Automatizovaný nástroj Datový čmuchálek určený pro detekci anomálií v obchodních metrikách
Název práce: | Automatizovaný nástroj Datový čmuchálek určený pro detekci anomálií v obchodních metrikách |
---|---|
Autor(ka) práce: | Jalůvková, Michaela |
Typ práce: | Diplomová práce |
Vedoucí práce: | Maršálek, Karel |
Oponenti práce: | Novotný, Ota |
Jazyk práce: | Česky |
Abstrakt: | Tato diplomová práce se zabývá tématem detekce anomálií v obchodních metrikách u e-commerce společnosti Rohlík.cz. Cílem bylo pro tuto společnost navrhnout, vyvinout a implementovat nástroj Datového čmuchálka, který detekuje anomálie v cílových metrikách. Nástroj musel být jednoduše customizovatelný a škálovatelný na velkou šíři metrik z různých odděleních společnosti. Nástroj je aktuálně implementovaný napříč několika odděleními ve společnosti Rohlík.cz a každý den mezi 4 a 5 hodinnou ranní zasílá výsledky detekce do firemních Slack kanálů. Reportingové nástroje je obecně velmi těžké nacenit, nicméně firma dle svých interních kalkulací odhaduje zisk Datového čmuchálka kolem 300 000 euro. |
Klíčová slova: | Keboola; AWS; Snowflake; detekce anomálií; prophet; strojové učení; automatizace; python; SQL |
Název práce: | Automated tool Data sniffer designed for anomaly detection in business metrics |
---|---|
Autor(ka) práce: | Jalůvková, Michaela |
Typ práce: | Diploma thesis |
Vedoucí práce: | Maršálek, Karel |
Oponenti práce: | Novotný, Ota |
Jazyk práce: | Česky |
Abstrakt: | This diploma thesis addresses the topic of anomaly detection in business metrics at the e-commerce company Rohlík.cz. The aim was to design, develop, and implement a Data Sniffer tool for this company, which detects anomalies in target metrics. The tool had to be easily customizable and scalable across a wide range of metrics from various departments of the company. The tool is currently implemented across several departments at Rohlík.cz and sends detection results to corporate Slack channels every day between 4 and 5 AM. Generally, it is very difficult to price reporting tools; however, according to its internal calculations, the company estimates the profit from the Data Sniffer to be around 300,000 euros. |
Klíčová slova: | machine learning; automatization; python; SQL; Keboola; prophet; AWS; Snowflake; anomaly detection |
Informace o studiu
Studijní program / obor: | Data a analytika pro business |
---|---|
Typ studijního programu: | Magisterský studijní program |
Přidělovaná hodnost: | Ing. |
Instituce přidělující hodnost: | Vysoká škola ekonomická v Praze |
Fakulta: | Fakulta informatiky a statistiky |
Katedra: | Katedra informačních technologií |
Informace o odevzdání a obhajobě
Datum zadání práce: | 2. 1. 2024 |
---|---|
Datum podání práce: | 28. 4. 2024 |
Datum obhajoby: | 7. 6. 2024 |
Identifikátor v systému InSIS: | https://insis.vse.cz/zp/86989/podrobnosti |