Communication of Machine Learning Results Through Tabular Outputs

Název práce: Communication of machine learning results through tabular outputs
Autor(ka) práce: Colak, Bariscan
Typ práce: Diploma thesis
Vedoucí práce: Kliegr, Tomáš
Oponenti práce: Berka, Petr
Jazyk práce: English
Abstrakt:
The field of data mining constantly pursues the development of predictive models, crucial for various applications. While much emphasis is placed on improving the accuracy of these models, their comprehensibility to analysts and end-users is an often overlooked aspect. This thesis addresses this gap by presenting an empirical study that investigates the interpretability of alternative representation format, with a specific focus on decision trees and decision tables. In our research, decision trees are identified as challenging to read and understand, prompting the exploration of a solution. Motivated by the objective of enhancing model interpretability, we propose the development of a Python program designed to convert complex decision trees into more accessible decision tables. Decision tables, known for their clarity and ease of interpretation, emerge as a favorable alternative.
Klíčová slova: Machine Learning; Data Mining; Decision Trees; Decision Tables
Název práce: Communication of Machine Learning Results Through Tabular Outputs
Autor(ka) práce: Colak, Bariscan
Typ práce: Diplomová práce
Vedoucí práce: Kliegr, Tomáš
Oponenti práce: Berka, Petr
Jazyk práce: English
Abstrakt:
The field of data mining constantly pursues the development of predictive models, crucial for various applications. While much emphasis is placed on improving the accuracy of these models, their comprehensibility to analysts and end-users is an often overlooked aspect. This thesis addresses this gap by presenting an empirical study that investigates the interpretability of alternative representation format, with a specific focus on decision trees and decision tables. In our research, decision trees are identified as challenging to read and understand, prompting the exploration of a solution. Motivated by the objective of enhancing model interpretability, we propose the development of a Python program designed to convert complex decision trees into more accessible decision tables. Decision tables, known for their clarity and ease of interpretation, emerge as a favorable alternative.
Klíčová slova: Machine Learning; Data Mining; Decision Trees; Decision Tables

Informace o studiu

Studijní program / obor: Information Systems Management
Typ studijního programu: Magisterský studijní program
Přidělovaná hodnost: Ing.
Instituce přidělující hodnost: Vysoká škola ekonomická v Praze
Fakulta: Fakulta informatiky a statistiky
Katedra: Katedra informačního a znalostního inženýrství

Informace o odevzdání a obhajobě

Datum zadání práce: 26. 10. 2023
Datum podání práce: 1. 12. 2024
Datum obhajoby: 2024

Soubory ke stažení

Soubory budou k dispozici až po obhajobě práce.

    Poslední aktualizace: