Dlouhé kroky v IPM a L_1-regrese
| Název práce: | Dlhé kroky v IPM a L_1-regresia |
|---|---|
| Autor(ka) práce: | Šicková, Barbora |
| Typ práce: | Bakalářská práce |
| Vedoucí práce: | Černý, Michal |
| Oponenti práce: | Sokol, Ondřej |
| Jazyk práce: | Slovensky |
| Abstrakt: | Práca sa zaoberá Newtonovou metódou vnútorného bodu, ktorá je aplikovaná na riešenie L_1 odhadu polynomiálnej regresie. Cieľom práce je nájsť nové modifikácie voľby dlhého kroku v Newtonovej metóde, ktoré povedú k rýchlejšiemu výpočtu L_1 odhadu na veľkých dátach. Navrhnuté modifikácie vychádzajú z full-Newton step algoritmu, ktorý hľadá riešenie self-dual modelu. Ako najlepšie sa javia algoritmy AF-L, F-LP1, AF-LP1 a AF-L-mixed, ktoré behom výpočtu adaptívnym spôsobom upravujú barrier update parameter. Algoritmy i získané výsledky boli implementované a vizualizované v programe MatLab. |
| Klíčová slova: | Newtonova metóda vnútorného bodu; L_1 regresia; dlhý krok |
| Název práce: | Dlouhé kroky v IPM a L_1-regrese |
|---|---|
| Autor(ka) práce: | Šicková, Barbora |
| Typ práce: | Bakalářská práce |
| Vedoucí práce: | Černý, Michal |
| Oponenti práce: | Sokol, Ondřej |
| Jazyk práce: | Slovensky |
| Abstrakt: | Práce se zabývá Newtonovou metodou vnitřního bodu, která je aplikovaná na řešení L_1 odhadu lineární regrese. Cílem práce je najít nové modifikace volby dlouhého kroku v Newtonově metodě, které povedou k rychlejšímu výpočtu L_1 odhadu na velkých datech. Navržené modifikace vycházejí z full-Newton step algoritmu hledající řešení self-dual modelu. Za nejlepší považuji algoritmy AF-L, F-LP1, AF-LP1 a AF-L-mixed. Tyto algoritmy adaptivním způsobem upravují barrier update parameter během výpočtu. Všechny algoritmy i získané výsledky byly implementovány a vizualizovány v programu MatLab. |
| Klíčová slova: | dlouhý krok; Newtonova metoda vnitřního bodu; L_1 regrese |
| Název práce: | Long steps in IPM and L_1-regression |
|---|---|
| Autor(ka) práce: | Šicková, Barbora |
| Typ práce: | Bachelor thesis |
| Vedoucí práce: | Černý, Michal |
| Oponenti práce: | Sokol, Ondřej |
| Jazyk práce: | Slovensky |
| Abstrakt: | This work deals with Newton method of interior point which is applied on finding estimation of polynomial L_1 regression. The aim of this thesis is to find new modifications of long step choice in Newton method in order to find faster solution of L_1 estimations for large data sets. Designed modifications are based on full-Newton step algorithm for the self-dual model. According to reasults, the best are algorithms AF-L, F-LP1, AF-LP1 a AF-L-mixed, which modify the barrier update parameter in adaptive way. Algorithms and obtained results were implemented end visualized in MatLab. |
| Klíčová slova: | L_1 regression; Newton method; long step |
Informace o studiu
| Studijní program / obor: | Kvantitativní metody v ekonomice/Matematické metody v ekonomii |
|---|---|
| Typ studijního programu: | Bakalářský studijní program |
| Přidělovaná hodnost: | Bc. |
| Instituce přidělující hodnost: | Vysoká škola ekonomická v Praze |
| Fakulta: | Fakulta informatiky a statistiky |
| Katedra: | Katedra ekonometrie |
Informace o odevzdání a obhajobě
| Datum zadání práce: | 23. 11. 2015 |
|---|---|
| Datum podání práce: | 1. 6. 2016 |
| Datum obhajoby: | 21. 6. 2016 |
| Identifikátor v systému InSIS: | https://insis.vse.cz/zp/55257/podrobnosti |