Analytics Solution for Product Quality Analysis in Manufacturing

Název práce: Analytics Solution for Product Quality Analysis in Manufacturing
Autor(ka) práce: Selvarajan Prasanna, Ashik
Typ práce: Diploma thesis
Vedoucí práce: Potančok, Martin
Oponenti práce: Zimmermann, Pavel
Jazyk práce: English
Abstrakt:
This thesis explores the integration of data analytics and effective data management to enhance product quality analysis in manufacturing. The aim is to develop an analytics solution model using publicly available data, focusing on its impact on manufacturing processes. Key research questions address the strategic use of data analytics in product quality analysis and its effect on manufacturing outcomes. The literature review synthesises influential works in manufacturing, Industry 4.0, predictive analytics, and data mining. The proposed methodology involves building a Python-based analytics solution model using open data repositories for manufacturing data. Expected outcomes include best practices for data quality, an analytics solution model for quality assurance, and insights into the relationship between process conditions and product quality. The thesis structure encompasses an introduction, literature review, methodology, results analysis, discussion, conclusion, and references, with potential appendices containing code snippets.
Klíčová slova: Data Analytics; Data Preprocessing; Industry 4.0; Key Performance Indicators (KPIs); Manufacturing Industry; LSTM (Long Short-Term Memory); Operational Efficiency; Predictive Analytics; Predictive Maintenance; Proactive Quality Control; Product Quality Analysis; Random Forest; Resource Optimization; Anomaly Detection; Real-Time Monitoring
Název práce: Analytics Solution for Product Quality Analysis in Manufacturing
Autor(ka) práce: Selvarajan Prasanna, Ashik
Typ práce: Diplomová práce
Vedoucí práce: Potančok, Martin
Oponenti práce: Zimmermann, Pavel
Jazyk práce: English
Abstrakt:
This thesis explores the integration of data analytics and effective data management to enhance product quality analysis in manufacturing. The aim is to develop an analytics solution model using publicly available data, focusing on its impact on manufacturing processes. Key research questions address the strategic use of data analytics in product quality analysis and its effect on manufacturing outcomes. The literature review synthesises influential works in manufacturing, Industry 4.0, predictive analytics, and data mining. The proposed methodology involves building a Python-based analytics solution model using open data repositories for manufacturing data. Expected outcomes include best practices for data quality, an analytics solution model for quality assurance, and insights into the relationship between process conditions and product quality. The thesis structure encompasses an introduction, literature review, methodology, results analysis, discussion, conclusion, and references, with potential appendices containing code snippets.
Klíčová slova: Anomaly Detection; Data Analytics; Data Preprocessing; Industry 4.0; Manufacturing Industry; Operational Efficiency; Predictive Analytics; Predictive Maintenance; Key Performance Indicators (KPIs); LSTM (Long Short-Term Memory); Proactive Quality Control; Product Quality Analysis; Random Forest; Real-Time Monitoring; Resource Optimization.

Informace o studiu

Studijní program / obor: Information Systems Management
Typ studijního programu: Magisterský studijní program
Přidělovaná hodnost: Ing.
Instituce přidělující hodnost: Vysoká škola ekonomická v Praze
Fakulta: Fakulta informatiky a statistiky
Katedra: Katedra informačních technologií

Informace o odevzdání a obhajobě

Datum zadání práce: 28. 10. 2023
Datum podání práce: 1. 12. 2024
Datum obhajoby: 22. 1. 2025
Identifikátor v systému InSIS: https://insis.vse.cz/zp/86295/podrobnosti

Soubory ke stažení

    Poslední aktualizace: