Time Series Analysis of Stock Index Forecasting
Název práce: | Time Series Analysis of Stock Index Forecasting |
---|---|
Autor(ka) práce: | Zheng, Yue |
Typ práce: | Diploma thesis |
Vedoucí práce: | Šimpach, Ondřej |
Oponenti práce: | Helman, Karel |
Jazyk práce: | English |
Abstrakt: | This thesis investigates stock market forecasting by comparing traditional time series models (ARIMA-GARCH), deep learning models (LSTM), and a hybrid ARIMA-LSTM model, focusing on the S&P 500, Euro Stoxx 50, and CSI 300 indices. Accuracy is evaluated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), with findings indicating varying model effectiveness based on specific market data characteristics. The ARIMA-LSTM hybrid model excels in markets with strong autocorrelation, such as the S&P 500, demonstrating its ability to capture both linear and non-linear dynamics. In contrast, the single LSTM model is more effective in markets like the Euro Stoxx 50 and CSI 300, where weaker autocorrelation is present. |
Klíčová slova: | ARIMA; LSTM; stock index; time series |
Název práce: | Time Series Analysis of Stock Index Forecasting |
---|---|
Autor(ka) práce: | Zheng, Yue |
Typ práce: | Diplomová práce |
Vedoucí práce: | Šimpach, Ondřej |
Oponenti práce: | Helman, Karel |
Jazyk práce: | English |
Abstrakt: | This thesis investigates stock market forecasting by comparing traditional time series models (ARIMA-GARCH), deep learning models (LSTM), and a hybrid ARIMA-LSTM model, focusing on the S&P 500, Euro Stoxx 50, and CSI 300 indices. Accuracy is evaluated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), with findings indicating varying model effectiveness based on specific market data characteristics. The ARIMA-LSTM hybrid model excels in markets with strong autocorrelation, such as the S&P 500, demonstrating its ability to capture both linear and non-linear dynamics. In contrast, the single LSTM model is more effective in markets like the Euro Stoxx 50 and CSI 300, where weaker autocorrelation is present. |
Klíčová slova: | time series; stock index; ARIMA; LSTM |
Informace o studiu
Studijní program / obor: | Economic Data Analysis/Data Analysis and Modeling |
---|---|
Typ studijního programu: | Magisterský studijní program |
Přidělovaná hodnost: | Ing. |
Instituce přidělující hodnost: | Vysoká škola ekonomická v Praze |
Fakulta: | Fakulta informatiky a statistiky |
Katedra: | Katedra statistiky a pravděpodobnosti |
Informace o odevzdání a obhajobě
Datum zadání práce: | 2. 11. 2022 |
---|---|
Datum podání práce: | 4. 12. 2023 |
Datum obhajoby: | 29. 1. 2024 |
Identifikátor v systému InSIS: | https://insis.vse.cz/zp/82621/podrobnosti |