GENERIC WEB-SERVICE CLIENT FOR CLOUD-BASED MACHINE LEARNING PLATFORMS
Název práce: | Generic web-service client for cloud-based machine learning platforms |
---|---|
Autor(ka) práce: | Rende, Mehmet Ali |
Typ práce: | Diploma thesis |
Vedoucí práce: | Kliegr, Tomáš |
Oponenti práce: | Chudán, David |
Jazyk práce: | English |
Abstrakt: | The thesis consists of a full-stack web service application: the client-side application written with JavaScript / React Framework, the server-side application written with Python / Django REST Framework. The server listens to input and interactions on the user interface and sending responses back after analyses of the input. These two applications serve as a web service that compares different behaviors of cloud-based machine learning platforms and tests them from different aspects with input from the user interface in order to evaluate predictive performances in real-time and ease potential users’ decision process. On the other hand, the thesis discusses possible use cases and future adaptions of the application. The thesis includes the full implementation of the demo application, business logic process flows as well as the documentation explaining exactly how the web service implemented and works actively. Additionally, the paper includes findings from two cloud-based machine learning platforms’ comparison. |
Klíčová slova: | Machine learning; Python; REST; Web service; API; Cloud Systems |
Název práce: | GENERIC WEB-SERVICE CLIENT FOR CLOUD-BASED MACHINE LEARNING PLATFORMS |
---|---|
Autor(ka) práce: | Rende, Mehmet Ali |
Typ práce: | Diplomová práce |
Vedoucí práce: | Kliegr, Tomáš |
Oponenti práce: | Chudán, David |
Jazyk práce: | English |
Abstrakt: | The thesis consists of a full-stack web service application: the client-side application written with JavaScript / React Framework, the server-side application written with Python / Django REST Framework. The server listens to input and interactions on the user interface and sending responses back after analyses of the input. These two applications serve as a web service that compares different behaviors of cloud-based machine learning platforms and tests them from different aspects with input from the user interface in order to evaluate predictive performances in real-time and ease potential users’ decision process. On the other hand, the thesis discusses possible use cases and future adaptions of the application. The thesis includes the full implementation of the demo application, business logic process flows as well as the documentation explaining exactly how the web service implemented and works actively. Additionally, the paper includes findings from two cloud-based machine learning platforms’ comparison. |
Klíčová slova: | Machine learning; Python; REST; Cloud systems; API; Web service |
Informace o studiu
Studijní program / obor: | Aplikovaná informatika/Information Systems Management |
---|---|
Typ studijního programu: | Magisterský studijní program |
Přidělovaná hodnost: | Ing. |
Instituce přidělující hodnost: | Vysoká škola ekonomická v Praze |
Fakulta: | Fakulta informatiky a statistiky |
Katedra: | Katedra informačního a znalostního inženýrství |
Informace o odevzdání a obhajobě
Datum zadání práce: | 8. 10. 2019 |
---|---|
Datum podání práce: | 4. 12. 2020 |
Datum obhajoby: | 13. 1. 2021 |
Identifikátor v systému InSIS: | https://insis.vse.cz/zp/71178/podrobnosti |