 5.47 hlth_exp2 + e . 

(9.3) 

 

However, when the 𝛼ÊãäåÊ and 𝛼ÊGæÊ  were both set to 0.001, the three algorithms 

identified the variables HepB and log(pm2.5) as inactive on a par with BMI and BMI2, 

resulting in the estimated model  

 

life_exp = 84.71 Non-constant  
                   – 3.94 Low – 1.92 Lower-middle – 0.80 Upper-middle  

                   – 0.07 adult_m  
                   + 9.10 alcohol – 4.59 alcohol2  

                   – 6.50 GDP + 11.90 GDP2  
                   + 16.24 hlth_exp – 5.96 hlth_exp2 + e . 

(9.4) 

 

The next chapter aims at the investigation of the predictive abilities of the initial model 

(9.1), denoted as Model 1, and two models selected by the automated procedures (9.3) and 

(9.4), denoted as Model 2 and Model 3, respectively. 
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10. Cross-Validation 

The regression models are useful not only in terms of estimation of the mean response for a 

particular set of observed values of the independent variables but also for prediction of the 

response values corresponding to the new observations. Cross-validation is one of the most 

widely applied resampling methods for assessment of the predictive performance of the 

model. It consists of repeatedly drawing samples from the available data and fitting the 

model under consideration on each sample in order to obtain information on the predictive 

abilities of a given model (James et al., 2013). 

The family of cross-validation methods includes different approaches such as the 

validation set (hold-out set), leave-one-out cross-validation (LOOCV), k-fold, and repeated 

k-fold cross-validation. The underlying idea of these techniques consists of dividing the 

data into two subsets: the training set used to build the regression model, and the testing set 

used to validate the model by evaluating the error of prediction. 

To compare the models by their predictive performance on the testing data, different 

metrics can be computed. The Mean Absolute Error (MAE) measures the average absolute 

difference between the actual response values and the predicted values: 

 𝑀𝐴𝐸 =
∑ |𝑞/ − 𝑞Q/|G
/e9

𝑛 		, (10.1)  

where 𝑦Q/ is a point predictor for the observation i. It quantifies the average magnitude of 

the prediction errors.  

An alternative to MAE is the Root Mean Squared Error (RMSE), obtained as 

 𝑅𝑀𝑆𝐸 = â∑ (𝑞/ − 𝑦Q/);G
/e9

𝑛 		. (10.2)  

The advantage of RMSE over MAE is usefulness in cases when large prediction errors are 

undesirable since large errors are given higher weights after squaring. 

 

• Validation Set Approach 

The validation set approach is a simple strategy, which involves randomly splitting the 

available data into two parts: a training set and a hold-out (validation) set. The size of each 

of the subsets is arbitrary and depends on the sample size. For a sample of 183 countries, 

80% of observations were randomly assigned to the training set (nTrain = 147) and 20% to 
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the validation set (nTest = 36). The regression Models 1, 2, and 3 are estimated based on the 

training data, and then used to predict the values of the life expectancy for the data not 

used in the estimation.  

 

• Leave-One-Out Cross-Validation 

In the LOOCV approach, one data point is excluded from the estimation procedure, the 

model is built on (n – 1 = 183 – 1) observations and then tested against the left-out point. 

The process is repeated n = 183 times, and the LOOCV estimates are then the averages of 

the test error estimates: 

 𝐶𝑉(G)ÿ/0 =
9
G
∑ 𝑀𝐴𝐸/G
/e9 		, (10.3)  

 𝐶𝑉(G)éÿÝ0 =
9
G
∑ 𝑅𝑀𝑆𝐸/G
/e9  . (10.4) 

The LOOCV decreases potential bias but may lead to a higher variation of the prediction 

error if some observations are outliers. 

 

• k-Fold Cross-Validation 

An alternative to the LOOCV is the k-fold cross-validation, which partitions the original 

sample into k approximately equal subsamples. The process consists of k iterations, each 

time a model is built on (k – 1) folds and validated using the remaining group. In most 

practical applications number of subsets is usually set to k = 5 or k = 10, as these values 

result in the test error estimates that do not suffer either from the high variability or from 

high bias (James et al., 2013). The k-fold CV estimates are obtained by averaging the MAE 

and RMSE across the k groups 

 𝐶𝑉(=)ÿ/0 =
9
=
∑ 𝑀𝐴𝐸/=
/e9 , (10.5)  

 𝐶𝑉(=)éÿÝ0 =
9
=
∑ 𝑅𝑀𝑆𝐸/=
/e9 . (10.6) 

 

• Repeated k-Fold Cross-Validation 

The repeated k-Fold cross-validation is a modification of the previous approach, whereby 

the cross-validation is conducted multiple times, and each time the data is split into k folds 
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in a different way. The overall model error is taken as the average error from the number of 

repeats. 

The four methods have been applied to the full dataset, and a dataset with Monaco and 

Switzerland excluded in order to evaluate how the main model and the models chosen by 

the automated selection procedures perform in the prediction of the life expectancy. It is 

necessary to remember that the procedures are based on the transformed data. Since the 

weights for 131 counties are greater than 1, the response values q may be out of the range 

of possible life length: for example, in 2016, life expectancy at birth in the Czech Republic 

was equal to 79.2 for both genders. After estimation of the matrix P, Czechia was assigned 

the weight of 2.11. The resulting transformed value of the response was obtained by 

multiplying these two values amounted to approximately 167.13 years, which is 

unrealistic. Therefore, the prediction errors calculated on the basis of the modified values 

of response and explanatory variables may yield higher values, than if the original 

observed values were used for modeling. 

The following tables illustrate the resulting cross-validation estimates for the test errors: 

 

Model Model 1 Model 2 Model 3 
 RMSE MAE RMSE MAE RMSE MAE 
Train/Test Split 2.0661 1.7079 2.0683 1.6992 1.9294 1.6057 
LOOCV 8.5171 6.0077 14.3160 8.9504 18.9640   12.8167 
10-fold 7.9617 5.9289 15.4308 9.8870 17.6759 12.9732 
Repeated  
10-fold 
(3 repeats) 

8.0383 5.9637 13.6831 9.3078 18.1521 12.9196 

Table 25: Cross-validation RMSE and MAE of three models, obtained using full dataset 

 

Model Model 1 Model 2 Model 3 
 RMSE MAE RMSE MAE RMSE MAE 
Train/Test Split 1.7235 1.3374 1.74852 1.4039 1.8692 1.4517 
LOOCV 7.3903 5.6202 12.0443 8.4055 16.3366 12.1641 
10-fold 7.4114 5.6829 11.3270 8.4378 15.4737 11.9916 
Repeated  
10-fold 
(3 repeats) 

7.2822 5.6463 11.5166 8.5418 16.4884 12.3920 

Table 26: Cross-validation RMSE and MAE of three models, obtained using dataset with Monaco and 

Switzerland deleted 
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The resulting RMSE and MAE for the validation set approach are considerably less than 

the other estimates for the test errors. This may stem from the fact that random splitting of 

the dataset into training and validation sets depends on the seed specified prior to the 

division, and the validation set may contain observations that are relatively easy to predict. 

Deletion of Monaco and Switzerland from the sample data resulted in the reduction of the 

test error estimates, thus, advocating the improved accuracy of the predictions made by all 

three models. The lowest values of the RMSE statistics correspond to the initial model 

(9.1), suggesting that omitting of the variables BMI and BMI2 increases the standard 

deviation of the predicted values from the actual ones by more than 50% in the second 

model (from 7.4 to 11.3 according to the 10-fold cross-validation). The third model, that is, 

with the predictors BMI, BMI2, HepB and log(pm2.5) not participating in the procedures 

provides the most inaccurate prediction results, which is reflected in the highest validation 

error estimates. 

Consequently, in all four validation methods, there is a clear superiority of the model with 

all variables over the stepwise selection procedures, based purely on results. 

Still, the smallest average absolute difference between the predicted and observed values 

of approximately 5.6 years (table 24) is still considerably high and might suggest the 

inclusion of additional predictors to the model which contain relevant information 

necessary for prediction of the life expectancy.  
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Conclusion 

The steps of the regression model-building process were presented in the context of the 

thesis introducing the principles of the multiple linear regression model and its basic 

properties. Based on a sample drawn randomly from a population, the ordinary least 

squares approach is employed to estimate the unknown intercept and slopes parameters in 

the population regression model. The multiple regression models allow examining the 

partial effect of a particular independent variable on the response while holding other 

factors fixed. The algebra of the OLS estimation was demonstrated, including computation 

of parameter estimates which reflect the expected changes in the dependent variable life 

expectancy for given changes in the predictors. Although the models are linear in 

parameters, they may be conveniently used to model non-linear relationships by selecting 

appropriate forms of the dependent and independent variables, such as power or 

logarithmic transformations.  

The specification and data issues that frequently arise in the experimental cross-sectional 

analyses have been addressed. Incorrect specification of the functional form makes the 

estimated model difficult to interpret and can be detected by the RESET test, without 

additional data collection.  

Section 1.3 described the assumptions of the classical linear regression model, under which 

the OLS estimators are unbiased, meaning that the expectations on the parameter estimates 

are the corresponding population parameters themselves. When the assumption of the 

constant error variance is added, we obtain simple formulas for the sampling variances of 

the OLS estimators. It can be seen from the equation (1.31), that the slope estimators’ 

variance increases with rising error variance, while it decreases when there is more 

variation in the regressors. 

Unfortunately, in many social science practical applications, the crucial assumption of zero 

mean of the error term 𝜀 conditional on the predictor variables X does not hold, since the 

omitted features in 𝜀 are often correlated with X. The analysis of the life expectancy, 

although intentionally assumed exogeneity of the explanatory variables, still requires 

inclusion of important regressors which were not controlled for. However, adding more 

variables leads to increasing number of parameters to be estimated which results in the 

unreliable t-ratios and instability of parameters. Thus, in the context of this thesis only 
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several features have been selected to be able to fulfill its main goal of the model building 

process illustration. 

Dealing with the omitted variables problem, that is when one or more relevant variables 

are left out, is more complicated, and one of the possible ways to address this issue is 

based on incorporating a proxy variable for the omitted variable. Under some rational 

assumptions, involving the proxy variable into the OLS regression may eliminate, or at 

least, mitigate the bias (Wooldridge, 2015). 

Several common diagnostics used to evaluate whether the CLRM assumptions hold for a 

particular linear regression model were discussed in chapter 3 and applied to the real data 

in chapter 7. We addressed two techniques to test for heteroskedasticity: the Breusch-

Pagan test and a modified version of the White test. Both of these test statistics engage 

regressing the squares of the OLS residuals on either the explanatory variables (Breusch-

Pagan test) or the fitted and squared fitted values (a special case of the White test). The 

conclusions may rely upon either the F-tests or the Lagrange multiplier analogs of the 

tests. We revealed that countries with low level of development contribute to the higher 

spread of the residuals at lower values of the life expectancy, whereas countries with 

higher level of development provide a more reliable basis for the coefficients’ estimation. 

Heteroskedastic errors do not imply a bias in the OLS estimators, but the usual standard 

errors are no longer valid, and t- and F-test statistics do not have the expected t or F 

distribution, respectively. In the existence of heteroskedasticity OLS is not the best linear 

unbiased estimator any longer, that is the estimator with the lowest variance. When the 

shape of heteroskedasticity is known, the weighted least squares (WLS) estimation can be 

applied as an alternative to the OLS. More commonly, the function of the 

heteroskedasticity is unknown and must be estimated before using the WLS. The resulting 

feasible WLS estimator is no longer unbiased, but it converges in probability to the true 

population parameter as the sample size increases. When the error term is normally 

distributed, the test statistics from the FWLS estimation procedure are valid, assuming the 

heteroskedasticity has been appropriately modeled. Since the low-income areas are the 

main cause of high residual variance, their impact on the parameter estimates was reduced 

by assigning lower weight to these countries in the FWLS approach. 
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Apart from the quantitative data, the use of the qualitative information was shown in the 

estimation of the mean life expectancy at birth by incorporating the categorical variable 

income level. All the estimates on this dummy variable were interpreted relative to the 

benchmark group of high-income countries, for which no dummy variable was included in 

the model.  

Furthermore, we have examined the topic of statistical inference, which allows inferring 

statements about the population from a random sample. We tested hypotheses about the 

statistical significance of the model and single parameters using the F-test and two-tailed t-

tests, respectively. In traditional hypothesis testing, one first chooses a significance level, 

which, along with the alternative hypothesis and degrees of freedom, defines the critical 

value against which the associated test statistics are compared. We have discussed various 

ways for construction of the confidence intervals, both parametric (univariate and 

simultaneous CI, joint confidence regions) and non-parametric (using the bootstrapped 

standard errors). 

Additionally, we have distinguished several types of outlying observations which can 

substantially affect the OLS estimates, primarily in small samples. It is essential to identify 

outliers based on some measures and generally accepted rules along with the knowledge 

about the process and then to re-estimate models without the suspected outliers. It was 

shown that Monaco and Switzerland have the highest scores for almost all measures of 

outlyingness, which differentiates them from the rest of the observed countries and 

confirms the fact that their presence (or absence) in the regression modeling procedure 

significantly affects the parameter estimates and fitted values. 

Finally, we have concisely discussed several variable selection procedures which may 

serve as general guidelines for identification of the active and inactive (unimportant) 

variables in the regression model. The cross-validation resampling techniques were then 

conducted in order to asses the ability of the initial model and models proposed by the 

automated selection procedures to predict new data that did not participate in the 

estimation stage. 
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