Tato práce hodnotí modely založené na stromech z hlediska jejich výkonnosti při předpovídání pohybů cen Bitcoinu a zároveň zkoumá, zda se trh kryptoměn, reprezentovaný Bitcoinem, řídí zásadami stanovenými hypotézou efektivních trhů. Cílová proměnná indikuje, zda je třeba při obchodování otevřít long nebo short pozici a následující den je uzavřít. Nezávislými proměnnými používanými při tvorbě modelů jsou technické ukazatele, makroekonomické faktory a další proměnné. Základním modelem je model AR... zobrazit celý abstraktTato práce hodnotí modely založené na stromech z hlediska jejich výkonnosti při předpovídání pohybů cen Bitcoinu a zároveň zkoumá, zda se trh kryptoměn, reprezentovaný Bitcoinem, řídí zásadami stanovenými hypotézou efektivních trhů. Cílová proměnná indikuje, zda je třeba při obchodování otevřít long nebo short pozici a následující den je uzavřít. Nezávislými proměnnými používanými při tvorbě modelů jsou technické ukazatele, makroekonomické faktory a další proměnné. Základním modelem je model ARIMA, implementace je provedena v prostředí R. Modely založené na stromech jsou vytvořeny v jazyce Python s využitím knihovny scikitlearn. Ukázalo se, že všechny modely mají nízkou přesnost a nejsou schopny výrazně překonat náhodné předpovědi. |