Modern Approach to Early Warning Signals in Banking Risk Management
Thesis title: | Modern Approach to Early Warning Signals in Banking Risk Management |
---|---|
Author: | Štěpán, Marek |
Thesis type: | Diploma thesis |
Supervisor: | Vencovský, Filip |
Opponents: | Mareš, Michal |
Thesis language: | English |
Abstract: | For banking institutions, Early Warning Signals (EWS) are crucial in successful risk management. This thesis assesses the importance of monitoring signals in a timely manner to mitigate risks in corporate credit, and proposes a solution to leverage unstructured data for enhancing warning systems. In collaboration with a leading provider of EWS solutions, this research emphasizes the value of such systems in the era of large language models (LLMs). The theoretical framework includes a comprehensive definition of early warning systems, corporate banking risk management, and their intersection, emphasizing the value of unstructured data in effective risk mitigation. The practical section presents a detailed design and description of an EWS system, outlining the process from data inputs to potential outputs, with the objective of meeting all requirements from future users. The second part is dedicated to the development of a machine learning model for signal prediction. Various architectures are implemented, and an extensive grid search is performed to select the optimal model. The thesis also discusses several ideas for improving the model, recognizing that research in this area is still in its early stages. |
Keywords: | early warning signals; EWS; corporate credit; unstructured data; credit analyst; large language model |
Thesis title: | Moderní přístup k signálům včasného varování v řízení bankovních rizik |
---|---|
Author: | Štěpán, Marek |
Thesis type: | Diplomová práce |
Supervisor: | Vencovský, Filip |
Opponents: | Mareš, Michal |
Thesis language: | English |
Abstract: | Pro bankovní instituce jsou varovné signály (EWS) klíčové pro úspěšné řízení rizik. Tato diplomová práce hodnotí význam včasného monitorování signálů pro zmírnění rizik v oblasti firemních úvěrů a navrhuje řešení pro využití nestrukturovaných dat k vylepšení varovných systémů. Ve spolupráci s předním poskytovatelem řešení EWS tento výzkum zdůrazňuje hodnotu těchto systémů v éře velkých jazykových modelů (LLMs). Teoretický rámec zahrnuje komplexní definici varovných systémů, řízení rizik v korporátním bankovnictví a jejich průnik, s důrazem na hodnotu nestrukturovaných dat při efektivním zmírňování rizik. Praktická část představuje detailní návrh a popis systému EWS, který zahrnuje proces od datových vstupů po možné výstupy s důrazem uspokojit všechny požadavky budoucích uživatelů. Druhá část je věnována vývoji modelu strojového učení pro predikci signálů. V práci jsou implementovány různé architektury modelů a provedeno rozsáhlé vyhledávání v mřížce pro výběr optimálního modelu. Diplomová práce rovněž diskutuje několik nápadů na zlepšení modelu, s vědomím, že výzkum v této oblasti je stále v rané fázi. |
Keywords: | včasné varovné signály; EWS; firemní úvěrování; nestrukturovaná data; úvěrový analytik; velký jazykový model |
Information about study
Study programme: | Data a analytika pro business |
---|---|
Type of study programme: | Magisterský studijní program |
Assigned degree: | Ing. |
Institutions assigning academic degree: | Vysoká škola ekonomická v Praze |
Faculty: | Faculty of Informatics and Statistics |
Department: | Department of Information Technologies |
Information on submission and defense
Date of assignment: | 1. 4. 2024 |
---|---|
Date of submission: | 27. 6. 2024 |
Date of defense: | 8. 10. 2024 |
Identifier in the InSIS system: | https://insis.vse.cz/zp/84638/podrobnosti |
Files for download
Main text
Private file Download
Private file Download