Measuring data quality in the internal knowledge base through reporting
Thesis title: | Měření datové kvality v interní znalostní bází pomocí reportingu |
---|---|
Author: | Pudl, Miroslav |
Thesis type: | Diplomová práce |
Supervisor: | Novotný, Ota |
Opponents: | Pour, Jan |
Thesis language: | Česky |
Abstract: | Hlavním cílem této diplomové práce je reportování stavu datové kvality ve znalostní bázi. Jedná se o znalostní bázi, jež se nachází v nadnárodním podniku a uchovává důležité informace o projektech a zaměstnancích. Dále pak navrhnout a implementovat reportingové řešení, vymezit metriky a vytvořit bodovací systém. K dosažení stanoveného hlavního cíle a vedlejších cílů byla v rámci práce prováděna literární rešerše za účelem proniknutí do tématu znalostního managementu, znalostních bází, datové kvality a propojení těchto oblastí pro vytvoření uceleného pohledu na problematiku datové kvality ve znalostních bází. Před vymezením požadavků na datovou kvalitu a reportingové řešení bylo prostředí znalostní báze popsáno pro snazší pochopení potřeb. Poté proběhlo samotné vymezení požadavků, popsání bodovacího systému a metrik. Následně byla popsána architektura datového skladu, ETL pump a propojení s Power BI. V rámci této architektury byla popsána i zdrojová databáze a dále pak jednotlivé tabulky datového skladu. V neposlední řadě proběhlo vytváření dashboardů v Power BI. Nakonec proběhlo vyhodnocení jak samotného reportingového řešení, tak i výsledků z něj, tedy posouzení datové kvality ve znalostní bázi. Přínosem celé práce tedy bylo vytvořené reportingové řešení pro sledování datové kvality v podnikovém systému znalostní báze. Toto řešení je nadále využíváno pro monitoring. |
Keywords: | Datová kvalita; Reporting datové kvality; Vizualizace datové kvality; Znalostní management; Znalostní báze; Power BI; Datová kvalita ve znalostní bázi |
Thesis title: | Measuring data quality in the internal knowledge base through reporting |
---|---|
Author: | Pudl, Miroslav |
Thesis type: | Diploma thesis |
Supervisor: | Novotný, Ota |
Opponents: | Pour, Jan |
Thesis language: | Česky |
Abstract: | The main objective of this thesis is to report the status of data quality in the knowledge base. This is a knowledge base that is located in a corporate and stores important information about projects and employees. Secondary objectives were to design and implement a reporting solution, define metrics and develop a scoring system. In order to achieve the stated main objective and secondary objectives, a literature search was conducted to delve into the topic of knowledge management, knowledge bases, data quality and to link these areas to create a comprehensive view of the issue of data quality in knowledge bases. Before defining the data quality and reporting requirements, the knowledge base environment was described to facilitate understanding of the needs. Then, the actual requirements definition, scoring system and metrics description were performed. Subsequently, the data warehouse architecture, ETL pumps and interfacing with Power BI were described. Within this architecture, the source database was also described, as well as the individual tables of the data warehouse. After that the creation of dashboards in Power BI was described. Finally, the evaluation of both the reporting solution itself and the results from it, i.e. the assessment of the data quality in the knowledge base, was performed. Thus, the contribution of the whole work was the created reporting solution for monitoring data quality in the enterprise knowledge base system. This solution is still used for monitoring. |
Keywords: | Data Quality; Reporting Data Quality; Data Quality Visualization; Knowledge Management; Knowledge Base; Knowledge Base Data Quality; Power BI |
Information about study
Study programme: | Informační systémy a technologie/Business Intelligence |
---|---|
Type of study programme: | Magisterský studijní program |
Assigned degree: | Ing. |
Institutions assigning academic degree: | Vysoká škola ekonomická v Praze |
Faculty: | Faculty of Informatics and Statistics |
Department: | Department of Information Technologies |
Information on submission and defense
Date of assignment: | 8. 10. 2023 |
---|---|
Date of submission: | 27. 6. 2024 |
Date of defense: | 7. 10. 2024 |
Identifier in the InSIS system: | https://insis.vse.cz/zp/86472/podrobnosti |