Modelování a predikce volatility finančních časových řad směnných kurzů

Název práce: Modelování a predikce volatility finančních časových řad směnných kurzů
Autor(ka) práce: Žižka, David
Typ práce: Disertační práce
Vedoucí práce: Arltová, Markéta
Oponenti práce: Malá, Ivana; Vošvrda, Miloslav
Jazyk práce: Česky
Abstrakt:
Disertační práce se zaměřuje na modelování a prognózování podmíněného rozptylu časových řad směnných kurzů. Základním využitým přístupem pro modelování podmíněného rozptylu jsou modely třídy (G)ARCH a jejich variace. Modelování podmíněné střední hodnoty je založeno na využití autoregresních modelů AR. Z důvodu nesplnění jednoho ze základních předpokladů těchto modelů (předpoklad normality) je důležitou součástí práce i podrobná analýza nepodmíněných rozdělení logaritmů výnosů, která dále umožňuje zvolit vhodný předpoklad o rozdělení nesystematické složky modelů podmíněného rozptylu založených na (G)ARCH modelech. Využitím předpokladu leptokurtických rozdělení vede k významnému zlepšení předpovědí volatility ve srovnání s normálním rozdělením. V této souvislosti jsou často využívána GED a Studentovo t rozdělení, která jsou i základními stavebními kameny této práce. Navíc jsou v práci aplikována i méně známá rozdělení; Johnsonovo SU a normální inverzní Gaussovo rozdělení. Pro modelování podmíněného rozptylu je testováno velké množství lineárních i nelineárních modelů. Lineární modely zastupují modely ARCH, GARCH, GARCH in mean, integrovaný GARCH, frakcionálně integrovaný GARCH a HYGARCH. V případě přítomnosti asymetrického vlivu kladných a záporných výnosů na podmíněný rozptyl jsou aplikovány nelineární modely EGARCH, GJR-GARCH, APARCH a FIEGARCH. S využitím vhodných modelů, podle zvolených kritérií, jsou provedeny bodové předpovědi podmíněného rozptylu s různými dlouhodobými a krátkodobými předpovědními horizonty. Výstupy tradičních parametrických modelů volatility (G)ARCH jsou porovnány se semi-parametrickými přístupy založenými na neuronových sítích, které našly široké uplatnění nejen v klasifikačních úlohách, ale i v úlohách predikce časových řad. Závěr práce tvoří popis shodných a rozdílných vlastností zkoumaných časových řad směnných kurzů. Dále shrnutí modelů, které dokáží nejlépe popsat a předpovědět chování podmíněného rozptylu vybraných časových řad směnných kurzů. Tyto modely lze dále využít k měření míry tržního rizika investic metodou Value at Risk nebo najdou široké uplatnění při odhadech budoucích cen, kde je při konstrukcích předpovědních intervalů nezbytná znalost budoucího podmíněného rozptylu.
Klíčová slova: nepodmíněné rozdělení výnosů; nelineární modely volatility; předpovědi volatility; lineární modely volatility; neuronové sítě; finanční časové řady; směnné kurzy
Název práce: Modeling and Forecasting Volatility of Financial Time Series of Exchange Rates
Autor(ka) práce: Žižka, David
Typ práce: Dissertation thesis
Vedoucí práce: Arltová, Markéta
Oponenti práce: Malá, Ivana; Vošvrda, Miloslav
Jazyk práce: Česky
Abstrakt:
The thesis focuses on modelling and forecasting the exchange rate time series volatility. The basic approach used for the conditional variance modelling are class (G)ARCH models and their variations. Modelling of the conditional mean is based on the use of AR autoregressive models. Due to the breach of one of the basic assumption of the models (normality assumption), an important part of the work is a detailed analysis of unconditional distribution of returns enabling the selection of a suitable distributional assumption of error terms of (G)ARCH models. The use of leptokurtic distribution assumption leads to a major improvement of volatility forecasting compared to normal distribution. In regard to this fact, the often applied GED and the Student's t distributions represent the key-stones of this work. In addition, the less known distributions are applied in the work, e.g. the Johnson's SU and the normal Inverse Gaussian Distribution. To model volatility, a great number of linear and non-linear models have been tested. Linear models are represented by ARCH, GARCH, GARCH in mean, integrated GARCH, fractionally integrated GARCH and HYGARCH. In the event of the presence of the leverage effect, non-linear EGARCH, GJR-GARCH, APARCH and FIEGARCH models are applied. Using suitable models according to the selected criteria, volatility forecasts are made with different long-term and short-term forecasting horizons. Outcomes of traditional approaches using parametric models (G)ARCH are compared with semi-parametric neural networks based concepts that are widely applicable in clustering and also in time series prediction problems. In conclusion, a description is given of the coincident and different properties of the analyzed exchange rate time series. The author further summarized the models that provide the best forecasts of volatility behaviour of the selected time series, including recommendations for their modelling. Such models can be further used to measure market risk rate by the Value at Risk method or in future price estimating where future volatility is inevitable prerequisite for the interval forecasts.
Klíčová slova: exchange rates; neural networks; financial time series; linear volatility models; forecasting volatility; unconditional distribution of returns; nonlinear volatility models

Informace o studiu

Studijní program / obor: Kvantitativní metody v ekonomice/Statistika
Typ studijního programu: Doktorský studijní program
Přidělovaná hodnost: Ph.D.
Instituce přidělující hodnost: Vysoká škola ekonomická v Praze
Fakulta: Fakulta informatiky a statistiky
Katedra: Katedra statistiky a pravděpodobnosti

Informace o odevzdání a obhajobě

Datum zadání práce: 1. 10. 2008
Datum podání práce: 30. 6. 2015
Datum obhajoby: 7. 9. 2015
Identifikátor v systému InSIS: https://insis.vse.cz/zp/22109/podrobnosti

Soubory ke stažení

    Poslední aktualizace: