

University of Economics, Prague

Faculty of Informatics and Statistics

GRAPHQL API TEST AUTOMATION

MASTER THESIS

Study programme: Applied Informatics

Field of study: Information Technologies

Author: Bc. Alexandra Kolpakova

Supervisor: doc. Ing. Alena Buchalcevová, Ph.D.

Prague, December 2019

Declaration

I hereby declare that I am the sole author of the thesis entitled “GraphQL API test

automation“. I duly marked out all quotations. The used literature and sources are stated in

the attached list of references.

In Prague on

 Bc. Alexandra Kolpakova

Acknowledgement

I hereby wish to express my appreciation and gratitude to the supervisor of my master’s

thesis doc. Ing. Alena Buchalcevová, Ph.D., for professional management, providing

valuable advices and comments during the thesis processing.

I would also like to thank my family and friends who have always supported and encouraged

me throughout work preparation.

Abstract

Master thesis work is specializing on problematics of implementation of GraphQL

Application Programming Interface (API) test automation. The main goal is to compare

existing GraphQL API test automation solutions to recommend one that can be used in a

real project in a company that experienced a transition from Representational State

Transfer (REST) to GraphQL API implementation and is searching for a new test

automation approach.

The first part of this paper focuses on explaining the important terms. The API role in client-

server Web applications architecture style is defined with the HTTP characteristics that

enables the communication between the client-side and the server-side. Further chapters

give an overview on the REST architecture style and GraphQL technology for API

implementation. The next part describes the API testing process, with its main testing

activities and challenges.

In the following parts of this thesis, the author introduces GraphQL API test automation

solutions compatible with the Java programming language. These are then being compared,

using the Multiple Criteria Decision Analysis, and the most beneficial solution is

recommended to the concrete company that experienced the transition from REST to

GraphQL API implementation.

Keywords

GraphQL API, API testing, GraphQL test automation, REST-assured

JEL Classification

L150, L860

Content

Introduction ... 12

Goals ... 13

Target group.. 13

Research methods ...14

Assumptions and limitations ..14

Expected benefits .. 15

Work structure .. 15

1 Literature review .. 17

1.1 Professional publications ... 17

1.2 Academic works .. 18

1.3 Internet resources ...19

2 Application Programming Interface ... 20

2.1 Client-server architecture ... 20

2.1.1 HTTP communication .. 24

2.2 REST architecture style ... 25

2.2.1 Principles and constraints ... 26

2.2.2 Limitations .. 27

3 GraphQL ... 28

3.1 History of GraphQL .. 29

3.2 Features .. 31

3.2.1 GraphQL server description .. 32

3.2.2 Type system and schemas ... 32

3.2.3 Query Language .. 33

4 API testing .. 36

4.1 Characteristics of API testing ... 36

4.1.1 Testing activities .. 38

4.1.2 Challenges ...41

4.2 API test automation ... 42

5 GraphQL API test automation using Java .. 45

5.1 Test automation solutions research ... 45

5.2 Solution overview ... 46

5.2.1 Test GraphQL Java .. 46

5.2.2 REST-assured .. 47

5.2.3 Karate .. 49

6 Evaluation of GraphQL API solutions for concrete company ... 51

6.1 Context definition .. 51

6.1.1 Company overview ... 52

6.1.2 GraphQL API ... 54

6.1.3 Requirements for API testing .. 55

6.2 Alternatives introduction ... 57

6.3 Criteria definition .. 57

6.3.1 Criteria evaluation values ...61

6.4 Weights specification ... 62

6.5 Measuring the alternatives .. 63

6.5.1 Test GraphQL Java .. 63

6.5.2 REST-assured ... 71

6.6 Alternatives evaluation .. 79

Conclusions ... 83

List of references ... 85

Annexes ..91

Annex A: GraphQL custom server implementation ...91

Annex B: GraphQL requests used in solutions evaluation .. 92

Annex C: CRUD Test Cases.. 94

Annex D: MCDA questionnaires .. 96

Annex E: CRUD test suite implementation ... 100

7

List of Figures

Figure 1 Client-Server network model (source: https://techdifferences.com/difference-

between-client-server-and-peer-to-peer-network.html) ... 21

Figure 2 API in client-server architecture of Web application (source: http://www.robert-

drummond.com/2013/05/08/how-to-build-a-restful-web-api-on-a-raspberry-pi-in-

javascript-2/) ... 22

Figure 3 Client adapter code model implemented by Netflix (source:

https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-

redesign-15fd8b3dc49d) ... 28

Figure 4 Google Trends of searching "GraphQL" topic in past 5 years worldwide (source:

https://trends.google.com/) .. 31

Figure 5 Custom GraphQL server schema part (source: author) .. 33

Figure 6 Example of query validation (source: author) .. 33

Figure 7 Example of query variable usage (source: author) ... 35

Figure 8 Example of similar data shapes in multiple queries (source: author) 35

Figure 9 Example of using fragment in GraphQL queries (source: author) 35

Figure 10 Types of testing in client-server architecture style for Web applications (source:

http://www.robert-drummond.com/2013/05/08/how-to-build-a-restful-web-api-on-a-

raspberry-pi-in-javascript-2/, modified by: author) ... 36

Figure 11 V-model in software testing (source: https://www.testbytes.net/blog/v-model-

and-w-model-software-testing/) ... 37

Figure 12 Mike Cohn’s Test Automation Pyramid (source:

https://www.360logica.com/blog/sneak-peek-test-framework-test-pyramid-testing-

pyramid/) .. 43

Figure 13 Sending request method in Test GraphQL Java example Test Class (source:

https://github.com/vimalrajselvam/test-graphql-java) ... 47

Figure 14 Test GraphQL Java library methods (source:

https://github.com/vimalrajselvam/test-graphql-java) ... 47

Figure 15 REST-assured test example (source: https://www.baeldung.com/rest-assured-

response) ... 48

Figure 16 Basic user authentication example code with REST-assured (source:

https://www.baeldung.com/rest-assured-authentication) .. 48

Figure 17 Karate test example (source: https://www.baeldung.com/karate-rest-api-testing)

 ... 50

Figure 18 Karate GraphQL test example (source: https://github.com/intuit/karate) 50

Figure 19 Dependency installed in Test GraphQL Java library example project (source:

author) ... 64

Figure 20 The ease of understanding solution A’s methods - questionnaire results (source:

author) ... 68

Figure 21 CRUD suite test run time using Test GraphQL Java library (source: author) 69

Figure 22 Test GraphQL Java error message example (source: author) 70

Figure 23 YouTube search results using keyword "rest-assured" (source:

https://www.youtube.com/results?search_query=rest-assued) 72

file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689263
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689263
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689264
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689264
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689264
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689266
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689266
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689267
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689268
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689269
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689270
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689271
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689272
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689272
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689272
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689274
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689274
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689274
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689275
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689275
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689276
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689276
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689278
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689278
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689279
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689279
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689280
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689281
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689281
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689283
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689284
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689285
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689285

8

Figure 24 Installed dependencies in Initial project setup with REST-assured (source:

author) ... 72

Figure 25 Extended installed dependencies in Initial project setup with REST-assured

(source: author) ... 73

Figure 26 The ease of understanding solution B methods - questionnaire results (source:

author) ... 76

Figure 27 CRUD suite test run time using REST-assured (source: author) 77

Figure 28 REST-assured error message example (source: author) 78

Figure 29 Normalised criterion matrix formula (source: [89]) .. 80

Figure 30 Formula for calculating alternatives performance value (source: [89])............. 80

Figure 31 The ease of understanding solution methods questionnaire template (source:

author) ... 97

Figure 32 Error messages and logs informational content questionnaire template (source:

author) ... 98

Figure 33 Criteria for choosing GraphQL API test automation solution (source: author) . 99

Figure 34 Error messages and logs informational content questionnaire result (source:

author) ... 100

file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689286
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689286
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689287
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689287
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689289
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689290
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689291
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689292
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689293
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689293
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689294
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689294
file:///C:/Users/Александра/Documents/DP2.0/DP_kolpakova.docx%23_Toc25689295

9

List of tables

Table 1 Description of HTTP/1.1 methods (source: [34], [37]) ... 25

Table 2 HTTP/1.1 response status codes (source: [34]) .. 25

Table 3 GraphQL server operations for Data object (source: author) 32

Table 4 HTTP methods used in REST architectural style with custom GraphQL server

operations (source: author) ... 34

Table 5 ISO 9126-1 software quality characteristics relation to API testing activities (source:

[69], [70], [71]) .. 39

Table 6 Test scenarios templates for API functionality verification (source: author) 40

Table 7 API test automation challenges (source: [78]) ... 44

Table 8 GraphQL test automation approaches using Java search results evaluation (source:

[79]) ... 46

Table 9 List of requirements for the integration testing approach from company X (source:

author) ... 56

Table 10 List of criteria for the MCDA method (source: author) .. 58

Table 11 Get GraphQL structure Test Case (source: author)... 60

Table 12 Criteria evaluation results with weight calculated (source: author) 63

Table 13 Calculating of average test suite run time for Test GraphQL Java (source: author)

 ... 69

Table 14 Calculating of average test suite run time for REST-assured (source: author) 77

Table 15 Alternatives evaluation criteria and weights (source: author).............................. 80

Table 16 Minimising to maximising criteria transformation example (source: author) 80

Table 17 Application of transformation formula for normalising criterion matrix (source:

author) ... 80

Table 18 Criteria values evaluation (source: author) .. 81

Table 19 CRUD suite Test Cases (source: author) ... 96

10

List of program´s codes

Code 1 "Data" object example (source: author) ... 32

Code 2 Request payload body for GraphQL API (source: author) 34

Code 3 Google search query for GraphQL test automation approaches using Java (source:

author) ... 45

Code 4 BaseTest class implementation with Test GraphQL Java library (source: author) 65

Code 5 GetServerSchema Test Case implementation with Test GraphQL Java library

(source: author) ... 66

Code 6 OkHttp request builder example using authorization header (source: author) 66

Code 7 Edit existing Data test implementation with Test GraphQL Java library (source:

author) ... 67

Code 8 Invalid request example (source: author) ... 70

Code 9 BaseTest class implementation with REST-assured (source: author) 73

Code 10 GetServerSchema test case implementation with REST-assured (source: author)

 ... 74

Code 11 REST-assured request builder example using authorization header (source: author)

 ... 74

Code 12 Edit existing Data test implementation with REST-assured (source: author) 75

Code 13 REST-assured request with enabled logging (source: author) 78

Code 14 GraphQL server schema (source: author) ..91

Code 15 Data object class (source: author) .. 92

Code 16 Query and mutation implementation example (source: author) 92

Code 17 "getServerSchema" query (source: author) ... 93

Code 18 "getListOfData" query (source: author)... 93

Code 19 "getData" query (source: author) ... 93

Code 20 "createData" mutation (source: author).. 94

Code 21 "dataTypeFragment" fragment (source: author) ... 94

Code 22 "editData" mutation (source: author) ... 94

Code 23 "deleteData" mutation (source: author) .. 94

Code 24 CRUDSuite implementation using Test GraphQL Java library (source: author) 103

Code 25 CRUDSuite implementation using REST-assured library (source: author)105

11

List of abbreviations

API Application Programming Interface

TC Test Case

GraphQL Graph Query Language

REST Representational state transfer

QA Quality Assurance

FIS Faculty of Informatics and Statistics

MCDA Multiple Criteria Decision Analysis

HTTP Hypertext Transfer Protocol

GUI Graphical User Interface

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

SOAP Simple Object Access Protocol

RPC Remote Procedure Call

XML Extensible Markup Language

JSON JavaScript Object Notation

JPEG Joint Photographic Experts Group

MIME Multipurpose Internet Mail Extensions

URL Unified Resource Locators

UNI Uniform Resource Identifiers

WSDL Web Service Definition Language

OSFA One-Size-Fits-All

RAD Rapid Application Development

BDD Behaviour Driven Development

WSA Weighted Sum Approach

12

Introduction

Since World Wide Web (Web) technology was developed in 1990 as a system that runs on

the Internet infrastructure, its use and role in people’s everyday lives have changed

increasingly [1]. Today, the Internet has become a necessity not only to individual lives but

also in economic and political areas [2]. The growth of the Web usage influenced the

popularity of e-commerce, this allows customers to purchase products and services through

the Internet [3], making it more and more difficult for companies to grab their target

audience’s attention.

For a company to succeed in their field, it is important not only to understand the

consumer’s needs for a product or a service but also the expectations they have for Internet

applications where they get the first impressions on the product. This leads to having higher

requirements from Web applications and putting more emphasis on them while verifying if

the final solution is according to the user acceptance criteria in terms of quality.

Common Web applications are designed according to the client-server architecture that

allows the Internet user to communicate with Web application server-side through a Web

page. This communication is provided by the Application Programming Interface (API) that

sends information from the client to the server-side and back. All mentioned elements of

Web applications are making the testing process more challenging as the system contains

many dependent elements that cannot be controlled [4].

The process of testing Web applications can be handled in many ways, from testing the

architecture components separately to testing their integration by handling API testing. API

testing requires more technical knowledge and systems integration understanding to cover

all possible Test Cases (TC) and prevent system failure. API tests belong to the integration

tests category, in which the execution process is being highly automated to maintain a

constant cost and support the continuous improvement of the Web application

development process [5]. The test automation process is supported using tools, frameworks,

and libraries that allow to set up the automated process of test activities such as test

execution or result checking [6]. Some of the existing solutions for the API test automation

suit the needs of different API implementation approaches, others are specific only to

certain API types.

This leads to the problem that not all tools are compatible with the new technologies of API

implementation like Graph Query Language (GraphQL). GraphQL is a rather new

technology that was introduced in 2015 and not all approaches suited for most APIs support

GraphQL and its specific features. Some of them start with the implementation and

provision of trial versions for users. Moreover, the open-source solutions for GraphQL API

testing that can be found on the Internet are mainly used by developers for writing unit tests

but not for integration tests. The automation process for GraphQL API testing is becoming

longer as the testing team should provide the proof-of-concept for the existing solutions to

evaluate their usability on the project and find the solution that will suit their needs. The

13

longer process of test automation implementation has an impact on companies developing

their solutions using new technologies.

These problems served as a reason for this paper to provide the reader with information

about the existing approaches to GraphQL API test automation. As GraphQL technology

supports multiple programming languages, this leads to the existence of variety of testing

approaches for each language. Because of the author’s interest and previous experience with

test automation using Java, in this thesis, only GraphQL API test automation solutions

implemented using Java are described. In the beginning, the author defines the API role in

the Web application architecture, describes the GraphQL technology and specifies the

testing approaches for the API quality verification. Then the author introduces multiple

solutions that can be used for the API automation testing and, using the example of a real

company that has implemented GraphQL API, evaluates the application of the existing

solutions on the project based on a list of given requirements.

Goals

The main goal of this thesis is to compare the existing GraphQL API test automation

solutions to recommend the one that can be used on a real project in a company that

experienced a transition from Representational State Transfer (REST) to GraphQL API

implementation and is searching for a new test automation approach.

The main goal is divided into the following sub-goals:

• Define the role of the Application Programming Interface in Web applications

• Introduce the GraphQL technology

• Characterize the process of API testing

• Describe the existing solutions for the GraphQL API test automation using Java

• Evaluate the application of the existing solutions on a real-life project

Target group

First and foremost, this work is aimed at Quality Assurance (QA) engineers and testers

specialized on integration testing, especially those working for a company such as the one

described in the practical part of the work, as this thesis describes the existing solutions that

can be used for testing GraphQL API. Moreover, the methods and principles introduced can

be adjusted to the already existing projects, independently of the API implementation

approach.

Students of the Software Quality Assurance specialization of Faculty of Informatics and

Statistics, as well as other students interested in the software quality verification process or

API principles, will find this work useful, as it gives a basic understanding of the API

principles and describes methods for verifying API quality. For the same reason, this work

can be useful for testers specialised in other testing areas that are planning to change their

14

field of work or just want to gain some basic understanding of the verification process in

other testing types and levels.

This thesis can also be helpful to developers working with GraphQL API technology and give

them an overview of the implementation of the test automation process for their solution.

Research methods

To accomplish the main and sub-goals, several methodologies were used during the process

of writing this thesis. To understand the subject of the thesis, the author used the method

of searching resources by keywords, to research the available existing materials concerning

the topic. The results of the research, including the definition of keys and searched sources,

are listed in a separate chapter — 1 Literature review.

The author handled the research for forming a list of the existing GraphQL API test

automation solution using Java by searching for information on relevant Web pages and

repositories by defined keywords. The full process of the research is described in 5 GraphQL

API test automation using Java.

Comparing the process and evaluation of the solutions was handled according to the

Multiple Criteria Decision Analysis (MCDA) method, its stages and application in the thesis

are described in chapter 6 Evaluation of GraphQL API solutions for concrete company. For

specification of the company X needs the interview with the QA lead was handled to receive

more information about the company’s products and use cases and specify the requirements

for test automation solutions.

During the evaluation of the existing automation, the GraphQL API solutions in the example

project implementation the author uses are object-oriented programming methods. In the

practical part of the work, several criteria were evaluated thanks to handling qualitative

research by giving a questionnaire to the target group that was represented by the QA

community of company X.

Assumptions and limitations

This thesis assumes from the reader minimal knowledge of the software development

process and the role of testing in the software life cycle. Even though the theoretical part of

the work presents the principles of API functionality, reader knowledge in this topic is an

advantage.

The thesis is concentrated on the integration of the test automation process so the reader’s

previous experience with any other automation framework or library as well as previous

experience with manual API testing will be a big advantage as he can better understand the

use and methods of solutions described in the work.

During the evaluation process of test automation solutions applicability author uses Java

programming language concepts, design patterns and libraries for implementation of

15

example test projects using different approaches. To understand this part of the work, basic

knowledge of object-oriented language programming is an advantage, but not the condition.

For those who are not interested in the technical part of the work chapter 6.5 Measuring

the alternatives can be omitted.

Expected benefits

The main goal of the thesis is to choose the best solution that can be used on a real-life

project for GraphQL API test automation process. The output of the practical part of the

work during which existing solutions using Java language are evaluated and the best

possible solution is chosen is the first main benefit of the thesis. During the evaluation

process author set up a testing project using different solutions from scratch that is also

counted as a further benefit of the work as it gives a real example of the existing solutions

in use. Besides recommending the solution for the real-life project author gives further

recommendations of other methods and design patterns that can be implemented for the

project purposes. Furthermore, the example of building a test project for GraphQL API

tesing using different solutions can be adjusted to other real-life projects, as author brings

the general idea of the use of automation tools for API quality verification.

Another output of the work is the description of the existing GraphQL API approaches to

test automation using Java. In the compact description, the author gives an overview of the

libraries and framework found including the introduction of their features and specifics and

gives links to official documentation and useful online resources.

One of the other expected outputs is the description of API testing, its necessity, and

challenges. Moreover, GraphQL is a new technology and there are not so many resources

from which testers can easily get a basic understanding of the testing process. The thesis

covers the principles of API testing explaining from the beginning the role of API in Web

application architecture and explains the principles and ways of testing API functionality by

given Test Cases templates and possible tests description.

Work structure

This thesis is structured in a way to lead the reader from the theoretical basis to the practical

part in which existing GraphQL API solutions are compared. Chapter 1 - Literature review

describes the process of literature research that relates to the thesis problem.

In the theoretical part of the thesis in chapter 2 - Application Programming Interface the

author describes the principles of the Application Programming Interface, its use, and role

in client-server architecture style used for Web application implementation, gives an

overview of one of the well-known and highly used architecture styles – REST. In the

following chapter – 3 GraphQL, GraphQL query language principles and advantages are

defined with the description of its features on the example of implemented custom GraphQL

server.

16

In chapter 4 API testing, the author focuses on the testing process of APIs, describes its

basics and challenges, and specifies the benefits of test automation and challenges that can

occur during API test automation.

Chapter 5 GraphQL API test automation using Java provides an overview of the existing

test automation GraphQL solutions that can be used for testing on the integration level.

6 Evaluation of GraphQL API solutions for concrete company describes the step-by-step

process of comparison of the list of solutions found to choose the best possible solution for

the real project. In the chapter, the author describes the company X itself its products and

use cases, used technologies and previous approaches to API test automation. Then the

author defines the criteria based on requirements received from company development and

QA communities. Existing solutions are evaluated according to given criteria and the best

possible solution is recommended with the introduction of features that can be added to the

existing solution for its improvement.

17

1 Literature review

In order to achieve defined main goal of the master thesis literature research was carried

out to find the most relevant resources for the topic of the work. Literature research was

handled by searching according to chosen keywords in multiple resource portals. This

chapter introduces the results of the research and each part of it describes resources found

according to their type: professional publications, academic works or Internet resources.

1.1 Professional publications

Professional publications were searched using Internet portal https://scholar.google.com

and digital libraries like Association for Computing Machinery (ACM) and ProQuest.

Resources were searched by following keywords: “Client-server architecture”, “API”,

“GraphQL vs REST”, “GraphQL API”, “GraphQL testing”, “API testing”, “Automation

testing frameworks”.

1. APIs: A Strategy Guide published by Daniel Jacobson, Greg Brail and Dan Woods

in 2011 [7]. The book is focused on describing the principles of Application

Programming Interface. It talks about API business strategies and models, including

API values chains, ways how to create them and design principles. Despite of that

authors are also describing the role of security and privacy policies for APIs, shows

how to operate an API and measure its success.

2. Client-Server Web Apps with JavaScript and Java: Rich, Scalable, and

RESTful written and published by Casimit Saternos in 2014 [8]. This book is

describing the principles of Client-server Web architecture, the use of Hypertext

Transfer Protocol (HTTP) protocol in it, REST architecture style and JSON formats.

Most parts of this book are concentrated on describing principles for developing

Web Applications and technologies that are used for that like Java tools or

JavaScript libraries. Another chapter of the book is focused on testing activities and

describes types of testing including testing frameworks that can be used for API

testing.

3. Learning GraphQL and Relay from Samer Buna, published in 2016. The book

describes new GraphQL technology [9]. Starting with the reasons for using it and

process of setting GraphQL server author than describes the principles of query

language itself and defines different types of schema. The book is giving the

understanding of the GraphQL structure and basic principles of working.

4. Automating and Testing a REST API: A Case Study in API testing using:

Java, REST Assured, Postman, Tracks, cURL and HTTP Proxies,

published by Alan John Richardson in 2017 [10]. Alan Richardson has several books

that are focused on testing processes and the application of programming languages

and frameworks in test automation process. This book is focused especial on testing

REST API. Author describes the principles of API, HTTP and REST and then

introduces different tools that can be used for automation testing with the source

https://scholar.google.com/

18

code for several of them. Book gives the reader the basics of API testing process with

practical examples of different tools used.

5. Deviation Testing: A Test Case Generation. Technique for GraphQL

APIs, published by Daniela Meneses Vargas, Andreina Cota Vidaurre in 2018 [11].

Authors in their work the cover the topic of testing GraphQL testing and describing

deviation testing technique that can be used for it and which can help increasing test

coverage and finding bugs in GraphQL APIs.

6. Study on GRAPHQL and Automation Testing, written by in 2018. Authors

describe the new GraphQL technology its properties and benefits [12]. Then authors

are concentrating on automation testing techniques and existing tools that can be

used for test automation. In the end of the work authors give an overview of tools

that can be used for automating GraphQL API testing. Topics raised in publication

are the closet one for the topic of master thesis.

1.2 Academic works

Academic works were searched in CIKS VŠE catalog as well as in the portal

https://theses.cz/. Not so many academic works yet exist on chosen topic of GraphQL API

testing. Academic works were searched by keyword “GraphQL API”. Some of the found

works are focused on GraphQL API implementation but not on testing their results.

Following thesis are the most relevant for the chosen problematic.

1. REST and GraphQL API Implementations Comparison written by Šimon

Podlipský in 2019 [13]. Master thesis is focused on implementation process of Web

application using REST and GraphQL technology. In his master thesis author firstly

describes the techniques of REST and GraphQL implementation and then compares

their use by developing Web application using two different approaches. In his work

author also evaluate the complexity of working with two different technologies.

2. Performance of frameworks for declarative data fetching: An evaluation

of Falcor and Relay+GraphQL written by Mattias Cederlund in 2016 [14]. In his

thesis author focused on performance of data fetching process using different

technologies like Falcor, Relay, GraphQL Author handle the experiment with

comparing named frameworks performance level by running tests for measuring

their latency, data volume and sending different number of requests. At the end of

his work author evaluate the results and gives the recommendation for frameworks

and describes the difference between them considering specified metrics.

3. API Design in Distributed Systems: A Comparison between GraphQL

and REST written by Thomas Eizinger in 2017 [15]. In his master thesis author

introduces GraphQL and REST technologies in order to compare them according to

chosen criteria. API technologies were compared in operation reusability,

discoverability, component responsibility, simplicity, performance, interaction

visibility and customizability. At the end of thesis author summarizes and evaluates

comparison results and recommends which technology is better for what cases.

https://theses.cz/

19

1.3 Internet resources

Big number of resources and information about GraphQL technology and test automation

solutions for server-side can be found in the Internet by searching through Google engine.

Relevant information was searched using following keywords: “GraphQL testing”,

“GraphQL test automation framework”, “How to test GraphQL”, “GraphQL vs. REST”. The

list of the most useful and relevant Internet portals where these topics were discussed is the

following:

1. GraphQL – https://graphql.org/learn/

GraphQL online documentation describes the principles of working with this

technology [16]. It introduces step by step how to use it features and gives example

of the code for implementing GraphQL in different programming languages.

Moreover, this page gives the useful links to existing communities and blogs that are

focused on GraphQL topic.

2. Medium – https://medium.com/

Medium is an online publishing platform in which different point of views of

developers about usage of GraphQL can be found.

3. GitHub – https://github.com/

GitHub is a Web service for software development process based on git technology.

In terms of the master thesis topic in GitHub’s accounts were found many different

library examples connected to GraphQL API implementation or the use of

automation libraries for server-side testing.

https://graphql.org/learn/
https://medium.com/
https://github.com/

20

2 Application Programming Interface

This chapter introduces Web application client-server architecture and defines the role of

API in the model. In following parts API on different layers of architecture are described

with the examples and brief introduction of HTTP that enables frontend-to-backend

interaction. In the following subchapter well-known REST architecture style principles and

limitations are specified. Chapter fulfills the sub goal of the master thesis “Define the role

of the Application Programming Interface in Web applications”.

With the rapidly changing world the use of APIs has been changing as well and while at 1994

application programming interface was used for getting domain and page, era of Web in

2010 is trying to get rid of the pages and connect APIs and people straight together [7]. This

means that through decades API stopped being taken just as interface for system-to-system

communication and now can be sold as an independent online product. Today is the era of

API economy - business models that enables secure access and exchange of data [17], when

APIs can be used for integration of people, places, data, systems, algorithms, transactions

and enable to turn business into platforms with ecosystems inside and outside of the

enterprise.

Even though the use and approaches to API are being changed over decades, main purpose

for the API remains the same – enable the communication between different systems.

According to Gartner IT Glossary [18] API is:

„An interface that provides programmatic access to service functionality and data within

an application or a database. It can be used as a building block for the development of new

interactions with humans, other applications or smart devices. Companies use APIs to

serve the needs of a digital transformation or an ecosystem, and start a platform business

model. “

2.1 Client-server architecture

Web application is a software package that performs in a specified way and is situated on a

remote server that can be accessed by a user through Internet [19]. A client-server

architecture for building Web applications is a popular approach not only because it is the

closest to the Web architecture itself, but also because of the number of advantages [20],

some of which are the following:

• Manageable code thanks to separation between client and servers’ tiers.

• Data can be delivered in Json or XML formats that is more readable format.

• Developing different parts of application in isolation. API, mobile devices on client

side, version of new system can be developed separately with no related impact. This

also allows to develop new features in parallel nor waiting on another task to be

finished which are not related to each other.

21

• Ability to prototype helps to test and verify new ideas, clarify vague approached and

provides clear communication about given requirements.

• Better application performance as client-side engines allow performance of

comprehensive calculations in a way that server workload won’t be visible for a

client.

Client-server architecture is displayed on Figure 1 below.

The model describes the way how server provides resources and services from its side to

multiple clients (laptops, mobiles, personal computer). End user is using the client-side

only, the rest part of the model is used by systems themselves. When end user provides any

actions from the Graphical User Interface (GUI) on client-side his requests are sent to the

server via Internet network. Server-side is used for hosting, delivering and managing

resources and services that are used by client [21]. When the request is received from the

client-side, server process it and sending the response through the Internet back to the

client. In “Client-Servers Network Model” one server can handle multiple client requests at

the same time, client can as well be connected to a several servers that provide different

types of services. API can be implemented on both sides of Client-Server architecture.

Client-side APIs

On client-side APIs can be written with JavaScipt language and divided into Browsers APIs

and Third part APIs.

Browser APIs are built into Web browser and can support front-end implementation by

exposing data from the browser and surrounding computer environment. The most

common browser APIs [22] are:

• Web Audio API – API for manipulating audio in the browser like altering the volume

or applying effects.

Figure 1 Client-Server network model (source: https://techdifferences.com/difference-between-
client-server-and-peer-to-peer-network.html)

22

• Manipulating with Document Object Model – API allows to manipulate with HTML

and CSS files by applying new styles to page.

• Notifications APIs – API for retrieving data from device in a way useful for Web

application like control and display system notifications to the user.

• Client-side storage – API that allows to save data between page loads that helps to

work with the application with no Internet connection.

Third-Party API are not built into the browser so the code should be taken from somewhere

else from the Web – from the Third-Party. Some of the most popular Third-Party APIs [23]

are:

• Google API – API that allows to integrate Google Ads with another website

• Twitter API – API for displaying the latest tweets on the website

• YouTube API – API for searching and playing YouTube videos from another website

• Facebook API – API for user authorization, payment acceptance, targeted

advertising and marketing campaigns.

Server-side APIs

In comparison to client-side APIs that are working on client layer only, server-side APIs is

working like access point to the server and databases for the Web application [24], as

displayed on Figure 2. Its main goal is getting requests send by client-side in the right

format and place of the server-side, for example to the correct database, get the response

from server and send it back to the client-side.

MuleSoft company – one of the leaders of the Gartner Magic Quadrant 2018 for Full Life

Cycle API Management1 [25], in their YouTube channel posted a video [27] in which they

compare API to the waiter in the restaurant. When client decides which meal to choose, the

1 API management consists of the activities connected to the full life cycle of application programming
interface like planning, design, implementation, maintaining, versioning, testing, publication,
consumption. Without full life cycle API management is impossible to build ecosystem and run
effective API program [26].

Figure 2 API in client-server architecture of Web application (source: http://www.robert-
drummond.com/2013/05/08/how-to-build-a-restful-web-api-on-a-raspberry-pi-in-javascript-2/)

23

waiter gets its order and bring it directly to the kitchen, where client requests and orders

are handled by cooks that prepare a meal according to given specification. When meal is

ready waiter takes it carefully from the kitchen and bring as a result to the client.

APIs are working the same way: client from its side using the Web application in the browser

defines the requirements and send them with a “waiter” API to the kitchen, kitchen is a

server that performs action based on given requests and after finalizing the result prepare

the response and send it back with API to the client.

Here are couple of real examples of the use of server-side APIs:

• Login into Facebook – server-side API gets request from user with login credentials,

data are sent to the server and if user exists and credentials are valid response is sent

back with access token for the session.

• Searching for a flight – user enters flight information to the system; parameters are

sent to API that handle the request and make the server start searching for the flight

that suits given parameters.

One API can perform multiple tasks and operations as it has documentation and

specification, which states how obtained information should be handled [28]. Massive Web

applications like Facebook able user to provide different actions from login to storing

photos, posting, making bargains and handle payments. For all these needs same API is

used, but all requests that are coming used for different needs and should be provided on

different server components and databases. Because of that Web application APIs consists

of different points – endpoints, that can be accessed with requests for different needs.

Endpoint is the entry point of the communication channel of two systems, that accesses

server resources it needs to perform the required task [29]. Endpoints are playing important

role in each Web API as they have impact on performance and productivity of Web

application. Verification of functions of API endpoints can help to control that application

provides the actions it is expected to.

Web application interaction APIs can be implemented in different forms using different

technologies. For accessing Web services – software system designed to support

interoperable machine-to-machine interaction over a network [30], can be used different

protocols as Simple Object Access Protocol (SOAP), Remote Procedure Call (RPC) or REST

architectural style [31].

• SOAP – protocol based on eXtensible Markup Language (XML) that provides

definition for Web services interaction between each other or to the client

application [32].

• RPC – protocol that enables data transfer of XML or JavaScript Object Notation

(JSON) formats in client-server model [33].

• REST – architecture style with certain principles and requirements that enables

simple communication through interfaces and identification and manipulating

server resources (REST architecture will be described in subchapter REST

architecture style).

24

Earlier named approaches to Web APIs are sending client requests with data to server via

XML or JSON file formats. This process is handled by Hypertext Transfer Protocol (HTTP)

protocol which characteristics and principals of working are described in the following

section.

2.1.1 HTTP communication

The communication between client and server is handled by HTTP which is sending

requests and response through Internet and acts as a transport system in client-server

architecture. Main characteristics of HTTP protocol [34] are:

• Connectionless

Each time client sends a request through HTTP the new connection between client

and server is opened, when the response is successfully sent back the connection

closes and client and server sides are not anymore connected to each other.

• Media independent

HTTP protocol allows sending different data formats like text files, Microsoft Word

files, JPEG images, HTML files, movies and many others. To distinguish each

resource data type from each other HTTP tags them with label Multipurpose

Internet Mail Extensions (MIME). When a Web browser receives data object it looks

first at MIME tag, so it knows how to handle the object received.

• Stateless

As HTTP according to first characteristic is connectionless, thanks to that neither

client nor server of them can store information about each other across Web.

HTTP presents a suitable way of packaging data with useful information over Web using

Unified Resource Locator (URL) for defining the resource path and specifying their location

on the server-side [35]. HTTP sends requests and response from client to server via

messages that are formatted according RFC8222 message format for transferring the

required data. Each message send through HTTP protocol should have following four items:

• Start line

• 0 or more header fields

• Empty line

• Optional body message

HTTP header provides necessary information about the send data and. In case of request

with header client-side inform the server about its capabilities and specify method, content-

type, charset, version of HTTP protocol used and requested Uniform Resource Identifiers

(UNI) it is searching for. The most useful methods that are supported by HTTP/1.1 version

request are described in the Table 1 where HTTP methods are linked to related CRUD

operations - basic functions of persistence storage as create, read, update, delete.

2 RFC822 – Standard for ARPA Internet Text Messages [36]

25

 Table 1 Description of HTTP/1.1 methods (source: [34], [37])

In response for sent HTTP request server responds with response message that has the same

RFC822 structure. In status line HTTP returns status code from server for received request.

Header of HTTP response is used to inform the client about the result of the request that

was received and processed [38]. Status codes consists 3-digit numbers and are categorized

into 5 groups that are according to their first digit [34]. Status codes categories are described

in the Table 2.

Table 2 HTTP/1.1 response status codes (source: [34])

A knowledge of client-server architecture, API place in it and HTTP that is used for

transmitting data on the Web is a benefit for designing better APIs. Following subchapter

is introducing one the approaches of server-side API – REST architecture style.

2.2 REST architecture style

Representational State Transfer term was firstly publicised in doctoral dissertation

“Architectural Styles and the Design of Network-based Software Architectures” of Roy

Thomas Fielding American computer scientist in 2000. The idea of REST architecture style

Method CRUD Description

POST Create
Send client data into a server API and creates a new resource.

Data that are send to the server are stored in request body.

GET Read Used to retrieve data from specified resource in server.

PUT Update Used to update existing resource in the server.

PATCH Used to provide partial modifications of specified resource.

DELETE Delete Used to remove the existing resource from the server.

HEADER Same as GET but sends only status line and header.

CONNECT Open a tunnel identified by given URI.

OPTIONS Describes the communication options.

TRACE
Method used for debugging as it returns the input from

client-side [37].

Code Status Description

1xx Informal
Request was received by server, connection is open, process

is continuing.

2xx Success Request was received and accepted by server.

3xx Redirection Further actions are taken in order to complete the request.

4xx Client Error
Error occurred on the client side – incorrect syntax of

HTTP request or request cannot be fulfilled.

5xx Server Error
Error occurred on server side – valid request was received,

but server fails to perform required operations.

26

that brought by him and his colleagues to the world is still used in the development of Web

services.

REST architecture style in comparison to other protocols like SOAP or RPC used for APIs

implementation doesn’t describe the specific of API implementation but brings the set of

principles, constraints and properties [39].

2.2.1 Principles and constraints

Before REST architecture style developers had to deal with SOAP for API integration

because of that REST is compared to SOAP principles. One of the differences of the use of

HTTP protocol that came with REST is the use of the URIs for defining resource paths.

SOAP protocol is working with operations defined in Web Service Definition Language

(WSDL) schema to get resources from the server-side, REST instead is using nouns to

describe the endpoint with a noun to specify the resource location and use methods of HTTP

protocol like GET, PUT, POST, DELETE to apply CRUD operation over chosen resources

[40].

Another change is the use of JSON file format that allows to send readable data format that

is consistent with client-side languages like JavaScript.

According to Roy T. Fielding dissertation [41] there are 6 constraints in REST architecture

style:

1. Client-Server

The use of client-server architecture style in which both sides have different sets of

concerns. Functionality should be properly separated between client and server to

improve scalability and make both independent. In this constraint client is

displayed as a triggering process that displays information and perform requests

and server is a reactive process that manipulates with given information.

2. Stateless

No station state on the server side brings the idea that each request from client-side

should contain all the necessary information for server to process the request.

3. Cacheable

Cache performs as a mediator in client-server interaction in a way that requests can

be considered cacheable and be reused in response to later requests.

4. Uniform Interface

One common interface for API components must be defined and applied to each

resource.

5. Layered System

Layered system is adding proxy and gateways that make only the layer with

interacting component visible and others “inner-layers” hidden.

6. Code-On-Demand

Access of the resources is given to client component so its functionality can be

extended to a deployed client.

27

2.2.2 Limitations

REST architecture style is highly used but described principles and constraints have their

own limitations that are discussed by developers in their blogs and online portals like

publishing platform Medium or blog on Good API [42]. Despite the common comments

about REST being not descriptive enough without any guidelines and being challenging to

keep consistence from client and server side, there are some other implementation

limitations that are commonly being discussed [43]. Here are some of them:

• Multiple round-trips

Under round-trip is meant a request that the client performs to the server and the

response that the server sends back to the client [44]. In case when information that

must be collected from a different URI paths should be displayed to user, multiple

requests to different endpoints are be sent to get all the necessary information. For

example, getting information about user’s activity log and the list of user’s followers

on social network requires sending requests to multiple endpoints. In order to

escape from this situation “One-Size-Fits-All” (OSFA) approach is used for

endpoint implementation, when several resources are grouped together in order

not to locate resources on multiple URI paths and send separate requests for them

[45]. Such approach makes it hard and messy to maintain and handle the code that

maps all URIs.

• Over/under fetching

REST API implementation has fixed endpoints structures, that results in getting in

some case some unnecessary information in the response message (over fetching)

or opposite when specific endpoint doesn’t provide enough information (under

fetching) and here comes the need of multiple round trips [46]. Fixed structure of

endpoints also leads to the problem of adjusting frontend on client side to the

changes made on server side. In case that endpoint structure was changed it must

be changed at each place on the frontend when the request is sent to that endpoint.

28

3 GraphQL

Chapter presents the GraphQL technology by describing it’s history, used concepts,

principles and specific features. Then the main differences of GraphQL and REST APIs

implementation are showed. It helps to fulfil the sub goal of the master thesis “Introduce

the GraphQL technology”.

Even though endpoint based APIs like REST has its advantages and they were already well

known among developers and were simple for implementation, its limitations like multiple

round trips, over- and under-fetching, implementation of “One-Size-Fits-All” endpoints,

that were named in previous chapter 2.2 REST architecture style, made companies to start

searching for better solutions that will surpass existing disadvantages. To overcome existing

REST limitations several world-known companies introduced their approaches for their

specific product cases.

Netflix, American media-service provider, to get rid of using OSFA REST endpoint for

different devices came up with their own solution that they have successfully patented at

2013 [45]. They have implemented a custom layer, that is with sent request to a specific

endpoint gather client information data and then parse, format and adapt gathered data of

request before sending it to the server side. Figure 3 below represents implemented custom

layer.

Figure 3 Client adapter code model implemented by Netflix (source: https://medium.com/netflix-
techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d)

When a specific device sends single request from client to server side, adapter receives it

and parse into many different requests that are then addressed as multiple calls of Java API,

each of those are related to dependent service [47]. Successful transactions are returned to

adapter which prepares the content, prunes unwanted elements, handle errors and format

the response before sending it back to the client.

https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d

29

On the other hand, in 2015 Soundcloud company – developer of an online audio distribution

platform, was trying to solve the problem with long process of new features implementation

that has an impact on already implemented functionality for their platforms [45]. Because

of this issue, they have decided to change the architecture logic and started to implement

separate API server for each use case. This pattern was named as “Backend for Frontend”

and helped in maintaining ecosystem of microservice in a way that each use case can be

optimized and modified without the worries of influencing another one [48]. Another

approach was GraphQL technology introduced by Facebook, Inc. company.

3.1 History of GraphQL

Developing process of the GraphQL began at early 2012 when Facebook was dealing with

implementation of “News Feed” for iPhone Operation System (iOS) mobile platform. On

February 1, 2012 in Securities and Exchange Commission (SEC) S-1 form [49] – initial

registration form for new securities required by the SEC for public companies that are based

in the U.S, Facebook, Inc. stated [50] that one of the risks is connected to people using more

mobile devices.

“Growth in use of Facebook through our mobile products, where we do not currently

display ads, as a substitute for use on personal computers may negatively affect our

revenue and financial results;”

At that time Facebook mobile applications on iOS and Android platforms were becoming

more complex and required feeding more data to the user which made them to suffer from

poor performance and unexpected crashes [51]. In terms of that Facebook decided to

redesign and develop the new concept of “News Feed” API for mobile apps. Implementation

of the “News Feed” required getting information about posts not only like post author, it’s

content, comments, number of given likes but also some nested data that were

interconnected and recursive [52]. Old concept of used REST API required getting data from

different endpoints and APIs which requires making multiple round-trips to get needed

resources, what exactly had an impact on performance of applications. The concept of

having a new technology that will allow developers to use better data-fetching capabilities

and reduce the network usage caught several developers from different teams and made

them start creating the new solution for “News Feed” [53].

Before implementing a new solution for “News Feed” Lee Byron, GraphQL co-creator and

part of the service team at that time in Facebook, starts with raising the questions about

why “News Feed” is needed, how people would use it and what for. All these led to

understanding that “News Feed” API are complicated for a typical API solution, so he

started to search for new ideas. At the same time another GraphQL co-creator Nick Schrock

was already dealing with big amount of data on the server side and had an idea of making

the API implementation simpler. He made the first GraphQL prototype at that time named

as “SuperGraph” [53].

30

When two of them get together with Dan Schafer “News Feed” engineer from server side

they started working on the first version of GraphQL that took them several months to meet

the iOS “News Feed” needs. Dan Schafer describes GraphQL [54] in the following way:

“GraphQL is a query language for your API that shifts the contract between clients and

servers that allows the server to say ‘these are the capabilities that I exposed’ and allows

the clients to describe their requirements in a way that ultimately empowers product

developers to build the products they want to create.”

The implemented GraphQL solution was based on several principles that are described by

Lee Byron [55]:

1. Efficient and predictable

Data shape is known and can be derived from sent query that will help to eliminate

the problem of assuming the data shape.

2. Static type system

When GraphQL server is being built with its type system, data types are specified

for all fields and arguments. This helps to describe from the very beginning what is

possible and what is not to do and determine while preparing the request if it is

valid or not. GraphQL server with its types fields and structure can be explored by

using Browser integrated development environment (IDE) like GraphiQL. With the

change of GraphQL server structure the documentation will also be changed.

3. Power to clients

New product features can be easily added or deprecated on server side with leaving

client side unaffected.

The launch of iOS mobile apps using new technology had a success and other teams wanted

to transit using the GraphQL in their cases. First “Photos”, then “Profiles” and “Groups”

teams and later the rest of Facebook development started using it.

At that point on January 2015 at first React Conference Dan Schafer presented GraphQL

technology [56]. The solution at this moment wasn’t yet open source, moreover Facebook

team only wanted to give their view on working with complicated APIs, but as the public

was excited by their solution and wanted to use on their projects, Facebook decided to

prepare and re-design a little bit their GraphQL solution so it can be applied to different

cases. In 2015 Facebook announced the release of open-source GraphQL technology written

in JavaScript language.

When the GraphQL was made public a huge community originated and since then many

versions of GraphQL were built in number of languages such as Java, .NET, Scala, Python

[52]. As the interest of new technology is still increasing – viz. Figure 4, companies around

the world started to change their Web APIs to newly born GraphQL technology. Now

GraphQL is used by GitHub, PayPal, Universe, FileJet, Atlassian and many others

31

companies a list of which can be found on GraphQL official pages

https://graphql.org/users/.

3.2 Features

GraphQL implementation was based on special principles described earlier that help to

overcame existing limitations of other endpoint-based APIs like REST. These principles

appear in query language as its features. Brian Kimotoki in his book Beginning GraphQL:

Fetch data faster and more efficiently whilst improving the overall performance of your

web application [57] specifies four GraphQL main features:

1. Hierarchical queries

2. Introspective

3. Strongly typed

4. Client-specified queries

This subchapter introduces each named feature with the code example of real GraphQL API.

“Introspective” and “Strongly typed” features are covered in 3.2.2 Type system and

schemas, another two features are described in 3.2.3 Query Language.

Custom simple GraphQL server was implemented based on tutorial “GraphQL Java

Example for Beginners [Spring Boot]” in Swathi Prasad blog [58]. Even though description

of implementation process of GraphQL server is not connected to the master thesis goals

the whole process with code examples is described and attached in the Annex A: GraphQL

custom server implementation. All attached screenshots are made from Playground –

Figure 4 Google Trends of searching "GraphQL" topic in past 5 years worldwide (source:
https://trends.google.com/)

https://graphql.org/users/

32

graphical, interactive, in-browser GraphQL IDE, created by Prisma and based on

GraphiQL [59].

3.2.1 GraphQL server description

Custom GraphQL server is implementing basic CRUD operations for manipulating with

Data object. Each Data object has its own unique ID as well as characteristics Type and

Example. Data object represents a data type with an example. Simple Data object example

can be represented in JSON format as displayed on Code 1.

{

 "data":{

 "id":"1",

 "type":"int",

 "example":"1"

 }

}

Code 1 "Data" object example (source: author)

Operations that can be applied on Data object are described in Table 3.

Operation CRUD Description

createData CREATE

Allows to add new Data with specified Type and

Example. ID is automatically assigned to new instance

of object.

getData READ
Returns Data instance characteristics Type and Example

for specified Data ID.

getListOfData READ
Returns the list of all existence Data objects with all

characteristics.

editData UPDATE

Allows to update existent instance of Data. Only Type or

Example characteristics of instance can be changed, ID

remains the same.

deleteData DELETE
Specified Data by ID is removed permanently from

server.

Table 3 GraphQL server operations for Data object (source: author)

3.2.2 Type system and schemas

GraphQL is a server-side runtime that executes queries by using type system that user

defined for their data [16]. In Playground custom GraphQL schema looks in a way that is

displayed on Figure 5. Basic components of schema are object types – object that client can

fetch from service, and the fields that are specified for that object. In custom GraphQL

server DataType is object type and ID, Type and Example are its fields.

33

Type system helps to validate syntactic query validation and provide server responses with

appropriate error messages. As GraphQL is being introspective it allows the client to inspect

fields, types and queries. This allows the supportive IDE/editors like Playground or

GraphiQL perform autocompletion and validation and throws error messages when the

defined type system is violated [60]. When field that is not defined in GraphQL schema is

used in a query IDEs display validation error as displayed on Figure 6.

Moreover, introspection of GraphQL allows querying “__schema” and “__type” fields that

give information about schema object its type, input fields, enumeration values, kinds of

fields, description, interfaces and others.

3.2.3 Query Language

Hierarchical query GraphQL features states that the query sent by a client has the same

shape as the result that is returned by server. Server gives client its capability by type system

and schema according to which client build its query.

Figure 5 Custom GraphQL server schema part (source: author)

Figure 6 Example of query validation (source: author)

34

Apart from being hierarchical queries are also client-specified, that means that client can

choose what fields he wants to get back from server. This feature enables to overcome over-

/under-fetching limitation of REST architectural style [57].

Beside from sending queries that are used only for data fetching GraphQL also allows

sending mutations. In comparison to queries mutations are used to modify the data on

server-side. Server can specify what action should certain operation provide. If custom

GraphQL server had REST architectural style its operations will be sent with different REST

methods as shown on the table Table 4.

Table 4 HTTP methods used in REST architectural style with custom GraphQL server operations
(source: author)

With GraphQL all requests are using POST method. With POST request queries are sent to

GraphQL API having in body message operation name, query itself (can be both query and

mutation) and list of variables specified in JSON format. Even though queries and

mutations that are send are written in graphql format that is not JSON, in HTTP request

they are sent in a request payload body which sends data as JSON object. Queries and

mutations in the body should be parsed to JSON as visible in Code 2. Responses from

GraphQL API are returned in JSON format.

{

 "operationName":"getListOfData",

 "query":"query getData {\r\n getListOfData {\r\n id\r\n type\r\n

example\r\n }\r\n}\r\n",

 "variables":null

}

Code 2 Request payload body for GraphQL API (source: author)

Following chapters introduces several useful GraphQL features that are used in practical

part of master thesis.

Variables

In GraphQL queries client can declare a variable using “$” symbol of either scalar, enum or

input object type. Variables can be optional or obligatory that can be specified in declaration

part using “!” [16]. List of used variables is send in body via HTTP request or can be filled in

Browser IDEs modal window like displayed on the following Figure 7.

Operation HTTP method

createData POST

getData, getListOfData GET

editData PUT

deleteData DELETE

35

Fragments

In both queries and mutations user can specify what fields he want to get back from server.

In case of providing CRUD operation over a certain object fields that can be returned have

the similar shape as it can be seen in query getData and mutation createData on Figure 8.

The fields specified in each query are of the same type – DataType and can be brought

together in a separate unit called a fragment. Fragments allow user to combine set of fields

and reuse them in different queries [16] as displayed on Figure 9.

Figure 8 Example of similar data shapes in multiple queries (source: author)

Figure 9 Example of using fragment in GraphQL queries (source: author)

Figure 7 Example of query variable usage (source: author)

36

4 API testing

This chapter introduces the API testing, specifies relation between integration and API

testing, defines API testing activities and the biggest challenges of API testing process.

Following part of the chapter focuses on describing API test automation process including

reasons and problems. Chapter fulfills one of the defined sub-goals of master thesis

“Characterize the process of API testing”.

Applications based on client-server architecture requires specific form of testing to prevent

and predict system failures [61]. Software testing is the process consisting of activities for

evaluation whether they satisfy defined requirements or not and reveal defects that may

cause the product failure [6]. While verifying quality of Web applications different types of

testing should be taken into consideration in order to ensure the better quality of the final

product.

On Figure 10 different testing types that can be applied on both sides of Web application

architecture are displayed. Two bigger circles separate client and server sides from each

other. Client-side verification is known as front-end testing process that verifies the

Graphical User Interface by checking its functionality, usability, reliability, performance.

On the server-side the backend-testing process is handled by verifying Web servers,

database operations, business rule implementations, security and performance [62]. A part

of server-side is an API that can be tested in both ways as a part of back-end testing and as

a separate unit.

4.1 Characteristics of API testing

Front-end and back-end testing types are unofficial terms and more used in practice while

specifying the type of the product part under test. According to International Software

Testing Qualifications Board (ISTQB) there are four levels of testing: component,

Figure 10 Types of testing in client-server architecture style for Web applications (source:
http://www.robert-drummond.com/2013/05/08/how-to-build-a-restful-web-api-on-a-raspberry-
pi-in-javascript-2/, modified by: author)

37

integration, system and acceptance. Each of the test level is performed according to the

related stage of development lifecycle that is visible on Figure 11Figure 11 V-model in

software testing (source: https://www.testbytes.net/blog/v-model-and-w-model-software-

testing/).

Figure 11 V-model in software testing (source: https://www.testbytes.net/blog/v-model-and-w-
model-software-testing/)

Component testing

Component or unit testing focuses on testing separate units like software modules, objects,

classes, methods that can be independently testable [63]. Unit testing is done by developer

who wrote the code and defects are fixed with the highest priority. Unit tests are automated

and are written in the same language as the code itself. One of the possible approaches to

component testing is test-driven development when automated Test Cases are prepared

before programming itself.

Integration testing

In ISTQB Glossary [6] integration testing is defined in the following way:

“Testing performed to expose defects in the interfaces and in the interactions between

integrated components or systems.”

Integration testing test objects describe what should be tested on that level. these could be

either subsystems, databases, infrastructures, microservices, interfaces and APIs [63]. Two

different levels of integration testing exist depending on the test objects: component

integration testing, system integration testing. Component integration testing is used to

verify interactions between system components while system is checking integration n a

38

higher level like interfaces integration. Besides functional verification integration tests are

also used for non-functional verification characteristics.

System testing

System testing verifies capabilities and behaviour of the whole product [63]. During system

testing both functional and non-functional requirements are checked on the environment

similar as much as possible to the production.

Acceptance testing

Higher level of testing is acceptance testing, that is provided on the final stage of

development and its goal to validate that the system is complete and work as expected [63].

This leads to a conclusion that API testing is the type of integration testing level. API quality

is tested by submitting commands to software or Web application interface under test [64].

API is an important part of client-server architecture, which allows sending data from client

to server, which means that logic situated on API level should be carefully verified in terms

of specified requirements [65]. API testing objectives are the same as for integration testing

level:

• Reduce risk

• Verify functional and non-functional behavior is met according to design

• Build confidence in product quality

• Find bugs within interface

• Prevent defects from transition from server to client side

API testing can be done with incomplete system, it means that each endpoint can be tested

separately without the dependency on other parts of the system to be implemented [66].

Because of that running API tests on Web application has a list of benefits [67]:

• Allows providing earlier independent testing activities of implemented logic

• Specifies the exact place of system failure on server side that helps to reduce time

for fixing defects

• Ensures that application modules like third part APIs or multiple Web servers can

work together

4.1.1 Testing activities

Apart from defined earlier test levels also different types of tests can be applied to system

under test. According to ISO 9126 – international standard for the evaluation of software,

there are 6 quality characteristics for product verification: functionality, reliability,

usability, efficiency, maintainability, portability [68]. Relation of each quality characteristic

to API testing activities is visible in Table 5.

39

Characteristic Description API testing activities

Functionality
Functional behaviour

according to specification

Verification of API endpoints [69]:

• Used data types

• Returned status codes

• Calling of another API/event

Reliability

Ability of system to

maintain its services

under defined conditions

• Handling network failures between

client and server sides [69]

Usability

Ease of use in regard of

system functional

specification

• Usage of authentication methods

• Correspondence of HTTP error code

and message to system failure [70]

Efficiency
The use of system

resources

• Measuring uptime and rate limiting

(rate of received or sent traffic across

network [71]) according to usage

policies

• Measuring server response time

Maintainability
Ability to identify and fix

a system component

• Providing documentation of existing

API endpoints with their usage

• Verification of endpoint URLs logic

scheme

• Correspondence of HTTP error code

and message to system failure [70]

Portability Adoption to changes
• Verification of endpoint URLs logic

scheme

Table 5 ISO 9126-1 software quality characteristics relation to API testing activities (source: [69],
[70], [71])

For each quality characteristic several API testing activities can be handled. Some of testing

activities can even relate to multiple quality characteristic. In order to give a practical

understanding and describe principles of API testing next section gives test examples for

functional verification of GraphQL server quality implemented in 3.2.1 GraphQL server

description.

Example of functional verification

Functional requirements on endpoint-based APIs can be checked by sending requests

through HTTP protocol and verifying data in responses for the same request or sending

other requests.

GraphQL operation’s functionality do not distinguish HTTP methods and use only POST

for sending requests, but still functional tests logic differs depending on type of request sent

and the implemented logic on server side. General TC examples that can be applied on

custom GraphQL server can be divided into verification of operations that allows retrieving

40

data from server (“getData”, “getListOfData”) and operations for modifying data

(“createData”, “editData”, “deleteData”).

Test scenarios templates for verifying different types of operations are represented in Table

6 [72]. Those test templates can be adjusted to any endpoint-based API like REST.

Retrieve data – positive scenario

Test template description: template with positive test scenario for verifying endpoints

functionality that enable fetching data from server side.

Step 1 Prepare and send valid request that

retrieves data from server without

modifying them to the appropriate

endpoint

Expected

result

Request is sent to defined

endpoint

Step 2 Verify status code returned from

server

Expected

result

Status code is 200

Step 3 Verify response data Expected

result

Data returned from server are

correct and contain expected

and relevant resources

Modify data – positive scenario

Test template description: template with negative test scenario for verifying endpoints

functionality that enable data modification on server side.

Step 1 Prepare and send valid request with

appropriate HTTP method

Expected

result

Request is sent to defined

endpoint

Step 2 Verify status code and error

message returned

Expected

result

Status code is 200

Step 3 Prepare and send request to

retrieve modified data from server

Expected

result

Request is sent to defined

endpoint

Step 4 Verify status code and response

data

Expected

result

Status code is 200, all previous

modifications were successfully

saved and can be returned to the

client

Retrieve and modify data - negative scenario

Test template description: template with negative test scenario for verifying endpoints

functionality. Tests checks API reflection on receiving invalid request like wrong data in request

defined, use of wrong data type, incomplete request.

Step 1 Prepare and send invalid request Expected

result

Request is sent to defined

endpoint

Step 2 Verify status code and error

message returned

Expected

result

4xx status code is returned with

expected error message

Table 6 Test scenarios templates for API functionality verification (source: author)

41

4.1.2 Challenges

Even though API testing has its own benefits, there are also several challenges while testing

server-side interface of Web applications. API is holding the programming logic of server

side through which client is communicated to the server. API is also responsible for better

user experience as it enables interactions between each module, application and system on

the server side. Moreover, modern applications are now more often composed of multiple

services connecting to each other at runtime, which is making API testing even more

challenging [73]. API testing challenges are being highly discussed on many Internet

portals, books and personal blogs, some of them are giving recommendations and solutions

regarding defined challenges. The list of challenges below is based on information from

“The Art of Software testing” book written by Glenford J.Myers, Tom Badgett and Corey

Sandler [4], CA technologies presentation of new approach to API testing “API Testing

Guide” [73] and “Challenges Of API Testing” article posted in Resourcology blog [74].

Required technical skills

API has no UI, which means that tester require more technical skills for understanding the

principles of its functionality and way of working with API calls and endpoints. After finding

a defect in API layer the process of testing is not ended, each endpoint communicates to

different database or server or even third part application, that’s why for complete analysis

of defect causes tester require to have a basic knowledge of working with databases and SQL

language, understand XML and JSON file formats for evaluation error message returned

from server side.

In “Automated software testing” book written by Elfreide Dustin, Jeff Rashka and John Paul

authors raise the idea of running some of integration tests that are used for checking

integrated components on unit testing levels [75]. Close to this idea was also a statement

raised in “Introduction to Software testing” book by Paul Ammann and Jeff Offutt that

members of development team are usually responsible for integration tests but not testers

[66].

Business environment

Depending on business strategy and subject of Web application, API represents the logic

hidden in server side that should be also verified [4]. Complex products have more complex

requirements and business rules that should be verified that makes the process of analyzing

and test design more difficult.

Infrastructure setup

Before testing API layer, infrastructure include databases, server’s configuration and

preparing, sometimes simulating Third-Party applications should be done according to

given specification and in a closest way to real end user environment conditions.

42

Complexity of API structures

API structures are becoming more complex as they are often using multiple services. A

single API call may trigger a parallel or serial action in different modules. It influences

testing activities as more scenarios should be covered.

Dependent systems under construction

Even though one of the named benefits of API testing is earlier testing, it’s not always a clear

benefit. Some dependent systems of tested API part (endpoint) can be under construction.

In this case for covering all TCs dependent system’s functionality and behaviour are

simulated and the tests are run against the mocked unit. Unfortunately, this may influence

the reliability of tests result as such tests types like performance or loading. Mocked services

cannot simulate real rate conditions like real production environment.

Maintenance of API schema

When server-side is under construction or new features are being implemented, API schema

may be changed quite regular. In certain approaches to interface implementation like REST

architecture style for example, even small change on server side require changes on API

level and changes of prepared test data like JSON or XML files for making calls to endpoints.

API versioning

With the releasing of new product versions, the logic of API implementation may change

multiple times and leads to existing of multiple API versions. In some cases, while certain

functionality is being depreciated, the API still requires handling old version calls as some

dependent system may not know about the change and still be using previous versions of

the system. API should in these cases recognize missing values or depreciated function calls

and assign default values to them. Such situations lead to creating more test scenarios.

Named in this section challenges occurs not only during test analysis, test design and

manual test execution processes but also can take a place in stage of test automation

process. Next subchapter describes the reason and advantages of API test automation.

4.2 API test automation

The trend of using test automation in development process was growing with the popularity

of agile methodologies and Rapid Application Development (RAD), methodology that is

focusing on adaptive processes instead of planning and scheduling activities in order to

provide more frequent, incremental software build [75]. Defined methodologies include

regular and frequent test activities as each small change of software could have an impact

on already implemented features and functionalities. Automation of manual and repeated

testing activities after each code change is being beneficial for organization in different

perspectives. The finalized list of test automation benefits formed in “Benefits and

Limitations of Automated Software Testing: Systematic Literature Review and

Practitioner Survey” [76] is presented below:

43

• Improved product quality

• Higher test coverage

• Reduced testing time

• Reliability of test execution result

• Increase in quality confidence

• Reusability of tests

• Less human effort

• Reduction in cost

• Increased fault detection

Companies are trying to include test automation into development process as soon as

possible to prevent defects on earlier stages and reduce the cost of fixing occurred system

failures. However, not all test activities are needed to be automated, according to Figure 12.

First level of Test Automation Pyramid is covered with Unit tests that are written by

developers. On the higher-level Component, Integration and API tests are located. These

tests are implemented and maintained by testers and require more test automation effort

than front-end tests that are situated on the last pyramid level.

Although, API test automation is being thought as one of the most vital, easiest and quickest

testing to be done, it has some challenges directly related to challenges described in 4.1.2

API testing Challenges [77]. Table 7 below describes API test automation challenges and

their relation to general API testing challenges.

API test automation

challenges
Description

Related API testing

challenges

Initial project setup

In some projects depending on

infrastructure initial automation project

setup may be a challenging activity that

may last for a long time. This challenge

may also be related to integration with

existing eco system

• Infrastructure

setup

Figure 12 Mike Cohn’s Test Automation Pyramid (source: https://www.360logica.com/blog/sneak-
peek-test-framework-test-pyramid-testing-pyramid/)

44

Maintenance

Change of a product require continuous

maintenance and update of already

written Test Cases and suites. In API test

automation testers are preparing

requests that are being sent to the

endpoints, change on server-side require

updating created test data

• API versioning

• Maintenance of

API schema

• Complexity of

API structures

Skilled resources

Test automation solutions require

knowledge of programming languages

and libraries to be used

• Required

technical skills

Integration with

existing eco system

Integration of API test automation in

already existent software build process

in a company

Table 7 API test automation challenges (source: [78])

Table above presents general API challenges that may occur on a project, they may vary

depending on a product, technologies and logic used in implementation. Wide range of tools

being used for test automation may help in evading some of named challenges and make

the process of test automation implementation and maintenance easier for testers.

45

5 GraphQL API test automation using Java

This chapter focuses on describing possible solutions on GraphQL API test automation

using Java. The chapter fulfils one of the set sub-goals of the thesis – “Describe the existing

solutions for the GraphQL API test automation using Java”.

In the first part of the chapter, a process of searching for possible solutions is described step

by step. After finalising the list of found approaches for GraphQL test automation author

gives a reader an overview of their specific features and characteristics.

5.1 Test automation solutions research

First, the author searched through Google Scholar and ACM digital library for the possible

solutions for GraphQL test automation by the “GraphQL testing” keyword. ACM digital

library gave no result for the searched keyword, Google Scholar returned only one article

“Deviation Testing: A Test Case Generation. The technique for GraphQL APIs” in which no

test automation tools are introduced.

Because of that reason the author searched Google portal with the same defined keyword,

however, the results count was up to 2640 and required a more specific search. As in terms

of thesis, the author is searching for approaches using Java programming language,

keyword “java” was added to the search condition. GraphQL technology was from the

beginning implemented using JavaScript and only then was adjusted to other languages like

Java. The number of test automation approaches in JavaScript because of that is quite high

and although adding “java” keyword helped to shorten but didn’t remove all the results with

GraphQL testing solutions using JavaScript and other JavaScript libraries. The list of

keywords was expanded with the condition “.js” for excluding JavaScript file types from the

search results. With the given condition, the number of returned results was 10 with only

one of them related to the searched topic. In API test automation with Java, the usage of

open-source frameworks and libraries is a common approach and most of them are

described in GitHub Wiki pages, topics or README files as it is a popular software

development platform [79]. That’s why the search result was narrowed with the condition

to search through the GitHub site and excluding the found GitHub topics. The final search

rule is displayed on the Code 3 Google search query for GraphQL test automation

approaches using Java.

site:github.com "graphql testing" java -.js -"GitHub Topics" -"Topic:"

Code 3 Google search query for GraphQL test automation approaches using Java (source: author)

The final count of the search result was 23 different GitHub pages and repositories,

however, 11 of them referred to the same repository but to different source files. The rest

remaining search results were analysed and evaluated against their relation to the thesis

problematic. Table 8 presents the result of GitHub repositories evaluation according to

exclusion criteria like “Application source code with GraphQL server”, “JavaScript library

46

usage”, “Repositories under construction, “Other source code”. Those repositories fulfilling

at least one of the exclusion criteria are not relevant for the thesis. Fulfilled exclusion

criterion is marked with “X” on the table.

Repository name

Application

source code

for GraphQL

server

JavaScript

library

usage

Repositories

under

construction

Other

source

code

1 test-graphql-java - - - -

2 Rest-assured - - - -

3 researchpaper-java X - - -

4 gorm-graphql X - - -

5 Sangria-GraphQL-Neo4j-

backend
X - - -

6 graphql-spring-boot - - - X

7 commerce-cif-connector X - - -

8 my-thai-star - - X -

9 graphql-integration-test - X - -

10 karate - - - -

11 DevCouncilJune2018 - - - X

12 ormoush-graphql-testing - - X -

Table 8 GraphQL test automation approaches using Java search results evaluation (source: [79])

After analysing all the found GitHub repositories only three of them are relevant and fully

satisfy the aim of the research. Solutions presented in the repositories present the source

code for testing GraphQL API. Each solution is described in the following subchapter.

5.2 Solution overview

In subchapter found GraphQL API test automation solutions are introduced to the reader

by describing their features and principles. The author describes the main methods of found

solutions by giving an example of Test Case implementation.

5.2.1 Test GraphQL Java

Test GraphQL Java is a library introduced by Vimal Selvam on 2. June 2019. He

implemented a simple GraphQL testing solution that won’t need to work with various

dependencies, can use any Java testing framework and HTTP client, be able to transform

GraphQL file to request payload [80].

47

In the example project, Vimal Selvam defines the prepareResponse method, displayed on

Figure 13, for sending a request with already prepared request payload transferred to the

method as a String. The request is sent using OkHttp HTTP client and then saved as a

Response object.

Request payload can be created using the parseGrapql library method from File object or

InputStream and map of variables which the author creates as an ObjectNode object. As a

variable map null value can be sent. Parse GraphQL method allows converting InputStream

or File to String value and created new ObjectNode with query String and variables map for

the payload – viz. Figure 14.

This simple library for testing GraphQL can be installed by adding maven or Gradle

dependency. Library source code is available on the GitHub repository under

https://github.com/vimalrajselvam/test-graphql-java.

5.2.2 REST-assured

REST-assured is an open-source Java-based library designed for simplifying the testing

REST services using Java [81]. The first version of REST-assured dependency could be

downloaded since the 1st of December 2010. By October 2019 during the time of preparing

the current thesis, REST-assured has already introduced the 4.0.0. version.

Figure 14 Test GraphQL Java library methods (source: https://github.com/vimalrajselvam/test-
graphql-java)

Figure 13 Sending request method in Test GraphQL Java example Test Class (source:
https://github.com/vimalrajselvam/test-graphql-java)

https://github.com/vimalrajselvam/test-graphql-java

48

REST-assured is built on top of the HTTP Builder and supports POST, GET, PUT, DELETE,

OPTIONS, PATCH, and HEAD requests. REST-assured allows the user to validate and

verify responses for saved requests [82].

A simple example of the test implemented with the REST-assured library is displayed in

Figure 15.

Figure 15 REST-assured test example (source: https://www.baeldung.com/rest-assured-response)

In the example, Test Case basic REST-assured methods are used. The requests to the server

are sent using the “Given-When-Then” structure. In the given block, the user sent the

request parameters as headers and body. REST-assured also provides special methods for

setting request parameters, such as defining the content type or adding authentication

headers – viz. Figure 16.

The user authentication with REST-assured allows you to test and validate the API security.

The library allows multiple authentication schemes [83], such as:

• Basic Authentication

• Digest Authentication

• Form Authentication

• OAuth3 1 and OAuth 2

3 OAuth – open protocol that allows secure authorization from Web, mobile and desktop applications
[84]

Figure 16 Basic user authentication example code with REST-assured (source:
https://www.baeldung.com/rest-assured-authentication)

https://www.baeldung.com/rest-assured-authentication

49

When the request parameters are specified in the “Given” block, the user defines what

method should be used to send a request like POST, GET, etc in “When” block. After sending

the request to the given endpoint, the user can set an additional verification by checking the

status code received from the server.

When the request is sent to the server and a response is received, in “Then” block the user

specifies the verification rules that can be applied to the response received both in JSON

and XML format. The user can apply assertions on the value with the body function, save

the value into Response Object in JSON format or extract the value and save it to the defined

variable. On the extracted response object basic JUnit assertion functions can be used for

response verification.

Apart from all the described features, REST-assured also allows logging the information

about the requests sent and the received responses, which significantly helps in finding out

the cause of the test failure. The logging functions can be enabled in multiple places [85]:

• Log request details

• Log response details

• Log response on error occurred

• Log response when validation failed

On REST-assured Wiki pages in GitHub repository under https://github.com/rest-

assured/rest-assured/wiki can be found the description of all the library features and

methods. Multiple tutorials explaining how REST-assured can be used in practice can be

found on the Internet, for example, Baeldung [85] and Tutorialspoint [86].

Although REST-assured has a big Internet community of users, in the official

documentation there is no information about testing GraphQL APIs. However, this topic is

being discussed in other communities and blog pages and based on that is obvious that

GraphQL API test automation with REST-assured is also possible. The only difference is

that for GraphQL API test automation, the user must prepare the request payload with

parsed as a String query value and variables map [87].

5.2.3 Karate

Karate is an open-source Java-based Behaviour Driven Development (BDD) framework for

HTTP API testing. Karate is built on top of the Cucumber framework and uses Gherkin plain

language parser to describe the tested features. With the Karate framework, different types

of tests can be automated, like functional API tests, performance tests and mocks. The

Karate framework allows the verification of both JSON and XML response formats [88].

A simple Karate test can be visible on Figure 17. Test scenarios themselves are written in

the “feature” files and can be run with the test runner with JUnit 4 or called directly from

the test class with Karate annotation with JUnit 5.

https://github.com/rest-assured/rest-assured/wiki
https://github.com/rest-assured/rest-assured/wiki

50

When the name of the Test Case in the “Given” block is set, other request parameters are

being specified, like URL or request body message. After sending a request with the defined

method in the “When” block, the user can verify the response status code and the property

values in “Then” block using prepared methods and functions.

Karate allows saving the request body in separate files and calling them from multiple tests

that help maintain the test data in a project. The test data can be saved not only in JSON

and XML format but also, for example, in CSV, TXT, or JavaScript format. In the request,

the user can specify arguments and then call from the test a request with a given parameter

value. Apart from that, they can use features (Test Cases) inside other features, which

reduces the number of method implementation.

Karate allows you to use different formats as a request payload, such as files in GraphQL

format. To send a request to the GraphQL API request query, it does not need to be parsed

to String and saved separately as a request payload, it can be just be called from the file or

saved as a text variable as is visible on Figure 18.

Karate, as well as Cucumber, provides user-friendly test reports and allows storing the

logging of the executed test output into XML files. A detailed description of Karate

framework features can be found on the GitHub repository under

https://github.com/intuit/karate.

Figure 17 Karate test example (source: https://www.baeldung.com/karate-rest-api-testing)

Figure 18 Karate GraphQL test example (source: https://github.com/intuit/karate)

https://github.com/intuit/karate

51

6 Evaluation of GraphQL API solutions for

concrete company

The following chapter describes the process of test automation solutions evaluation for the

real company’s needs. This chapter helps to achieve one of the defined sub-goals– “Evaluate

the application of the existing solutions on a real-life project” and by what helps to achieve

the main goal of this thesis.

Multiple Criteria Decision Analysis (MCDA) method was chosen for process evaluation.

MCDA method is handled in the following steps [89]:

1. Context definition

2. Introduce available alternatives

3. Select the criteria for evaluation

4. Specify criteria importance (weights)

5. Measure the impact of each alternative on the selected criteria

6. Evaluation of the alternatives

In 6.1 Context definition company X is introduced by giving its product characteristics and

use cases as well as defining the reasons for from REST to GraphQL API implementation.

In this part also the requirements received for test automation solutions from company X

are described.

The next part of the chapter 6.2 Alternatives introduction is concentrated on introducing

available alternatives – solutions used in the experiment. Evaluation criteria specified in the

following subchapter are based on the received requirements from the development team

and the QA community of company X. When the criteria are introduced author in 6.4

Weights specification specifies their importance – weights, that are then used in

quantitative evaluation process.

The following parts of 6.5 Measuring the alternatives are describing the measurement

process and the impact of each alternative solution on the given criteria.

At the end of the chapter in 6.6 Alternatives evaluation, the author evaluates the chosen

alternatives using Weighted Sum Approach (WSA) [89] for evaluation MCDA alternatives

and recommends a solution for company X, giving additional further recommendations.

6.1 Context definition

In the first step of the MCDA context of the analysis should be defined. The main goal of the

thesis is to compare existing GraphQL API test automation solutions to the recommend one

that can be used in a real project, the context of MCDA than can be defined in the following

way:

52

Choose the most useful GraphQL API test automation solution for integration

testing in company X.

In terms of thesis, a real company X that is now searching for the right solution for

integration testing was chosen as they have freshly experienced the transition from the

REST API approach to GraphQL. Company X overview and information written in the

subchapter was received in the interview handled with the QA community leader in

company X. The real company name, as well as its employees, are anonymized at the request

of the company.

6.1.1 Company overview

Company X is a Canadian-Czech company operating on the global market for more than 10

years. Company X is developing an AI-driven platform consisting of different modules and

allowing its users to manage, monitor, and analyse their data. The clients are mostly big

companies that work daily with big data and require assistance for their management. The

platform offered by company X allows solving the following cases:

• Data profiling and discovery

Data profiling allows understanding the data patterns by visualising the results of

analysis and representing the relationships between the data used. Apart from that

data discovery enables the client to discover not only structured data but also

analysing text-based data.

• Data catalog and glossary

In the data catalog, clients can store and search for metadata using the business-

friendly interface. To any data entity stored in the data catalog, the user can assign

business terms. The glossary can be created by the organization and contains only

term instances relevant to the organization.

• Master and reference data management

This module includes consolidating multiple data from different sources into one

golden record that helps to clean the data and get rid of redundant or outdated

information. Clients can also store and manage their reference data in one place.

• Big data processing

The platform can be used for processing an enormous range of data and provide a

detailed data quality analysis before applying the required data transformations on

them.

• Data quality management

Data quality management includes data discovery and profiling, as well as

automated AI-powered processes of discovering metadata. All analysis results can

be stored and displayed to the end business user on the fully configurable custom

dashboard.

Depending on the chosen Use Case, the platform can be bought with one or more modules.

To solve each of the cases described earlier, the platform users should, in the beginning,

connect to their data source (databases where their data are stored) or load data directly

into the platform. This is the first and most important functionality of the platform.

53

The platform allows loading data of different formats and from different sources like CSV

files, Excel spreadsheets, Databases. Getting data from databases requires some more

actions to be taken by the user to create a connection to the existing data source. Users of

the platform can handle the following actions with the data sources:

1. Create a new data source by defining connection parameters

2. See the details of the created data source connection

3. Edit the details of the data source connection

4. Delete the created data source connection

The actions described respond to basic CRUD database operations, these actions are the

first and the most important in the system as without connectivity to the data source the

rest of the platform modules features cannot be accessed. To improve product quality and

prevent the situations when the basic functionality might be affected by changes made with

new features implementation, QA engineers chose described functionality to be one of the

automated test suites to be run after each change applied on the server by developers.

Development teams

The development group in company X is formed of almost 100 people that are divided into

11 teams according to platform module implementation. Depending on the team focus

number of QAs in the team varies from one to up to three people. QA engineers, as well as

back-end and front-end developers, form separate communities that have regular meetings

for making decisions regarded all teams. Each approach for the test automation process is

firstly being discussed within the team and with the proof-of-concept prepared is

introduced to the community after what the final decision is made, and one common

approach is chosen.

Used technologies

The desktop part of the platform is implemented using Eclipse IDE. The server-side is

written in Java using Spring and Kotlin technologies and on client-side, the Web

applications are programmed using TypeScript and React.

The QA community has common tools for different types of test automation implemented

across the whole company by different teams. The server-side API testing was handled using

the Cucumber framework with Java programming language that is described in the

following sections. For the Web application test automation, the QA decided on using a

custom framework based on Selenium WebDriver and Java. The desktop platform quality

is verified by the Rich Client Platform Testing Tool test automation tool for Eclipse-based

applications.

Test automation with REST API

For functionality verification on the server-side, the API testing is being handled by QA

engineers using the Cucumber framework that supports BDD. The chosen solution was used

for 2 years until the decision regarding changing the API implementation approach was

54

taken by the developers’ community. The test automation using the Cucumber framework

according to the QA community has several advantages:

• No Java programming skills are needed as Cucumber provides all the methods for

sending requests and verifying values received in response from the server

• The Cucumber framework is using Gherkin syntax that allows automated tests to be

self-descriptive and easy understandable

Unfortunately, even with the mentioned advantages of this solution, the QA community was

thinking of changing the approach for the API test automation as the Cucumber framework

had some limitations and the test automation process had become a challenging activity.

These limitations are:

• The cucumber methods are not enough to consistently maintain the gross test

automation project through different teams and require the implementation of

custom additional methods for which Java programming skills are needed

• Cucumber provides the user only with a prepared class of given methods and

functions, custom classes are hardly compatible with framework methods

• Variables from the test cannot be transferred to another test (global variables cannot

be created for the whole test suite)

The QA community luckily experienced only half of the defined API test automation

challenges mentioned in 4.2 API test automation like “Maintenance” and “Skilled

resources”, but even those were enough to start searching for a new better solution.

Even though many discussions about changing the framework used for test automation

were being handled for almost 3 months, only the transition from REST to GraphQL API

implementation made the QA community stop using the Cucumber framework and search

for other solutions that can be used for GraphQL API test automation.

6.1.2 GraphQL API

With the REST API implementation used earlier, company X faced several complications

that made them start thinking about a new approach to API. Among these complications

are:

• Aggregated and composed requests

When on the Web page the information about the user with the list of his created

data sources needed to be displayed, multiple requests were send from client-side to

different URL paths in order to fetch all necessary information.

When updating the information about an existing data source, the client-side

needed to send several requests, first with the PUT method and second with the GET

method, to fetch the updated information from the server to the user.

• Inconsistent endpoints

In a growing company, multiple teams implemented API endpoints in their own way

with no strict design model. The inconsistency of the API endpoints implementation

55

led to over-fetching redundant information from different resources while

integrating the platform modules.

After various discussions and considerations of the number of existing alternatives that will

help evade the defined complications, the development community decided in favour of the

transition from REST to GraphQL API implementation. The new approach allows

developers to define the required fields in the requests as well as the response fields to be

returned from the server after modifying the data. Moreover, the GraphQL type schema

helps to frame the back-end developers in multiple teams as it gives a sort of a design

module they are following while implementing new endpoints.

The implementation of the GraphQL API technology led to the depreciation of all the API

tests created earlier, and now the QA community of company X is searching for a new test

automation approach.

6.1.3 Requirements for API testing

Based on previous experience with the REST API test automation QA community in

conjunction with the development team specified their own list of requirements for a new

integration testing approach. Each requirement is described in Table 9.

ID Name Description Obligatory

REQ_001

Tests are written in

Java programming

language

Developers team by agreement with the QA

community require API tests to be a part of

the server project as it will help to earlier

defect detection and preventing system

failure. This requirement helps to overcome

one of the mentioned API challenges –

initial project setup.

Yes

REQ_002 Gherkin free approach

Because of the previous experience with

Cucumber, the QA community decided not

to use next time tools or frameworks that

are using Gherkin syntax. This requirement

helps to overcome one of the mentioned

API challenges – skilled resources.

Yes

REQ_003

Solution library or

framework can be

installed with Gradle

system

As API tests are a part of server project test

module settings must be identical with the

main project settings. The server project is

using Gradle build-automation system that

making it also obligatory for new solutions

to use the same build system. This

requirement helps to overcome one of the

mentioned API challenge – integration

with the existing ecosystem.

Yes

REQ_004

Resource files can be

reused in multiple test

suites

Because of the dynamic schema

implementation on the server-side, the QA

community is expecting a high number of

-

56

resource files used in the test project, that’s

why the solution should allow reusing of

resource files in different Test Cases and

suites. This requirement helps to overcome

one of the mentioned API challenges –

maintenance.

REQ_005

Ability to add user

authorization header

in the request

Web application can be accessed only by

authorised users so to the requests send to

API

Yes

REQ_006
Tests can be

parametrised

With a high number of different cases

(different data sources for example) that

must be handled for product quality

verification, the QA community needs to

have a solution that allows test

parametrization or can use other Java

frameworks that have defined functionality.

This requirement helps to overcome one of

the mentioned API challenges –

maintenance.

-

REQ_007

Ability to log the test

run with giving

informational error

messages on test

failure

Logs and error messages on run of

automated TCs should provide tester all

necessary information for understanding

the cause of test failure.

-

REQ_008

Requests are using

GraphQL variables and

fragments features

GraphQL has implemented useful features

like variables and fragments that could be

beneficial to use in automated TCs.

-

REQ_009
Test project

architecture

QA community describe their own

principles that should be used in the test

project. All test classes should be extended

from one base class - BaseTest, that

implements methods for sending requests

and receiving a response with status code

200 validation. Send request method

should return a response if given condition

for status code was satisfied. Returned

response is then being used in all tests for

verification of response structure and data

from the server. This class should provide a

variable map for GraphQL requests

variables that will be sent each time with

the request to the API endpoint. Tester can

use variable map in all test suites that are

extended from BaseTest. This requirement

helps to overcome one of the mentioned

API challenges – initial project setup.

Yes

Table 9 List of requirements for the integration testing approach from company X (source: author)

57

In column Obligatory marked requirements their implementation in a new test automation

approach is compulsory. Not marked as obligatory requirements are also important but

their lack is not crucial to company X and QA engineers can handle and implement all

necessary additional functionality.

6.2 Alternatives introduction

In 5.2 Solution overview, three different solutions to GraphQL API test automation are

introduced, each of those could be the alternative for the evaluation process and all of them

fulfill the first given requirement – REQ_001 - Automated tests should be written in Java.

However, development and QA teams from company X specified another requirement that

influences the list of possible alternatives. One of the given requirements – REQ_002 -

Gherkin free approach, sets the condition for the solution’s implemented features.

Involving solutions that don’t fulfill defined requirements into the evaluation process is

unnecessary, as in the end these solutions won’t be taken into consideration for the final

decision. Because of that reason, the list of possible alternatives in MCDA is shortened

according to the stated requirement.

Only two solutions from the given list of possible three fulfil given conditions and can be

announced as possible alternatives for defined context. That’s why only Test GraphQL Java

and Rest assured solutions are evaluated with the selected criteria in the following steps of

MCDA analysis.

6.3 Criteria definition

MCDA criteria are defined based on the specified requirements in 6.1.3 Requirements for

API testing. Not all of the requirements can be easily transformed into criteria. For example,

REQ_001 - Automated tests should be written in Java and REQ_002 - Gherkin free

approach criteria were already applied earlier on the list of alternatives.

In addition to them, the author specifies another set of criteria that will help in the solutions

evaluation process. The final list of evaluation criteria with their short description is

represented in Table 10 below.

ID Name Description REQ_ID

CR_001

Documentation,

community

support

The existence of Internet user’s community

(discussions in Stack Overflow online community),

documentation provided on the Internet (official

documentation, GitHub README file, tutorials in

the Internet, YouTube tutorial videos), online

support (discussions in Stack Overflow online

community), resolution level of issues (number of

resolved issues is higher than number of opened).

-

58

CR_002*
Initial project

setup time

Time spent by tester on initial project setup with

the pre-defined conditions.
REQ_009

CR_003 Usage of Gradle
The ability to install the solution with the build-

automation Gradle system.
REQ_003

CR_004

Compatibility

with other Java

frameworks and

libraries

Compatibility of the solution with other Java

frameworks and libraries, like Junit4, Junit 5,

Jackson, Json4.

-

CR_005
User

authorization

Ability to set basic authorization header in the

request.
REQ_005

CR_006*

CRUD tests

implementation

time

Time spent by tester on CRUD tests

implementation with the pre-defined conditions.
-

CR_007
Reusable

resources

Ability to use resources in different test classes.

Requests can be saved in the project separately

under the resource directory and called from test

classes.

REQ_004

CR_008
Ability to use

GraphQL features

Solution ability to use GraphQL features in test

cases and prepared requests like variables and

fragments.

REQ_008

CR_009
Test

parametrization

Ability to configure the test’s parameterization

with multiple pre-defined parameters.
REQ_006

CR_010

The ease of

understanding

solution methods

The level of understanding of methods and logic of

solution implementation by the target group of

users.

-

CR_011 Test reports

Framework ability to generate test reports or allow

the usage of another framework, library, system for

generating test results reports.

REQ_007

CR_012 Tests run time Calculated test run time for the whole test suite. -

CR_013

Error messages

and logs

informational

content

The informational content of error messages and

logs in the used solution for sending an invalid

query to the server.

-

CR_014
Custom methods

implementation

Potential methods that should be additionally

implemented in the test project for initial project

setup criteria or CRUD tests implementation.

-

Table 10 List of criteria for the MCDA method (source: author)

Some of the given criteria from the table above (marked with star symbol in the table)

require more complicated actions to be taken for their evaluation. The process of measuring

these criteria impact on alternatives cannot be described in the table and requires specific

4 A list of libraries and frameworks were defined on request by company X.

59

introduction. The following sections introduces the process and evaluation conditions for

measuring the impact of some of the criteria on defined alternatives.

CR_002 Initial project setup time

REQ_009 - Test project architecture – is a practical requirement for the test project

structure and used principles and design patterns in it. Requirement description assumes

about using Object Oriented Programming concepts that are directly connected to REQ_001

and solution language. This requirement cannot be fully transformed to the criteria as its

implementation depends on QA specialist knowledge of design patterns and programming

skills but not on chosen solution features. But still, despite it, REQ_009 was linked to

CR_002 which goal is to evaluate the time spent on the initial project setup. Requirement

is then added to the initial setup project and the implementation time of the pattern

described in REQ_009 and in a list of activities for CR_002 will be added to the total time.

Initial project setup means the first setup of the project from scratch with no pre-installed

libraries using chosen solutions.

List of preconditions:

1. Initial project setup for both libraries is verified on the same computer

2. IntelliJ IDEA is successfully installed

3. Java 1.8 is installed on the computer

4. Previous experience in integration testing (1-3 years experience)

5. Previous experience in Java and usage of JUnit framework for test automation (1-3

years experience)

The total time of the stage is counted as a total time spent on the following activities,

including time spent on dealing with issues that occurred.

List of activities of initial project setup:

1. Import of the solution library

2. Import of all other necessary libraries and project dependencies

3. BaseTest class implementation

a. Test class is extended from BaseTest class

b. BaseTest class allows sending requests and receiving responses

c. Responses from BaseTest can be used in other test classes for verifying

returned properties values and response structure

d. Variables used in GraphQL queries should be initialized in BaseTest

4. First test “Get GraphQL structure” implementation

a. URI initialization

b. Sending specified query for getting schema structure

c. Status code response verification

To check the ability of solution to work with any GraphQL API and sending requests to it

simple test for getting GraphQL Server schema of custom GraphQL server implemented and

running earlier is added to the Initial project setup process.

60

First test “Get GraphQL structure” steps are described in Table 11. Query for getting schema

structure is attached in the Annex B: GraphQL requests used in solutions evaluation.

Get GraphQL structure

Test description: Test is verifying the status of the GraphQL server by getting its schema

structure and checking the returned status code.

Preconditions: Running GraphQL server implemented according to Annex A:

GraphQL custom server implementation

Step 1 Send attached query to get the

GraphQL schema to endpoint

http://localhost:8080/graphql

Expected

result

Request is sent to defined

endpoint

Step 2 Verify status code returned from

the server

Expected

result

Status code is 200

Table 11 Get GraphQL structure Test Case (source: author)

CR_006 CRUD tests implementation time

In 6.1.1 Company overview company X Use Cases were described with the given overview

of the important platform functionality – manipulating the existing data source. Actions the

user can apply to data sources within platform modules are related to basic CRUD

operations in the database. Because of that fact, the criterion was set to measure the time

needed for implementation of the CRUD test suite that contains tests for verification of each

database operation. Test suite does not check the real company GraphQL API but uses the

custom GraphQL server implemented earlier that allows providing the same CRUD

operations over Data object.

Criterion has a list of preconditions needed for evaluation of the library's impact.

List of preconditions:

1. No previous experience with test automation using chosen alternatives

2. Tests are written after Initial project setup stage

3. Resource files with queries and mutations for tests already created under the test

resources folder in the project directory

4. Test suite is run on clear custom GraphQL server with no data

Test suite is represented by four tests that are used for basic CRUD functionality

verification; each basic database operation is verified by a separate test. In terms of thesis

work, only positive test scenarios are implemented. Into the total time of CRUD test

implementation is included time for the automation process of four TCs in one test suite.

Test case steps are described in Annex C: CRUD Test Cases.

Test data like GraphQL queries and mutations are also prepared and can be found in Annex

B: GraphQL requests used in solutions evaluation. Test automation of received TCs should

be implemented with respect to prepared requests, which means that given requests

shouldn’t be modified and variable maps and fragments features would be used in each test

if the library allows the use of these features.

http://localhost:8080/graphql

61

6.3.1 Criteria evaluation values

The impact of alternatives on each criterion can be measured by values. All criteria are

divided into three different groups by the evaluation method applied to them. Several

criteria are grouped as they are measured in time values, another group of criteria is

evaluated by the target group from company X and the last group of criteria is formed of the

evaluation values assigned to them.

The first group of criteria is represented by CR_002, CR_006, and CR_012 which measures

the time of defined processes like implementation stages or time of test run of automated

test scenarios. Time for criteria CR_002 and CR_006 is defined in minutes, while time for

CR_012 is represented in milliseconds. All values are normalised in 6.6 Alternatives

evaluation subchapter. Criteria from these groups are considered as minimizing criteria as

the higher value they have the less benefit they bring. Other criteria from the rest of the

groups are maximising criteria.

CR_010 and CR_013 are grouped as their evaluation values are set according to

questionnaires that received a target group for evaluation of solutions abilities. The target

group is formed by QA engineers from the company X QA community. Target group is

formed of 15 QA engineers working for company X on average for 1,5 years, has experience

with previous Cucumber test automation approach and are specialised on back-end testing.

The target group received a questionnaire prepared with code examples from both library

projects to receive the subjective opinion of different approaches from the primary group of

people who are expected to work directly with one of the evaluated solutions.

Questionnaires were made with Google Forms and their templates are attached in Annex

D: MCDA questionnaires. For evaluation of CR_010 target group received a source code

from test project with BaseTest class and Edit existing Data test attached in Annex D: MCDA

questionnaires and was asked to evaluate the ease of understanding solution methods with

the described rates: 1 – “It is hard to understand solution methods”, 2 – “I understood

solution methods but I have some questions to its usage”, 3 – “I completely understood

used methods”. For evaluation of CR_013 to target group were shown logs and errors

messages attached in Annex D: MCDA questionnaires so they can rate their informational

content with 1 – “Log gives no information about the test failure”, 2 – “I partly understood

what caused test failure”, 3 – “I completely understood the error and can solve occurred

problem”. From values received from target group average5 value is calculated in each

criterion measurement section.

The rest of criteria are forming the biggest group of criteria: CR_001, CR_003 – CR_005,

CR_007 – CR_009, CR_011, CR_014 are rated with numeric values from 1 to 3, where 1 is

“not satisfying”, 2 stands for “partly satisfying” and 3 – “fully satisfying”. CR_014 Custom

methods implementation criterion is rated with values 1 and 3, where 1 is “more than 1

5 Average value is calculated in the following way: all the numbers are added up and then divided by
how many numbers there are

62

additional methods are needed”, 2 stands for “1 additional method is needed” and 3 – “no

additional method implementation is needed”.

Alternatives measurement as well as the implementation of Initial project setup and CRUD

TCs preparation is handled by the author of the thesis, as she fulfils the specified earlier

preconditions for the given criteria.

6.4 Weights specification

For specifying the weights of each criterion the rank ordering method was applied [89]. The

target group was asked to evaluate the importance of the defined earlier criteria by

answering the questionnaire, attached in Annex D: MCDA questionnaires. Target group

was asked to rate the given criteria as: 1 – “least important”, 2 – “important”, 3 – “most

important”. From target group answers the criterion average value was calculated.

Based on calculated average value to each criterion was assigned rank from the interval <1,

14>, where 14 – “most important” and 1 – “least important”. In case when criteria obtained

the same importance rate the average rank was calculated.

Then each criterion weight is calculated according to the formula 𝑣𝑖 =
𝑏𝑖

∑ 𝑏𝑖
𝑘
𝑖=1

; [89], where bi

is the rank value assigned for each criteria and k represents the number of criteria and the

highest rank assigned to the most important criterion. Total rank value was calculated using

the formula ∑ 𝑏𝑖 =
𝑘(𝑘+1)

2
;𝑘

𝑖=1 [89]. Table 12 represents calculatuion process of weights with

the final result.

Criteria
1 - least

important

2 -

important

3 - most

important

Average

value
Rank Weight

CR_001

Documentation,

community

support

0 5 10 2.67 14 0.13

CR_002 Initial

project setup

time

3 10 2 1.93 1.50 0.01

CR_003 Usage of

Gradle
1 7 7 2.40 9.50 0.09

CR_004

Compatibility

with other Java

frameworks and

libraries

0 7 8 2.53 12 0.11

CR_005 User

authorization
3 6 6 2.20 3.50 0.03

63

CR_006 CRUD

tests

implementation

time

3 6 6 2.20 3.50 0.03

CR_007

Reusable

resources

1 5 9 2.53 12 0.11

CR_008 Ability

to use GraphQL

features

0 7 8 2.53 12 0.11

CR_009 Test

parametrization
1 7 7 2.40 9.50 0.09

CR_010 The ease

of

understanding

solution

methods

1 8 6 2.33 7 0.07

CR_011 Test

reports
3 4 8 2.33 7 0.07

CR_012 Tests

run time
3 10 2 1.93 1.50 0.01

CR_013 Error

messages and

logs

informational

content

2 6 7 2.33 7 0.07

CR_014 Custom

methods

implementation

3 5 7 2.27 5 0.05

Total: 105

Table 12 Criteria evaluation results with weight calculated (source: author)

6.5 Measuring the alternatives

This subchapter describes the process of solution evaluation according to the given criteria.

Based on characteristics given in this chapter later in 6.6 Alternatives evaluation the

evaluation values are assigned to the solution. Each of the solutions alternative’s correlation

to the criteria is described in separate sections.

6.5.1 Test GraphQL Java

Subchapter concentrates on Test GraphQL Java library measurement for defined criteria. A

general overview of the library is given in 5.2 Solution overview.

64

CR_001 Documentation, community support

Test GraphQL API library is quite new and was introduced by VimalRaj Selvam in June

2019 [80]. There is no official documentation or Web page with library methods described

apart from the GitHub repository.

Prepared library source code is saved in the GitHub repository that also contains a

README file with the description of library methods and examples of usage [90]. No issues

were yet found and opened nor resolved. By 31 October 2019 GitHub code was used only

once and watched by three people in total.

By the same date, no YoutTube tutorials videos yet exist for the introduced approach for

GraphQL testing nor discussions on Stack Overflow started about the introduced approach.

As not a good deal of information can be found on the Internet, the library just partly

satisfies the given criterion.

CR_002 Initial project setup time

In the first phase of the evaluation process, the project itself was set up. A new Java project

that uses Gradle build-automation system was created. Library dependency was imported

from Maven Repository into the project, in addition to the Test GraphQL Java library, itself

OkHhtp library was also downloaded. Figure 19 represents the dependency section of the

project.

In GitHub repository, the author demonstrates the library usage with TestNG Java test

automation solution, but according to specified requirements from company X JUnit

framework must be used in test automation project, that was the reason for installing also

Jupiter library that enables usage of JUnit both versions 4 and 5 functionalities.

When all dependencies were installed, the author created the InitialProjectSetup class for

automating the getServerSchema Test Case according to TCs example given in GitHub

library repositories. In the GitHub project, an example of preparing requests, receiving and

saving response was already implemented as well as the methods for reading GraphQL

request’s format.

According to specified actions for CR_002, BaseTest class was added during the project

setup. In BaseTest class implementation, the author adjusted the example usage of solution

methods to specified earlier requirements.

Figure 19 Dependency installed in Test GraphQL Java library example project (source: author)

65

In BaseTest class, that can be seen in Code 4, the following features were incorporated:

1. GraphQL URI variable is used as local in prepareResponse method

2. Variables map of type ObjectNode is created in BaseTest class

3. SendRequest method with resource fileName argument is added

4. FileName argument is used in file path for specifying request file location in

resources

5. SendRequest method is used for sending requests

6. Status code in received response in the sendRequest method is verified and if the

returned code is 200 sendRequest method returns the response as an object

class BaseTest {

 private static final OkHttpClient client = new OkHttpClient();

 public ObjectNode variables = new ObjectMapper().createObjectNode();

 private Response prepareResponse(String graphqlPayload) throws IOException {

 RequestBody body = RequestBody.create(MediaType.get("application/json;

charset=utf-8"), graphqlPayload);

 String graphqlUri = "http://localhost:8080/graphql";

 Request request = new Request.Builder()

 .url(graphqlUri)

 .post(body)

 .build();

 return client.newCall(request).execute();

 }

 Response sendRequest(String fileName) throws IOException {

 // Read a graphql file as an input stream

 InputStream iStream = TestClass.class.getResourceAsStream("/graphql/" + fileName +

".graphql");

 // Now parse the graphql file to a request payload string

 String graphqlPayload = GraphqlTemplate.parseGraphql(iStream, variables);

 Response response = prepareResponse(graphqlPayload);

 assertEquals(response.code(), 200);

 return response;

 }

Code 4 BaseTest class implementation with Test GraphQL Java library (source: author)

The first test itself is implemented in the following way – Code 5. The test class is extended

from the BaseTest class and implemented Test Case uses its methods. For the first test, no

66

additional assertions are needed that’s why only resource file name is specified as an

argument and status code verification is handled inside the sendRequest method.

public class GetServerSchema extends BaseTest {

 @Test

 public void getServerSchema() throws IOException {

 sendRequest("getServerSchema");

 }

}

Code 5 GetServerSchema Test Case implementation with Test GraphQL Java library (source:
author)

The whole Initial project setup from creating a new project to BaseTest class

implementation took 60 minutes.

CR_003 Usage of Gradle

As was mentioned in the previous section with the measurement of CR_002, the project

from the beginning was set up using the Gradle system, which means that the solution fully

satisfies this criterion.

CR_004 Compatibility with other Java frameworks and libraries

During the Initial project setup author already tried to install and use other Java

frameworks and libraries like JUnit 4.12 and Jupiter library for using JUnit 5.4.2. This leads

to the conclusion that the solution fully satisfies the criterion.

CR_005 User authorization

OkHttp library that solution uses for sending requests to endpoint allows adding header

with authorization parameter. Header can be added to the request builder as displayed in

Code 6Code 6 OkHttp request builder example using authorization header.

 Request request = new Request.Builder()

 .url(graphqlUri)

 .post(body)

 .header("Authorization", "Basic dXNlcjpwYXNzd3ByZA==")

 .build();

Code 6 OkHttp request builder example using authorization header (source: author)

According to Google, research OkHttp allows not only Basic authorization but also OAuth.

Criterion is then considered to be fully satisfied.

CR_006 CRUD tests implementation time

According to the criterion description, a test suite with 4 Test Cases was implemented

during this phase. Tests were automated using given Test Cases in Annex C: CRUD Test

67

Cases. Example Test Case for editing Data instance is displayed in Code 7. The whole test

suite is attached in Annex E: CRUD test suite implementation.

@Test

public void editExistingData() throws IOException {

 variables.put("typeValue", "character").put("exampleValue", "A");

 Response response = sendRequest("createDataWIthFragment");

 // Save response as JsonNode

 String jsonData = response.body().string();

 JsonNode jsonNode = new ObjectMapper().readTree(jsonData);

 // Get new data instance id

 String id = jsonNode.get("data").get("createData").get("id").asText();

 // Change example value and save into variables

 variables.put("id", id).put("exampleValue", "B");

 response = sendRequest("editData");

 // Get updated data instance

 response = sendRequest("getDataWithFragment");

 // Save response as JsonNode

 jsonData = response.body().string();

 jsonNode = new ObjectMapper().readTree(jsonData);

 assertEquals("B", jsonNode.get("data").get("getData").get("example").asText());

}

Code 7 Edit existing Data test implementation with Test GraphQL Java library (source: author)

First into variables map values of new Data fields were added. The first request sent in the

test is the mutation that creates a new Data instance with given values from the map.

In the solution usage example for verifying values in response, the author saves response

body message to String variable from which creates a JsonNode object. The same approach

was used in the CRUD suite implementation. JsonNode object allows us to work with the

response body and save the ID of the Data as a String value. Saved ID is also added to the

map with the new example value for verifying modification functionality of the server.

As a next step request for editing Data with given ID is sent. Response is again s saved firstly

as String and is later converted to JsonNode. JUnit 5 assertEquals method is used for

verification of changed value in Data instance.

Total time spent on CRUD test suite implementation is 35 minutes.

68

CR_007 Reusable resources

Prepared requests can be saved and used in different classes in the test project. Library

provides multiple ways of resource file import like InputStream or File imports, so there

was no need for additional methods implementation. CR_007 is fully satisfied.

CR_008 Ability to use GraphQL features

The library allows users to send GraphQL requests both with and without variables map.

However, there is no implementation for using fragments in the query which means that

criterion is only partly satisfied.

CR_009 Test parametrization

Library successfully proved working with other Java frameworks like JUnit which means

that it can use its functionality. All TCs can be easily parametrised using JUnit, criterion is

then considered being fully satisfied.

CR_010 The ease of understanding solution methods

For this criterion evaluation target group received a questionnaire with a code example of

BaseTest class and Edit existing Data test to evaluate the ease of a given solution. The

questionnaire template is prepared and attached in Annex D: MCDA questionnaires. For

the questionnaire was received the following result – viz. Figure 20. From the target group,

8 people rated Test GraphQL Java library methods with “I completely understood used

methods”, 6 – “I understood solution methods, but I have some questions to its usage” and

1 with “It is hard to understand solution methods”. The calculated average value is 2,4 that

is rounded down to 2.

Figure 20 The ease of understanding solution A’s methods - questionnaire results (source: author)

69

CR_011 Test reports

In the library, no special implementation of test reports is added, which means that the

format and style of the test report is directly connected to the chosen Java framework for

running automated Test Cases. Test reports were successfully generated using with JUnit

framework and saved as XML files after each test run. The criterion is fully satisfied.

CR_012 Test run time

CRUD suite is run with Gradle, Figure 21 represents the tests run time for the whole suite

and each test separately.

The average time for the first 3 test suite runs of the suite is taken into criterion evaluation.

Table 13 represents the time for each run with the average.

 First run Second run Third run Average

Time 1.412s 0.376s 0.411s 0.733s

Table 13 Calculating of average test suite run time for Test GraphQL Java (source: author)

The final test suite run time for criteria evaluation is 733ms.

CR_013 Error messages and logs informational content

As in Test GraphQL Java library author implemented special methods for parsing GraphQL

requests author-verified error messages for sending invalid queries displayed in Code 8.

Query uses a fragment that does not exist that will cause an error for the request sent to the

server.

query getData($id: ID!){

 getData(id: $id){

Figure 21 CRUD suite test run time using Test GraphQL Java library (source: author)

70

 ...dataTypeFragments

 }

}

fragment dataTypeFragment on Data {

 id

 type

 example

}

Code 8 Invalid request example (source: author)

Errors are not handled by the library and the user receives the following output in console

displayed in Figure 22 while executing Test Case that uses invalid query.

In Test GraphQL Java solution OkHttp library is used for sending requests to the API server,

however, there are no examples of enabling logging of the sent requests in the library

GitHub repository. OkHttp library itself enables logging but this should be an additional set

by the users.

The informational content of the console output with the error message was evaluated by

the target group in the questionnaire. The questionnaire template with questionnaire

results are attached in Annex D: MCDA questionnaires. From target group, 9 people

consider Test GraphQL Java solution as “Log gives no information about the test failure”

and 6 as “I partly understood what caused test failure” – viz. Figure 34, the criterion

received an average value 1.

Figure 22 Test GraphQL Java error message example (source: author)

71

CR_014 Custom methods implementation

During the measurement of the first alternative author created the list of methods that must

be additionally implemented to fully cover the requirements given by company X.

The solution does not allow the full usage of GraphQL features like fragments that may have

a big impact on resource and test data size. For example project 3 different requests could

reuse the same fragment that can be saved in the project only once. But the solution does

not allow adding fragments to the query which means that fragment is saved with each

request in 3 files. Changes in the GraphQL schema structure related to the fragment require

changing it in multiple places. A method that allows adding a fragment to the requests

should be added.

Error messages and logs are not enough for easy understanding of the mistake or cause of

the error and require additional method implementation and enabling OkHttp logging in

the project.

The total count of additional methods that should be added into the library is 2, criterion is

rated with value 1.

6.5.2 REST-assured

REST-assured library overview is given in 5.2 Solution overview. The following sections are

concentrated on the description of another alternative measurement process for defined

criteria.

CR_001 Documentation, community support

The REST-assured library has official pages with the links to the useful pages as release

notes, news, documentation, legacy rights, and Frequently Asked Questions answered [81].

Source library code can be found in the GitHub repository with the Wiki page that describes

step by step the usage of the library with the examples. The REST-assured library is by the

31. October 2019 is watched by 312 users and was marked with star by 4.3 thousand users.

In REST-assured README file is attached to the link to the Google support group. REST-

assured has already 815 issues resolved and 257 opened. Last closed issue by the 31. October

2019 was resolved on 25. October 2019 that confirms the high support of the library [82].

Not only in GitHub REST-assured repository useful information about the use of solution

can be found. On Stack Overflow by the 31 October 2019 500 different discussions by the

keyword “rest-assured” are found and on YouTube channel multiple video tutorials can be

found using the same keyword, viz. Figure 23.

72

Described earlier facts of the usage and popularity of REST-assured on the Internet lead to

the conclusion that the criterion is fully satisfied.

CR_002 Initial project setup time

The initial project setup was started by the author from scratch with creating a new IntelliJ

Java project using the Gradle system. After creating the project REST-assured dependency

was installed as well as JUnit versions 4 and 5 – viz. Figure 24.

After installing the project author started with BaseTest class and first Get GraphQL Schema

test implementation. Although the REST-assured library has detailed Wiki pages in GitHub

repository official documentation does not provide information about using the library for

sending GraphQL requests but one open issue from 27. December 2017 related found [91].

As a result of further research handled several discussions on different Internet portals [87]

[92] related to the GraphQL API testing with REST-assured were found. According to the

resources found [92], the BaseTest class was implemented in the way shown in Code 9.

class BaseTest {

 public ObjectNode variablesMap = new ObjectMapper().createObjectNode();

 Response sendRequest(String fileName) {

 // Get string from grphql file, use \A delimiter for scanner to match the

beginning of the String

Figure 23 YouTube search results using keyword "rest-assured" (source:
https://www.youtube.com/results?search_query=rest-assued)

Figure 24 Installed dependencies in Initial project setup with REST-assured (source: author)

73

 String queryAsString = new Scanner(TestClass.class

 .getResourceAsStream("/graphql/" + fileName + ".graphql"), "UTF-8")

 .useDelimiter("\\A").next();

 // Save query and variables as JSON object

 JSONObject payload = new JSONObject();

 payload.put("query", queryAsString);

 payload.put("variables", variablesMap);

 // Send query with POST method to given URL and verify status code 200

 return given()

 .contentType("application/json")

 .body(payload.toString())

 .post("http://localhost:8080/graphql")

 .then()

 .statusCode(200)

 .extract().response();

 }

}

Code 9 BaseTest class implementation with REST-assured (source: author)

Following actions were taken during BaseTest implementation:

1. Variables map of type ObjectNode is created in BaseTest class

2. SendRequest method with String fileName argument is added

3. Resource file is found and saved as String by path with added value of fileName

argument

4. Status code of response is verified and if code 200 returned from server response

object is returned

As one of the company X requirements was the usage of resource files for saving queries

and mutation, the Java Util Scanner class was used as an example. This implementation can

be changed to any other solution like Files, FileInputStream or BufferedReader [93]. Saved

request as String is saved into payload JSONObject as well as a variables map [92]. Request

is sent using the REST-assured library by defining content-type header, body message with

payload as a string and POST method to the local GraphQL server. Status code of the

received response is checked and if status code received is 200 value response is returned

otherwise REST-assured returns an error.

Described above implementation of BaseTest and sendRequest method required additional

libraries installation – viz. Figure 25.

Figure 25 Extended installed dependencies in Initial project setup with REST-assured (source:
author)

74

Test Get GraphQL Schema is implemented in a way shown in Code 10.

public class GetServerSchema extends BaseTest {

 @Test

 public void getServerSchema() {

 // Add variables to payload JSON object

 Response response = sendRequest("getServerSchema");

 }

}

Code 10 GetServerSchema test case implementation with REST-assured (source: author)

GetSreverSchema class is extended from BaseTest and can use all its functionality like the

sendRequest method and variables map. Method sendRequest with file name argument is

called from BaseTest class. No additional assertions were added as status code is controlled

inside the sendRequest method.

Initial project setup implementation with BaseTest class took in total 95 minutes.

CR_003 Usage of Gradle

During CR_002 Initial project setup REST-assured library was installed in the project using

the Gradle system, which means that the solution fully satisfies the criterion.

CR_004 Compatibility with other Java frameworks and libraries

In CR_002 Initial project setup JUnit versions 4.12 and 5.4.2 were installed in the project

using the Gradle system. Criterion is fully satisfied by the REST-assured library.

CR_005 User authorization

REST-assured library allows adding headers while sending requests through HTTP

protocol. In the sendRequest method, authorization header can be added to a request in a

way shown in Code 11.

given()

 .contentType("application/json")

 .header("Authorization", "Basic dXNlcjpwYXNzd3ByZA==")

 .body(payload.toString())

 .post("http://localhost:8080/graphql")

 .then()

 .statusCode(200)

 .extract().response();

Code 11 REST-assured request builder example using authorization header (source: author)

As the authorization header can be added to the REST-assured builder criterion is then fully

satisfied.

75

CR_006 CRUD tests implementation time

CRUD test suite was implemented according to criterion description. Final suite code with

4 TCs is attached in Annex E: CRUD test suite implementation. Each TC in a suite uses

requests from Annex B: GraphQL requests used in solutions evaluation and were

automated according to test steps described in Annex C: CRUD Test Cases. Code 12 is giving

an example of the Edit existing Data automated test.

@Test

public void editExistingData() {

 variablesMap.put("typeValue", "character").put("exampleValue", "A");

 Response response = sendRequest("createDataWIthFragment");

 // Get new data instance id

 String id = response.path("data.createData.id");

 // Change example value and save into variables

 variablesMap.put("id", id).put("exampleValue", "B");

 response = sendRequest("editData");

 // Get updated data instance

 response = sendRequest("getDataWithFragment");

 assertEquals("B", response.jsonPath().getString("data.getData.example"));

}

Code 12 Edit existing Data test implementation with REST-assured (source: author)

In Edit existing Data test first Data fields values were added to the map after what the

request for creating new Data instance is sent to GraphQL API. From the received response

ID value of created Data is saved into a String variable and added to variables map as it will

be used in the following requests for working with Data instance.

Data instance with defined ID is edited by sending editData mutation after what Data

instance fields are got from response to the getDataWIthFragment query. REST-assured

returns Response object on which jsonPath method ca be applied. JsonPath method in

REST-assured allows searching for JSON nodes by the path and returning the value in the

format given by the user.

In the last step of the editExistingData test by defined Json path String value for Data

Example field is compared with the changed Example field value.

The total time for CRUD suite implementation is 25 minutes.

76

CR_007 Reusable resources

All used queries and mutations for example project with REST-assured library can be saved

to resources. Specified files are searched in the resource directory by the name of the file

given as an argument in the sendRequest method. CR_007 is than considered as fully

satisfied.

CR_008 Ability to use GraphQL features

REST-assured hasn’t got implemented functionality for using GraphQL features like

variables or fragments. However, the variables map can be added to the request body

payload. For using fragments in requests additional methods implementation is required.

The solution just partly satisfies the criterion CR_008.

CR_009 Test parametrization

As REST-assured was already proved to be compatible with other Java frameworks as JUnit,

all TCs can also be parametrised using the same mentioned earlier framework. The criterion

is fully satisfied.

CR_010 The ease of understanding solution methods

Target group formed of QA engineers from company X received a questionnaire with

BaseTest class and Edit existing Data test implementation for evaluating the ease of

understanding of the solution method. Questionnaire template can be found in Annex D:

MCDA questionnaires. Figure 26 represent the results received for the questionnaire.

Figure 26 The ease of understanding solution B methods - questionnaire results (source: author)

80% of the target group evaluated the CR_010 as “I completely understood used methods”,

20% as “I understood solution methods but I have some questions to its usage”. This means

that criterion receive average value 3.

77

CR_011 Test reports

REST-assured does not provide reporting options, but test reports can be generated using

other libraries and frameworks used in projects like JUnit, TestNG or by installing other

report libraries from Maven repository. The solution fully satisfies the criterion.

CR_012 Test run time

Implemented the CRUD test suite run with Gradle on an empty GraphQL server. Test run

time is visible in Figure 27 that represents the time for each TC ran. Evaluation value taken

for the criterion is tun time of the whole CRUD suite.

Table 14 shows the time for three test suite runs with the calculated average value.

 First run Second run Third run Average

Time 2.217s 2.420s 1.624s 2.087s

Table 14 Calculating of average test suite run time for REST-assured (source: author)

Final test suite run time for criteria evaluation is 2087ms.

CR_013 Error messages and logs informational content

For measuring of CR_013 invalid GraphQL request is sent to the endpoint. Invalid GraphQL

query was prepared in the same way as described in 6.5.1 Test GraphQL Java CR_013 Error

messages and logs informational content.

REST-assured allows enabling log information for the requests as displayed on Code 13.

Enabled logging allows the output of sent request information as well as the response

received from the server with the error message.

Figure 27 CRUD suite test run time using REST-assured (source: author)

78

given()

 .log().all()

 .contentType("application/json")

 .header("Authorization", "Basic dXNlcjpwYXNzd3ByZA==")

 .body(payload.toString())

 .post("http://localhost:8080/graphql")

 .then()

 .log().all()

 .statusCode(200)

 .extract().response();

Code 13 REST-assured request with enabled logging (source: author)

The test was run with an invalid GraphQL query and the log enabled in the sendRequest

method. Figure 28 represents the error in the console output with the log saved closely

before the test fails.

The log and error messages informational content was evaluated by the target group using

the questionnaire template and results are attached in Annex D: MCDA questionnaires.

REST-assured error messages and logs informational criterion was rated by 11 from the

target group as “I completely understood the error and can solve the occurred problem”

and by 4 as “I partly understood what caused test failure”. The criterion evaluation value

is then 3.

Figure 28 REST-assured error message example (source: author)

79

CR_014 Custom methods implementation

While measuring the second alternatives to the specified criteria the author defined only

one additional method that should be implemented to cover all company X requirements.

REST-assured does not allow using GraphQL feature as a fragment. Additional method

implementation is required if the company wants to use the concept of the mentioned

feature in the test automation project.

Only one method needed to be additionally implemented, criterion is rated with value 2.

6.6 Alternatives evaluation

Chapter describes the process of the quantitative alternatives evaluation process using the

WSA to choose the most beneficial test automation solution applicable in company X. Table

15 presents summarised values assigned to defined criteria for each alternative with related

weights. However, before calculating the total result the data should be firstly normalised.

Criteria
Test GraphQL

Java

REST-

assured
Weight

CR_001 Documentation,

community support
2 3 0.13

CR_002 Initial project setup

time
60 95 0.01

CR_003 Usage of Gradle 3 3 0.09

CR_004 Compatibility with

other Java frameworks and

libraries

3 3 0.11

CR_005 User authorization 3 3 0.03

CR_006 CRUD tests

implementation time
35 25 0.03

CR_007 Reusable resources 3 3 0.11

CR_008 Ability to use GraphQL

features
2 2 0.11

CR_009 Test parametrization 3 3 0.09

CR_010 The ease of

understanding solution

methods

2 3 0.07

CR_011 Test reports 3 3 0.07

CR_012 Tests run time 733 2087 0.01

CR_013 Error messages and

logs informational content
1 3 0.07

80

CR_014 Custom methods

implementation
1 2 0.05

Table 15 Alternatives evaluation criteria and weights (source: author)

Data normalisation

CR_002, CR_006, and CR_012 are minimising criteria as was described before in 6.3.1

Criteria evaluation values. These criteria should be as a first step of data normalisation

transformed into maximising criteria. To do that from the highest of acquired values were

subtracted the rest of the values, which helped to transform minimising criteria to

maximising. Table 16 represents the transformation of CR_002, 95 value is the highest

received from which the other value was subtracted. Now for CR_002 Test GraphQL Java

alternative get 35 and REST-assured 0.

Criteria Test GraphQL Java REST-assured

CR_002 Initial project setup time 35 0

Table 16 Minimising to maximising criteria transformation example (source: author)

To normalise data on each value of the table was applied the transformation formula

displayed in Figure 29.

In transformation formula Yij stands for criterion value acquired for each alternative, Dj is

the minimal value received for the criterion and Hj is the highest value. For values of

CR_002 represented in Table 16 Minimising to maximising criteria transformation

example. On the example of CR_002, the application of transformation formula is displayed

in Table 17. After calculating Test GraphQL Java received value 1 and REST-assured value

0 for criterion CR_002. For criteria that received the same values during the evaluation

process, the value 0 is assigned.

Criteria Test GraphQL Java REST-assured

CR_002 Initial project setup time (35-0)/(35-0)=1 (0-0)/(35-0)=0

Table 17 Application of transformation formula for normalising criterion matrix (source: author)

Selecting the best alternative

In Table 18 is represented the normalised matrix with values for each criterion received as

a result of data normalisation. Each criterion acquired value was multiplied by the weight

value and after what all criterion values were summarised for each alternative to specify

which of them reaches the maximum value (according to formula illustrated on Figure 30,

Figure 29 Normalised criterion matrix formula (source: [89])

Figure 30 Formula for calculating alternatives performance value (source: [89])

81

where Vj is weight value for each criterion and Rij is each alternative value from normalised

matrix).

Criteria

Test

GraphQL

Java

REST-

assured
Weight

CR_001 Documentation,

community support
0 1 0.13

CR_002 Initial project setup time 1 0 0.01

CR_003 Usage of Gradle 0 0 0.09

CR_004 Compatibility with other

Java frameworks and libraries
0 0 0.11

CR_005 User authorization 0 0 0.03

CR_006 CRUD tests

implementation time
0 1 0.03

CR_007 Reusable resources 0 0 0.11

CR_008 Ability to use GraphQL

features
0 0 0.11

CR_009 Test parametrization 0 0 0.09

CR_010 The ease of understanding

solution methods
0 1 0.07

CR_011 Test reports 0 0 0.07

CR_012 Tests run time 1 0 0.01

CR_013 Error messages and logs

informational content
0 1 0.07

CR_014 Custom methods

implementation
0 1 0.05

Total: 0.02 0.35 -

Table 18 Criteria values evaluation (source: author)

According to the results received during MCDA analysis test automation solution using the

REST-assured library is more beneficial for application in company X than solution using

Test GraphQL Java library. After the evaluation of the received MCDA analysis result, the

author of the thesis can recommend the REST-assured library for company X, even though

it does not fully satisfy all their defined in the beginning requirements.

Further recommendations

Author prepared some further recommendations that can be useful for new test automation

solution in company X as they can extend the functionality of REST-assured and help to

overcome one of the biggest challenges occurred during API test automation process as

maintenance.

82

Among these recommendations are:

• Implementation of fragment feature

One of the given requirements from company X was the usage of GraphQL features

like variables and fragments. The use of variables map can be easily implemented

and used with the REST-assured library, however, there is no special function for

using fragments in queries. In GraphQL fragments are defined in queries with “…”

and the fragment name itself. For company X test automation solution would be

useful to implement a method that will search through the query before sending it

in a body request payload for fragment name and then add to a sent query String the

fragment itself loaded from another file. Fragments can be saved in separate

GraphQL files under a separate directory in resources. Fragment name in the query

or mutation can be searched using the regular expression like “\...(.*)”, that will

help to select only the text from query after “…” – name of the fragment.

• Sending requests method

Implemented sendRequest method always returns Response Object, however not

every sent request needs to be saved as an Object because some operations are just

auxiliary for achieving the main test purpose. Basic status code verification in

sendRequest for those requests is enough. In this case, the author recommends the

implementation of a void send request method that does not return any object nor

saves the response. This method will only send defined requests, check status code

inside and fail the test if received status code from server differs from expected 200

one.

83

Conclusions

The main goal of the thesis was to compare existing GraphQL API test automation solutions

to recommend the one that can be used on a real project in a company that experienced a

transition from Representational State Transfer (REST) to GraphQL API implementation

and searching for new test automation approach. The main goal was successfully achieved

through fulfilling defined smaller sub-goals of the work.

In chapter 2 Application Programming Interface author achieved sub-goal – define the

role of the API in Web applications, by describing the role of APIs in client-server

architecture style used for Web applications implementation. Apart from that, the author

explains the use of HTTP transfer protocol in relation to API and defines existing solutions

for APIs implementation. The author also introduces the REST architecture style for API,

characterise it and describes existing limitations.

Defined limitations of the REST architecture style served as a reason for multiple companies

to develop new approaches for API. In chapter 3 GraphQL author introduces one of the

existing solutions that evade REST architecture style limitations and along with that

achieves another sub-goal of thesis – introduce the GraphQL technology.

In chapter 4 API testing author concentrates on describing the principles of API testing,

defining its affiliation to test levels and specifies the challenges that may occur during

manual and automation process of API testing. This chapter fulfills the third defined sub-

goal of thesis as – characterize the process of API testing.

With all gained knowledge during the fulfilment of previous sub-goals author achieves next

defined smaller goal – describe the existing solutions for the GraphQL API test automation

using Java. As an output and benefit of achieving the goal, the author provides an overview

of features of three different GraphQL API test automation solutions using Java

programming language. Goal output can be found in chapter 5 GraphQL API test

automation using Java.

The fulfilment of the last sub-goal – evaluate the application of the existing solutions on a

real-life project, of thesis lead to achieving the main thesis goal. In chapter 6 Evaluation of

GraphQL API solutions for concrete company author using Multiple Criteria Decision

Analysis compares different solutions to recommend for introduced in the chapter concrete

company. With the gained from the company requirements author specifies the criteria for

evaluation of found existing GraphQL API test automation solutions after what in

subchapter 6.5 Measuring the alternatives the process of measuring alternatives impact on

given criteria is described in a detailed way. For selecting the most beneficial solution for

test automation for the concrete company author applied the Weight Sum Approach to

calculate the total value of each alternative.

With the gained result of applied analysis author recommended company to choose REST-

assured as a new test automation solution because in comparison to other defined

84

alternatives REST-assured library is more beneficial and satisfies other requirements

received from the QA community. With the recommendation for test automation solution

the author also gave some further recommendations for solution improvements that will

help in maintaining a big number of API tests through different teams in the company.

85

List of references

1. LAUDON, Kenneth C. and TRAVER, Carol Guercio. E-commerce: business, technology,

society. Upper Saddle River : Pearson, 2019. ISBN 978-1292303178

2. NAHAI, Nathalie. Webs of influence: the psychology of online persuasion: the secret

strategies that make us click. New York : Pearson Education, 2017. ISBN 978-

1292134604

3. GARTNER_INC. Digital Commerce. Gartner [online]. [Accessed 10 October 2019].

Available from: https://blogs.gartner.com/it-glossary/digital-commerce/

4. MYERS, Glenford J., Corey SANDLER a Tom BADGETT. The art of software testing.

3rd ed. Hoboken, N.J.: John Wiley, c2012. ISBN 978-1118031964.

5. AXELROD, Arnon. Complete guide to test automation: techniques, practices, and

patterns for building and maintaining effective software projects. Berkeley, California

: Apress, 2018.ISBN 978-1484238318.

6. ISTQB Glossary. ISTQB [online]. [Accessed 10 October 2019]. Available from:

https://glossary.istqb.org/

7. JACOBSON, Daniel, Dan WOODS a Gregory BRAIL. APIs: a strategy guide.

Sebastopol, CA: O'Reilly, c2012. ISBN 978-1449308926.

8. SATERNOS, Casimir, St. Laurent, Simon ST. LAURENT, SIMON, Allyson

MACDONALD a Rebecca DEMAREST. Client-server web apps with JavaScript and

Java. Sebastopol, CA: O'Reilly Media, 2014. ISBN 978-1449369330.

9. BUNA, Samer. Learning graphql and relay. Packt Publishing Limited, 2016. ISBN 978-

1786465757

10. RICHARDSON, Alan. Automating and testing a REST API: a case study in API testing

using: Java, REST Assured, Postman, Tracks, cURL and HTTP proxies. Great Britain:

Compendium Developments Ltd, 2017. ISBN 978-0956733290

11. VARGAS, Daniela Meneses, BLANCO, Alison Fernandez, VIDAURRE, Andreina Cota,

ALCOCER, Juan P. S., TORRES, Milton Mamani, BERGEL, Alexandre, DUCASSE,

Stephane, n.d. Deviation Testing: A Test Case Generation Technique for GraphQL

APIs. Available from: http://bergel.eu/MyPapers/Mene18a-GraphQL.pdf

12. GAYATHRI, S., MONISHA, M.. Study on GRAPHQL and Automation Testing. 2018

Available from: http://ijirt.org/Article?manuscript=145469

13. PODLIPSKÝ, Šimon. Porovnání implementací REST a GraphQL API. Prague, 2018.

Master thesis. University of Economics, Faculty of Informatics and Statistics. Available

from: https://insis.vse.cz/zp/portal_zp.pl?podrobnosti_zp=62368

14. CEDERLUND, Mattias. Performance of frameworks for declarative data fetching : An

evaluation of Falcor and Relay+GraphQL. 2016. Master thesis. KTH, School of

Information and Communication Technology, Computer and Information Sciences

Available from: http://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A1045900&dswid=-7362

15. EIZINGER, Thomas, API Design in Distributed Systems: A Comparison between

GraphQL and REST. Vienna, 2017. Master thesis. University of Applied Sciences

Technikum Wien, Degree Program Software Engineering. Available from:

https://eizinger.io/assets/Master-Thesis.pdf

86

16. A query language for APIs. GraphQL [online]. [Accessed 28 October 2019]. Available

from: https://graphql.org/learn

17. Welcome to the API Economy - Smarter With Gartner. Gartner [online] [Accessed 28

October 2019]. Available from:

https://www.gartner.com/smarterwithgartner/welcome-to-the-api-economy/

18. Application Programming Interface (api). Gartner [online] [Accessed 28 October 2019].

Available from: https://www.gartner.com/en/information-

technology/glossary/application-programming-interface-api

19. What is Web Application (Web Apps) and its Benefits. Search Software Quality,

TechTarget [online] [Accessed 28 October 2019]. Available from:

https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app

20. SATERNOS, Casimir, St. Laurent, Simon ST. LAURENT, SIMON, Allyson

MACDONALD a Rebecca DEMAREST. Client-server web apps with JavaScript and

Java. Sebastopol, CA: O'Reilly Media, 2014. ISBN 978-1449369330.

21. What is Client/Server Architecture? - Definition from Techopedia. Technopedia

[online] [Accessed 28 October 2019]. Available from:

https://www.techopedia.com/definition/438/clientserver-architecture

22. Introduction to web APIs - Learn web development | MDN. Mozilla and individual

contributors [online] [Accessed 28 October 2019]. Available from:

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-

side_web_APIs/Introduction

23. First vs. Third-Party APIs: What You Need to Know. HubSpot, Inc. [online] [Accessed

28 October 2019]. Available from: https://blog.hubspot.com/marketing/third-party-

api

24. EISING, Perry. What exactly IS an API? Medium [online]. 7 December 2017. [Accessed

28 October 2019]. Available from: https://medium.com/@perrysetgo/what-exactly-is-

an-api-69f36968a41f

25. GARTNER_INC. Magic Quadrant for Full Life Cycle API Management. Gartner [online]

[Accessed 28 October 2019]. Available from:

https://www.gartner.com/en/documents/3873383

26. GARTNER_INC. Full Life Cycle API Management Software Reviews. Gartner [online]

[Accessed 28 October 2019]. Available from:

https://www.gartner.com/reviews/market/full-life-cycle-api-management

27. MULESOFT VIDEOS. What is an API? YouTube [online]. [Accessed 28 October 2019].

Available from: https://www.youtube.com/watch?v=s7wmiS2mSXY

28. What is an API Endpoint? | SmartBear Software. SmartBear [online]. [Accessed 28

October 2019]. Available from: https://smartbear.com/learn/performance-

monitoring/api-endpoints/

29. What is an API Endpoint?: API Endpoint Definition: RapidAPI. Last Call - RapidAPI

Blog [online]. [Accessed 28 October 2019]. Available from:

https://rapidapi.com/blog/api-glossary/endpoint/

30. Web Services Architecture. W3C [online]. [Accessed 28 October 2019]. Available from:

https://www.w3.org/TR/ws-arch/#whatis

31. API types. ffeathers [online]. [Accessed 28 October 2019]. Available from:

https://ffeathers.wordpress.com/2014/02/16/api-types/

87

32. SOAP Web Services Tutorial: Simple Object Access Protocol EXAMPLE. Guru99

[online]. [Accessed 28 October 2019]. Available from: https://www.guru99.com/soap-

simple-object-access-protocol.html

33. ROUSE, Margaret, MATTURRO, Bree, ROUSE, Margaret and ROUSE, Margaret. What

is Remote Procedure Call (RPC)? - Definition from WhatIs.com.

SearchAppArchitecture [online]. [Accessed 28 October 2019]. Available from:

https://searchapparchitecture.techtarget.com/definition/Remote-Procedure-Call-RPC

34. HTTP Tutorial. Tutorialspoint [online]. [Accessed 28 October 2019]. Available from:

https://www.tutorialspoint.com/http/index.htm

35. GAITATZIS, Tony. Learn REST APIs: Your guide to how to find, learn, and connect to

the REST APIs that powers the Internet of Things revolution. BackupBrain Press, 2019.

ISBN 978-1999381769

36. RFC 822: Standard for the Format of Arpa Internet Text Messages. W3C [online].

[Accessed 28 October 2019]. Available from: https://www.w3.org/Protocols/rfc822/

(accessed 10.28.19).

37. What is HTTP TRACE? CGISecurity.com [online]. [Accessed 28 October 2019].

Available from: https://www.cgisecurity.com/questions/httptrace.shtml

38. HIGGINBOTHAM, James. The power of HTTP for REST APIs - Part 1. Tyk API

Gateway and API Management [online]. 15 May 2018. [Accessed 28 October 2019].

Available from: https://tyk.io/power-http-rest-apis-part-1/

39. History of REST APIs. Mobapi [online]. 23 April 2018. [Accessed 28 October 2019].

Available from: https://www.mobapi.com/history-of-rest-apis/ (accessed 10.28.19).

40. README. The History of REST APIs. ReadMe Blog [online]. 22 February 2017.

[Accessed 28 October 2019]. Available from: https://blog.readme.io/the-history-of-

rest-apis/

41. Architectural Styles and the Design of Network-based Software Architectures.

Information and Computer Science, University of California, Irvine [online].

[Accessed 28 October 2019]. Available from:

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

42. REST vs. GraphQL: A Critical Review. Good API Consulting [online]. [Accessed 28

October 2019]. Available from: https://goodapi.co/blog/rest-vs-graphql

43. ESCHWEILER, Sebastian. REST vs. GraphQL. Medium [online]. [Accessed 28 October

2019]. Available from: https://medium.com/codingthesmartway-com-blog/rest-vs-

graphql-418eac2e3083

44. What is a REST API round trip? Stack Overflow [online]. [Accessed 28 October 2019].

Available from: https://stackoverflow.com/questions/49093754/what-is-a-rest-api-

round-trip

45. GIROUX, Marc-André Where we Come From: An Honest Introduction to GraphQL.

Medium [online]. 3 March 2019. [Accessed 13 October 2019]. Available from:

https://medium.com/@__xuorig__/where-we-come-from-an-honest-introduction-

to-graphql-4a2ef6124488

46. GraphQL vs REST - A comparison. GraphQL community [online]. [Accessed 28

October 2019]. Available from: https://www.howtographql.com/basics/1-graphql-is-

the-better-rest/

https://medium.com/@__xuorig__/where-we-come-from-an-honest-introduction-to-graphql-4a2ef6124488
https://medium.com/@__xuorig__/where-we-come-from-an-honest-introduction-to-graphql-4a2ef6124488

88

47. US20130318154A1 - Api platform that includes server-executed client-based code.

Google Patents [online]. [Accessed 28 October 2019]. Available from:

https://patents.google.com/patent/US20130318154

48. NETFLIX TECHNOLOGY BLOG. Embracing the Differences : Inside the Netflix API

Redesign. Medium [online]. 18 April 2017. [Accessed 28 October 2019]. Available from:

https://medium.com/netflix-techblog/embracing-the-differences-inside-the-netflix-

api-redesign-15fd8b3dc49d

49. KENTON, Will. SEC Form S-1. Investopedia [online]. [Accessed 23 October 2019].

Available from: https://www.investopedia.com/terms/s/sec-form-s-1.asp

50. Registration Statement on Form S-1. U.S. Securities and Exchange Commission

[online]. [Accessed 28 October 2019]. Available from:

https://www.sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds

1.htm#toc287954_2

51. BYRON, Lee. GraphQL: A data query language. Facebook Engineering [online]. 26
June 2018. [Accessed 28 October 2019]. Available from:
https://engineering.fb.com/core-data/graphql-a-data-query-language/

52. CLARK, Brenda. What is GraphQL: History, Components, and Ecosystem. Medium

[online]. 22 August 2019. [Accessed 28 October 2019]. Available from:

https://levelup.gitconnected.com/what-is-graphql-87fc7687b042

53. SCOTT, James. Interview With GraphQL Co-Creator Lee Byron: Nordic APIs |. Nordic

APIs [online]. 19 September 2018. [Accessed 28 October 2019]. Available from:

https://nordicapis.com/interview-with-graphql-co-creator-lee-byron/

54. What is GraphQL? | Featuring GraphQL co-creator Dan Schafer - YouTube [Accessed

28 October 2019]. Available from: https://www.youtube.com/watch?v=mRgvbtNuCZY

55. STRANGE LOOP. “GraphQL: Designing a Data Language” by Lee Byron. YouTube

[online] [Accessed 28 October 2019]. Available from:

https://www.youtube.com/watch?v=Oh5oC98ztvI

56. BFF @ SoundCloud. ThoughtWorks [online]. 7 December 2015. [Accessed 28 October

2019]. Available from: https://www.thoughtworks.com/insights/blog/bff-soundcloud

57. KIMOKOTI, BRIAN. BEGINNING GRAPHQL: fetch data faster and more efficiently

whilst improving the overall performance of your web application. PACKT Publishing

Limited, 2018. ISBN 978-1789610543

58. PRASAD, Swathi. GraphQL Java Example for Beginners [Spring Boot] - DZone

Integration. dzone.com [online]. 2 October 2019. [Accessed 28 October 2019]. Available

from: https://dzone.com/articles/a-beginners-guide-to-graphql-with-spring-boot

59. GraphQL Playground. Apollo GraphQL Docs [online]. [Accessed 28 October 2019].

Available from: https://www.apollographql.com/docs/apollo-server/testing/graphql-

playground/

60. WIERUCH, Robin. The road to GraphQL: Your journey to master pragmatic GraphQL

in JavaScript with React.js and Node.js.. 2019 ISBN 978-1730853937

61. SOFTWARE TESTING GENIUS. Client Server Testing. Software Testing Genius

[online]. 8 September 2018. [Accessed 28 October 2019]. Available from:

https://www.softwaretestinggenius.com/client-server-testing/

62. Frontend Testing Vs. Backend Testing: What's the Difference? Guru99 [online].

[Accessed 28 October 2019]. Available from: https://www.guru99.com/frontend-

testing-vs-backend-testing.html

https://patents.google.com/patent/US20130318154
https://engineering.fb.com/core-data/graphql-a-data-query-language/

89

63. Foundation Level Syllabus. ISTQB® International Software Testing Qualifications

Board [online]. [Accessed 28 October 2019]. Available from:

https://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

64. SHARMA, Lakshay. What is Integration Testing and Levels of Integration Testing?

TOOLSQA [online]. 3 September 2019. [Accessed 28 October 2019]. Available from:

https://www.toolsqa.com/software-testing/istqb/integration-testing/

65. NANDITA, DIVYA, GODI, Vijay, MINA, OMAR, DIANA, SAMPADA, LINDA, GUPTA,

Rohit, SEELA, Swati, RUPALI and MARKY. How to Perform Backend Testing. Software

Testing Help [online]. [Accessed 28 October 2019]. Available from:

https://www.softwaretestinghelp.com/how-to-perform-backend-testing/

66. AMMANN, Paul and OFFUTT, Jeff. Introduction to software testing. Cambridge:

Cambridge University Press, 2011. ISBN 978-0521880381

67. What Is API Testing? SmartBear Solutions [online]. [Accessed 28 October 2019].

Available from: https://smartbear.com/solutions/api-testing/

68. ISO9126 - Software Quality Characteristics. sqa.net [online]. [Accessed 28 October

2019]. Available from: http://www.sqa.net/iso9126.html

69. API Testing - What Should You Really Test? Resourcology [online]. [Accessed 28

October 2019]. Available from: https://www.resourcology.com/blog/api-testing-what-

should-you-really-test/

70. What is Interface Testing? Types & Example. Guru99 [online]. [Accessed 28 October

2019]. Available from: https://www.guru99.com/interface-testing.html

71. Rate limiting. Wikipedia [online]. [Accessed 28 October 2019]. Available from:

https://en.wikipedia.org/wiki/Rate_limiting

72. 7 HTTP methods every web developer should know and how to test them. Assertible

[online]. [Accessed 28 October 2019]. Available from: https://assertible.com/blog/7-

http-methods-every-web-developer-should-know-and-how-to-test-them#patch

73. API Testing Guide An automated approach to API testing transformation. CA

Technologies [online]. [Accessed 28 October 2019]. Available from:

https://docs.broadcom.com/docs/api-testing-guide

74. Key Challenges of API Testing. Resourcology [online]. [Accessed 28 October 2019].

Available from: https://www.resourcology.com/blog/api-testing-challenges/

75. DUSTIN, Elfriede, Jeff RASHKA a John PAUL. Automated software testing:

introduction, management, and performance. Reading, Mass.: Addison-Wesley, 1999.

ISBN 978-0201432879.

76. RAFI, D.M., MOSES, K.R.K., PETERSEN, K., MÄNTYLÄ, M.V., Proceedings of the 7th

International Workshop on Automation of Software Test. Piscataway, NJ : IEEE Press,

2012. ISBN 978-1-4673-1822-8

77. CARMICHAEL, Elise. API Testing Automation Tutorial. QASymphony [online]. 7

January 2019. [Accessed 28 October 2019]. Available from:

https://www.qasymphony.com/blog/automated-api-testing-tutorial/

78. AGGARWAL, Dheeraj Kumar. Challenges behind automation of REST API Testing.

Medium [online]. 27 August 2015. [Accessed 13 November 2019]. Available from:

https://medium.com/@dheerajaggarwal/challenges-behind-automation-of-rest-api-

testing-f12f2eb20687

79. Build software better, together. GitHub [online]. [Accessed 28 October 2019]. Available

from: https://github.com

90

80. VIMALRAJ. Introducing Test GraphQL Java. Vimal Selvam [online]. 1 June 2019.

[Accessed 28 October 2019]. Available from:

http://www.vimalselvam.com/2019/06/02/introducing-test-graphql-java/

81. REST Assured. REST Assured [online]. [Accessed 28 October 2019]. Available from:

http://rest-assured.io/

82. rest-assured/rest-assured. GitHub [online] [Accessed 28 October 2019]. Available

from: https://github.com/rest-assured/rest-assured

83. ROZA, Ger. REST Assured Authentication. Baeldung [online]. 4 May 2019. [Accessed

28 October 2019]. Available from: https://www.baeldung.com/rest-assured-

authentication

84. OAuth Community Site. OAuth Community Site [online]. [Accessed 28 October 2019].

Available from: https://oauth.net/

85. BAELDUNG. A Guide to REST-assured. Baeldung [online]. 9 August 2019. [Accessed

28 October 2019]. Available from: https://www.baeldung.com/rest-assured-tutorial

86. Rest API Automation With Rest Assured. Tutorialspoint [online]. [Accessed 28 October

2019]. Available from:

https://www.tutorialspoint.com/rest_api_automation_with_rest_assured/index.asp

87. SWAPNIL.S, SWAPNIL.SSWAPNIL.S 8788 BRONZE BADGES, ALEXEY R.ALEXEY R.

8 and BERNHARD NEUDECKERBERNHARD NEUDECKER 1. How to test and

automate APIs implemented in GraphQL. Software Quality Assurance & Testing Stack

Exchange [online]. [Accessed 28 October 2019]. Available from:

https://sqa.stackexchange.com/questions/36219/how-to-test-and-automate-apis-

implemented-in-graphql

88. intuit/karate. Github [online]. [Accessed 28 October 2019]. Available from:

https://intuit.github.io/karate/

89. KORVINY, Petr. Teoretické základy vícekriteriálního rozhodovaní. Petr Korviny |

Osobní stránky [online]. [Accessed 28 October 2019]. Available from:

https://korviny.cz/Korviny/soubory/teorie_mca.pdf

90. vimalrajselvam/test-graphql-java. GitHub [online]. [Accessed 28 October 2019].

Available from: https://github.com/vimalrajselvam/test-graphql-java/

91. REST-ASSURED. graphql testing · Issue #958 · rest-assured/rest-assured. GitHub

[online]. [Accessed 28 October 2019]. Available from: https://github.com/rest-

assured/rest-assured/issues/958

92. How to use graphql query in restassured api automation directly using java ?

premsvmm.blogspot.com [online]. [Accessed 28 October 2019]. Available from:

https://premsvmm.blogspot.com/2018/09/how-to-use-graphql-query-in-

restassured.html

93. How do I create a Java string from the contents of a file? Stack Overflow [online].

[Accessed 28 October 2019]. Available

from:https://stackoverflow.com/questions/326390/how-do-i-create-a-java-string-

from-the-contents-of-a-file

https://korviny.cz/Korviny/soubory/teorie_mca.pdf

91

Annexes

Annex A: GraphQL custom server implementation

Annex describes the process of custom GraphQL CRUD server implementation that was

implemented according to GraphQL Java Example for Beginners tutorial [58]. Server was

implemented using Java, GraphQL and Spring technologies. GraphQL schema contains the

characteristics of server implementation with all types defined in it. GraphQL schema has

Data, DeletResponse, Query and Mutation. Schema representation is displayed in Code 14.

type Data {

 id: ID!,

 type: String,

 example: String

}

type DeleteResponse {

 status: String

}

type Query {

 getListOfData:[Data]

 getData(id: ID):Data

}

type Mutation {

 createData(type: String!, example: String!):Data

 editData(id: ID!, type: String!, example: String!):Data

 deleteData(id: ID!):DeleteResponse

}

Code 14 GraphQL server schema (source: author)

Data object and DeleteResponse object are created using Spring framework. Data object

class implementation is displayed in Code 15.

@lombok.Data

@EqualsAndHashCode

@Entity

public class Data implements Serializable {

 @Id

 @Column(name = "ID", nullable = false)

 @GeneratedValue(strategy = GenerationType.AUTO)

92

 private int id;

 @Column(name = "type", nullable = false)

 private String type;

 @Column(name = "example", nullable = false)

 private String example;

}

Code 15 Data object class (source: author)

All Data objects can be saved to Data Repository – interface that extends JpaRepository

Spring framework methods that allows to get all elements of the Repository.

Queries and mutations functionality are implemented in DataService class that also creates

an instance of DataRepository into which all Data objects are saved. Example code of query

and mutation is visible in Code 16.

 @Transactional(readOnly = true)

 public Optional<Data> getData(final int id) {

 return this.dataRepository.findById(id);

 }

 @Transactional

 public DeleteResponse deleteData(final int id) {

 this.dataRepository.findById(id).ifPresent(data -> {

 dataRepository.deleteById(id);

 deleteResponse.setStatus(true);

 });

 return this.deleteResponse;

 }

Code 16 Query and mutation implementation example (source: author)

To enable working with queries and mutations GraphQLQueryResolvers and

GraphQLMutationResolvers are also implemented. Server is working with H2 embedded

database that means that all created Data will be saved only when the GraphQL server is

running. When GraphQL server is stopped all created data will be lost. GraphQL server can

be run with Spring Boot and its instance is running on http://localhost:8080/graphql with

GraphiQL IDE accessed on http://localhost:8080/graphiql.

Annex B: GraphQL requests used in solutions evaluation

This annex contains GraphQL query examples used in tests for checking custom GraphQL

server functionality.

http://localhost:8080/graphql
http://localhost:8080/graphiql

93

Get server schema query

Query is asking for system field “__schema” and returning all object types and their fields

names in response.

query getServerSchema {

 __schema{

 types{

 name

 fields{

 name

 }

 }

 }

}

Code 17 "getServerSchema" query (source: author)

Get list of from server query

Query returns list of all Data objects from the server with fields defined in

dataTypeFragment.

query getListOfData {

 getListOfData {

 ...dataTypeFragment

 }

}

Code 18 "getListOfData" query (source: author)

Get data from server query

Query returns Data instance characteristics with specified ID in the variables map.

query getData($id: ID!) {

 getData(id: $id) {

 id

 type

 example

 }

}

Code 19 "getData" query (source: author)

Create new data instance mutation

Mutation is used for creating new Data object instance with given by user Type and Example

values. Mutation saves new Data object instance with unique ID to the DataRepository.

mutation createData($typeValue: String!, $exampleValue: String!) {

 createData(type: $typeValue, example: $exampleValue) {

94

 ...dataTypeFragment

 }

}

Code 20 "createData" mutation (source: author)

Data type fragment

DataTypeFragment contains fields of Data object, like ID, Type and Example.

fragment dataTypeFragment on Data {

 id

 type

 example

}

Code 21 "dataTypeFragment" fragment (source: author)

Edit existing data instance mutation

EditData mutation allows changing fields of Data object that is saved in DataRepository

with the given ID.

mutation editData($id: ID!, $typeValue: String!, $exampleValue: String!) {

 editData(id: $id, type: $typeValue, example: $exampleValue) {

 id

 type

 example

 }

}

Code 22 "editData" mutation (source: author)

Delete instance mutation

Mutation deleteData allows removing Data instance with the specified ID. When Data

instance is found in the DataRepository and deleted status field of Boolean type with true

value is returned. When Data object with ID cannot be found in DataRepository status false

is returned.

mutation deleteData($id: ID!) {

 deleteData(id: $id) {

 status

 }

}

Code 23 "deleteData" mutation (source: author)

Annex C: CRUD Test Cases

Annex contains TCs from CRUD test suite. Each Test Case has a name, description, steps

description and expected result value. For all TCs one common precondition is set:

95

GraphQL server is running with structure defined in Annex A: GraphQL custom server

implementation. Queries and mutations that can be used for tests are saved in Annex B:

GraphQL requests used in solutions evaluation.

Create new Data

Test description: Test is verifying the ability of creating new instance of Data object with

defined Type and Example values.

Step 1 Save test data that are used in query

to variables. Set Type value as

“character”, Example value as “A”

Expected

result

Test variables are saved into

variables map

Step 2 Send attached mutation for creating

new Data on

http://localhost:8080/graphql

Expected

result

Request was sent successfully,

status code 200 returned from

the server

Step 3 Get new Data ID from previous

request response

Expected

result

Data ID is saved into variables

Step 4 Get list of data using prepared

query from

http://localhost:8080/graphql

Expected

result

Verify list contains new Data

object with ID, Type and

Example values

Read existing Data information

Test description: Test is verifying the ability of reading information(fields) of existing Data

object.

Step 1 Save test data that are used in query

to variables. Set Type value as

“character”, Example value as “A”.

Send attached mutation for creating

new Data on

http://localhost:8080/graphql

Expected

result

Request was sent successfully,

status code 200 returned from

the server

Step 2 Get new Data ID from previous

request response

Expected

result

Data ID is saved into variables

Step 3 Send attached query to get Data

object information for ID value

from previous TC from

http://localhost:8080/graphql

Expected

result

Request was sent successfully,

status code 200 returned from

the server

Step 4 Verify response contains Data

object with Type value “character”

and Example value “A”

Expected

result

Data with given ID contains

Type value “character” and

Example value “A”

Edit existing Data

Test description: Test is verifying the ability of editing fields of existing Data object.

Step 1 Save test data that are used in query

to variables. Set Type value as

“character”, Example value as “A”.

Expected

result

Request was sent successfully,

status code 200 returned from

the server

http://localhost:8080/graphql
http://localhost:8080/graphql
http://localhost:8080/graphql
http://localhost:8080/graphql

96

Send attached mutation for creating

new Data on

http://localhost:8080/graphql

Step 2 Get new Data ID from previous

request response

Expected

result

Data ID is saved into variables

Step 3 Save test data that are used in query

to variables. Set Example value as

“B”

Expected

result

Test variables are updated

Step 4 Send attached mutation for editing

Data object with specified ID on

http://localhost:8080/graphql

Expected

result

Request was sent successfully,

status code 200 returned from

the server

Step 5 Send attached query to get Data

object information for ID from

http://localhost:8080/graphql

Expected

result

Request was sent successfully,

status code 200 returned from

the server

Step 6 Verify response contains Data

object with Type value “character”

and Example value “B”

Expected

result

Data with given ID contains

Type value “character” and

Example value “B”

Delete existing Data

Test Description: Test is verifying the ability of deleting existing Data object.

Step 1 Save test data that are used in query

to variables. Set Type value as

“character”, Example value as “A”.

Send attached mutation for creating

new Data on

http://localhost:8080/graphql

Expected

result

Request was sent successfully,

status code 200 returned from

the server

Step 2 Get new Data ID from previous

request response

Expected

result

Data ID is saved into variables

Step 3 Send attached mutation for deleting

Data object with specified ID on

http://localhost:8080/graphql

Expected

result

Request was sent successfully,

status code 200 returned from

the server

Step 4 Verify response contains field status

which returns true value for

deletion operation

Expected

result

Response contains status field

with true value set

Step 5 Get list of data using prepared

query from

http://localhost:8080/graphql

Expected

result

Verify list doesn’t contain Data

ID

Table 19 CRUD suite Test Cases (source: author)

Annex D: MCDA questionnaires

Annex represents questionnaires templates created for master thesis MCDA analysis with

Google Forms.

http://localhost:8080/graphql
http://localhost:8080/graphql
http://localhost:8080/graphql
http://localhost:8080/graphql
http://localhost:8080/graphql
http://localhost:8080/graphql

97

The ease of understanding solution methods

Figure 31 The ease of understanding solution methods questionnaire template (source: author)

98

Error messages and logs informational content

Figure 32 Error messages and logs informational content questionnaire template (source: author)

99

Criteria for choosing GraphQL API test automation solution

Figure 33 Criteria for choosing GraphQL API test automation solution (source: author)

100

Error messages and logs informational content questionnaire result

Figure 34 Error messages and logs informational content questionnaire result (source: author)

Annex E: CRUD test suite implementation

Annex contains source code of CRUD suite implementation using different solutions. Test

suites represented in Code 24 and Code 25 can be edited and some of the methods can be

grouped together and used in before and after tests methods that is not however related to

any sub-goal of master thesis or described as a requirement for any of the criteria for

framework evaluation process handled with MCDA.

public class CRUDSuite extends BaseTest {

 @Test

 public void createNewData() throws IOException {

 variables.put("typeValue", "character").put("exampleValue", "A");

 Response response = sendRequest("createDataWIthFragment");

 // Save response as JsonNode

 String jsonData = response.body().string();

 JsonNode jsonNode = new ObjectMapper().readTree(jsonData);

 // Get new Data instance id

 String id = jsonNode.get("data").get("createData").get("id").asText();

 // Get Data from server

 response = sendRequest("getListOfDataWithFragment");

101

 // Verify ID is in ID list

 jsonData = response.body().string();

 jsonNode = new ObjectMapper().readTree(jsonData);

Assertions.assertTrue(jsonNode.get("data").get("getListOfData").findValuesAsText("id").con

tains(id));

Assertions.assertTrue(jsonNode.get("data").get("getListOfData").findValuesAsText("type").c

ontains("character"));

Assertions.assertTrue(jsonNode.get("data").get("getListOfData").findValuesAsText("example"

).contains("A"));

 }

 @Test

 public void readExistingData() throws IOException {

 variables.put("typeValue", "character").put("exampleValue", "A");

 Response response = sendRequest("createDataWIthFragment");

 // Save response as JsonNode

 String jsonData = response.body().string();

 JsonNode jsonNode = new ObjectMapper().readTree(jsonData);

 // Get new data instance id

 String id = jsonNode.get("data").get("createData").get("id").asText();

 variables.put("id", id);

 response = sendRequest("getDataWithFragment");

 // Save response as JsonNode

 jsonData = response.body().string();

 jsonNode = new ObjectMapper().readTree(jsonData);

 assertEquals("character",

jsonNode.get("data").get("getData").get("type").asText());

 assertEquals("A", jsonNode.get("data").get("getData").get("example").asText());

 }

 @Test

 public void editExistinData() throws IOException {

 variables.put("typeValue", "character").put("exampleValue", "A");

102

 Response response = sendRequest("createDataWIthFragment");

 // Save response as JsonNode

 String jsonData = response.body().string();

 JsonNode jsonNode = new ObjectMapper().readTree(jsonData);

 // Get new data instance id

 String id = jsonNode.get("data").get("createData").get("id").asText();

 // Change example value and save into variables

 variables.put("id", id).put("exampleValue", "B");

 response = sendRequest("editData");

 // Get updated data instance

 response = sendRequest("getDataWithFragment");

 // Save response as JsonNode

 jsonData = response.body().string();

 jsonNode = new ObjectMapper().readTree(jsonData);

 assertEquals("B", jsonNode.get("data").get("getData").get("example").asText());

 }

 @Test

 public void deleteExistingData() throws IOException {

 variables.put("typeValue", "character").put("exampleValue", "A");

 Response response = sendRequest("createDataWIthFragment");

 // Save response as JsonNode

 String jsonData = response.body().string();

 JsonNode jsonNode = new ObjectMapper().readTree(jsonData);

 // Get new data instance id

 String id = jsonNode.get("data").get("createData").get("id").asText();

 // Delete data instance

 variables.put("id", id);

 response = sendRequest("deleteData");

 jsonData = response.body().string();

 jsonNode = new ObjectMapper().readTree(jsonData);

103

 assertTrue(jsonNode.get("data").get("deleteData").get("status").asBoolean());

 // Verify instance id s not in the list of data

 response = sendRequest("getListOfDataWithFragment");

 // Verify new data instance id is in id list

 jsonData = response.body().string();

 jsonNode = new ObjectMapper().readTree(jsonData);

Assertions.assertFalse(jsonNode.get("data").get("getListOfData").findValuesAsText("id").co

ntains(id));

 }

}

Code 24 CRUDSuite implementation using Test GraphQL Java library (source: author)

public class CRUDSuite extends BaseTest {

 @Test

 public void createNewData() {

 variablesMap.put("typeValue", "character").put("exampleValue", "A");

 Response response = sendRequest("createDataWIthFragment");

 // Get new data instance id

 String id = response.path("data.createData.id");

 response = sendRequest("getListOfDataWithFragment");

Assertions.assertTrue(response.jsonPath().getList("data.getListOfData.id").contains(id));

Assertions.assertTrue(response.jsonPath().getList("data.getListOfData.type").contains("cha

racter"));

Assertions.assertTrue(response.jsonPath().getList("data.getListOfData.example").contains("

A"));

 }

 @Test

 public void readExistingData() {

 variablesMap.put("typeValue", "character").put("exampleValue", "A");

104

 Response response = sendRequest("createDataWIthFragment");

 // Get new data instance id

 String id = response.path("data.createData.id");

 variablesMap.put("id", id);

 // Get updated data instance

 response = sendRequest("getDataWithFragment");

 assertEquals("character", response.jsonPath().getString("data.getData.type"));

 assertEquals("A", response.jsonPath().getString("data.getData.example"));

 }

 @Test

 public void editExistingData() {

 variablesMap.put("typeValue", "character").put("exampleValue", "A");

 Response response = sendRequest("createDataWIthFragment");

 // Get new data instance id

 String id = response.path("data.createData.id");

 // Change example value and save into variables

 variablesMap.put("id", id).put("exampleValue", "B");

 response = sendRequest("editData");

 // Get updated data instance

 response = sendRequest("getDataWithFragment");

 assertEquals("B", response.jsonPath().getString("data.getData.example"));

 }

 @Test

 public void deleteExistingData() {

 variablesMap.put("typeValue", "character").put("exampleValue", "A");

 Response response = sendRequest("createDataWIthFragment");

 // Get new data instance id

 String id = response.path("data.createData.id");

 // Delete data instance

 variablesMap.put("id", id);

105

 response = sendRequest("deleteData");

 assertTrue(response.jsonPath().getBoolean("data.deleteData.status"));

 // Verify instance id s not in the list of data

 response = sendRequest("getListOfDataWithFragment");

Assertions.assertFalse(response.jsonPath().getList("data.getListOfData.id").contains(id));

 }

}

Code 25 CRUDSuite implementation using REST-assured library (source: author)

