GENERIC WEB-SERVICE CLIENT FOR CLOUD-BASED MACHINE LEARNING PLATFORMS

Název práce: Generic web-service client for cloud-based machine learning platforms
Autor(ka) práce: Rende, Mehmet Ali
Typ práce: Diploma thesis
Vedoucí práce: Kliegr, Tomáš
Oponenti práce: Chudán, David
Jazyk práce: English
Abstrakt:
The thesis consists of a full-stack web service application: the client-side application written with JavaScript / React Framework, the server-side application written with Python / Django REST Framework. The server listens to input and interactions on the user interface and sending responses back after analyses of the input. These two applications serve as a web service that compares different behaviors of cloud-based machine learning platforms and tests them from different aspects with input from the user interface in order to evaluate predictive performances in real-time and ease potential users’ decision process. On the other hand, the thesis discusses possible use cases and future adaptions of the application. The thesis includes the full implementation of the demo application, business logic process flows as well as the documentation explaining exactly how the web service implemented and works actively. Additionally, the paper includes findings from two cloud-based machine learning platforms’ comparison.
Klíčová slova: Machine learning; Python; REST; Web service; API; Cloud Systems
Název práce: GENERIC WEB-SERVICE CLIENT FOR CLOUD-BASED MACHINE LEARNING PLATFORMS
Autor(ka) práce: Rende, Mehmet Ali
Typ práce: Diplomová práce
Vedoucí práce: Kliegr, Tomáš
Oponenti práce: Chudán, David
Jazyk práce: English
Abstrakt:
The thesis consists of a full-stack web service application: the client-side application written with JavaScript / React Framework, the server-side application written with Python / Django REST Framework. The server listens to input and interactions on the user interface and sending responses back after analyses of the input. These two applications serve as a web service that compares different behaviors of cloud-based machine learning platforms and tests them from different aspects with input from the user interface in order to evaluate predictive performances in real-time and ease potential users’ decision process. On the other hand, the thesis discusses possible use cases and future adaptions of the application. The thesis includes the full implementation of the demo application, business logic process flows as well as the documentation explaining exactly how the web service implemented and works actively. Additionally, the paper includes findings from two cloud-based machine learning platforms’ comparison.
Klíčová slova: Machine learning; Python; REST; Cloud systems; API; Web service

Informace o studiu

Studijní program / obor: Aplikovaná informatika/Information Systems Management
Typ studijního programu: Magisterský studijní program
Přidělovaná hodnost: Ing.
Instituce přidělující hodnost: Vysoká škola ekonomická v Praze
Fakulta: Fakulta informatiky a statistiky
Katedra: Katedra informačního a znalostního inženýrství

Informace o odevzdání a obhajobě

Datum zadání práce: 8. 10. 2019
Datum podání práce: 4. 12. 2020
Datum obhajoby: 13. 1. 2021
Identifikátor v systému InSIS: https://insis.vse.cz/zp/71178/podrobnosti

Soubory ke stažení

    Poslední aktualizace: