Techniky strojového učení pro analýzu a prediktivní modelování dynamiky ceny Bitcoinu

Název práce: Machine Learning techniques for predictive modeling of Bitcoin price dynamics
Autor(ka) práce: Kozhevnikov, Vladislav
Typ práce: Diploma thesis
Vedoucí práce: Čabla, Adam
Oponenti práce: Šafr, Karel
Jazyk práce: English
Abstrakt:
This study investigates the application of machine learning techniques for Bitcoin price prediction, addressing the fundamental challenge of forecasting in highly volatile cryptocurrency markets. Using comprehensive daily data spanning 2014-2024, we systematically compare traditional econometric models (Random Walk, ARIMA, Ridge Regression) with advanced machine learning approaches (Random Forest, XGBoost, LSTM) and develop a novel Tiered Temporal Ensemble (TTE) framework. The research incorporates 115 engineered features across four dimensions: technical indicators, on-chain metrics, macroeconomic variables, and sentiment data. Our findings reveal that XGBoost achieves superior risk-adjusted performance with a Sharpe ratio of 1.679 (143% improvement over random walk baseline) and the lowest maximum drawdown of -17.3%. While LSTM demonstrates the highest directional accuracy at 52.4%, it exhibits elevated drawdown risk. Feature importance analysis indicates the dominance of technical indicators and lagged returns (75% of total importance), with on-chain metrics contributing only 10-20%, challenging assumptions about blockchain-specific predictive advantages. The TTE framework reveals pronounced regime-dependent performance, with bull market Sharpe ratios (3.780) dramatically exceeding neutral periods (0.512). However, all models underperform buy-and-hold strategy, highlighting the persistent challenge of market timing in trending assets. These findings contribute to understanding cryptocurrency market efficiency while demonstrating that despite statistically significant improvements, economic significance remains constrained by implementation challenges and market dynamics.
Klíčová slova: machine learning; finance; bitcoin
Název práce: Techniky strojového učení pro analýzu a prediktivní modelování dynamiky ceny Bitcoinu
Autor(ka) práce: Kozhevnikov, Vladislav
Typ práce: Diplomová práce
Vedoucí práce: Čabla, Adam
Oponenti práce: Šafr, Karel
Jazyk práce: English
Abstrakt:
This study investigates the application of machine learning techniques for Bitcoin price prediction, addressing the fundamental challenge of forecasting in highly volatile cryptocurrency markets. Using comprehensive daily data spanning 2014-2024, we systematically compare traditional econometric models (Random Walk, ARIMA, Ridge Regression) with advanced machine learning approaches (Random Forest, XGBoost, LSTM) and develop a novel Tiered Temporal Ensemble (TTE) framework. The research incorporates 115 engineered features across four dimensions: technical indicators, on-chain metrics, macroeconomic variables, and sentiment data. Our findings reveal that XGBoost achieves superior risk-adjusted performance with a Sharpe ratio of 1.679 (143% improvement over random walk baseline) and the lowest maximum drawdown of -17.3%. While LSTM demonstrates the highest directional accuracy at 52.4%, it exhibits elevated drawdown risk. Feature importance analysis indicates the dominance of technical indicators and lagged returns (75% of total importance), with on-chain metrics contributing only 10-20%, challenging assumptions about blockchain-specific predictive advantages. The TTE framework reveals pronounced regime-dependent performance, with bull market Sharpe ratios (3.780) dramatically exceeding neutral periods (0.512). However, all models underperform buy-and-hold strategy, highlighting the persistent challenge of market timing in trending assets. These findings contribute to understanding cryptocurrency market efficiency while demonstrating that despite statistically significant improvements, economic significance remains constrained by implementation challenges and market dynamics.
Klíčová slova: finance; btc; crypto

Informace o studiu

Studijní program / obor: Economic Data Analysis/Data Analysis and Modeling
Typ studijního programu: Magisterský studijní program
Přidělovaná hodnost: Ing.
Instituce přidělující hodnost: Vysoká škola ekonomická v Praze
Fakulta: Fakulta informatiky a statistiky
Katedra: Katedra statistiky a pravděpodobnosti

Informace o odevzdání a obhajobě

Datum zadání práce: 7. 11. 2023
Datum podání práce: 27. 6. 2025
Datum obhajoby: 2025

Soubory ke stažení

Soubory budou k dispozici až po obhajobě práce.

    Poslední aktualizace: