Time Series Analysis of Stock Index Forecasting

Název práce: Time Series Analysis of Stock Index Forecasting
Autor(ka) práce: Zheng, Yue
Typ práce: Diploma thesis
Vedoucí práce: Šimpach, Ondřej
Oponenti práce: Helman, Karel
Jazyk práce: English
Abstrakt:
This thesis investigates stock market forecasting by comparing traditional time series models (ARIMA-GARCH), deep learning models (LSTM), and a hybrid ARIMA-LSTM model, focusing on the S&P 500, Euro Stoxx 50, and CSI 300 indices. Accuracy is evaluated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), with findings indicating varying model effectiveness based on specific market data characteristics. The ARIMA-LSTM hybrid model excels in markets with strong autocorrelation, such as the S&P 500, demonstrating its ability to capture both linear and non-linear dynamics. In contrast, the single LSTM model is more effective in markets like the Euro Stoxx 50 and CSI 300, where weaker autocorrelation is present.
Klíčová slova: ARIMA; LSTM; stock index; time series
Název práce: Time Series Analysis of Stock Index Forecasting
Autor(ka) práce: Zheng, Yue
Typ práce: Diplomová práce
Vedoucí práce: Šimpach, Ondřej
Oponenti práce: Helman, Karel
Jazyk práce: English
Abstrakt:
This thesis investigates stock market forecasting by comparing traditional time series models (ARIMA-GARCH), deep learning models (LSTM), and a hybrid ARIMA-LSTM model, focusing on the S&P 500, Euro Stoxx 50, and CSI 300 indices. Accuracy is evaluated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), with findings indicating varying model effectiveness based on specific market data characteristics. The ARIMA-LSTM hybrid model excels in markets with strong autocorrelation, such as the S&P 500, demonstrating its ability to capture both linear and non-linear dynamics. In contrast, the single LSTM model is more effective in markets like the Euro Stoxx 50 and CSI 300, where weaker autocorrelation is present.
Klíčová slova: time series; stock index; ARIMA; LSTM

Informace o studiu

Studijní program / obor: Economic Data Analysis/Data Analysis and Modeling
Typ studijního programu: Magisterský studijní program
Přidělovaná hodnost: Ing.
Instituce přidělující hodnost: Vysoká škola ekonomická v Praze
Fakulta: Fakulta informatiky a statistiky
Katedra: Katedra statistiky a pravděpodobnosti

Informace o odevzdání a obhajobě

Datum zadání práce: 2. 11. 2022
Datum podání práce: 4. 12. 2023
Datum obhajoby: 29. 1. 2024
Identifikátor v systému InSIS: https://insis.vse.cz/zp/82621/podrobnosti

Soubory ke stažení

    Poslední aktualizace: