Tato diplomová práce se zabývá metodami shlukové analýzy kategoriálních dat. Řada metod shlukování kategoriálních dat není řádně prozkoumaná, protože se mnoho z nich stále vyvíjí. Cílem práce je představit, prozkoumat a porovnat vybrané tři metody shlukování kategoriálních dat, z nichž jedna je hierarchické shlukování pomocí Gowerova koeficientu, jakožto představitel klasických metod, a další dvě, algoritmy ROCK a COOLCAT, jsou představiteli nových přístupů. Analytická část práce se zabývá porov... zobrazit celý abstraktTato diplomová práce se zabývá metodami shlukové analýzy kategoriálních dat. Řada metod shlukování kategoriálních dat není řádně prozkoumaná, protože se mnoho z nich stále vyvíjí. Cílem práce je představit, prozkoumat a porovnat vybrané tři metody shlukování kategoriálních dat, z nichž jedna je hierarchické shlukování pomocí Gowerova koeficientu, jakožto představitel klasických metod, a další dvě, algoritmy ROCK a COOLCAT, jsou představiteli nových přístupů. Analytická část práce se zabývá porovnáním metod u sedmi reálných datových souborů, které obsahují jednu hlavní třídicí proměnnou. Z výsledků vyplývá, že nejpřesnější zařazení kategorií třídicí proměnné do vytvořených shluků a nejkvalitnější shluky má u většiny datových souborů shlukování pomocí algoritmu ROCK po odebrání nezařazených pozorování, která algoritmus považoval za odlehlá. Přesto tato metoda není vždy optimální, protože při ní často dochází ke ztrátě informací o části pozorování. Pokud je požadováno klasifikovat všechna pozorování, nejlepší shluky byly u většiny datových souborů vytvořeny pomocí algoritmu COOLCAT. |