PREDICTIVE MODELLING ELECTRICITY PRICES FOR SHORT-TERM AND LONGTERM HORIZONS, THE CASE OF THE CZECH REPUBLIC

Název práce: Predictive Modelling Electricity Prices for Short-Term and Long-Term Horizons, the case of the Czech Republic
Autor(ka) práce: Billinton, Christian Svend Roy
Typ práce: Diploma thesis
Vedoucí práce: Helman, Karel
Oponenti práce: Čabla, Adam
Jazyk práce: English
Abstrakt:
Accurate forecasts are a crucial aspect of many industries such as electricity and energy markets for which this paper studies. While many markets have gone through turbulent time, this study aims to apply Autoregressive Integrate Moving Average (ARIMA), Support Vector Regression (SVR) and Long-Short Term Memory (LSTM) models to predicting the daily wholesale electricity prices from the Czech day ahead market. This thesis employs the use of a rolling interval approach to predicting across the year 2022 for short-term horizons and long-term horizon, in which the short-term horizon is defined as the next day’s price, while the long-term horizon being the forecast for the multi-step of the next month. A variance reduction method of log transforming the data is used, while models are also used with the un-transformed data. As a result, Support Vector Regression Model outperformed the other models across both time horizons, while the ARIMA and LSTM model provided closely comparable results on average across the year.
Klíčová slova: Time series; Electricity Price Forecasting; ARIMA; Support Vector Regression; Long-Short Term Memory; Rolling Interval
Název práce: PREDICTIVE MODELLING ELECTRICITY PRICES FOR SHORT-TERM AND LONGTERM HORIZONS, THE CASE OF THE CZECH REPUBLIC
Autor(ka) práce: Billinton, Christian Svend Roy
Typ práce: Diplomová práce
Vedoucí práce: Helman, Karel
Oponenti práce: Čabla, Adam
Jazyk práce: English
Abstrakt:
Accurate forecasts are a crucial aspect of many industries such as electricity and energy markets for which this paper studies. While many markets have gone through turbulent time, this study aims to apply Autoregressive Integrate Moving Average (ARIMA), Support Vector Regression (SVR) and Long-Short Term Memory (LSTM) models to predicting the daily wholesale electricity prices from the Czech day ahead market. This thesis employs the use of a rolling interval approach to predicting across the year 2022 for short-term horizons and long-term horizon, in which the short-term horizon is defined as the next day’s price, while the long-term horizon being the forecast for the multi-step of the next month. A variance reduction method of log transforming the data is used, while models are also used with the un-transformed data. As a result, Support Vector Regression Model outperformed the other models across both time horizons, while the ARIMA and LSTM model provided closely comparable results on average across the year.
Klíčová slova: Electricity Price Forecasting; Time Series; ARIMA; Support Vector Regression; Long-Short Term Memory ; Rolling Interval

Informace o studiu

Studijní program / obor: Economic Data Analysis/Data Analysis and Modeling
Typ studijního programu: Magisterský studijní program
Přidělovaná hodnost: Ing.
Instituce přidělující hodnost: Vysoká škola ekonomická v Praze
Fakulta: Fakulta informatiky a statistiky
Katedra: Katedra statistiky a pravděpodobnosti

Informace o odevzdání a obhajobě

Datum zadání práce: 3. 11. 2023
Datum podání práce: 27. 6. 2024
Datum obhajoby: 21. 8. 2024
Identifikátor v systému InSIS: https://insis.vse.cz/zp/86399/podrobnosti

Soubory ke stažení

    Poslední aktualizace: